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We derive an extended cubic-quintic nonlinear Schrödinger equation with Hamiltonian structure
in a nonlinear Klein-Gordon model with cubic-quintic nonlinearity. We use the nonlinear dispersion
relation to properly take into account the input of high-order nonlinear effects in the Hamiltonian
perturbation approach to nonlinear modulation. We demonstrate that changing the balance between
the cubic and quintic nonlinearities has a significant effect on the stability of unmodulated wave
packets to long-wave modulations.

I. INTRODUCTION

Propagation of nonlinear waves in dispersive media ex-
hibits a variety of fascinating phenomena [1–5]. Modula-
tion instability of plain carrier wave packets is one of such
phenomena [6–8]. When dispersion is properly balanced
by the nonlinear response of the medium, modulation in-
stability can lead to the formation of envelope solitons
representing stable modulated wave packets with local-
ized energy [9].

When the modulation is slow (wave spectrum is nar-
row) and wave amplitudes are small as compared to wave-
length, the propagation of wave envelopes can be de-
scribed by the nonlinear Schrödinger equation (NLSE)
[10–13]. This equation takes into account the second-
order dispersion and cubic nonlinearity. As the wave
spectrum broadens or wave amplitude grows, high-order
dispersion and nonlinear effects start to manifest them-
selves. Such effects are described by extended (high-
order) NLSEs.

There have been two routes of extending the NLSE.
The first one is to add the third-order dispersion and
the nonlinear dispersion effects described by the first-
order derivatives of cubic nonlinearity to get a fourth-
order NLSE [14–20]. In nonlinear fiber optics, nonlinear
dispersion effects are responsible for self-steepening and
Raman-induced frequency shift [3]. The second route is
to add the quintic nonlinearity to the cubic NLSE [21–
24], where the emphasis is put on the role of the coupled
cubic-quintic nonlinearity, or to the more general fourth-
order NLSE [25–28]. Such models are often referred to
as cubic-quintic NLSEs. Sometimes they also include the
fourth-order dispersion [29].

Cubic-quintic NLSEs represent only a narrow class of
more general high-order NLSEs that also take into ac-
count higher-order nonlinear dispersion effects described
by the second derivatives of cubic nonlinearity [30]. In
this context, we refer to such high-order NLSEs as
to extended cubic-quintic NLSEs. In particular, ex-
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tended cubic-quintic NLSEs were considered to describe
the dynamics of ferromagnetic spin chains [31], optical
solitons [32], and water waves [33]. NLSE models of
yet higher orders have recently been addressed in the
literature as well, namely, NLSE with quintic deriva-
tive non-Kerr nonlinearities [34], cubic-quintic-septimal
NLSE [35], sixth-order NLSE [36–38], and an hierarchy
of integrable high-order NLSEs [39].

NLSEs are usually derived by perturbation techniques
involving some small physical parameters, most often as-
sociated with the smallness of envelope amplitude [2].
Such perturbation techniques involve the method of mul-
tiple scales [37], the variational method of averaged La-
grangian [38], etc. Introduction of perturbations and
small-amplitude expansions usually breaks the Hamilto-
nian structure of the original Hamiltonian problem, and
high-order NLSEs may include non-Hamiltonian terms
(although the cubic NLSE is always Hamiltonian) [40].

To avoid the origin of non-Hamiltonian terms, one
should turn to canonical variables in order to preserve the
Hamiltonian structure of governing equations [41]. When
applied in Fourier space, Hamiltonian formalism leads
to the celebrated four-wave Zakharov integro-differential
equation [42] (see also Ref. [43] for more general four- and
five-wave forms). NLSE and its high-order extensions can
generally be obtained as a narrow-band limit of the Za-
kharov equations [44]. Additional conformal mappings
and canonical transformations allow the cancellation of
certain non-trivial four-wave resonant interactions and
produce the so-called compact [45] and super compact
[46] modifications of the Zakharov equations.

Another approach to the Hamiltonian description of
nonlinear waves and their modulation was proposed by
Craig et al. [47] (see also Ref. [48] for its further de-
velopment). It makes use of the symplectic notation for
Hamilton’s equations [49]. The term symplectic means
“intertwined” and refers to the interlaced role of coordi-
nates and momenta in Hamilton’s equations [50]. Ac-
cordingly, one can select proper coordinates (called sym-
plectic) that preserve the Hamiltonian character of the
original problem [51]. In this way, Craig et al. [47] intro-
duced a complex symplectic coordinate as a coupling of
the wave field and momentum in phase space instead of
making a transform to normal variables in Fourier space,
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as is usually done in Zakharov’s approach. When written
in terms of wave envelopes, such a symplectic coordinate
couples the deviation of the wave envelope from equi-
librium and a contribution from the motion of envelope
with group velocity.

By using an example of a simple physical system de-
scribed by the nonlinear Klein-Gordon equation with cu-
bic nonlinearity, we have recently demonstrated a rela-
tionship between the Hamiltonian form of fourth-order
NLSE derived by Craig et al. in Ref. [47] and the non-
Hamiltonian form of the same equation [40]. To this end,
we employed the transformation of variables that unam-
biguously transforms the non-canonical form of fourth-
order NLSE for the complex amplitude of the wave field
envelope to the canonical form for the envelope of the
complex symplectic variable.

The purpose of this work is to add the quintic non-
linearity to the cubic Klein-Gordon model considered in
Ref. [40] and to extend the Hamiltonian perturbation ap-
proach by Craig et al. [47] to the case of cubic-quintic
nonlinearity. We use the nonlinear dispersion relation to
properly take into account the input of high-order non-
linear effects. As a result, we derive the extended cubic-
quintic (fifth-order) NLSE in Hamiltonian form that de-
scribes the motion of the envelope of coupled wave field
and momentum.

