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Abstract

In this paper, we discuss the relations between the Jack polynomials, ~-dependent
KP hierarchy and affine Yangian of gl(1). We find that α = ~2 and h1 = ~, h2 =
−~−1, where α is the parameter in Jack polynomials, and h1, h2 are the parameters
in affine Yangian of gl(1). Then the vertex operators which are in Jack polynomials
are the same with that in ~-KP hierarchy, and the Jack polynomials can be used to
describe the tau functions of the ~-KP hierarchy.

Keywords: ~-KP hierarchy, Affine Yangian, Jack polynomials, vertex operators, Boson-
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1 Introduction

The KP hierarchy is one of the most important integrable hierarchies and it arises in
many different fields of mathematics and physics such as enumerative algebraic geometry,
topological field and string theory[1, 2]. Meanwhile Young diagrams and symmetric
functions are of interest to many researchers and have many applications in mathematics
including combinatorics and representation theory of the symmetric and general linear
group[3, 4, 5, 6]. Schur functions can be used to describe the tau functions of the KP
hierarchy, and the vertex operators which realize the Schur functions have close relations
with the Fermions in the KP hierarchy. In this paper, we generalize these to the case of
Jack polynomials and ~-KP hierarchy.

In [7, 8], the authors K. Takasaki and T. Takebe defined the ~-dependent KP hierar-
chy (~-KP hierarchy for short) by introduced a formal parameter ~. It is a generalization
of the KP hierarchy in the sense that it becomes the KP hierarchy when ~ → 1. When
~ → 0, the ~-KP hierarchy becomes the dispersionless KP hierarchy. The ~-KP hierar-
chy was introduced to study the dispersionless KP hierarchy [7]. The ~-KP hierarchy is
defined by the Lax representation

~
∂L

∂xj
= [Bj , L], with Bj = (Lj)+,

where the Lax operator L is the pseudodifferential operator of the following form

L = ~∂ +

∞∑

j=1

fj(~∂)
−j .

∗Corresponding author: wangna@henu.edu.cn
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In [9], we introduce the vertex operators

X+(z) =
∑

n∈Z
X+

n z
n = exp


∑

n≥1

xn√
α
zn


 exp


−

∑

n≥1

∂xn

n

√
αz−n




X−(z) =
∑

n∈Z
X−

n z
n = exp


−

∑

n≥1

xn√
α
zn


 exp


∑

n≥1

∂xn

n

√
αz−n


 .

They realize the Jack polynomials J̃λ, and satisfy the Fermion relations. Then we define
an integrable hierarchy by the bilinear relations:

∑

m+n=−1

X−
mτ ⊗X+

n τ = 0. (1)

In this paper, we show that the integrable hierarchy above is exactly the ~-KP
hierarchy by the Hirota form. Then we give the Boson-Fermion correspondence of
~-KP hierarchy, and describe the tau functions of ~-KP hierarchy by using the Jack

polynomials J̃λ and Sλ

(
x√
α

)
.

The paper is organized as follows. In section 2, we recall the definition of ~-KP
hierarchy. In section 3, we recall the definitions of the affine Yangian of gl(1) and the
Jack polynomials. Then we show the properties of the Jack polynomials and the vertex
operators. In section 4, we use the Hirota equations to show that the ~-dependent KP
hierarchy is exactly the integrable hierarchy defined in [9]. In section 5, we give the
Boson-Fermion correspondence in the ~-KP hierarchy.

2 ~-dependent KP hierarchy

In [7, 8], the authors K. Takasaki and T. Takebe defined the ~-dependent KP hierarchy
(~-KP hierarchy for short) by introduced a formal parameter ~. When ~ → 0, the ~-KP
hierarchy becomes the dispersionless KP hierarchy, and when ~ → 1, it becomes the KP
hierarchy. The tau functions and the wave function in ~-KP hierarchy are functions of
parameters x, t1, t2, · · · , while x is only emerged in x + t1. In this paper, we want the
parameters are x = (x1, x2, · · · ), which correspond to (t1, t2, · · · ) in [7, 8].

Consider a pseudodifferential operator

L = ~∂ +
∞∑

j=1

fj(~∂)
−j , (2)

and the corresponding eigenvalue problem

Lw = zw, (3)

where ∂ = ∂
∂x .

We consider a formal solution

w = e
∑∞

j=1

xj

~
zj(1 +

w1

z
+
w2

z2
+ · · · ) (4)

= (1 + w1(~∂)
−1 + w2(~∂)

−2 + · · · )e
∑∞

j=1

xj

~
zj . (5)

Then let

M = 1 +
∞∑

j=1

wj(~∂)
−j . (6)
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Consider the linear system of equations

~
∂w

∂xj
= Bjw, with Bj = (Lj)+, (7)

where (Lj)+ is the differential operator part of Lj, that is, (Lj)+ includes the terms
∂k, k ≥ 0 in Lj.

The compatibility condition between (3) and (7) gives

~
∂L

∂xj
= [Bj, L]. (8)

This is called the ~-dependent KP hierarchy, the ~-KP hierarchy for short. It is clear
that when ~ → 1, it become the classical KP hierarchy.

