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Abstract

The Sasa-Satsuma equation, a higher-order nonlinear Schrédinger equation, is an important
integrable equation, which displays the propagation of femtosecond pulses in optical fibers. In
this paper, we investigate a generalized Sasa-Satsuma(gSS) equation. The Darboux transforma-
tion(DT) for the focusing and defocusing gSS equation is constructed. By using the DT, various
of soliton solutions for the generalized Sasa-Satsuma equation are derived, including hump-type,
breather-type and periodic soliton. Dynamics properties and asymptotic behavior of these soli-
ton solutions are analyzed. Infinite number conservation laws and conserved quantities for the
gSS equation are obtained.
keyword: The generalized Sasa-Satsuma equation, Darboux transformation, Breather-type

soliton solutions, Asymptotic behavior of soliton solutions, Infinite number conservation laws

1 Introduction

The nonlinear Schrodinger(NLS) equation is an important integrable equation, which is also a
fundamental equation in nonlinear physics, which describes soliton propagation in nonlinear fiber
optics, water waves, plasma physics, etc. The Sasa-Satsuma equation
€

2qXX + q|q|2 +1i (qXXX + 36(2qX|Q|2 + Q(|Q|2)X)) =0, (1)

ig, +

a higher-order NLS equation, displays the propagation of femtosecond pulses in optical fibers. Here

e = 1 and ¢ = —1 display the focusing case and defocusing case, respectively. Under the variable
transformations
(.1) = a(X, Thexp { o (x — 2L 1=T o= x — T 2
U x? - q 9y eXp 6 18 ) - ) T = 127
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Eq.(1) changes into a complex modified KdV-type equation
Uy + Uz + 3€(2)ul?uy + u(|ul?),) = 0. (3)

The Sasa-Satsuma equation has been extensively studied in the several topic, e.g. Cauchy problem
by the inverse scattering transform(IST)[1-3], soliton solutions, including bright-soliton, dark-soliton,
double-hump, breather soliton, resonant 2-solitons solution, rogue wave and W-shape soliton, by the
DT method and Hirota’s bilinear method[4-11], the initial-boundary value problem by the Fokas
method[12,13], long-time asymptotic by the nonlinear steepest descent method[14,15].

In this paper, we investigate a generalized Sasa-Satsuma(gSS) equation, introduced in [16]
Up + Ugee — 3€(2a|uuy + 20uuy + au(|ul?), + bu*(Ju?),) =0, (4)

where a,b are real constants satisfying |a| # |b| and * represents the complex conjugate. We remark
here that under the variable transformation (2), the gSS equation (4) becomes into

. € 2, - . 2 2

19, + §qXX —aqlq|” +1iqy « — 3iea(2q,|q[” + q(lq]”) )
(5)

—3iebe T (¥ 1%) <e_%(x_%)(2q2qx - %qs) +laf*q; + q*qu> =0.
Clearly, equation (5) with a = —1,b = 0 is just Sasa-Satsuma equation (3). In this sense, equation (4)
is really a generalized Sasa-Satsuma equation, and then the research on equation (4) is important for
nonlinear optics. For the focusing gSS equation (4), its soliton solutions were obtained by using the
Riemann-Hilbert approach[16]; the long-time asymptotic behavior of Eq. (4) was discussed [17]. To
the best of our knowledge, the soliton solutions with non-zero seed solution for the gSS equation (4)
have not been studied.

As we known, the Darboux transformation is an very important method for solving an integrable
equation. But, the construction of DT is difficult. In this paper, our main purpose is to construct DT
for the gSS equation (4). And then, by using our DT, various of soliton solutions for the gSS equation
are derived, including hump-type, breather-type and periodic soliton. With the zero seed solution, we
obtain single-, double-hump soliton, single-, double-peak breather solution to the focusing gSS equa-
tion. Based on the nonzero seed solution, we get periodic soliton, bright-dark breather, bright-bright
breather, resonant 2-breather solution. Furthermore, dynamics properties and asymptotic behavior of

these solutions are analyzed. The infinite number conservation laws for the gSS equation are obtained.

2  The construction of DT for the gSS equation

In this section, N-fold DT of the gSS equation is constructed.



The Lax pair of the gSS equation (4) is given(see [16]) by

U, =UNQT, T,=V(\Q)T

(6)
UXQ) =M +Q, V(A Q) = 4INA +4XQ + 2A(Q% + Qu)A + Q2Q — QQu — Qus +2Q°,
where V¥ is a matrix function, A is the spectral parameter, and
0 0 U
Q= 0 0 ew* |, A =diag(1,1,-1). (7)

e(au* +bu) au+bu* 0

Suppose that ]y]> (zpl' ,wQ' ) éj ))T is an eigenfunction for the eigenvalue problem (6) at A = \;,
then |n;) = (Q,Z)éj , 1 , 1/)3 ) is also an eigenfunction of the eigenvalue problem (6) at A = —A7,
and |0;) = (y;|J is a solution to the adjoint problem of Eq.(4)

0)e = —0U, |0)r = -0V, (8)
at A = )\j-, where
—ae —=b 0
<y]| = |yJ>T7 J = —b —ae 0 )
0 0 1

and T represents the complex conjugate transpose. By constructing the DT for the gSS equation (4),
we obtain our main result.