From the viewpoint of physics, we are interested in the
effect of quintic nonlinearity on the stability of wave pack-
ets to long-wave modulations in a Klein-Gordon model
with cubic-quintic nonlinearity. When there is no quin-
tic nonlinearity, plain wave packets in such a system are
known to be modulationally unstable for any carrier wave
number in the case of negative coefficient at cubic nonlin-
earity. We demonstrate that such plain wave packets be-
come modulationally stable for certain carrier wave num-
bers when the quintic nonlinearity becomes large enough.

This paper is organized as follows. Section II gives
a record of the nonlinear Klein-Gordon model and non-
linear dispersion relation. Section III deals with slow
modulation approximation and perturbation expansions.
The Hamiltonian form of extended cubic-quintic NLSE
is derived in Sect. IV. Section V is devoted to the mod-
ulation instability condition for the case of cubic-quintic
nonlinearity and to the effect of quintic nonlinearity on
the stability of uniform wave packets. Conclusions are
drawn in Sect. VI.

II. NONLINEAR KLEIN-GORDON MODEL

AND NONLINEAR DISPERSION RELATION

In this paper we consider a nonlinear Klein-Gordon
(nKG) model with cubic-quintic nonlinearity:

φtt − c2φxx + α1φ+ α3φ
3 + α5φ

5 = 0. (1)

It can be derived as Hamilton’s equations for the Hamil-
tonian density

H = 1
2φ

2
t +

1
2c

2φ2x + V (2)

with

V = 1
2α1φ

2 + 1
4α3φ

4 + 1
6α5φ

6.

Here the unknown real function φ is a characteristic of
the wave field, t is time, x is coordinate, c is the velocity
parameter that deals with the speed of interaction prop-
agation. The subscripts denote the partial derivatives.
The real coefficient α1 describes the linear response of
the medium. The real coefficients α3 and α5 represent
the cubic and quintic nonlinearities, respectively.

When α5 = 0, Eq. (1) describes the φ4 model, which
is well known in the quantum field theory, elementary
particle physics, statistical physics, and condensed mat-
ter physics [52, 53]. The nKG equation with nonzero α5

arises in the higher-order φ6 model [54]. The φ6 potential
possesses three minima (called vacua in the field theory),
in contrast to the φ4 model possessing only two vacua.
Field theories of yet higher orders can be formulated as
well [55]. Finally, when α1 = 1, α3 = − 1

6 , and α5 = 1
120 ,

the potential V represents the leading terms of the cel-
ebrated sine-Gordon model, which has multiple physical
applications [56, 57].

In the case of weakly nonlinear wave packets, a solution
to Eq. (1) can approximately be written as a sum of the
first and third harmonics:

φ = φ1 + φ3 ≡ ϕ+ φ3, (3)

with

φ1 ≡ ϕ = 1
2

(
εA exp

(
i(kx− ωt)

)
+ c.c.

)
, (4)

φ3 = 1
2

(
ε3A3 exp

(
3i(kx− ωt)

)
+ c.c.

)
. (5)

Here k and ω are the wave number and frequency, ε is
a formal small parameter describing the smallness of the
wave amplitude, εA is the complex amplitude of the first
harmonic, ε3A3 is the complex amplitude of the third
harmonic, and c.c. denotes the complex conjugate terms.
Note that relation (3) misses the fifth and higher har-
monics because they make no contribution to the cubic-
quintic NLSE that is a focus of this paper. The zeroth
and second harmonics are identically equal to zero when
only the odd powers of function φ are present in the non-
linear part of the nKG equation (1).

Substituting function (3) in Eq. (1) yields a nonlinear
dispersion relation between the wave frequency and wave
number:

ω2 = c2k2 + α1 +
3
4α3ε

2AA+O(ε4), (6)

with the bar over A designating the complex conjugate.
The well-known linear dispersion relation

ω(k) =
√
c2k2 + α1 (7)

follows as a linear approximation to the more general
nonlinear dispersion relation (6).
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Following Craig et al. [47], we introduce the so-called
complex symplectic coordinate

z =
1√
2

(
i
1√
ω̂
ϕt +

√
ω̂ϕ

)
(8)

that is a complex function representing a coupling of the
first harmonic ϕ and its derivative ϕt. The inverse re-
lationship between the functions {ϕ, ϕt} and z is given
by

ϕ =
1√
2ω̂

(z + z) , ϕt =

√
ω̂√
2i

(z − z) . (9)

Here ω̂ is a pseudo-differential operator (or the so-called
Fourier multiplier operator) such that the wave number k
in the dispersion relation is replaced with the differential
operator −i∂x. In the case of linear dispersion relation
(7), the operator ω̂ takes the following form [47]:

ω̂ = ω(−i∂x) =
√
c2|−i∂x|2 + α1. (10)

Note that the term “pseudo” refers to the extended nonlo-
cal nature of the operator ω̂ as compared to ordinary dif-
ferential operators [58–60]. Roughly speaking, its action
on some target function yields a nonpolynomial function
of target function itself and its derivative [61].

Our task is to proceed to the the slow modulation
approximation and use the nonlinear dispersion relation
instead of the linear one to construct a next-order ap-
proximation to the operator ω̂. The use of the nonlinear
dispersion relation is a pivotal step in deriving a consis-
tent fifth-order NLSE as an extension to the fourth-order
NLSE derived earlier by Craig et al. [47].

