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INVERSE SCATTERING METHOD FOR NONLINEAR

KLEIN–GORDON EQUATION COUPLED WITH A SCALAR

FIELD

MANSUR I. ISMAILOV∗), ∗∗) AND CIHAN SABAZ∗)

Abstract. In the present work, a novel class of negative order Ablowitz-
Kaup- Newell-Segur (AKNS) nonlinear evolution equations are obtained by
applying the Lax hierarchy of the generalized Zakharov-Shabat (ZS) system.
The inverse scattering problem on the whole axis is examined in the case where
the ZS system consists of two equations and admits a real symmetric potential.
Referring to these results, the N-soliton solutions for the integro-differential
version of the nonlinear Klein–Gordon equation coupled with a scalar field are
obtained by using the inverse scattering method.

1. Introduction

A completely integrable nonlinear equation of mathematical physics is one which
has a Lax representation, or, more precisely, can be solved via a linear integral
equation of Gerlfand - Levitan - Marchenko (GLM) type, the classic examples
being the Korteweg–de Vries, sine-Gordon and nonlinear Schrödinger equations,
[1, 2, 3]. It is applied the AKNS hierarchy to derive soliton solutions of these
integrable models by the inverse scattering method. Recently, many integrable
hierarchies of soliton equations have been extended to hierarchies of a negative
order AKNS equation by many authors, [16, 4, 10]. This gives an useful necessary
extension for complete integrability, which is applied to investigate the integrability
of certain generalizations of the Klein–Gordon equations, some model nonlinear
wave equations of nonlinear Klein–Gordon equation coupled with a scalar field.

Consider the nonlinear Klein–Gordon equation coupled with a field v, in the
form [11]:

(1.1)

{
uκκ − uττ − u+ 2u3 + 2vu = 0,

vκ − vτ − 4uuτ = 0.

In the case v 6= 0, this equation is integrable since it admits the same bilinear
form with the well-known sine-Gordon equation, [11].

The coupled nonlinear Klein–Gordon equations are analyzed for their integra-
bility properties in [12] where the Hirota bilinear form is identified, from which
one-soliton solutions are derived. Then, the results are generalized to the two,
three and N-coupled Klein–Gordon equations in [14, 15]. Another direct method
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for traveling wave solutions of coupled nonlinear Klein–Gordon equations is em-
ployed in [13].

The equation (1.1) becomes the following negative first order equation:

(1.2) rtx = r
(
1− ∂−1

x

[(
r2
)
t

])

by the change of variables κ = 4x+t
8 , τ = t−4x

8 , elimination of ν in second equation
under the assumption that the scalar field v tends to zero at infinity and by the

substitution r = − 1√
2
u, where ∂−1

x =
∞∫
x

dx is indefinite integral with respect to x.

It is our aim in this paper to find the soliton solutions of (1.2) by the inverse
scattering method. The inverse scattering method is the most important discovery
in the theory of soliton. It provides us alternatively show the complete integrability
of the nonlinear evolution equation. This method also enables to solve the initial
value problem for nonlinear evolution equation (1.2). Shortly we call the equation
(1.2) the CKG equation in future.

The another nonlinear Klein - Gordon equations which the nonlinear term in-
cludes the first order derivative by time or by spatial variable are the nonlinear
σ-model [9] and short puls equation [17] both are integrable and therefore they
have soliton solutions.

The brief outline of the paper is the followings. In Section 2, we find that the
CKG possesses a Lax pair of the negative order AKNS equation. It is shown that
the auxiliary systems corresponding to CKG is classical ZS system with real and
symmetric potential. Then, in Section 3, we recall the necessary result on the
inverse scattering problem for the ZS equation on the whole line. In Section 4,
we show how the scattering data evolves when coefficients of ZS system satisfies
the CKG equation In this section, the N-soliton solutions of the CKG equation are
obtained by inverse scattering method via the GLM equation.

2. Negative first Order AKNS Equations

Consider the spectral problem for the generalized Zakharov-Shabat (ZS) system
(is called also Manakov system, [5]])

(2.1)




ϕ1x

ϕ2x

ϕ3x


 = X(p, q)




ϕ1

ϕ2

ϕ3


 ,

where X(p, q) =




iα1λ ip1 ip2
iq1 iα2λ 0
iq2 0 iα2λ


 with λ is a nonzero eigenvalue, ϕ1, ϕ2 and

ϕ3 are linearly independent eigenfunctions, i2 = −1, α1 and α2 are real constants,
p1 = p1(x, t), p2 = p2(x, t), q1 = q1(x, t) and q2 = q2(x, t) are the rapidly decreasing
at infinity complex valued coefficients.