Substituting (5) into (3), we get

L =M · (~∂) ·M−1. (9)

This equation gives the relations between w1, w2, · · · and f1, f2, · · · . The compatibility
condition (8) shows that these unknown functions can be written in terms of a single
function τ(x) by the following relation

w =
τ(x− ~[z−1])

τ(x)
e
∑∞

j=1

xj

~
zj , (10)

where

[z−1] = (
1

z
,

1

2z2
,

1

3z3
, · · · ).

Then the ~-KP hierarchy is an infinite set of nonlinear differential equations in a function
τ of infinitely many variables x1, x2, · · · . As in the classical KP hierarchy, let

u = 2~2∂2logτ. (11)

We get the first nonlinear differential equation in the ~-KP hierarchy

3

4

∂2u

∂x22
=

∂

∂x

(
∂u

∂x3
− 3

2
u
∂u

∂x
− ~

2

4

∂3u

∂x3

)
. (12)

This equation is called the ~-KP equation. When ~ → 1, it become the KP equation,
and when ~ → 0, it become the dispersionless KP equation.

3 Affine Yangian of gl(1) and Jack polynomials

In this section, we recall the definitions of the affine Yangian of gl(1) and the Jack
polynomials. Then we show the properties of the Jack polynomials according to the
affine Yangian of gl(1).

3.1 Affine Yangian of gl(1)

We almost copy this section from that in [9] since that is what we will use in the following
of this paper. The affine Yangian Y of ĝl(1) is an associative algebra with generators
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ej , fj and ψj , j = 0, 1, . . . and the following relations[10, 11]

[ψj, ψk] = 0, (13)

[ej+3, ek]− 3 [ej+2, ek+1] + 3 [ej+1, ek+2]− [ej , ek+3]

+σ2 [ej+1, ek]− σ2 [ej , ek+1]− σ3 {ej , ek} = 0, (14)

[fj+3, fk]− 3 [fj+2, fk+1] + 3 [fj+1, fk+2]− [fj, fk+3]

+σ2 [fj+1, fk]− σ2 [fj, fk+1] + σ3 {fj, fk} = 0, (15)

[ej, fk] = ψj+k, (16)

[ψj+3, ek]− 3 [ψj+2, ek+1] + 3 [ψj+1, ek+2]− [ψj , ek+3]

+σ2 [ψj+1, ek]− σ2 [ψj , ek+1]− σ3 {ψj , ek} = 0, (17)

[ψj+3, fk]− 3 [ψj+2, fk+1] + 3 [ψj+1, fk+2]− [ψj , fk+3]

+σ2 [ψj+1, fk]− σ2 [ψj , fk+1] + σ3 {ψj , fk} = 0, (18)

together with boundary conditions

[ψ0, ej ] = 0, [ψ1, ej ] = 0, [ψ2, ej ] = 2ej , (19)

[ψ0, fj ] = 0, [ψ1, fj ] = 0, [ψ2, fj] = −2fj, (20)

and a generalization of Serre relations

Sym(j1,j2,j3) [ej1 , [ej2 , ej3+1]] = 0, (21)

Sym(j1,j2,j3) [fj1 , [fj2, fj3+1]] = 0, (22)

where Sym is the complete symmetrization over all indicated indices which include 6
terms.

The notations σ2, σ3 in the definition of affine Yangian are functions of three complex
numbers h1, h2 and h3:

σ1 = h1 + h2 + h3 = 0, (23)

σ2 = h1h2 + h1h3 + h2h3, (24)

σ3 = h1h2h3. (25)

The affine yangian Y has a representation on the plane partitions. A plane partition
π is a 2D Young diagram in the first quadrant of plane xOy filled with non-negative
integers that form nonincreasing rows and columns [12, 13]. The number in the position
(i, j) is denoted by πi,j 


π1,1 π1,2 · · ·
π2,1 π2,2 · · ·
· · · · · · · · ·


 .

The integers πi,j satisfy

πi,j ≥ πi+1,j , πi,j ≥ πi,j+1, lim
i→∞

πi,j = lim
j→∞

πi,j = 0

for all integers i, j ≥ 0. Piling πi,j cubes over position (i, j) gives a 3D Young diagram.
3D Young diagrams arose naturally in the melting crystal model[13, 14]. We always
identify 3D Young diagrams with plane partitions as explained above. For example, the
3D Young diagram can also be denoted by the plane partition (1, 1).

As in our paper [15], we use the following notations. For a 3D Young diagram π, the
notation ✷ ∈ π+ means that this box is not in π and can be added to π. Here “can be
added” means that when this box is added, it is still a 3D Young diagram. The notation
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✷ ∈ π− means that this box is in π and can be removed from π. Here “can be removed”
means that when this box is removed, it is still a 3D Young diagram. For a box ✷, we
let

h✷ = h1y✷ + h2x✷ + h3z✷, (26)

where (x✷, y✷, z✷) is the coordinate of box ✷ in coordinate system O − xyz. Here we
use the order y✷, x✷, z✷ to match that in paper [10].