III. SLOW MODULATION APPROXIMATION

Now we proceed with the slow modulation approxima-
tion in terms of the complex symplectic coordinate z to
derive a Hamiltonian NLSE from the nKG equation (1).
The wave envelope is supposed to be a slow function of
time t and coordinate x. Therefore, we can introduce the
“slow” time τ = εt and “long” coordinate χ = εx to sepa-
rate the slow motion of the envelope from fast oscillations
of the carrier wave, which are described in terms of the
“fast” time t0 ≡ t and “short” (normal) coordinate x0 ≡ x.
Such a mathematical “trick” (which is usually referred to
as the method of multiple scales) leads to the following
perturbation expansions of differential operators:

∂t = ∂t0 + ε∂τ , ∂x = ∂x0
+ ε∂χ. (11)

Here the formal small parameter ε is the same as in rela-
tions (4) and (5) for the functions ϕ and φ3. With such
an approximation, the complex amplitudes A and A3 in
(4) and (5) are supposed to be slow functions of variables
χ and τ , while the wave phase is supposed to be a fast
function of x0 and t0.

The same envelope approximation for the complex
symplectic coordinate z is given by

z = εu(χ, τ) exp
(
i(k0x0 − ω0t0)

)
, (12)

where εu is the complex amplitude of the envelope of
function z, k0 is the carrier wave number, and ω0 = ω(k0)
is the carrier frequency.

To express the functions ϕ and ϕt given by relations (9)
in terms of complex amplitude u, we need to find a result
of action of the operators ω̂

1

2 and ω̂− 1

2 on the complex
symplectic coordinate z given by ansatz (12). To this
end, we use Theorem 1 from Ref. [47] for a Fourier mul-

tiplier operator m̂ (= ω̂
1

2 or ω̂− 1

2 ) and some sufficiently
smooth function f(χ), namely

m̂(−i∂x)
(
exp(ik0x) f(χ)

)

= exp(ik0x) m̂ (k0 − iε∂χ) f(χ). (13)

This formula basically means the operator expansion
around the carrier wave number k0 with the assumption
of narrow spectrum and slow modulations.

Next, we expand the operators ω̂
1

2 and ω̂− 1

2 in terms
of the formal small parameter ε:

ω̂± 1

2 (k0 − iε∂χ) = ω
± 1

2

0

∞∑

n=0

(−iε)nρ±n ∂nχ, (14)

where

ρ±n =
1

ω
± 1

2

0 n!

∂n

∂kn
(
ω± 1

2 (k)
)∣∣

k=k0

.

The explicit expressions for the first several coefficients
ρ±n are given in Appendix A.

Operator expansions (14) are calculated with the use
of the linear dispersion relation (7). To match these ex-
pansions with the nonlinear dispersion relation (6), we
introduce a next-order perturbation to the linear disper-
sion operator (10) as follows:

ω̂(ε2AA) =
(
c2|−i∂x|2 + α1 +

3
4α3ε

2AA
) 1

2

≈
√
c2|−i∂x|2 + α1 + ε2γAA, γ =

3α3

8ω0
. (15)

Then operator expansions (14) can be extended as

ω̂± 1

2

(
k0 − iε∂χ, ε

2AA
)

= ω̂± 1

2 (k0 − iε∂χ)± ε2ω
± 1

2

0

γ

2ω0
AA. (16)

Substituting expressions (4) and (12) into relation (9)
for ϕ and taking into account formula (13), the complex
amplitude A can be expressed in terms of amplitude u:

A =
√
2 ω̂− 1

2 (k0 − iε∂χ) u. (17)
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The linear dispersion approximation to (17) can be ob-
tained with operator expansion (14):

A(0) =

√
2

ω0

(
u− iερ−1 uχ − ε2ρ−2 uχχ +O(ε3)

)
.

Then the nonlinear dispersion approximation can be de-
rived by substituting the linear dispersion approximation
into operator expansion (16):

A =
√
2 ω̂− 1

2

(
k0 − iε∂χ, ε

2A(0)A (0)
)
u

=

√
2

ω0

(
u− iερ−1 uχ − ε2ρ−2 uχχ − ε2

γ

ω2
0

u2u+O(ε3)
)
.

(18)

The inverse relationship

u =

√
ω0

2

(
A− iερ+1 Aχ−ε2ρ+2 Aχχ+ε

2 γ

2ω0
A2A+O(ε3)

)

(19)
can be derived in a similar way from the relation z+ z =√
2ω̂ ϕ, which follows from formula (9).
Having a relationship between the amplitudes u and A,

we can proceed straightforward on deriving a high-order
NLSE for the amplitude u.

IV. FIFTH-ORDER NLSE IN HAMILTONIAN

FORM

The evolution of function u is governed by the equation

εω0u+ iε2uτ =
δH
δ(εu)

(20)

that follows from Hamilton’s equation for the complex
symplectic coordinate z, as is demonstrated in Ap-
pendix B. Here

H =

∫ 〈
H(u, u,A3, A3)

〉
dχ

is the Hamiltonian written in terms of Hamiltonian
density (2) with the field function φ represented by
ansatz (3), 〈·〉 means averaging over the fast phase
k0x0−ω0t0, and δ denotes the functional derivative. Due
to the symplectic nature of coordinate z, the Hamilton
equation for the function u is just a complex conjugate
to the Hamilton equation given by Eq. (20).