Theorem 1. Under a gauge transform W) = T W where

(yl\J|)Z\/1> <y12|i\771> -1 §y1|=§\

1 * * A —1

TW =1~ (ly1), Im)) < (mu|y11> (m 1) > < 11T ) =1 -K W T(Ky). 9)
—2\1 —A1+AT —A1—A

one can find that the eigenvalue problem (6) changes into
oM =W QWyw®, v =y QW)gM), (10)

where

QW =Q+i KWK, A] : (11)

We could conclude that T is DT of the spectral problem (6), and the relation between the old and

new solution of the gSS equation (4) can be written as

21 (1) (1) (1), (1) s, (D)7 (1)
u = (A el o) - )+ B lY) 2



— iy — {nlJlm)
where Al = W,Bl == T

Proof. It is obvious that we have

AT =JA, QVT=—-JQ, (m|JIm) = (wlJly1), (m|Jly1) = ((lJIm))*

Then we can verify the following equations

(il y1))e = =17 = Al JAly1),  ((yalJIm))e = =20\ (| JAlm).
With a direct calculation, we have

KiJ = (D = ADD(Ky), DIw, —wiDy = KIJK,, K, =iAK,D; + QK;,
Wi, = —iKIJAK;, (D(K))®), = —iKIJAU, D) = diag(\1, —A),
and then we obtain
U = (IAA 4+ Q)¥ — IAK, Dy W D(K )W — QK W D (K )W + iK, W KT AW
— iKW K TAK W (K ) W
= (IAA 4+ Q)U — IMNAK, W, T (K1) W + iAK, W KK, W T (K, )@
—IAK WKW — QKW (K W 4 K WK JAW
— iKW KL JAK WD (K )
= (iM + Q + iKW KA —iAK, WKL) (0 — Ky WD (K ) D).

Next, let us prove that QM) has the same structure with Q. Denote © = KyWi 1KJ{J , and then

Eq. (11) can be rewritten as

0 0 u — 21@13
QW) = 0 0 eu* — 21093 |,
e(au* + bu) + 2iO3;  au + bu* + 2103 0
where
1 A —DB V3
913 = 7(1/1171?*) )
AT + By |2 “\ B 4 €3

_ ; * Al —B 7/{%‘
@23 - A% + ’B1‘2 (¢27¢1) < BT Al > < ng > ’
g o A =B\ ([ —aewi — b
AT+ ’31‘2(1/13761/13) ( B A > ( —aeyy — by ) 7
1

A —B —by — ae;
O3 = ———— (13, et} :
T Ay B V) ( Bf A > ( —bipy — aeyy
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It is easy to prove that
O93 = —E@Tg, O3 = E(a@>{3 — b@13), O30 = —aBq3 + b@fg (15)

This means that Q) has the same structure with Q. So, we have shown that the matrix U(l)()\, Q(l))
has the same structure with U (A, Q).
Next, we hope to prove that the matrix V(l)()\, Q(l)) has the same structure with V(A, Q). For
the time development part, we can obtain the following equations via a long but direct calculation
(1l ]y1))e = =4i(AF° = X)) (i [T ALy1) — 4N = AD) (01| I Q)
— 2i(A} — M) (1| J(Q% + Qx)Alyn), (16)
((yalT|m))e = =8iAP (ya | TA ) — 4iX} (91T (Q* + Qu) Alm),

and
Ky, = 4iAK; D} + 4QK, D} + 2i(Q* + Q4)AK 1 Dy + (Q2Q — QQu — Qua + 2Q°)Ky,

Wy, = —4iDI*KIJAK, — 4iK{JAK, D? — 4iDIK{JAK, D, — 4D{K]JQK,
— 4K JQK, Dy — 2iK! J(Q? + Qu)AK,
(D(K1) W), = —4iN2KIJAY — 4iADIKI AW — 4iDI’K] JAW — 4K QW
—4DIK!JQU — 2iK! J(Q? + Q.)AV,
By using equations (11), (13) and (17), we have
T = (4N +4ANQ + 2N(Q% + Qo)A + QuQ — QQ — Qi + 2Q°)T
— 4iAK DWW T (KW — (4QK; DF + 21(Q? + Q,)AK; Dy
+(QuQ — QQu — Quy + 2Q°)K) W 'T(K)) W — Ky Wi L (4iD VK] JAK,
+ 4iK| JAK, D% + 4iD\ KT JAK, Dy + 4DV Kl QK + 4K JQK, Dy
+ 2K J(Q? + Qu)AK )W T (K )W + K, W (4iAKT AW
+ 4IADL K TAD 4+ 4iDUK] AT + 0K JQU + 4D Kl 1QU + 2K J(Q? + Q.)AW)
= (4IN3A 4 4X2(Q + iKW KT JA — SAK, W TKIT) 4 20 (Q7 + Qa)A
+ 2QK, WKL T — 21K, WKL JQ — 2AK, DyW KL + 2K, W DL KT JA
— 2K, W TKIJAK WKL) + QeQ — QQu — Que +2Q° — 21(Q + Qu)AK W, KIS
+ 2K, W KT (Q? + Qu)A — 4QK, DyW KT + 4K, W' DL KT JQ
— 4K WK JQK W K] T — 4AK, D3 WK 4 4K, W DK A
— 4Ky W KA Ky Dy WKL — 4ik W DK TA K v W KD )
(U - KW (Ky) D)
= (4iN*A +43°QM +20Q™M" + QM)A +QPQW — QWY — QL) + 20w ™.
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This completes the proof of Theorem 1.