The auxiliary spectral problem described as follows:

(2.2)




ϕ1t

ϕ2t

ϕ3t



 = T (p, q)




ϕ1

ϕ2

ϕ3



 ,
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where T (p, q) =




a b c

d e f

k l m



 and a, b, c, d, e, f, k, l and m are scalar functions,

independent of ϕ1, ϕ2 and ϕ3.

From (2.1) and (2.2), the zero curvature equation Xt − Tx + [X,T ] = 0 yields

ax = ip1d+ ip2k − iq1b− iq2c,

bx = iαλb− ip1α+ ip1e+ ip2l + ip1t,

cx = iαλc+ ip1f − ip2α+ ip2m+ ip2t,

fx = iq1c− ip2d,

lx = iq2b− ip1k,

mx = iq2c− ip2k,

(2.3)

dx = −iαλd+ iq1a− iq1e− iq2f + iq1t,

kx = −iαλk − iq1l + iq2a− iq2m+ iq2t,

ex = iq1b− ip1d,

where α = α1 − α2. Let the following transformations be applied to the system
(2.3):

a =
A(x, t)

λ
, b =

B(x, t)

λ
, c =

C(x, t)

λ
,

d =
D(x, t)

λ
, e =

E(x, t)

λ
, f =

F (x, t)

λ
,

k =
K(x, t)

λ
, l =

L(x, t)

λ
,m =

M(x, t)

λ
.

As a result the following equations are obtained:

Ax = ip1D + ip2K − iq1B − iq2C, Ex = iq1B − ip1D,

Bx = ip1E − ip1A+ ip2L, B = − 1
α
p1t, Lx = iq2B − ip1K,

Cx = ip1F + ip2M − ip2A, C = − 1
α
p2t, Mx = iq2C − ip2K,

(2.4)

Dx = iq1A− iq1E − iq2F, D = 1
α
q1t,

Kx = −iq1L+ iq2A− iq2M, K = 1
α
q2t,

Fx = iq1C − ip2D,

The following negative first order AKNS equations are obtained for important
cases of spectral problem (2.1).

Proposition 1. If the coefficients of (2.1) satisfies the properties p1 = q1 and
p2 = q2 then the system of equations (2.4) becomes the following negative order
pair of equations:

p1tx = p1
[
2∂−1

x

(
p21
)
t
+ ∂−1

x

(
p22
)
t

]
+ p2∂

−1
x (p1p2)t ,

(2.5)

p2tx = p2
[
∂−1
x

(
p21
)
t
+ 2∂−1

x

(
p22
)
t

]
+ p1∂

−1
x (p1p2)t .

Proof. Let’s consider the system (2.1) the case p1 = q1 and p2 = q2. It is clearly
seen that A = −E −M,B = −D,C = −K and F = L in the system (2.4). This
system becomes

B = − 1

α
p1t, C = − 1

α
p2t,
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Ex = − i

α

(
p21
)
t
, Fx = − i

α
(p1p2)t , Mx = − i

α

(
p22
)
t
,

Bx = ip1 (2E +M) + ip2F,

Cx = ip1F + ip2 (E + 2M) .

For the compatibility of these equations the functions p1 and p2 must be satisfied

the system (2.5), where ∂−1
x =

∞∫
x

dx is indefinite integral with respect to x. �

Proposition 2. If the coefficients of (2.1) satisfies the properties p1 = −q1 and
p2 = −q2 then the system of equations (2.4) becomes the following negative order
pair of equations:

p1tx = −p1
[
2∂−1

x

(
p21
)
t
+ ∂−1

x

(
p22
)
t

]
− p2∂

−1
x (p1p2)t ,

(2.6)

p2tx = −p2
[
∂−1
x

(
p21
)
t
+ 2∂−1

x

(
p22
)
t

]
− p1∂

−1
x (p1p2)t .

Proof. Let’s consider the system (2.1) the case p1 = −q1 and p2 = −q2. It is clearly
seen that A = −E−M,B = D,C = K and F = L in the system (2.4).This system
becomes

B = − 1

α
p1t, C = − 1

α
p2t,

Ex =
i

α

(
p21
)
t
, Fx =

i

α
(p1p2)t , Mx =

i

α

(
p22
)
t
,

Bx = ip1 (2E +M) + ip2F,

Cx = ip1F + ip2 (E + 2M) .