With complex amplitudes u and u found from Eq. (20)
and its complex conjugate, variational equations in terms
of amplitudes A3 and A3 yield the corresponding expres-
sions for these amplitudes in terms of u and u, namely

A3 =
α3

32α1
A3 =

α3

32α1

(√ 2

ω0
u
)3

+O(ε). (21)

The derivation of the above relationship between A3 and
A is given in detail in Ref. [38] (see formula (47) therein),
and we will not reproduce it here.

To calculate the functional derivative that appears in
Eq. (20), the Hamiltonain density H should be expressed
in terms of functions u, u, A3, and A3. Below we briefly
outline the main steps of how it can be done.

Taking into account ansatz (3), the Hamiltonian den-
sity can be rewritten as a sum of three components,
namely,

H = H
[ϕ]
2 +H

[ϕ,φ3]
2 +H4,6. (22)

Here

H
[ϕ]
2 = 1

2

(
ϕ2
t + c2ϕ2

x + α1ϕ
2
)

(23)

is the quadratic part of the Hamiltonian density that con-
tains only the first harmonic and

H
[ϕ,φ3]
2 = H2 −H

[ϕ]
2 = 1

2 (φ
2
t + c2φ2x+α1φ

2)−H
[ϕ]
2 (24)

is the remaining part of the quadratic Hamiltonian den-
sity that contains both the first and the third harmon-
ics. The non-quadratic part of the Hamiltonian density
is designated as

H4,6 = H −H2 = 1
4α3φ

4 + 1
6α5φ

6. (25)

The quadratic part of the Hamiltonian density given
by relation (23) can be expressed in terms of z as follows:

H
[ϕ]
2 = 1

2

(
iϕt + ω̂ ϕ

)(
−iϕt + ω̂ ϕ

)
=

√
ω̂z

√
ω̂z.

Taking into account formula (13), we get an expression

〈
H

[ϕ]
2

〉
= H

[ϕ]
2 =

(
ω̂

1

2 (k0 − iε∂χ)u
)(
ω̂

1

2 (k0 + iε∂χ)u
)

(26)
that can easily be expanded using operator expansions
(14). Note that here these expansions should be made
with the linear dispersion operator because it is the oper-
ator that stands in the right-hand side of expression (23).

The second component of the Hamiltonian density

H
[ϕ,φ3]
2 is then calculated by formula (24) with taking

into account relation (26). After some algebraic trans-
formations and averaging over fast phase, we get

〈
H

[ϕ,φ3]
2

〉
= 1

2ε
6
(
9c2k20 + 5α1

)
A3A3 +O(ε7). (27)

This part of the averaged Hamiltonian density depends
only on the amplitude A3 in its leading order of smallness.

The non-quadratic part of the Hamiltonian density
yields the following expression after averaging:
〈
H4,6

〉
= ε4

〈
H

(4)
4,6

〉
+ ε5

〈
H

(5)
4,6

〉
+ ε6

〈
H

(6)
4,6

〉
+O(ε7), (28)

where

〈
H

(4)
4,6

〉
=

3α3

8ω2
0

u2u2,
〈
H

(5)
4,6

〉
=

3α3ω
′
0

8ω3
0

(
iu u2uχ + c.c.

)
,

〈
H

(6)
4,6

〉
=

3α3

32ω4
0

(
4ω′ 2

0 u uuχuχ − ω′ 2
0

(
u2u2χ + c.c.

)

+
(
2ω′′

0 ω0 − 3ω′2
0

) (
u2u uχχ + c.c.

))

+
5ω0α5 − 9α3γ

12ω4
0

u3u3 +
α3

8ω0

√
2

ω0

(
u3A3 + c.c.

)
.
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Note that the lowest order of
〈
H4,6

〉
in (28) is ε4 because

of the fourth power of φ in expression (25) for H4,6. It
is the reason why it was sufficient to keep only the terms
of up to order O(ε2) in expansion (18) for A to get the
expansion for

〈
H4,6

〉
up to order O(ε6).

Calculating the functional derivative in Eq. (20) with
the averaged Hamiltonian expressed a sum of three com-
ponents (26), (27), and (28), we finally get a fifth-order
NLSE for the complex amplitude u:

iε2
(
uτ + ω′

0 uχ
)
+ ε3

(
1
2ω

′′
0uχχ +Q(3)|u|2u

)

+ iε4
(
− 1

6ω
′′′
0 uχχχ +Q(4)|u|2uχ

)

+ ε5
(
− 1

24ω
′′′′
0 uχχχχ +Q

(5)
1 |u|4u+Q

(5)
2 |u|2uχχ

+Q
(5)
3 u2uχχ +Q

(5)
4 u |uχ|2 +Q

(5)
5 u u2χ

)
= 0,

(29)

where

Q(3) = −3α3

4ω2
0

, Q(4) =
2ω′

0

ω0
Q(3) =

2c2k

ω2
0

Q(3),

Q
(5)
1 =

9α3γ − 5ω0α5

4ω4
0

− 3α2
3

64ω3
0 α1

,

Q
(5)
2 =

3α3

4ω4
0

(
2ω′2

0 − ω′′
0ω0

)
=

3α3c
2

4ω6
0

(2c2k20 − α1),

Q
(5)
3 = 1

2Q
(5)
4 =

3α3

8ω4
0

(
ω′ 2
0 − ω′′

0ω0

)
=

3α3c
2

8ω6
0

(c2k20 − α1),

Q
(5)
5 =

3α3

8ω4
0

(
3ω′2

0 − ω′′
0ω0

)
=

3α3c
2

8ω6
0

(3c2k20 − α1).