Assume that |y;) = ( 9)7 gj), (])) (j =1,2,..N,N > 2) are eigenfunctions for the eigenvalue
problem (6) at A = \;, respectively, we can construct the N-fold DT as the following Theorem.
Theorem 2. Take gauge transform N = T, where TN =T — KNW]§1F(KN),

Ky = (|y1), [m)s y2), [m2), -+ lyw)s Inn)) & (K1, Ka, -+, Kn),

QK1 K1) QKK - QKL Ky) I'(Ky)
Q(Ky, Ka)  Q(Kg,Kg) -+ Q(K2,Kn) I'(K2)
Wy = . . . . 7F(KN) = . ’
QKn, K1) QUEN,K) -+ QKn,Kn) I'(Kn)
<z;\i\J|)Z{j> <§i|J\;7j> <yl\J
UKL K5) = | sty sy | T = < i, ) GEEN

Then the eigenvalue problem (6) changes into
v =M, QMM w™ = v (A, Q) w ), (18)

where

QW) = Q +i [KyWy'Kh J, A] . (19)

We have the conclusion that matrix UM)(X, Q™)) and VIV (X, QM) have the same structures with
matrix U(X, Q) and V(A, Q). This means that u(x,t) is a solution of the gSS equation (4) (corre-
sponding to eigenfunction 1), then u™¥)(z,t) is also a solution of the gSS equation (4) (corresponding
to eigenfunction ¢V )), where

u™) =y — 2ih, Wy'hl, (20)

with

hl = (w§1)7¢§1)*’¢§2)’¢52)*7 Tty 1 7711)2 ) h3 — (¢3 , € 3 7711)3 ’ 711)3 s 7¢§N)76¢§N)*)-

Proof. Similar to the proof of Theorem 1, we can prove that matrix U(N)()\, Q(N)) and V(N)()\, Q(N))
have the same structures with matrix U(\, Q) and V(\,Q). Here we only proof that QN) has the
same structure with Q). Setting © = KNWA_,lK;[VJ, Eq. (11) is rewritten as

0 0 u — 2013
Q(N) — 0 0 eu* —2i093 |,
e(au* 4+ bu) + 21031  au + bu* + 2103 0



where

Wy hl ol W hi Ly W h)
o h; 0 Our — hs hs
Wy hi o W hi ‘WN hg'
h2 0 h3 h3 0
e S} )
with
H* (2 2)* N N)*
h2:(wél)7¢§) 7wé)7¢§) y T g )771Z)§ ) )
Note that

il Tl = CyrlTyi) = Cyl Tlye))™s il Tlyr) = il Tlne))™s - Cyrl T |mi) = (il T 1w,

we have Q(K;, Kj) + Q(Ky, K;)T = 0, and Wy is skew Hermitian matrix, i.e.Wy -+ W;{, = 0. By

introducing 2N x 2N permutation matrix

0 0 0
10 0 0
A: )
00 - 10

we have hj A = h}, hyA = h} h3A = ¢h} and AWxA = W}. With these identities, we have

Wy hi | | AWFA eAnl | | W el | | Wy h}
hy, 0| | hi4 0 | | hy 0 | |e3 0
wi nl Wi hl Wy hi |
_ N 2 | = _¢ N CH N 3
chy 0 hi 0 hy 0 |
and
@23:—€@T3, @31:e(a®“{3—b®13), @32:—(1@13—1—1)@’{3. (21)

This completes the proof of our main result.



3  Hump-soliton and breather solutions for Eq. (4) with the zero

seed solution

In the section, by using the DT, we obtain hump-soliton solution, breather solution and hump-
breather solution for Eq. (4) with the zero seed solution. The asymptotic behavior of 2-soliton and
2-breather solutions is analyzed.

For the zero seed solution u = 0, solving the eigenvalue problem (6) with eigenvalue A\, = ay +
iBr(Br # 0), yields the eigenfunction

O = cgp 06 ) = cgp 6% ) = core0 By = N(m + 4N3E), k= 1,2, N, (22)
where ¢; (j =1,2,--- ,3N) are complex constants.

3.1 1-Hump soliton and breather solutions

By using 1-fold DT, we obtain the soliton solution for the gSS equation (4)

21 1), (1)* ) @1 1,0 w (D) (1)*
w = (A8 + e ) - Bl + Brofuf) (23)
where
J J . . .
Ay = W) - WTIL — f00 0 00T ) = @ 0 )T (a0
1 M 1

and c3 # 0, |e1]? + |c2|? # 0. Set ¢; = 1, c3 = 1, Ay = a1 +iB1. The solution can be written as

W0 451 (a1 (ecs ’{e_%l + Ape201) — Af (i + a1wy)e?t — e (ivy + alcEwl)e%I)

! , 25
v3 — 2a2cosh[46; g] — 282wscos[46; 1] + dico 187 (a + ebey g)e~ 1011 (25)

where superscript R, I represent real part and imaginary part, and

wi = ae(l + |02|2) +2bco p, Wy = ﬁ%(b2 — a2)(1 - |62|2)2, ws = 2ace + eb(1 + c%),
vy = B1(ae + beg)(1 — |62|2), vy = P1(b+ aecy)(1 — |02|2),

V3 = 2\)\1]2w1 + (a%(l — w%) + wg)e‘wlvﬁ‘.

It can be seen that the solution (25) is singular for the defocusing gSS equation (4). Let us discuss
two cases for the focusing gSS equation (4).

Case 1. Set ¢ = 0 and a = —1. The solution of the gSS equation (4) is given by

a _ 4,81 (a1 + i,@l)emel’l (2041(308}1(2917}{) — iﬁle%)lﬁ — 15156291,12—4101,1)

. 26
2(a? + B?) + 2a2cosh(401 r) + B3 (1 — b2)e¥r.7 + 282bcosh (461 1) (26)
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If set b = 0, we obtain the hump-soliton solution of the Sasa-Satsuma equation (3). We should remark
that the solution (26) is different from the solution obtained in [5]. When 8? < 3a?, this solution is

single-hump soliton, and the module |u(Y| reaches to its maximum at the line

= 405~ 3ad)t + 5 (LA,

43 laz] 7

when 87 > 3a?, this solution is double-hump soliton, and the module |u(!)| reaches to its maximum

at lines

x =467 — )t+ﬁl (ﬁli 51(%5%_30‘%)—1).