For the compatibility of these equations the functions p1 and p2 must be satisfied
the system (2.6). �

Proposition 3. If the coefficients of (2.1) satisfies the properties p1 = q∗1 and
p2 = q∗2 then the system of equations (2.4) becomes the following negative order
pair of equations:

p1tx = p1

[
2∂−1

x |p1|2t + ∂−1
x |p2|2t

]
− p2∂

−1
x (p1p

∗
2)t ,

(2.7)

p2tx = p2

[
∂−1
x |p1|2t + 2∂−1

x |p2|2t
]
+ p1∂

−1
x (p∗1p2)t ,

where q∗1 and q∗2 are the complex conjugates of q1 and q2, respectively.

Proof. Let’s consider the system (2.1) the case p1 = q∗1 and p2 = q∗2 . It is clearly
seen that A = E∗ +M∗, B = −D∗, C = −K∗ and F = −L∗ in the system (2.4).
This system becomes

B = − 1

α
p1t, C = − 1

α
p2t,

Ex = − i

α
|p1|2t , Fx = − i

α
(p∗1p2)t , Mx = − i

α
|p2|2t ,
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Bx = ip1 (2E +M)− ip2F
∗,

Cx = ip1F + ip2 (E + 2M) .

For the compatibility of these equations the functions p1 and p2 must be satisfied
the system (2.7). �

Proposition 4. If the coefficients of (2.1) satisfies the properties p1 = −q∗1 and
p2 = −q∗2 then the system of equations (2.4) becomes the following negative order
pair of equations:

p1tx = −p1

[
2∂−1

x |p1|2t + ∂−1
x |p2|2t

]
+ p2∂

−1
x (p1p

∗
2)t ,

(2.8)

p2tx = −p2

[
∂−1
x |p1|2t + 2∂−1

x |p2|2t
]
− p1∂

−1
x (p∗1p2)t ,

where q∗1 and q∗2 are the complex conjugates of q1 and q2, respectively.

Proof. Let’s consider the system (2.1) the case p1 = −q∗1 and p2 = −q∗2 . It is clearly
seen that A = E∗ +M∗, B = D∗, C = K∗ and F = −L∗ in the system (2.4). This
system becomes

B = − 1

α
p1t, C = − 1

α
p2t,

Ex =
i

α
|p1|2t , Fx =

i

α
(p∗1p2)t , Mx =

i

α
|p2|2t ,

Bx = ip1 (2E +M)− ip2F
∗,

Cx = ip1F + ip2 (E + 2M) .

For the compatibility of these equations the functions p1 and p2 must be satisfied
the system (2.8). �

The following corollary of Proposition 1 is valid.

Corollary 1. In the case p1 = p2 the nonlinear evolution equation (2.5) has the
form

(2.9) ptx = 4p

+∞∫

x

(
p2
)
t
dx+ p.

The equation (2.9) becomes (1.2) by the substitution p = − ir
2 .
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3. Zakharov-Shabat System with Real and Symmetric Potential

In this section, we recall the necessary results from [6, 7, 8] on inverse scattering
problem for classical Zakharov-Shabat system with real coefficient r = r(x):

(3.1)

{
u1x = −iµu1 + ru2,

u2x = ru1 + iµu2.

It is clear from Corollary 1 that this system is one of the Lax pairs for negative
order equation (2.9). Really, if p1 = p2 = q1 = q2 = p are taken in the system (2.6),
we obtain 




ϕ1x = iα1λϕ1 + ip(ϕ2 + ϕ3),
ϕ2x = ipϕ1 + iα2λϕ2,

ϕ3x = ipϕ1 + iα2λϕ3.