Following [10, 11], we introduce the generating functions:

e(u) =
∞∑

j=0

ej
uj+1

,

f(u) =

∞∑

j=0

fj
uj+1

, (27)

ψ(u) = 1 + σ3

∞∑

j=0

ψj

uj+1
,

where u is a parameter. Introduce

ψ0(u) =
u+ σ3ψ0

u
(28)

and

ϕ(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)
. (29)

For a 3D Young diagram π, define ψπ(u) by

ψπ(u) = ψ0(u)
∏

✷∈π
ϕ(u− h✷). (30)

In the following, we recall the representation of the affine Yangian on 3D Young diagrams
as in paper [10] by making a slight change. The representation of affine Yangian on 3D
Young diagrams is given by

ψ(u)|π〉 = ψπ(u)|π〉, (31)

e(u)|π〉 =
∑

✷∈π+

E(π → π +✷)

u− h✷
|π +✷〉, (32)

f(u)|π〉 =
∑

✷∈π−

F (π → π −✷)

u− h✷
|π −✷〉 (33)

where |π〉 means the state characterized by the 3D Young diagram π and the coefficients

E(π → π +�) = −F (π +� → π) =

√
1

σ3
resu→h�

ψπ(u) (34)

Equations (32) and (33) mean generators ej , fj acting on the 3D Young diagram π by

ej |π〉 =
∑

�∈π+

hj
�
E(π → π +�)|π +�〉, (35)

fj|π〉 =
∑

hj
�
F (π → π −�)|π −�〉. (36)
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As in our paper [15], we use the following notations. 3D Young diagram π may have
many ways to get by adding box, for example, there are two ways to get 3D Young
diagram (2, 1), which are

(1) → (1, 1) → (2, 1),

(1) → (2) → (2, 1),

We denote the state corresponding to (2, 1) in the first equation of the two equations
above by |(2, 1)〉h1 ,h3

, and that in the second equation above by |(2, 1)〉h3 ,h1
. We explain

the subscripts: let h✷ = x✷h2 + y✷h1 + z✷h3 with h1 + h2 + h3 = 0, we use h✷-
position to represent position (x✷, y✷, z✷) in coordinate system O − xyz. The notation
“h1, h3” means adding one box to ✷ in h1-position first, then adding one box in h3-
position. Even though h1-position is not unique, for example, h1-position can be the
positions (1, 2, 1), (2, 3, 2), · · · since h1 + h2 + h3 = 0, but it is unique if we want to get
a new 3D Young diagram after adding this box. Therefore, we can read the notation

|
(

1 1
1

)
〉h1,h2

, which means the 3D Young diagram |
(

1 1
1

)
〉 is obtained from ✷

by adding one box in h1-position first, then adding one box in h2-position. When there
is no confusion, we will omit the subscripts.

The state corresponding to 3D Young diagram is related to its growth process, this
is because we denote E(π → π + ✷)|π + ✷〉 by |π + ✷〉 the the 3D Young diagram
representation of affine Yangian of gl(1). For example,

|(2, 1)〉h1 ,h3
= E((1) → (1, 1))E((1, 1) → (2, 1))|(2, 1)〉,

|(2, 1)〉h3 ,h1
= E((1) → (2))E((2) → (2, 1))|(2, 1)〉,

then, |(2, 1)〉h1 ,h3
= ϕ(h3 − h1)|(2, 1)〉h3 ,h1

.
In the following subsection, we will discuss the Jack polynomials J̃λ(x), where we

treat 2D Young diagrams as the special cases of 3D Young diagrams which have one
layer in z-axis direction. The symmetric functions J̃λ(x) in the next subsection behave
as the special case ψ0 = 1, h1 =

√
α, h2 = −√

α
−1

of the 3D Young diagrams in this
subsection.

3.2 The Jack polynomials

The Jack polynomials we discussed here are denoted by J̃λ or ˜̃Jλ since it is well known
that the notations Jλ are used in [4]. The Jack polynomials J̃λ [16, 9] equal the Jack
polynomials Pα

λ (defined in [4]) multiplied by a constant. We introduce the Jack poly-
nomials J̃λ since they behave the same as the Young diagrams in the last section. For
example, it can be checked that 〈J̃λ, J̃µ〉 in the following equals 〈λ, µ〉 defined in the last
section.