The coefficients ω′
0, ω

′′
0 , ω′′′

0 , and ω′′′′
0 are the deriva-

tives of the linear dispersion relation ω(k) with respect
to wave number k calculated at the point k = k0 (see Ap-
pendix A). Note that the coefficient γ from the nonlinear
dispersion operator (15) appears only in the quintic non-

linear coefficient Q
(5)
1 . The cubic nonlinear coefficient

Q(3) and all the nonlinear derivative coefficients have no
contribution from the nonlinear dispersion operator and
can correctly be calculated with the linear dispersion op-
erator (10).

Note that when referring to a particular order of ex-
tended NLSE we mean the aggregate order of the wave
amplitude and spatial derivative entering the highest or-
der of the equation. Such a classification is well estab-
lished in the field of nonlinear water waves [44]. Within
this classification, the classical cubic NLSE is referred to
as the third-order NLSE. The equation with the third-
order dispersion and first-order cubic derivative terms is
referred to as the fourth-order NLSE. In particular, the
celebrated Dysthe equation [15] describing the modula-
tions of deep-water waves is well known as the fourth-
order NLSE [62]. Finally, the equation with the fourth-
order dispersion and quintic nonlinearity is referred to as
the fifth-order NLSE. This remark is made to avoid any
misunderstanding because the reader can meet an alter-
native classification in the literature (see, e.g., Ref. [39])
where high-order NLSEs are classified by the order of the
highest dispersion term entering the equation.

From the technical point of view, the extended cubic-
quintic NLSE (29) with its coefficients expressed in terms
of parameters of the original nKG equation is the main
result of this paper. As compared to the extended NLSE
considered in Ref. [40], Eq. (29) contains six additional
terms that describe the fourth-order dispersion, quintic
nonlinearity, and second-order cubic nonlinear dispersion
effects. Equation (29) is a Hamiltonian PDE inasmuch
as it was derived from Hamilton’s equation. Its second-
order cubic nonlinear derivative coefficients satisfy the
condition

Q
(5)
2 − 2Q

(5)
3 + 1

2Q
(5)
4 = Q

(5)
5 (30)

that should hold for Eq. (29) to have a Hamiltonian. To
the best of our knowledge, the fifth-order NLSE in Hamil-
tonian form (29) has not previously been reported in the
literature in the context of the nKG model.

The Hamiltonian nature of Eq. (29) is due to the use
of symplectic coordinate z that couples the wave field φ
and its momentum p = φt. In this case the symplectic
coordinate z and its complex conjugate z form a pair of
complex canonical variables. In quantum mechanics, the
use of such variables corresponds to a transition from the
coordinate-momentum representation to a representation
involving the creation and annihilation Bose operators.
In the framework of slow modulation approximation, the
complex amplitude u of the envelope of canonical vari-
able z couples the deviation of the wave field envelope
from equilibrium and a contribution from the motion of
envelope with group velocity vg = ω′

0, namely

√
2

ω0
u = A− ε

ivg
2ω0

Aχ + . . . ,

as follows from relation (19). In contrast to the Hamil-
tonian equation (29) for u, the evolution equation for
the uncoupled (i.e., non-canonical) amplitude A is non-
Hamiltonian, as is shown in Appendix C. Therefore, the
above coupling is a pivotal step in deriving a high-order
NLSE in Hamiltonian form.

The coefficients at cubic, quintic, and derivative non-
linear terms of Eq. (29) all depend on the cubic coeffi-
cient α3 of the nKG equation. On the other hand, the
quintic coefficient α5 enters Eq. (29) only through the

coefficient Q
(5)
1 of the quintic nonlinear term. A natu-

ral question that arises in this context is whether there
is any significant effect of including the quintic nonlin-
earity in the nKG model and at which conditions it can
manifest itself. We address this question in the next sec-
tion and demonstrate that the quintic coefficient α5 has
a significant effect on the modulation instability of a ho-
mogeneous (constant-amplitude) solution to Eq. (29).

V. MODULATION INSTABILITY

In this section we demonstrate that the quintic coeffi-
cient α5 significantly modifies the modulation instability
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condition and results in the formation of stability regions
absent in the case when only the cubic coefficient α3 is
considered. Assuming that α1 > 0, we introduce the
dimensionless time and coordinate

T =
√
α1 t = ε−1√α1 τ, X = ε−1

√
α1

c
χ (31)

and put Eq. (29) in dimensionless form for the rescaled
amplitude ψ = εu:

i
(
ψT + β1 ψX

)
+ β2 ψXX +Q(3)|ψ|2ψ

+ i
(
−β3 ψXXX +Q(4)|ψ|2ψX

)

− β4 ψXXXX +Q(5)
1 |ψ|4ψ +Q(5)

2 |ψ|2ψXX

+Q(5)
3 ψ2ψXX +Q(5)

4 ψ |ψX |2 +Q(5)
5 ψψ2

X = 0.

(32)

The rescaled nonlinear coefficients of this equation are
expressed as

Q(3) =
1√
α1

Q(3) = −3 α̃3

4 ω̃2
, Q(4) =

2κ

ω̃2
Q(3),

Q(5)
1 =

1√
α1

Q
(5)
1 =

51− 80 ω̃2α̃5 − 3κ2

64 ω̃5
α̃2
3,

Q(5)
2 =

√
α1

c2
Q

(5)
2 =

1− 2κ2

ω̃4
Q(3),

Q(5)
3 = 1

2Q
(5)
4 =

√
α1

c2
Q

(5)
3 =

1− κ2

2 ω̃4
Q(3),

Q(5)
5 =

√
α1

c2
Q

(5)
5 =

1− 3κ2

2 ω̃4
Q(3),

where

ω̃ =
ω0√
α1

=
√
κ2 + 1, κ =

ck0√
α1

(33)

are the dimensionless carrier frequency and wave num-
ber. The coefficients βn = 1

n!
∂nω̃
∂κn

account for the linear
dispersion contribution. The dimensionless parameters

α̃3 =
α3√
α3
1

, α̃5 =
α5α1

α2
3

(34)

are the scaled cubic and quintic coefficients of the nKG
equation (1) (here we assume that α3 6= 0).