This system becomes

{
v1x = iα1λv1 + ipv2,

v2x = 2ipv1 + iα2λv2,

by the substitution ϕ1 = v1, ϕ2+ϕ3 = v2. The substitutions
√
2v1 = u1, v2 = u2,

α1 = α2 = β, µ = βλ and p = − ir√
2
transforms this system to classical ZS system

(3.1).
Let the eigenfunctions Φ,Ψ, Φ and Ψ be defined with the following boundary

conditions for the eigenvalue µ in system (3.1)

Φ ∼
(

1
0

)
e−iµx, Ψ ∼

(
0
1

)
eiµx,

x → −∞ x → +∞

(3.2)

Φ ∼
(

0
−1

)
eiµx, Ψ ∼

(
1
0

)
e−iµx.

x → −∞ x → +∞
For the eigenfunctions (3.2), W (Φ,Φ) = −1 and W (Ψ,Ψ) = −1, where W is

the Wronskian. Therefore, the eigenfunctions Ψ and Ψ are linearly independent.
Hence the functions Φ and Φ can be written as

(3.3a) Φ = a(µ)Ψ + b(µ)Ψ,

(3.3b) Φ = −a(µ)Ψ + b(µ)Ψ.

The scattering matrix is usually defined as

(3.3c) S =

(
a b

b −a

)
.

Using the (3.3) system and W (Φ,Φ) = −1 equation,

a(µ)a(µ) + b(µ)b(µ) = 1,

is obtained.
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Now let’s create the analytical properties of the scattering data. When r ∈ L1,
eiµxΦ and e−iµxΨ are analytical in the upper half plane and e−iµxΦ and eiµxΨ
are analytical in the lower half plane. Therefore, a = W (Φ,Ψ) = Φ1Ψ2 − Ψ1Φ2 is
analytical in the upper half plane and a = W (Φ,Ψ) is analytical in the lower half
plane. Generally, b = −W (Φ,Ψ) and b = W (Φ,Ψ) need not be analytical in any
region. Usually, to use these properties, the scattering problem is converted into
an integral equation. For example, system (3.1) for Φ provides the equations

Φ1(x, µ)e
iµx = 1 +

x∫

−∞

r(y)dy

y∫

−∞

r(z)e2iµ(y−z)Φ1(z, µ)e
iµzdz,

or

Φ1(x, µ)e
iµx = 1 +

x∫

−∞

M(x, y, µ)Φ1(y, µ)e
iµydy,

Φ2(x, µ)e
iµx =

x∫

−∞

e2iµ(x−y)r(y)Φ1(y, µ)e
iµydy

where

M(x, y, µ) = r(y)

x∫

y

e2iµ(z−y)r(z)dz.

As long as r is not very small, system (3.1) can have discrete eigenvalues. This
occurs when a(µ) has a zero in the upper half plane or a(µ) has a zero in the lower
half plane. If the zeros of a(µ) are called µk, k = 1, 2, ..., N then at µ = µk, Φ and
Ψ proportional such that

Φ = ckΨ.

Similarly, if the zeros of a(µ) are called µk, k = 1, 2, ..., N then at µ = µk, Φ and
Ψ proportional such that

Φ = ckΨ.

For |x| → ∞, if r decreases rapidly, a, b, a and b become complete functions. In
this case, b and b can be expanded to ck = b(µk) and ck = b(µk). In this case, a(µ)
and a(µ) are analytic on the real axis, and are also analytic in the upper half plane
and the lower half plane. This means that a(µ) has only a finite number of zeros
for Im(µ) ≧ 0. From system (3.3), we have symmetry relations

Ψ(x, µ) =

(
Ψ2(x,−µ)
Ψ1(x,−µ)

)
,Φ(x, µ) =

(
−Φ2(x,−µ)
−Φ1(x,−µ)

)
,

which imply

(3.4a) a(µ) = a(−µ), b(µ) = −b(−µ)

and consequently
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(3.4b) N = N,µk = −µk, ck = −ck.

Now let’s examine the inverse scattering problem. Assuming that the scattering
data a, a, b and b are complete functions, derive the inverse scattering formulas.
For this to hold, it is sufficient to assume r decay faster than any exponential as
|x| → ∞.

Let the Ψ and Ψ functions be expressed with the integral equations

(3.5) Ψ =

(
0
1

)
eiµx +

+∞∫

x

K(x, s)eiµsds,

Ψ =

(
1
0

)
e−iµx +

+∞∫

x

K(x, s)e−iµsds,

where µ = ς + iη, η ≧ 0 and K(x, s) =

(
K1(x, s)
K2(x, s)

)
,K(x, s) =

(
K1(x, s)
K2(x, s)

)
.