Fig.1 shows the process of from single-hump soliton to double-hump soliton for 57 < 3a?,8? = 3a?

and 32 > 3a2, respectively.
Our focus is the gSS equation for b # O(e.g. b = %) The soliton solution of the gSS equation is
given by

(D) — _ 8B1(01+i81)e™ LT (4o cosh (201 ) ~2ifre™ LR —ifyy*"LRTHOL ) (27)
8(a?+p2)+8a? cosh(491,R)+3ﬁfe491’R +4B%cosh(461 1) ’

We can see that the solution displays a breather-like form traveling along the peak line of the case
of b= 0. When 82 < 3a32, this solution is single-peak breather-like; when 32 = 3a3, this solution is
Kuznetsov-Ma(KM) breather-like; When ﬁ% > Ba%, this solution is double-peak breather-like. Fig.2
shows that the process of changing single-peak breather-like solution to double-peak breather-like
solution. We should emphasize here that there exist a big difference between the SS equation and the
gSS equation.
Case 2: ¢y # 0(e.g. co = 1). We obtain the breather solution of the gSS equation
8a1 B <2cosh(2€1 R)(@1cos(20; 1)—Brsin(26; 1)) —e>?LR (a1 o1cos(201 1) —B102sin(261 1)))

uD) = ) ) ) ; o ) 7 (28)
4(a+b)(a2+8?2)—2a2cosh(461, r)—4(a+b)BZcos(401, r)+alpio2e™ L1

where g1 = 1+ 2(a+b) and g2 = 1 —2(a +b). When 32 = 303, this solution is KM-breather solution.
When 3?2 # 3a2, this solution is a general breather solution in space and time. In Fig.3, we give plots
of such breather solutions for the gSS equation(4).

3.2 2-soliton and breather solutions

For the focusing gSS equation (4), by using 2-fold DT, we obtain 2-soliton solution

u(z):—Qi( (1 7¢1 ) )W2 s § ; 3 7¢3 ’ 3 )T (29)



where

R T T, Ty
1| - R -T; -T
G| -Ty T3 Ry Ty |’

~T; Ty —Tf Ry
G= (414 +|C1* + |D1|2)2 + A}|Bo|* + |B1*(A3 + | Ba|*) — 4|C1|?| D1 |?

+2Re [Bl(ch; — DY By) + 2D} (A3 B, C — AlClBg)] ,

Ry = C1(A2Cf — DiBy) + D1(As D + CfB3) + A1 (A3 + | Ba?),
R2 = AQ(A% + |Bl|2) + Cl(Alcik — Bile) + DT(Blcik + AlDl),
Ty = 2A,C1 Dy — A3B) — C?By + B3(D? — B1By),
Ty = C1(|D1|> = |C1|?) — Bi(A2D; + C;B3) — A1 (AxCy + D1 B3),
T3 = C1(CyDy + A1 By) — Ay(B,Cf + A1 Dy) — D} (D? — B1By),
Ty = B:D? — 2A,CiD;y — A2By — B1(CY + BIBy),

AR (Wil ) (y1|J]y2) (y1|J]m2)
Ay = DR gy SRR 1,2, ¢ = 22 p, - WLETRT
S N V) D I VL R NI Y.

We remark here that the matrix Wy 1is complex, but we need it when we analyze the asymptotic

behavior of the 2-soliton. Let us discuss the property for this solution. We first consider the case of

the focusing SS equation(3).

Case 1. Set cy =c3=c5=cg=1,co=c4 =0.

If A1, rA1,1A2,RA2,1 # 0, we can obtain the asymptotic behavior for the interaction of this solution.
When 6; ~ O(1), we have

where

U, t— —00,
if Aos(BAT R — Al —3A3 R+ A5s) >0, u® ~

_l’_
uy, t— 400,

u+, t — —o0,
if Ao s(3M g — A~ 30+ 23 ,) <0, u®~

uy, t— +00,
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with

W = 40 A 11 4 A2) (N5 — M) (AF 4 A2) (AT — A5)Sh,
ug = 2[A12AF = A2 IAT = A3 + AP+ Aelt g — Ap[tetfrn
+ A% R = Aot A + ApfteHnr,
uz = 40 A (A1 — A2) (Mg — A (ArAL — A5[2e™ 20T + A5 |A — Agf2e®),
ug = 20021 = AP An = M52+ AP = doftet?rm 4 AT plA — Agltem R,

St = A1rlA — A22 A+ 5220 1 XA+ Ao ? A1 — A5 [2e?01

When 60y ~ O(1),

Uy, t— —00,
if — A3 - =3+ ) >0, u®@ ~ Q7

Uy, T — 100,
, t— —o0,

it — A (BM = —3M p+23)) <0, u® ~
Uy, T — +00,

with
- _ oo 1 (Ai+A2) A —A2) A5 —A) (A1 +A3)Ss
2 2N AR 22 A3+ e 2 Ar Ao [ A — Ap[4e LR 42 1M Ao |4 A Ap[de LR
4 el a2 (A3=M) Qo r M —A5[2e 20 A5 A — o 2e22)
2 22— Ae A =3 2o 2 A — Ao |1 P2 R 02 LA —Ag[te 2R
with