The coefficient Q(5)
1 is the only coefficient of Eq. (32)

that depends on quintic coefficient α5. Figure 1 shows

the scaled coefficient Q(5)
1 as a function of dimensionless

wave number κ for three different values of parameter
α̃5. When α̃5 = 0 (no quintic nonlinearity), the coef-

ficient Q(5)
1 stays positive for any κ. As α̃5 increases

from zero, the coefficient Q(5)
1 changes its sign at some

nonzero κ. Finally, it becomes negative for any κ when
α̃5 approaches unity. Thus, the quintic coefficient α5

of the nKG equation (1) has a profound effect on the
quintic nonlinear coefficient of the extended cubic-quintic
NLSE (32) when α5 is nearly as large as the ratio α2

3/α1

or is exceeding it. Hereafter we elaborate upon this

0 0.5 1 1.5 2 2.5 κ
-1

�0.5

0

0.5

1

Q1
(

�

3
2


5 = 0


5 = 0.5


5 = 1

Figure 1: Scaled coefficient Q
(5)
1 of the extended NLSE (32)

as a function of dimensionless carrier wave number κ for three
different values of parameter α̃5.

finding and demonstrate the effect of coefficient α5 on
the modulation instability of a homogeneous (constant-
amplitude) solution to Eq. (32).

Modulation instability means the instability of a
constant-amplitude wave packet to long-wave modula-
tions. The unmodulated solution to Eq. (32) is given
by a homogeneous constant-amplitude wave function

ψ(T ) = ψ0 exp
(
iµ |ψ0|2T

)
, (35)

where µ = Q(3) + Q(5)
1 |ψ0|2. The condition of modu-

lation instability of homogeneous solution (35) can be
determined by introducing a small perturbation to the
complex amplitude ψ0:

ψ(X,T ) =
(
ψ0 + ǫ(X,T )

)
exp

(
iµ |ψ0|2T

)
, (36)

where

ǫ(X,T ) = ǫ+0 exp (iκX − iΩT ) + ǫ−0 exp
(
iΩT − iκX

)
.

Here we assume the perturbation frequency Ω to be
complex-valued and the perturbation wave number κ to
be real. Substituting this ansatz in Eq. (32) leads to the
following relationship between Ω and κ:

Ω =
(
β1 +Q(4)|ψ0|2

)
κ + β3κ

3 + β4κ
4 ± |κ|

√
S, (37)

where S = s1 + s2κ
2 and

s1 = −2
(
Q(3)+ 2Q(5)

1 |ψ0|2
)(
β2+ (Q(5)

2 −Q(5)
3 )|ψ0|2

)
|ψ0|2,

s2 = β2
2 + 2β2Q(5)

2 |ψ0|2 +
((
Q(5)

2

)2−
(
Q(5)

3

)2) |ψ0|4.

A homogeneous solution is modulationally unstable when
ImΩ > 0 (perturbation exponentially grows with time).
Since the first three terms in formula (37) for Ω are real,
the condition of modulation istability effectively requires
the radicand S to be negative.

Considering only long-wave modulations, we can re-
quire that κ → 0. In this case, the radicand S can be
expressed in the following explicit form:

S = s1 =
σ

128 ω̃11

(
(80 ω̃2α̃5 + 3κ2 − 51)σ + 24 ω̃3

)
×

(
(3κ2 − 1) 3σ + 4 ω̃3

)
, σ = α̃3 |ψ0|2. (38)
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Figure 2: Scaled initial growth rate Im Ω̃ of long-wave modulations of uniform wave packets as a function of dimensionless
carrier wave number κ for two values of parameter σ = α̃3|ψ0|

2: (a,b,c) σ = −0.2 and (d,e,f) σ = −0.5. Constant-amplitude

carrier wave packets are modulationally unstable (Im Ω̃ > 0) for any κ when there is no quintic nonlinearity (α̃5 = 0). Stability

regions (Im Ω̃ = 0) are formed at some critical value of α̃5 that depends on σ: α̃
(c)
5 ≈ 2.138 for σ = −0.2 and α̃

(c)
5 ≈ 1.142 for

σ = −0.5.

Then the initial growth rate of modulations can be cal-
culated as

ImΩ = |κ||σ| 12 Im Ω̃, Ω̃ =
√
|σ|−1s1. (39)

The scaled frequency Ω̃ is a function of three dimension-
less parameters: carrier wave number κ, scaled quintic
coefficient α̃5, and parameter σ.

The dimensionless parameter σ is proportional to the
squared absolute value of the wave function’s amplitude
and to the cubic coefficient α3 (since α̃3 ∝ α3). It is
positive when α3 > 0 and negative when α3 < 0. To
determine the possible range of parameter σ, we need to
recall that the amplitudes of the first and third harmon-
ics in the approximate solution (3) to the nKG equation
were assumed to be small. This condition implies that
the ratio between the amplitudes of the third and first
harmonics needs to be small:

|φ3|
|φ1|

= ε2
∣∣∣∣
A3

A

∣∣∣∣ ≪ 1.