The integral terms containing the kernels K and K represent the difference
between the limit values at x = ∞ and the true eigenfunctions. Also, these kernels
are independent of the µ eigenvalue. For proof, for example, substitute equation
(3.5) in system (3.1)

+∞∫

x

eiµs [(∂x − ∂s)K1(x, s)− r(x)K2(x, s)] ds−[r(x) + 2K1(x, x)] e
iµx+ lim

s→∞

[
K1(x, s)e

iµs
]
= 0,

+∞∫

x

eiµs [(∂x + ∂s)K2(x, s)− r(x)K1(x, s)] ds− lim
s→∞

[
K2(x, s)e

iµs
]
= 0.

It is necessary and sufficient to have

(∂x − ∂s)K1(x, s)− r(x)K2(x, s) = 0,

(∂x + ∂s)K2(x, s)− r(x)K1(x, s) = 0,

subject to the boundary conditions

(3.6) K1(x, x) = −1

2
r(x),

lim
s→∞

K2(x, s) = 0.

Now derive the linear integral equation of the inverse scattering, Gel’fand-Levitan-
Marchenko (GLM) equation. Consider a complex plane µ on a contour Ć, starting
at µ = −∞+ i0+, passing through all zeros of a(µ), and ending at µ = +∞+ i0+.
Since there is a strong decay on r, expansion towards the upper half plane can be
made such that
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(3.7)
Φ(x, µ)

a(µ)
= Ψ(x, µ) +

b(µ)

a(µ)
Ψ(x, µ).

Substitute (3.5) into (3.7) to find

Φ(x, µ)

a(µ)
=

(
1
0

)
e−iµx+

+∞∫

x

K(x, s)e−iµsds+
b(µ)

a(µ)




(

0
1

)
eiµx +

+∞∫

x

K(x, s)eiµsds



 .

If δ(x) =
(

1
2π

) ∫

Ć

eiµxdλ for y > x is taken (δ(x) is the Dirac delta function),

I = K(x, y) +

(
0
1

)
F (x+ y) +

+∞∫

x

K(x, s)F (s+ y)ds

is obtained, where

(3.8) F (x) ≡
(

1

2π

)∫

Ć

b(µ)

a(µ)
eiµxdµ,

I ≡
(

1

2π

)∫

Ć

Φ(x, µ)

a(µ)
eiµydµ.

Since Φeiµx is analytic in the upper half plane, y > x, and the contour Ć passes
over all the zeros a, we have that I = 0. Hence we have

(3.9) K(x, y) +

(
0
1

)
F (x+ y) +

+∞∫

x

K(x, s)F (s+ y)ds = 0.

Similarly, by analytical expansion in the lower half plane,

(3.10a) K(x, y)−
(

1
0

)
F (x+ y)−

+∞∫

x

K(x, s)F (s+ y)ds = 0

is obtained, where

(3.10b) F (x) ≡
(

1

2π

)∫

Ć

b(µ)

a(µ)
e−iµxdµ.

Ć is a contour that passes under all zeros of a(µ). Contour integrations in (3.8)
and (3.10b) give

F (x) =
1

2π

+∞∫

−∞

b(µ)

a(µ)
eiµxdλ− i

N∑

j=1

cje
iµjx,
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F (x) =
1

2π

+∞∫

−∞

b(µ)

a(µ)
e−iµxdλ+ i

N∑

j=1

cje
−iµjx,

where

cj =
b(µj)

a
′(µj)

, cj =
b(µj)

a′(µj)
.

Integral equations (3.9) and (3.10a) can be expressed with matrices

K̃ =

(
K1 K1

K2 K2

)
, F̃ =

(
0 −F

F 0

)
,

whereby we have

(3.11) K̃(x, y) + F̃ (x+ y) +

+∞∫

x

K̃(x, s)F̃ (s+ y)ds = 0.

Equation (3.11) is Gel’fand-Levitan-Marchenko (GLM) equation. With (3.4a)
and (3.4b) symmetry conditions

F (x) = −F (x),

K(x, y) =

(
K2(x, y)
K1(x, y)

)
,

are obtained. The GLM equation (3.11) becomes

K1 (x, y)− F (x+ y) +

+∞∫

x

+∞∫

x

K1 (x, z)F (z + s)F (s+ y) dsdz = 0,

with the above mentioned conditions. Also, using (3.6) the potential is found as

r(x) = −2K1(x, x).

4. N-Soliton Solutions of Coupled Klein - Gordon Equation

The N-soliton solutions of Klein-Gordon equation (1.2) coupled with a scalar
field will be studied by using the inverse scattering method. The Gel’fand-Levitan-
Marchenko (GLM) equation corresponding to the Zakharov-Shabat system (3.1)
with real and symmetric potential will be applied.