Sy = Xar|A — A2l2 A1 + A52e 722 £ N3N 4 Ao A1 — 5| 2e

Setting Ay = 1+ %,)\2 = %—I—i, the 2-soliton solution for the Sasa-Satsuma equation(3) describes the
elastic collision of single-hump soliton with double-hump soliton(see Fig. 4(a)). With above analysis,

the asymptotic behavior for this solution can be written as

-t
u; +u t— —o0
1 2
u?® — ’ ’ (30)
uf +uy, t— +oo,
where
- — (2006—288i)(2813¢201 +146(2+i)e2%1) ut = 4(29—1531)(25(1—31)e202 +-97¢~202)
L7 730(292cosh (461 g )+2813)+7806389¢ 1.2 7 "2 T 500(25c0sh (464 g)+97)+3159% Y2.R
T+ (214i—52)(25(2—1)e2%1 +194e201) —  4(1037+989i)(2813(i—1)e202 —73(2+i)e202)
L™ 250(25c0sh(461, g )+97)+34511e *PL.R 72 730(73cosh (405, g ) +5626)+15799293¢ 2.7
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It can be checked that u;, uf are single-hump soliton and u, , u;' are double-hump soliton solutions
of the focusing Sasa-Satsuma equation(3). The peak values of u; and uf are same, which take at the

lines

1 2813 1. 25V5
=11t + =1 d z=—-11t+ = In(——=
x +3 n(146\/3) and x +3 n( ™

respectively. The peak values of u, and u; are same, which take at the lines

3
1 971 V904 + 3696
T=3 <8t - ln(74 + f)) ,

)7

) £ In(

5 x 28 x 58 21/8 % 53/
and
1 73 3 5.s v 904 + 369/6
x—g <8t—ln((2813)4(§)8)i1n( 21/8  53/8 )]

respectively. It can be seen that the interaction between single-hump soliton and double-hump soliton
is elastic.

If take \y =1+ %, Ao = % + 2i, ()\271(3)\?73 — A7 — 3)‘§,R + A2,7) = 0), the solution of the focusing
Sasa-Satsuma equation(3) is double-peak breather(see Fig. 4(b)); If take A\; = 1 + 5, X2 = i, this
solution of the focusing Sasa-Satsuma equation(3) displays the interaction of single-peak breather and
hump soliton, one breather becomes into single-hump soliton after the collision(see Fig. 4(c));

Let us give a analysis for the interaction of two solitons to the focusing gSS equation(4) with
a=—-1,b= % Set Ay = 1+ %,)\2 = % + i, the 2-soliton solution describes the collision between
single-peak breather and double-peak breather soliton(see Fig. 4(d)). The asymptotic behavior for
this 2-soliton solution is analyzed as follows
Upg + Ugy, T —> —00,

e (31)

+ +
Uy + Ugy, T — +00,

12



where
4(49—108) ((52871+96381)e29T +5626(23+361)e201 +1460(2+191)e*291‘)

U2 = 4(288864sin (46, 1)+985273c0s (461, 1))-+14600(2813+292cosh (461 ))-+148214811e*1.R 7
s — 45008 A1 —200 A5
22 7 36B;+50(55517368+12446221cosh (465 r))+290230119¢ 02,7’
ut = 100A3+45008 44
1277 4By 4+50(49767596+12446221cosh (46, R ))+3613677099e ~ 1.1’
+ _ —8(149+771)(3(38393—376061 )e2%3 +5626(53—291)e202 ) +730(14+13i)e 203

Y22 36(1025593c0s (4604 1 )+48624sin (402, 1)+14600(5626+T73cosh (402, g ))+244769139¢ 72,7 ?
Ay = (13231 — 87867i)e 2% + 120(73 + 151i)e =22,

Ay = 3(1604087 — 6527571)e?%2 + 580(23291 + 11010i)e?%2,
Az = 290(12469 + 44040i)e?"t + (160085 — 1913998i)e?’1,
Ay = 120(47 — 161i)e 201 — (17938 — 104041i)e~2%1
By = 12373027cos (4605, 1) — 100536sin (465 1),

By = 4941576sin (46 1) — 32387057cos (461 ).

It can be proved that u,,, u?l are single-peak breather solution and wuq,, u%’z are double-peak breather
solution of Eq.(4). If take Ay = 1+ 3, Ao = 2 + 2i, this solution is periodic-like solution(see Fig. 4(e));
If take A\ = 1+ %, Ao = i, this solution displays the collision of breather and hump soliton, the breather
soliton becomes into breather-like soliton after the collision(see Fig.4(f)).

Case 2. Set co =0,c4 =1,¢1 =c3 =c¢5 = cg = 1, and)\1:1+%,)\2:%+i,a:—1.

For the focusing Sasa-Satsuma equation(3), the 2-soliton solution describes that a single-hump
soliton changes into single-peak breather after colliding with a breather soliton(see Fig. 5(a)). The
asymptotic behavior for this solution is analyzed as follows

u? Uz + Ugg, T —> —00, (32)
ufy +ugy, t— +o0;
where u;; = uj; and

8((784742-+947961) By 22, R 414065 Bye 272, R)

Unq = —

23 7 506340(1013cos (465, 1 )—24sin(46,1))+53(91659¢ ~ ?2.R —11364520)—88845544cosh (462 )’
ut = 2((1003+3178i) Bs+56265,)
1377 144(48109c0s (46, 1)+2006sin (40, 1))+5626(7945+11252cosh (46, g ))—20546183¢ 71,7 7
+ 8(5626¢272. R (941cos (205, 1)+3063sin (262, 1))+1825(217cos (205, 1) —603sin(262.1)))

Y23 36(1025593c0s (46 1 )+48624sin (462, 1)) —3650(73cosh (462, g )+11252)—31518651e ~ 202.R ’
By = (37 + 2i)cos (2602 1) + (87 — 42i)sin(26s 1),

By = (1859 + 361)cos(202,1) — 27(163 + 100i)sin(2602, 1),
Bz = 36(49 — 108i)e?% + (1049 + 1738i)e%1
By = 36(104 — 57i)e™21%1 — (1882 4 761i)e 211,
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It can be proved that ufg, Uqs are single-peak breather solutions of the focusing Sasa-Satsuma equation,
and u;g is a breather solution of the corresponding focusing mKdV equation.