Taking into account relation (21) for A3, we come to
the following condition that should be imposed on the
parameter σ: |σ| ≪ 16 ω̃. From the practical point of
view, this condition holds for any |σ| . 1.

Here we restrict our consideration to the case σ < 0
(negative α3) and consider two different values of pa-
rameter σ, namely, σ = −0.2 and σ = −0.5. The case of
positive σ can be considered in a similar manner. Fig-
ure 2 shows the scaled initial growth rate Im Ω̃ of long-
wave modulations as a function of dimensionless carrier

wave number κ for the two values of σ under consid-
eration. When α̃5 = 0 (no quintic nonlinearity), the
constant-amplitude solution (35) is modulationally un-

stable (Im Ω̃ > 0) at any κ for both σ = −0.2 (Fig. 2(a))
and σ = −0.5 (Fig. 2(d)). When the quintic nonlinearity
becomes large enough, there appears the stability region
(Im Ω̃ = 0) that is absent in the case of dominant cubic
nonlinearity. When σ = −0.2 (Fig. 2(b,c)), this stability
region is formed for long waves (κ→ 0) and then enlarges
in the direction of shorter waves (larger κ). In the case
of σ = −0.5, the stability region is first formed in the
vicinity of κ ≈ 0.85 (Fig. 2(d)) and then enlarges both in
the direction of shorter and longer waves (Fig. 2(e)), un-
til all long waves (small κ) become modulationally stable
(Fig. 2(f)).

These results demonstrate that the quintic nonlinear-
ity, when it is large enough, dramatically changes the
stability of uniform carrier wave packets to long-wave
modulations.

VI. CONCLUSIONS

We considered a Klein-Gordon model with cubic-
quintic nonlinearity that describes a relativistic scalar
field with a quartic-sextic potential. From the viewpoint
of elementary particle physics, this model represents a
relativistic field equation for spinless scalar particles in
a quartic-sextic potential. The stationary version of this
equation can also be used to describe the macroscopic
wave function of the condensed phase (i.e., the order pa-
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rameter) in the Ginzburg-Landau theory of superconduc-
tivity. In this case, the potential (quartic, sextic, or even
of higher order) is interpreted as the Landau free energy
density, with its minima (equilibrium positions) defining
the parent (high temperature) and product (low temper-
ature) phases [63]. Structural changes in the form of
the potential under variations in the control parameter
(which is usually associated with temperature) describe
different types of phase transitions in such a system. A
spatial gradient of the order parameter (Ginzburg term)
allows for the existence of domain walls (or the so-called
kinks) between various phases (see Chap. 12 of Ref. [53]
for more details).

Unlike the above-mentioned studies that mainly ad-
dress the stationary regimes of the nonlinear Klein-
Gordon (nKG) model, we are interested in nonstation-
ary effects arising from the evolution of the wave field in
time. Here we have studied the envelope properties of
the nKG model by transforming it into a high-order (ex-
tended cubic-quintic) NLSE model. A remarkable feature
of this work is that the high-order NLSE was obtained
in Hamiltonian form, as opposed to the previous works
[37, 38] on this subject. To this end, we extended the
Hamiltonian perturbation approach to nonlinear modu-
lation proposed by Craig et al. [47] and used the non-
linear dispersion relation to properly take into account
the input of high-order nonlinear effects. Drawing an
analogy with quantum mechanics, our approach corre-
sponds to a transition from the coordinate-momentum
representation to a representation involving the creation
and annihilation Bose operators.

When the carrier wave packets are modulationally un-
stable, NLSE is known to admit envelope solitons (or
quasi-solitons in high-order NLSE models). These local-
ized wave structures can be interpreted as bound states of
quasiparticles represented by plane waves [64]. Here we
demonstrated that the quintic nonlinearity of the nKG
model significantly modifies the modulation instability
condition and results in the formation of stability regions
absent in the case when only the cubic nonlinearity is
considered. This happens for certain wave numbers at
a certain threshold in the ratio of the quintic and cubic
coefficients of the nKG equation. Thus, the existence
conditions for envelope solitons in a system with quintic
nonlinearity may break for those wave numbers where
the carrier waves are modulationally stable.

We believe these results will facilitate further studies of
nonstationary phenomena in physical systems involving
cubic-quintic nonlinearities and quartic-sextic potentials.
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Appendix A: Coefficients of expansions

Several leading coefficients of operator expansions (14)
are as follows:

ρ+0 = ρ−0 = 1, ρ+1 = −ρ−1 =
ω′
0

2ω0
,

ρ+2 =
ω′′
0

4ω0
− ω′ 2

0

8ω2
0

, ρ−2 = − ω′′
0

4ω0
+

3ω′2
0

8ω2
0

,

ρ+3 =
ω′′′
0

12ω0
− ω′

0 ω
′′
0

8ω2
0

+
ω′ 3
0

16ω3
0

,

ρ−3 = − ω′′′
0

12ω0
+

3ω′
0 ω

′′
0

8ω2
0

− 5ω′3
0

16ω3
0

,

ρ+4 =
ω′′′′
0

48ω0
− ω′

0 ω
′′′
0

24ω2
0

− ω′′ 2
0

32ω2
0

+
3ω′2

0 ω
′′
0

32ω3
0

− 5ω′ 4
0

128ω4
0

,

ρ−4 = − ω′′′′
0

48ω0
+
ω′
0 ω

′′′
0

8ω2
0

+
3ω′′ 2

0

32ω2
0

− 15ω′2
0 ω

′′
0

32ω3
0

+
35ω′4

0

128ω4
0

.