Let p = (p1, p2, · · · ), the Jack polynomials J̃λ are defined by[16]

J̃λ :=
Bλ

Aλ
Pα
λ (37)
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where

Aλ = (
√
α)λ1−λ2−···−λl ·

l−1∏

j=1

λl−1∏

i=0

[(λj − i)α+ l − j] ·
l−1∏

i=1

λi+1∏

j=1

[(λi − j)α+ 1]

·
l∏

k=3

λk−1−λk−1∏

j=0

k−2∏

i=1

[(λi − λk − j)α+ k − i− 1] , (38)

Bλ =

l−1∏

i=1

λi+1−1∏

j=0

(λi − j) ·
l−1∏

i=1

λl∏

j=1

[(λi − j)α+ l − i+ 1]

·
l∏

k=3

λk−1−λk∏

j=1

k−2∏

i=1

[(λi − λk − j)α+ k − i] . (39)

for 2D Young diagram λ = (λ1, λ2, · · · , λl).
We change pn in [4] to

√
αpn, then pn in the following satisfies 〈pn, pn〉 = n. Then

Jack polynomials J̃(n) defined above satisfy

exp



∑

n≥1

pn
n
√
α
zn


 =

∑

n≥0

1

〈J̃(n), J̃(n)〉
1√
α
n J̃(n)z

n. (40)

Define the operator ˆ̃J(n) by

exp


∑

n≥1

adn−1
e1 e0

n!
√
α

zn


 =

∑

n≥0

1

〈J̃(n), J̃(n)〉
1√
α
n
ˆ̃J(n)z

n. (41)

The Pieri formula J̃(n)J̃λ is defined by

J̃(n)J̃λ := ˆ̃J(n) · J̃λ. (42)

Note that the actions of the generators ek, fk, ψk of affine Yangian of gl(1) on J̃λ are the
same with that on λ. The expressions of J̃λ for all Young diagrams λ can be determined
by (41) and (42). Note that J̃λ can not be expressed as the determinant of J̃(n), while

Schur functions Sλ can be expressed as the determinant of S(n). Then we define ˜̃Jλ by

˜̃Jλ := det

(
1

〈J̃λj−i+j , J̃λj−i+j〉
√
α
λj−i+j

J̃λj−i+j

)

1≤i,j≤k

, (43)

which is slightly different from that in [9]. The transition matrix M = (Mλµ) from the

set {J̃λ} to the set ˜̃Jλ is upper triangular[9], with the elements Mλλ in the diagonal
equal

1
√
α
|λ|

1

〈J̃λ, J̃λ〉

k∏

j=2

(jα)λj

(1 + (j − 1)α)λj
. (44)

Introduce Bosons an, n ∈ Z, n 6= 0 with the relations

[an, am] = nδn+m,0. (45)

In fact, for n > 0,[17]

a−n =
1

(n− 1)!
adn−1

e1 e0, an = − 1

(n− 1)!
adn−1

f1
f0. (46)
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On Jack polynomials J̃λ, the Bosons an can be represented as

a−n = pn, an = n∂pn . (47)

In the following of this subsection, we discuss the properties related to the Jack

polynomials J̃λ(p) and
˜̃Jλ(p). Let ∂p = (∂p1 , 2∂p2 , 3∂p3 , · · · ). From (40), we have

exp

( ∞∑

n=1

∂pn√
α
zn

)
=
∑

n≥0

1

〈J̃(n), J̃(n)〉
√
α
n J̃n(∂p)z

n. (48)

From

exp

( ∞∑

n=1

∂pn√
α
zn

)
exp


∑

n≥1

pn
n
√
α
wn




=
1

(1− zw)
1

α

exp


∑

n≥1

pn
n
√
α
wn


 exp

( ∞∑

n=1

∂pn√
α
zn

)
, (49)

we get that the operators J̃(n)(∂p) and J̃(m)(p) satisfy

1

〈J̃(n), J̃(n)〉
√
α
n J̃(n)(∂p)

1

〈J̃(m), J̃(m)〉
√
α
m J̃(m)(p) (50)

=
∑

k≥0

(
−1/α
k

)
(−1)k

1

〈J̃(m−k), J̃(m−k)〉
√
α
m−k

J̃(m−k)(p)
1

〈J̃(n−k), J̃(n−k)〉
√
α
n−k

J̃(n−k)(∂p),

and the operators J̃(n)(∂p) acting on the polynomials J̃(m)(p) equals

1

〈J̃(n), J̃(n)〉
√
α
n J̃(n)(∂p)

1

〈J̃(m), J̃(m)〉
√
α
m J̃(m)(p)

=

(
−1/α
n

)
(−1)n

1

〈J̃(m−n), J̃(m−n)〉
√
α
m−n J̃(m−n)(p), (51)

where we let J̃(n) = 0 unless n ≥ 0.

The polynomials J̃1n(p) satisfy

exp


−

∑

n≥1

pn
n

√
αzn


 =

∞∑

n=0

(−1)n
√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(p)z

n. (52)

Then

exp


−

∑

n≥1

∂pn
√
αzn


 =

∞∑

n=0

(−1)n
√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)z

n. (53)

From

exp


−

∑

n≥1

∂pn
√
αzn


 exp


−

∑

n≥1

pn
n

√
αwn




=
1

(1− zw)α
exp


−

∑

n≥1

pn
n

√
αwn


 exp


−

∑

n≥1

∂pn
√
αzn


 , (54)
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we obtain that the operators J̃1n(∂p) and J̃1m(p) satisfy

(−1)n
√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)

(−1)m
√
α
m

〈J̃(1m), J̃(1m)〉
J̃(1m)(p) (55)

=
∑

k≥0

(
−α
k

)
(−1)k

(−1)m−k√αm−k

〈J̃(m−k), J̃(m−k)〉
J̃(m−k)(p)