Let us analyze the case of the gSS equation. If b # 0 (e.g.b = %), the 2-soliton solution shows that
a breather-like wave changes into breather wave after colliding with a breather wave(see Fig. 5(b)).

The asymptotic behavior for this solution is analyzed as follows

Upy + Ugy, T — —00,

u?® — (33)
ufy +ug,, t— +oo,
where u;, = uj, and
. — 4(2—1)(C1e%%2.R 42813C,e ™~ 2%2,R)
247 9(88170163cos (405, 1 )—915432sin (46 1)) —2813(322070+53447cosh (464 r))+34908984¢ 72, R’
ut = 11252C3—4Cy
1477 4(11376817cos (46, 1 )+144432sin(40; 1)+61914130)+161056886c0sh (40, 5 )+46079061e *71.R ’
ut = 4(2813e292vR(941cos(29171)+306351n(29171))+1825e7202’R(217cos(29171)—6035in(201’])))
24 9(1025593cos (405, 1)+48624sin (402, 1)) —1825(5626+73cosh (46, r))—3889872e 72, R 7
with
C1 = (34319674 + 213152091 )cos (26, 1) + 3(35203162 + 124648331 )sin(26; 1),
Cy = (16706 + 9469i)cos(261,1) — (37734 + 350551 )sin(26; 1),
C3 = 36(104 — 57i)e 201 — (1882 + 761i)e =21,
Cy = 2(5713883 — 8310744i)e??t — (38820683 + 5987714i)e?’1.
It can be proved that uﬂ, u,, are breather solutions of focusing gSS equation(4) with a = —1,b = %,

and uétl is a breather solution of the corresponding focusing mKdV equation.

4 Breather and periodic solutions for Eq.(4) with the nonzero seed

solution

Starting from the nonzero seed solution, we present the bright-dark breather soliton, bright-bright
breather soliton, resonant(2, 1) interaction(i.e the solution shows that two soliton become a soliton after
resonance) and general periodic solutions for the focusing gSS equation. Meanwhile, we obtain the dark
breather solution of the defocusing gSS equation. Note that bright-dark(z, j)(i.e. the number of peaks
and troughs of the breather in shape are 7, j respectively), bright-bright breather and resonant(2, 1)-

breather interaction solution of the Sasa-Satsuma equation have not been presented in the literatures.
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For the nonzero seed solution u = ~(y # 0,7 is a real constant), solving the eigenvalue problem

(4) at A = A, gives the the eigenfunction
T = (D D pONT 50 — (g eXi 4 dine=Xi 4 dinebi
=Wy s b3 )T,y v(dj1e™ + djze + djze™),
¥§) = ey(djnes + dje ™ — djze®s), ¢ = djin;eN — djprse,

Xj = Tj(l‘ + 45175),@' = i)\j(!E + 4/\?15),77)' = —i)\j + 75,k = i)\j + 75,

where d;1,d;2,d;3 are complex constants and 7; = \/26(a +b)y2 — )\g, §; =ela+b)y? + )\?.

4.1 1-soliton and breather solutions

Using 1-fold DT yields soliton solution of the gSS equation. Here we set parameters v = 1.
If d11 = 1,d12 = 0,d13 = 1, the solution can be written as

u(l) 14 166)\17[(4&)1[{1 + iIm[pleXT_ﬁf + 4)\17Rw1)\’f7ﬁe§1_’<1] + )\17Rpge2(X1’R_§1’R)
16w (H + A? ;Re[(2ws — en?)e? 0 i=6L0]) + pye(x1.r=¢1r)

9

wi=a—b, wy=a+b, p1 =2 \wa(2A{n} + 2i\1 ) — 2eA RN, (34)
P2 = dwa (M + Afni) — e(amy + X)) m[?, ps = 47 gl2ws — en|® — 32ews| M *ni 1,
Hy = Ay, (Im[Aymye®0r =00 4\ Py g, Hy = (M (2wa — elmi[?) + wiAf ge200m=80m),
For the focusing gSS equation with ¢ = —1,b = %, if set Ay =1+ %()\%I < 3)\%73), this solution is
bright-dark(1, 1) breather, which is the mixture of bright single-peak breather and dark single-peak
breather(see Fig. 6(a)); if set A\; = £ + i(/\ij > 3/\%,1%)7 this solution is bright-dark(1,2) breather,
which is the mixture of one bright single-peak breather and dark double-peak breather(see Fig. 6(b)).
For the defocusing gSS equation with a = %, b=—-1,set Ay =1+ 1L0= this solution is located dark
breather solution(see Fig. 7(a)); set A\; = 1 + 3, this solution is bright-dark(1,1) breather(see Fig.
7(b)); set Ay = 1 + 2i, this solution is bright-dark(1,2) breather(see Fig. 7(c)). We can see that if fix
the value of \; g, the shape of the soliton from dark breather becomes into bright-dark breather with
the increase of A; ;. The bright-dark breather is (1,1) or (1,2) depend on 3)‘%,}2 > )‘%,1 or 3)\%73 < )‘%,1-
In particular, if Ay = 18y, when 2ewy + B% < 0, i.e. 7; is a pure imaginary number, the solution
(34) reduces into