As is shown in previous section, under the substitution that p1 = p2 = q1 = q2 =
p, ϕ1 = u1√

2
, ϕ2 + ϕ3 = u2, α1 = α2 = β, µ = βλ and p = − ir√

2
the system (2.1)

becomes ZS system (3.1) with real and symmetric potential, the another component
of Lax pair comes to form:

Ax = r(C −B), (4.1)

Bx + 2iµB = rt − 2Ar,

Cx − 2iµC = rt + 2Ar.
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.

It is our close-up aim to study evolution of scattering data
{

a(µ)
b(µ) ; µn, cn, n = 1, 2, ..., N

}

for the system (3.1) when the potential r(x, t) satisfies the equation (1.2).

Theorem 1. Let r(x, t) be a coefficient of the system (3.1) satisfying the equation
(1.2), then the evolution of the scattering data of this system (3.1) is the following
form:

a(µ, t) = a(µ, 0),

(4.2) b(µ, t) = b(µ, 0)e
t
iµ ,

µn(t) = µn; cn(t) = cn,0e
t

iµn ,

where cn,0 = cn(t = 0).

Proof. Let the time dependent Φ,Ψ.Φ and Ψ eigenfunctions be defined for |x| → ∞
such that A → A (µ), D → −A (µ), B, C → 0,

Φ(t) = ΦeA (t), Ψ(t) = Ψe−A (t),

Φ
(t)

= Φe−A (t), Ψ
(t)

= ΨeA (t).

Here Φ,Ψ.Φ and Ψ have boundary conditions and satisfy system (3.1). The
time evolution of Φ(t) becomes

dΦ(t)

dt
=

(
A B

C −A

)
Φ(t),

and the function Φ satisfies the equation

dΦ

dt
=

(
A−A (µ) B

C −A−A (µ)

)
Φ.

If

Φ = aΨ+ bΨ ∼ a

(
1
0

)
e−iµx + b

(
0
1

)
eiµx (x ∼ ∞)

relations are used system (3.3) becomes

(
ate

−iµx

bte
iµx

)
=

(
0

−2A (µ)beiµx

)
.

Therefore, the following equations are obtained

a(µ, t) = a(µ, 0),

(4.3) b(µ, t) = b(µ, 0)e−2A (µ)t,

cn(t) = cn,0e
−2A (µn)t, n = 1, 2, ..., N.

Here cn(t) is obtained using the definition of normalized coefficients. Taking into
account (4.3) the following equations are obtained
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a(µ, t) = a(µ, 0), (4.4)

b(µ, t) = b(µ, 0)e−2
c0
µ
t,

cn(t) = cn,0e
−2

c0
µn

t
.

If c0 = − 1
2i is chosen in system (4.4), system (4.2) is obtained. �

If µn = iκn is chosen in system (4.2) the more suitable formulas

a(µ, t) = a(µ, 0), (4.5)

b(µ, t) = b(µ, 0)e
t
iµ ,

cn(t) = cn,0e
− t

κn

are obtained.
Let r(x, t) be a coefficient of the ZS system with real and symmetric potential

(system (3.1)) which satisfies the KGC equation ((1.2)) and also this system has
only discrete spectrum, then the corresponding GLM equation for this system is as
follows

(4.6) K (x, y; t)− F (x+ y; t) +

+∞∫

x

+∞∫

x

K (x, z; t)F (z + s; t)F (s+ y; t)dsdz = 0,

where

(4.7) F (x+ y; t) =
1

2π

+∞∫

−∞

b(µ, 0)

a(µ, 0)
eiµ(x+y)−2A (µ)tdζ − i

N∑

j=1

cj,0e
iµj(x+y)−2A (µj)t..

Also, the coefficient system (3.1) becomes

r(x, t) = −2K(x, x; t).