(−1)n−k√αn−k

〈J̃(1n−k), J̃(1n−k)〉
J̃(1n−k)(∂p),

and the operators J̃(1n)(∂p) acting on the polynomials J̃(1m)(p) equals

√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)

√
α
m

〈J̃(1m), J̃(1m)〉
√
α
m J̃(m)(p)

=

(
−α
n

)
(−1)n

√
α
m−n

〈J̃(1m−n), J̃(1m−n)〉
J̃(1m−n))(p), (56)

where we let J̃(1n) = 0 unless n ≥ 0. From

exp


−

∑

n≥1

∂pn
√
αzn


 exp


∑

n≥1

pn√
α
wn


 (57)

= (1− zw) exp


∑

n≥1

pn√
α
wn


 exp


−

∑

n≥1

∂pn
√
αzn


 , (58)

we obtain the operators J̃(1n)(∂p) and J̃(m) satisfy

1

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)

1

〈J̃(m), J̃(m)〉
J̃(m)(p)

=
1

〈J̃(m), J̃(m)〉
J̃(m)(p)

1

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)

+
1

〈J̃(m−1), J̃(m−1)〉
J̃(m−1)(p)

1

〈J̃(1n−1), J̃(1n−1)〉
J̃(1n−1)(∂p). (59)

From

exp


−

∑

n≥1

∂pn
√
αzn


 exp


−

∑

n≥1

pn√
α
wn


 (60)

=
1

1− zw
exp


∑

n≥1

pn√
α
wn


 exp


−

∑

n≥1

∂pn
√
αzn


 , (61)

we obtain the operators J̃(1n)(∂p) and J̃(m)(p) satisfy

(−1)n
√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(∂p)

1

〈J̃(m), J̃(m)〉
√
α
m J̃(m)(p)

=
∑

k≥0

1

〈J̃(m−k), J̃(m−k)〉
√
α
m−k

J̃(m−k)(p)
(−1)n−k√αn−k

〈J̃(1n−k), J̃(1n−k)〉
J̃(1n−k)(∂p). (62)

9



Introduce the vertex operators

X+(z) =
∑

n∈Z
X+

n z
n = exp


∑

n≥1

pn
n
√
α
zn


 exp


−

∑

n≥1

∂pn
√
αz−n


 , (63)

X−(z) =
∑

n∈Z
X−

n z
n = exp


−

∑

n≥1

pn
n
√
α
zn


 exp



∑

n≥1

∂pn
√
αz−n


 . (64)

The Jack polynomials ˜̃Jλ(p) have the vertex operator realization[9]

˜̃Jλ = X+
λ1
X+

λ2
· · ·X+

λk
· 1 (65)

for λ = (λ1, λ2, · · · , λk).
From (40), we know that

1

〈J̃(n), J̃(n)〉
1√
α
n J̃(n) = S(n)

(
p√
α

)
. (66)

Then from the definition of ˜̃Jλ(p), we have

˜̃Jλ(p) = Sλ

(
p√
α

)
. (67)

In [9], an integrable hierarchy is defined to be the bilinear relations:
∑

m+n=−1

X−
mτ ⊗X+

n τ = 0, (68)

where τ = τ(x) is an unknown function. In the next section, we will show that this
hierarchy is exactly the ~-KP hierarchy defined in the last section.

The set {J̃λ} is an orthogonal basis, but { ˜̃Jλ} is not. From

〈J̃(n), J̃(n)〉 =
n∏

k=1

k

1 + (k − 1)α
,

we have

〈S(n)
(

p√
α

)
, S(n)

(
p√
α

)
〉 =

n∏

k=1

1 + (k − 1)α

kα
. (69)

From

S(n,1)

(
p√
α

)
=

1
√
α
n−1

1

〈J(n,1), J(n,1)〉
2

1 + α
J̃(n,1) +

n(1− α)

1 + nα
S(n+1)

(
p√
α

)
, (70)

where (n, 1) is the Young diagram obtained (1, 1) by adding (n− 1) box, we have

〈S(n+1)

(
p√
α

)
, S(n,1)

(
p√
α

)
〉 = n(1− α)

1 + nα

n+1∏

k=1

1 + (k − 1)α

kα
, (71)

which shows that S(n+1)

(
p√
α

)
and S(n,1)

(
p√
α

)
is not orthogonal. The set {Sλ

(
p√
α

)
}

is still a basis since the transition matrix from the set {J̃λ} to { ˜̃Jλ} is upper triangular
in the sense of Young diagram’s reverse lexicographical order. For example,

S(n,1)

(
p√
α

)
=

1

〈J̃(1), J̃(1)〉
√
α
J̃(1)

1

〈J̃(n), J̃(n)〉
√
α
n J̃(n) −

1

〈J̃(n+1), J̃(n+1)〉
√
α
n+1 J̃(n+1)

=
1

〈J̃(n), J̃(n)〉
√
α
n+1 J̃(n,1) +

1
√
α
n+1

(
1

〈J̃(n), J̃(n)
− 1

〈J̃(n+1), J̃(n+1)

)
J̃n+1,
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and

S(n,2)

(
p√
α

)
=

1

〈J̃(2), J̃(2)〉
√
α
2 J̃(2)

1

〈J̃(n), J̃(n)〉
√
α
n J̃(n)

− 1

〈J̃(1), J̃(1)〉
√
α
J̃(1)

1

〈J̃(n+1), J̃(n+1)〉
√
α
n+1 J̃(n+1).