4eB1 (2w Brcosh(x1)? + wirsinh(2x) — 2nglcosh(X1)e_51)
w1 (2w + em k1 + (2wz — end)cosh(2x1)) + 2€7i (w1 Br1e~2X1 + worie= %)’

ut =1+

This solution for the focusing gSS equation is periodic-like solution(see Fig. 8). This type of solution

to SS equation has appeared in [5].
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If di1 = 1,d12 = 1,d13 = 0, we obtain the solution to the focusing gSS equation

M _ 4 6Ar(Re[A] + 2|\ [* Re[Hscosh(x7)](2(a + b)|cosh(x1)|* — |H[?))
AM[P(2(a 4 D)leosh () — [ Hal?)2 + (A = A)?[2(a + b)eosh (x{)2 — HY[” (35)
A1 = M (A — A\})Hycosh(x1)(2(a + b)cosh(x1)? — Hy?), Hs = msinh(x1) — iAjcosh(x1).

It is clear that ul!) given by (35) is a real solution. Set A\; = 1+ 1, |u(1)|(/\ij < 3)\%71%) is a bright-
bright breather, which is the mixture of two bright single-peak breather waves(see Fig. 9(a)(c));
Setting A\ = % + i()\il > 3)‘%,}%)7 luM] is a bright-bright breather, which is the mixture of two bright
breather(see Fig. 9(b)(d)).

If d11 = 1,d12 = 1,d13 = 1, the solution of the focusing gSS equation can be written as

W) — 1 4 Bur(@eosh(xy) + )2y + (eoshid) — )A))
4[\|2(Hs — 2|H3|?)? — 4)} ;| Hy — 2H3?|

Ay = M(M — A)H3(Hi — 2H3?) + 2X] (Hs — 2|H3 ),

Hy = 4(a + b)cosh(x1)? — (a — b)e**', Hs = 4(a + b)|cosh(x1)|? + (a — b)e* R,

Y

(36)

Setting A; = % + i, this solution is resonant 2-breather solution(see Fig. 10(a)). In particular, if
A1 = if}1, the solution (36) reduces into

27'12

M1
" * 2(a + b) — B2cosh(2x1) — fimisinh(2x1)’

(37)

which is the exact solution for the mKdV equation. When 2 + 2(a + b) < 0, i.e. X1 is imaginary,
the solution (37) is periodic in space and time(see Fig. 10(b)(c)). Spatial period of this solution is
When $+42(a+b) > 0, i.e. x1is

g , and time period of the solution is ——ZX——.
2|a+b—pB3|y/—B3—2(a+b) —B2—2(a+b)

real, the solution (37) is hump-soliton(see Fig. 10(d)), the peak value of [u(!)]| is ‘

27—12 . ‘
2(a+b)—B1+/12(a+b)]|
located in the line

1 + 2(a
v = —d(a+b— B+ —— |V \
ﬁ1+2(a+b) B1+\/51+2

4.2  2-soliton and breather solutions

By using two-fold DT, we obtain interaction solution to gSS equation of soliton, breather, resonant
interaction and periodic solution from nonzero seed solution. For the focusing gSS equation, we derive
2-breather solutions, which describe collision of bright-dark, bright-bright breather and periodic wave;
For the defocusing gSS equation, we obtain 2-breather solutions, displaying collision of two dark

breather solitons. In order to facilitate the calculation, here we set di; = do; = 1.
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For focusing gSS equation, suppose A\ rA1 A2 rA2 1 # 0, e.g. Ap = 1+ %, Ay = % + i, and set
dyg = dog = 0, dy3 = dag = 1, 2-breather solution is obtained, which displays that a bright-dark(1,1)
breather uj; and a bright-bright(1,2) breather uy; become into bright-dark(1,1) breather ujy and
bright-dark(1,2) breather ujs(see Fig. 11(a)). The asymptotic behavior of the focusing Sasa-Satsuma
equation is

W Ui + Ugg, T — —00,
ufy +udg, t— +oo;

where ufﬁ, ué% are too complicated, and we omit them.

When dis = dos = 0, dig = dag = 0, the 2-breather solution shows the interaction of two bright-
dark breathers(see Fig. 11(b)), and its asymptotic behavior can be also obtained by the asymptotic
analysis. When dio = 0, di3 = doo = doz = 1, the 2-breather solution describes the interaction of
bright-dark breather and resonant(2, 1)-breather(see Fig. 11(c)).

Let us present some new solutions to Sasa-Satsuma equation(3). Set \y = 1 — %,)\2 = % —

ok
di13 = dog = 1 and di3 = dog = 0. The 2-breather solution displays the collision of two dark breathers
for defocusing Sasa-Satsuma equation(see Fig. 11(d)).

For focusing SS equation, we set Ay = 1+ % and Ay = i3s (B2 +2(a+b) < 0). When djg = dgy =0
and dy3 = dog = 1, this solution is the mixture of bright-dark breather and periodic-like wave(see Fig.
12(a)(b)); when dy3 = d22 = 0 and dy2 = do3 = 1, this solution is the mixture of bright-bright breather
and periodic-like wave(see Fig. 12(c)(d)). When di2 = 0, and di3 = dag = dag = 1, if 85 +2(a+b) < 0,
this solution shows the interaction of a bright-dark(1,1) breather with periodic wave(see Fig. 13(a));
if B2 + 2(a + b) > 0, this solution describes the collision of a bright-dark(1,1) breather with hump
soliton(see Fig. 13(b)). If set dia = 0, di3 = dga = doz = 1, and 32 + 2(a + b) < 0, this solution
displays the interaction of a bright-bright(1, 1) breather with periodic wave; if 35 + 2(a + b) > 0, this
solution presents the collision of a bright-dark(1, 1) breather with hump soliton. When A\; =i, Ag = %,
d1y = diz = daa = dog = 1, this solution is bright-bright breather-periodic solution(see Fig. 13(c)).
When A\ = %,/\2 = %, dio = di13 = dgoo = dag = 1, this solution depicts the interaction of hump
soliton and W-hump soliton(see Fig. 13(d)).