If scattering data (4.5) is substituted in equation (4.7), and−icn(t) = ω2
n(t), ωn(t) =

ωn(0)e
− t

2κn are chosen,

F (x, y; t) =
1

2π

+∞∫

−∞

b(µ, 0)

a(µ, 0)
eiµ(x+y)− t

iµ dµ+

N∑

n=1

ω2
n(t)e

−κn(x+y)

is obtained.
Since the system has only discrete spectrum

(4.8) FD(x, y; t) =
N∑

n=1

ω2
n(t)e

−κn(x+y)

is taken. Because of equation (4.8),

F (x, y; t) =

N∑

n=1

ω2
n(0)e

−κn(x+y)− t
κn ,
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is obtained. By adding it in (4.6), the following equation

K(x, y; t)+

+∞∫

x

+∞∫

x

K(x, z; t)

N∑

n=1

ω4
n(0)e

−κn(x+s)−−κn(s+y)− 2t
κn dsdz =

N∑

n=1

ω2
n(0)e

−κn(x+y)− t
κn

is obtained. If this equation is arranged

(4.9)

K (x, y; t)+ω4
n(0)

N∑

n=1

e−κny−2κnx− 2t
κn

2κn

+∞∫

x

K(x, z; t)e−κnzdz =

N∑

n=1

ω2
n(0)e

−κn(x+y)− t
κn ,

is obtained.

Theorem 2. Let r(x, t) be a coefficient of the system (3.1) satisfying the equation
(1.2) and also system (3.1) has only discrete spectrum. Then the solution of the
inverse problem for this system is

(4.10) r(x, t) = −2∆−1
N∑

m=1

N∑

n=1

ω2
n(0)e

−(κm+κn)x− t
κn Qmn,

where ∆ = det(I + Λ); I is the N ×N identity matrix;

(4.11) Λmn = ω4
n(0)

e−2κnx− 2t
κn

2κn

e−(κm+κn)x

(κm + κn)
,

is N × N matrix whose components are m,n and Qmn are cofactors of I + Λ;
µn = iκn are eigenfunctions and cn,0 = iω2

n(0) are normalized numbers of the ZS
system (3.1).

Proof. Let r(x, t) be a coefficient of the ZS system with real and symmetric potential
(system (3.1)) which satisfies the KGC equation ((1.2)) and also this system has
only discrete spectrum. If

(4.12) K(x, y; t) =

N∑

n=1

ωn(0)e
−κnyKn(x, t)

is chosen as the natural form in equation (4.9),

Kn(x, t) + ω4
n(0)

N∑

m,n=1

e−2κnx− 2t
κn

2κn

e−(κm+κn)x

(κm + κn)
Km (x, t) =

N∑

n=1

ωn(0)e
−κnx− t

κn

is obtained. This equation can be written in the form below

(4.13)
N∑

m,n=1

[
δmn + ω4

n(0)
e−2κnx− 2t

κn

2κn

e−(κm+κn)x

(κm + κn)

]
Kn (x, t) =

N∑

n=1

ωn(0)e
−κnx− t

κn ,

where
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δmn =

{
1, if m = n

0, if m 6= n
.

Let E and K are column vectors with n th components ωn(0)e
−κnx− t

κn and
Kn, respectively, and Λ an N ×N matrix with its m,n entry (4.11); then equation
(4.13), in matrix form, is given by

(4.14) (I + Λ)K = E,

where I is the N ×N identity matrix. Since Λ is positive definite here, it can be
assured that equation (4.14) has a solution K. A solution of equation (4.14) with
Cramer’s method and standard expansion of determinants is as follows

(4.15) Kn(x, t) = ∆−1
N∑

n=1

ωn(0)e
−κnx− t

κn Qmn,

where ∆ = det (I + Λ) and Qmn matrices are cofactors of I + Λ. In equation
(4.15), expansion was made along the n th column. If y = x taken equation (4.13)
and equation (4.15) is substituted in (4.12),

K(x, x; t) = ∆−1
N∑

m=1

N∑

n=1

ω2
n(0)e

−(κm+κn)x− t
κn Qmn

is obtained. Due to r(x, t) = −2K(x, x; t), the r(x, t) coefficient is found as
equation (4.10). �

5. Conclusion

In this paper, we study the soliton solutions of the coupled Klein–Gordon (CKG)
equation coupled with a scalar field which shares the same bilinear form with the
sine-Gordon equation. We found a Lax pair of the CKG, of the negative order
AKNS type. The spectral problem is the ZS system with real and symmetric po-
tential. This makes possible to use the inverse scattering method’s technique for
obtaining and analyzing the soliton solutions of the CKG. This method provides
us to show the complete integrability of the coupled Klein–Gordon equation. On
the other side the various extensions and generalizations of the inverse scatter-
ing method have been discovered, it seems that many different integrable Klein -
Gordon type equations still remains to be found.

First author of this research is funded by the Science Committee of
the Ministry of Education and Science of the Republic of Kazakhstan
(Grant No. AP09260126).
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