We show the actions of the Bosons on Sλ

(
p√
α

)
.

a−1Sλ

(
p√
α

)
= p1Sλ

(
p√
α

)
=

√
α
∑

✷∈λ+

Sλ+✷

(
p√
α

)
, (72)

a−2Sλ

(
p√
α

)
=

√
α
∑

∈λ+

Sλ+

(
p√
α

)
−

√
α
∑

∈λ+

S
λ+

(
p√
α

)
. (73)

In fact, for n > 0, the Bosons a−n acting on Sλ

(
p√
α

)
here equals a−n acting on Sλ(p)

in the KP hierarchy [4] multiplied by
√
α, while the Bosons an acting on Sλ

(
p√
α

)
here

equals an acting on Sλ(p) in the KP hierarchy [4] multiplied by 1/
√
α.

4 The Hirota equation and vertex operators

In this section, we will show that the ~-dependent KP hierarchy is exactly the integrable
hierarchy defined in (68). The calculation is similar to that of KP hierarchy in [4].

Let x = (x1, x2, · · · ) and y = (y1, y2, · · · ). The Hirota derivative Dj
xk

is defined to
be[4]

Dj
xk
f(x) · g(x) = ∂jykf(x+ y)g(x − y)|y=0 (74)

The ~-KP equation (12) becomes the following Hirota equation

~
2D4

x1
τ(x) · τ(x)− 4Dx1

Dx3
τ(x) · τ(x) + 3D2

x2
τ(x) · τ(x) = 0. (75)

Set
P (k1, k2, k3) = ~

2k41 + 3k22 − 4k1k3.

The solutions of the equation P (k1, k2, k3) = 0 are

(k1, k2, k3) = (
1

~
p− 1

~
q,

1

~
p2 − 1

~
q2,

1

~
p3 − 1

~
q3)

for any z1, z2. Take two solutions

(k1, k2, k3) = (
1

~
p1 −

1

~
q1,

1

~
p21 −

1

~
q21 ,

1

~
p31 −

1

~
q31),

(k′1, k
′
2, k

′
3) = (

1

~
p2 −

1

~
q2,

1

~
p22 −

1

~
q22 ,

1

~
p32 −

1

~
q32),

we have

−P (k1 − k′1, k2 − k′2, k3 − k′3)
P (k1 + k′1, k2 + k′2, k3 + k′3)

=
(p1 − p2)(q1 − q2)

(p1 − q2)(q1 − p2)
.

Suppose

ξi =
∞∑

j=1

(pji − qji )
xj
~
,

aii′ =
(pi − pi′)(qi − qi′)

(pi − qi′)(qi − pi′)
,

11



then for I = {1, 2, · · · , n},

τ =
∑

J⊂I

(
∏

i∈J
ci

)
 ∏

i,i′∈J,i<i′

aii′


 exp

(
∑

i∈J
ξi

)
(76)

gives the n-soliton solution of ~-KP hierarchy. Introduce the vertex operator

X(p, q) = exp




∞∑

j=1

(pj − qj)
xj
~


 exp


−

∞∑

j=1

~

j
(p−j − q−j)∂xj


 , (77)

then the n-soliton solution τ above can be written as

τ = ec1X(p1,q1) · · · ecnX(pn,qn) · 1. (78)

The tau functions satisfy the following bilinear identity. For any x and x′, let

ξ =
∞∑

j=1

xj
~
zj , ξ′ =

∞∑

j=1

x′j
~
zj .

the bilinear identity holds:

∮
dz

2π
√
−1

eξ−ξ′τ(x− ~[z−1])τ(x′ + ~[z−1]) = 0. (79)

Introduce

w∗(x, z) =
τ(x+ ~[z−1])

τ(x)
e−

∑∞
j=1

xj

~
zj , (80)

it has the following form

w∗(x, z) = e−
∑∞

j=1

xj

~
zj


1 +

∞∑

j=1

w∗
j

zj


 .

Then the bilinear identity (79) becomes

∮
dz

2π
√
−1

w(x, z)w∗(x′, z) = 0. (81)

From this relation, the linear system (7) can be obtained. Let

Q = ~∂xj
− (Lj)+, w̃(x, k) = Qw(x, k).