5 Conservation laws

The existence of infinite number conservation laws is an important embodiment of the integrability
of the equation. In this section, we discuss infinitely number conservation laws for the gSS equation

by using the Lax representation. Suppose ¥ = (11,2,%3)7 is an eigenfunction of the eigenvalue
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problem(6). Let

b, — P1(x,t, ) By Yoz, t, )

T st )0 Pa(m A

Then the eigenvalue problem(6) can be written as the Reccati equation

By, = u+ 2I\D; — e(au* + bu)dF — (au + bu*) P Do,
By, = eu” + 20ADy — e(au” + bu)®y Dy — (au + bu*) D3,
Expanding ®; and @5 as

D) = icﬁlu—", Dy = ilc,?)x“.

and substituting ®; and ®2 into the Reccati equation (38), we obtain

i

C’fl) = iu, 02(1) = Zux, C’?(,l) = —%um + iea|u|2u + %ebu(u2 + u*2),
, 1 : : :
052) = %eu*, 052) = Zeu;, 0?52) = —éeu;‘m + ia|u|2u* + %bu*(u2 + u*?),

and the recursion relation

k—1
Ol = =5 | G+ Do (elaw’ + o) O + (au+bur)Cf e | |
j=1
i k—1
Cih = =5 | e+ Y (elaw + 0P O+ (au+ )OO | k= 3.4,
j=1

According to the compatibility condition (In3),: = (In3)¢,, we have %P = a%j , where

P = e(au™ + bu)P; + (au + bu™) Do,
T = —2ieX(2alul* + bu® + bu*?) + €@ (4N (au® + bu) + 2iX(au’ + buy) + dea’|ul*u*
4 2eb? (u® + [ul*u*) + 2abe(3lulu + u*) — aul, — bugs) + Po(4X*(au + bu*)

+ 2iX(auy + bul) + dea®|u)®u + 2eb® (u*> + |ul?u) + 2abe(3|ul?u* + ud) — aug, — bul,).

Then expanding P and J in the form

P=> PA", T=Y T\,
k=1

k=1

18

(38)



yields infinite number of conservation laws %Pk = a%jkv where
P = %E(Qa\uP + bu? + bu*?),
Py = ée(2a|u|2 + bu? + bu*?),,
P3 = —%e (alugzu™ + uuly,) + b(utigy + ulhy) — €(2alul® + bu? + bu*?)?)
Pr = eC’,gl)(au* + bu) + C’Igz)(au +bu*),k=4,5,---,

and

i
Ji = =e(—2a(Ugztt* — upul + unl,) + b(ud — 2y, +u® — 2utul,)

2
+ 12ea®ul* 4 3eb? (u? + u*?)? 4 12eablul* (u? + u*?)),
1
Ty = Ze(—a(umxu* +wuy,) — b(utgy, + uul,,) + 12ea2\u]2(uu; + utuy)

+ 6eb? (u? 4+ u*?) (uug + utulk) + 6eab(3|ul? (vup + utul) + uBuy +udul)),
Jj = C’](.l)(4a2|u|2u* + 2b%u(u? + u*?) + 2abu* (3u® + u*?) — caul, — bugy)
+ 60}2) (4a®|u)?u + 20%u* (u? + u*?) 4 2abu(3u™? + u?) — eauy, — bu,)
2)

+ 2160](}31 (auy, + buy) + 2ieC’](-+1(aum + bu},)

+ 46Cj(i)2(au* + bu) + 46CJ(»3_)2(CLU +bu*),j=3,4,---.
It is easy to find that
(Inp3), = =i\ + e(au™ + bu)®1 + (au + bu*) Do,

then e(au™ + bu)C’,il) + (au + bu*)C’f) would be the density of the conservation law, and we obtain an

infinite number of conserved quantities
I, = / (—1)F1(2i)*e(e(au” + bu)C’,gl) + (au + bu*)C’,f))dx, k=1,2,....

Substituting (38) into above equation, we can derive the conserved quantities, where the first four

conserved quantities are

o
I = / —aluf? + b2 + w))dz, I =0,
oo
I3 = / (—a(uh, + U uge) — b(utigy + u*ul,) + 2ajul® + b(u? + u*?)?)dz,
oo
I, = / (a(uu),, + W tgey) + Uty + u*ul,.))de.
—00
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6 Conclusion

In this paper, we have constructed N-fold DT of the gSS equation. We have seen that the con-
struction of DT for gSS equation is difficult. By using the DT, various of soliton solutions for the
focusing and defocusing gSS equation with zero and nonzero seed solution have been derived, in-
cluding hump-soliton solution, breather-type solution, resonant 2-breather solution, periodic solution.
Furthermore, dynamics properties and asymptotic behavior of these solutions have been analyzed.
Compare with soliton solutions discussed in[16], soliton solutions derived by the zero seed solution are
agree with Eq.(3.23) in [16], while soliton solution with non-zero seed of the gSS equation was not
discussed in [16]. Compared with the research results of the Sasa-Satsuma equation in the literatures,
we found several novel soliton solutions, including breather-like, resonant 2-breather solution, and the
interaction solution of bright-bright breather and other type solitons. By solving the related Riccati
equation, we have derived the infinite number conservation laws and conserved quantities for the gSS

equation.
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