Then w̃(x, k) has the following form

w̃(x, k) = e
∑∞

j=1

xj

~
zj




∞∑

j=1

w̃j

zj




and satisfy ∮
dz

2π
√
−1

w̃(x, z)w∗(x′, z) = 0,

which show w̃j = 0 for j = 1, 2, · · · . Therefore, Qw(x, z) = 0, that is (7) is obtained.
Let xn = pn/n and α = ~

2, we see that the bilinear identity (79) is the same with

(68). Then the polynomials ˜̃Jλ(p) = Sλ

(
p√
α

)
are all the solutions of the ~-KP hierarchy.
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We have calculated that the first equation in the ~-KP hierarchy has the form[9]

4

(1 + α)2
1

〈J̃(2,2), J̃(2,2)〉

(
J̃(2,2)(∂x)τ

)
· τ

+
6(α − 1)

(2 + α)(3 + α)

1

〈J̃(2,1,1), J̃(2,1,1)〉

(
J̃(2,1,1)(∂x)τ

)
· τ

+
2(α − 1)α

(2 + α)(3 + α)

1

〈J̃(14), J̃(14)〉

(
J̃(14)(∂x)τ

)
· τ

− 2(α − 1)

2 + α

1

〈J̃(13), J̃(13)〉

(
J̃(13)(∂x)τ

)
· 1

〈J̃(1), J̃(1)〉

(
J̃(1)(∂x)τ

)

− 2

1 + α

1

〈J̃(2,1), J̃(2,1)〉

(
J̃(2,1)(∂x)τ

)
· 1

〈J̃(1), J̃(1)〉

(
J̃(1)(∂x)τ

)

+
2

(1 + α)

1

〈J̃(2), J̃(2)〉

(
J̃(2)(∂x)τ

)
· 1

〈J̃(12), J̃(12)〉

(
J̃(12)(∂x)τ

)

+
(α− 1)

1 + α

1

〈J̃(12), J̃(12)〉

(
J̃(12)(∂x)τ

)
· 1

〈J̃(12), J̃(12)〉

(
J̃(12)(∂x)τ

)
= 0. (82)

If we substitute the expressions of Jack polynomials J̃λ, this equation becomes (12) and
(75). The equation (82) can also be written as

S(2,2)(~∂x)τ · τ − S(2,1)(~∂x)τ · S(1)(~∂x)τ + S(2)(~∂x)τ · S(12)(~∂x)τ = 0. (83)

We write the tau functions τ of the forms

τ =
∑

λ

c′λJ̃λ(p) =
∑

λ

cλSλ

(
p√
α

)
. (84)

If cλ or c′λ satisfy some relations (the Plücker relations), the tau functions τ are the
solutions of the ~-KP hierarchy. For example,

c(2,2)c∅ − c(2,1)c(1) + c(2)c(1,1) = 0. (85)

In fact, the coefficients cλ satisfy the classical Plücker relations since Sλ(~∂p)Sµ
(p
~

)
|p=0 =

δλµ, which is the same with that in [18]. For c′λ, since

J̃λ(∂p)J̃µ(p)|p=0 = δλµ〈J̃λ, J̃λ〉,
we obtain the relations of c′λ. For example,

4

(1 + α)2
c′(2,2)c

′
∅ +

6(α− 1)

(2 + α)(3 + α)
c′(2,1,1)c

′
∅ +

2(α − 1)α

(2 + α)(3 + α)
c′(14)c

′
∅ −

2(α− 1)

2 + α
c′(13)c

′
(1)

− 2

1 + α
c′(2,1)c

′
(1) +

2

(1 + α)
c′(2)c

′
(12) +

(α− 1)

1 + α
c′(12)c

′
(12) = 0. (86)

The set of coefficients {cλ} can be represented linearly by the set {c′λ} and vice versa. In
fact, {cλ} satisfies the classical Plücker relations if and only if {c′λ} satisfies its Plücker
realtions. For example, {cλ} satisfies (85) if and only if {c′λ} satisfies (86).

5 The Boson-Fermion correspondence for ~-KP hierarchy

Let pn = nxn. For Schur functions Sλ(x) and Jack polynomials J̃λ(x), we have

e
∑∞

n=1 xnzn =
∑

n≥0

S(n)(x)z
n, (87)

e−
∑∞

n=1
xnzn =

∑

n≥0

(−1)nS(1n)(x)z
n. (88)
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Then we have

exp

( ∞∑

n=1

xn√
α
zn

)
=

∑

n≥0

S(n)

(
x√
α

)
zn =

1

〈J̃(n), J̃(n)〉
√
α
n J̃(n)(x)z

n, (89)

exp


−

∑

n≥1

xn
√
αzn


 =

∑

n≥0

(−1)nS1n(
√
αx)zn =

∞∑

n=0

(−1)n
√
α
n

〈J̃(1n), J̃(1n)〉
J̃(1n)(p)z

n.(90)

The Cauchy formula is

exp



∑

n≥1

pnp
′
n

n


 = exp(

∑

n≥1

nxnx
′
n)

=
∑

λ

Sλ(x)Sλ(x
′) =

∑

λ

1

〈J̃λ, J̃λ〉
J̃λ(x)J̃λ(x

′). (91)

Note that J̃λ(x) is not equal to Sλ(x) (or multiplied by a constant).
The Fermions ψj and ψ∗

j are defined as usual. For j ∈ Z+ 1
2 , ψj and ψ∗

j satisfy[2]

[ψi, ψj ]+ = 0, [ψ∗
i , ψ

∗
j ] = 0, [ψi, ψ

∗
j ] = δi+j,0, (92)

where [A,B]+ = AB −BA. Particularly,

ψ2
j = 0, ψ∗2

j = 0.

The Fermionic Fock space F is the space of Maya diagrams[2]. A Maya diagram can be
discribed as an increasing sequence of half-integers

|u〉 = |u1, u2, · · · 〉, with u1 < u2 < · · · ,

and uj+1 = uj + 1 for all sufficiently large j.
The actions of Fermions ψj , ψ

∗
j on Maya diagrams are determined by

ψj |u〉 =

{
(−1)i−1| · · · , ui−1, ui+1, · · · 〉 if ui = −j for some i,

0 otherwise,
(93)

ψ∗
j |u〉 =

{
(−1)i| · · · , ui, j, ui+1, · · · 〉 if ui < j < ui+1 for some i,

0 otherwise.
(94)

The generating functions of Fermions are

ψ(z) =
∑

j∈Z+1/2

ψjz
−j−1/2, ψ∗(z) =

∑

j∈Z+1/2

ψ∗
j z

−j−1/2.

The normal order is defined as usual. For Maya diagrams |u〉 and |v〉, the pair 〈v|u〉 is
defined by the formula

〈v|u〉 = δv1+u1,0δv2+u2,0 · · · .
Let

Hn =
∑

j∈Z+1/2

: ψ−jψ
∗
j+n : . (95)

It satisfy[2]
[Hn, ψj ] = ψn+j , [Hn, ψ

∗
j ] = −ψ∗

n+j,
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and
[Hn,Hm] = nδn+m,0.

Then we show the Boson-Fermion correspondence in the ~-KP hierarchy. Define

H(x) =
∑

n≥1

xn√
α
Hn. (96)

For any element |u〉 ∈ F , define the map

Φ(|u〉) =
∑

l∈Z
zl〈l|eH(x)|u〉. (97)

Then Φ(z) is in the space C(α)[z, z−1, x1, x2, · · · ], and the correspondence Φ is an iso-
morphism of the vector spaces F over C(α) and C(α)[z, z−1, t1, t2, · · · ]. Moreover, for
n > 0,

Φ(Hn|u〉) =
√
α∂xnΦ(|u〉), Φ(H−n|u〉) = n

xn√
α
Φ(|u〉). (98)

From the commutation relations above, we get

[H(x), ψ(z)] =



∑

n≥1

xn√
α
zn


ψ(z), (99)

and

[H(x), ψ∗(z)] =


−

∑

n≥1

xn√
α
zn


ψ∗(z), (100)

which show

eH(x)ψ(z)e−H(x) = e
∑

n≥1
xn√
α
zn
ψ(z), (101)

eH(x)ψ(z)∗e−H(x) = e
−∑

n≥1
xn√
α
zn
ψ∗(z). (102)

Then

eH(x)ψje
−H(x) =

∞∑

n=1

ψj+nS(n)

(
x√
α

)
, (103)

eH(x)ψ∗
j e

−H(x) =
∞∑

n=1

ψj+nS(n)

(
− x√

α

)
. (104)

From these formulas, we polynomials Φ(|u〉) can be determined. For example, let |u〉 =
ψ−5/2|vac〉,

Φ(ψ−5/2|vac〉) = z〈1|eH(x)ψ−5/2|vac〉
= z〈vac|ψ∗

1/2e
H(x)ψ−5/2e

−H(x)|vac〉

= zS(2)

(
x√
α

)

= z
1

〈J̃(2), J̃(2)〉
√
α
2 J̃(2)(x).

Let the operators zH0 and eK are defined the same as that in [2]. Then define

Ψ(z) =
∑

j∈Z+ 1

2

Ψjz
−j−1/2 = e

(

∑

n≥1

xn√
α
zn

)

e(−
∑

n≥1
∂pn

√
αz−n)eKzH0 , (105)

Ψ∗(z) =
∑

j∈Z+ 1

2

Ψ∗
jz

−j−1/2 = e

(

−∑

n≥1
xn√
α
zn

)

e(
∑

n≥1
∂pn

√
αz−n)e−Kz−H0 . (106)
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They give the realization of the Fermioinic generating functions ψ(z) and ψ∗(z) in the
Bosonic Fock space C(α)[z, z−1, t1, t2, · · · ], that is, we have

Φ(ψ(z)|u〉) = Ψ(z)Φ(|u〉), Φ(ψ∗(z)|u〉) = Ψ∗(z)Φ(|u〉). (107)

For example,

Ψ−5/2 · 1 =
∑

n−m=2

S(n)

(
x√
α

)
(−1)mS(1m)(

√
α∂x) · 1 = S(2)

(
x√
α

)
,

which equals Φ(ψ−5/2|vac〉). Then the ~-KP hierarchy can be written in the Fermion
form ∑

j∈Z+ 1

2

ψ∗
j τ ⊗ ψ−jτ = 0. (108)
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