Here ω′
0 is the group velocity of the carrier wave packet,

ω′′
0 is the second-order dispersion coefficient, ω′′′

0 and ω′′′′
0

are high-order dispersion coefficients:

ω′
0 =

c2k0
ω0

, ω′′
0 =

c2α1

ω3
0

, ω′′′
0 = −3c4k0α1

ω5
0

,

ω′′′′
0 =

3 c4α1

ω7
0

(
4c2k20 − α1

)
.

Appendix B: Derivation of evolution equation for u

The Lagrangian density for the nKG equation (1) is

L = 1
2φ

2
t − 1

2c
2φ2x − V (φ). (B1)

The wave field φ(x, t) given by ansatz (3) is a function
of the fundamental harmonic ϕ and third harmonic φ3
that are considered as independent variables. Then the
kinetic energy density in (B1) can be written as

K = 1
2φ

2
t = 1

2ϕ
2
t +

1
2 (φ3)

2
t + ϕt(φ3)t.

The last (cross) term in K disappears after averaging
over the fast phase k0x0 − ω0t0. Therefore, it can be
omitted in calculating the generalised momenta for the
fields ϕ and φ3:

p =
∂L

∂ϕt

= ϕt, p3 =
∂L

∂(φ3)t
= (φ3)t.

Hamilton’s principle [49] formulated in a phase space
formed by the fields ϕ, φ3 and their momenta p, p3 re-
quires the functional

S[ϕ, p, φ3, p3] =

∫ (
pϕt + p3(φ3)t − 〈H〉

)
dx (B2)

to keep a stationary value, so that δS = 0. Here H is the
Hamiltonian density given by formula (2) and 〈·〉 means
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averaging over the fast phase. Taking variations of S with
respect to p and ϕ, we come to a system of Hamilton’s
equations for these variables:

ϕt =
δH
δp
, pt = −δH

δϕ
, (B3)

where H =
∫
〈H〉 dx is the averaged Hamiltonian of the

nKG equation.
Next we proceed to the equation for the complex sym-

plectic coordinate z. By differentiating relation (8) with
respect to t and taking into account Eqs. (B3), we get

izt =
1√
2

(√
ω̂ i
δH
δp

+
1√
ω̂

δH
δϕ

)
.

Calculating the functional derivatives

δH
δp

=
i√
2ω̂

(
δH
δz

− δH
δz

)
,

δH
δϕ

=

√
ω̂

2

(
δH
δz

+
δH
δz

)
,

we come to the Hamilton equation for the function z:

izt =
δH
δz
. (B4)

Finally, the evolution equation (20) for the complex
amplitude u of symplectic coordinate z is obtained from
Hamilton’s equation (B4) by substituting relation (12)
and expanding the differential operator ∂t with the use
of rule (11).

Appendix C: Fifth-order NLSE for the

non-canonical amplitude A

Equation (29) for the amplitude u of the complex sym-
plectic coordinate z can be rewritten in terms of the com-
plex amplitude A of the first harmonic ϕ. To this end, we
use relation (18) that expressesA in terms of u and differ-
entiate it with respect to τ . The terms with derivatives
uτ that appear in the right-hand side of the differentiated
expression are calculated with the use of Eq. (29). After
some algebraic transformations, we come to the following
fifth-order NLSE for the amplitude A:

iε2
(
Aτ + ω′

0Aχ

)
+ ε3

(
1
2ω

′′
0Aχχ + q(3)|A|2A

)

+ iε4
(
− 1

6ω
′′′
0 Aχχχ + q

(4)
1 |A|2Aχ + q

(4)
2 A2Aχ

)

+ ε5
(
− 1

24ω
′′′′
0 Aχχχχ + q

(5)
1 |A|4A+ q

(5)
2 |A|2Aχχ

+ q
(5)
3 A2Aχχ + q

(5)
4 A|Aχ|2 + q

(5)
5 AA2

χ

)
= 0,

(C1)

where

q(3) =
ω0

2
Q(3) = −3α3

8ω0
,

q
(4)
1 = 2 q

(4)
2 =

ω0

2
Q(4) = −3α3c

2k0
8ω2

0

,

q
(5)
1 =

ω2
0

4
Q

(5)
1 +

γ

2
Q(3) =

1

16ω0

(9α2
3

8ω2
0

− 3α2
3

16α1
− 5α5

)
,

q
(5)
2 =

ω0

2
Q

(5)
2 =

3α3c
2

8ω5
0

(2c2k20 − α1),

q
(5)
3 =

ω0

2

(
Q

(5)
3 − 2 ρ21Q

(3)
)
+
ω′′
0γ

2ω0
=

3α3c
4k20

8ω5
0

,

q
(5)
4 =

ω0

2

(
Q

(5)
4 + 2 (ρ21 − 2ρ2)Q

(3)+ 2ρ1Q
(4)

)
+
ω′′
0γ

ω0

=
3α3c

2

8ω5
0

(4c2k20 − α1), ρ1 ≡ ρ−1 , ρ2 ≡ ρ−2 ,

q
(5)
5 =

ω0

2

(
Q

(5)
5 + (ρ21 − 2ρ2)Q

(3)
)
+
ω′′
0γ

2ω0
= 1

2q
(5)
4 .

In contrast to Eq. (29) for u, Eq. (C1) for the non-
canonical amplitude A is a non-Hamiltonian PDE. In
particular, it contains the non-Hamiltonian term A2Aχ

with q
(4)
2 6= 0 that is absent in the Hamiltonian equa-

tion (29). This proves that the coordinate-momentum
coupling introduced by formula (8) is a pivotal step in
deriving a high-order NLSE in Hamiltonian form.

The coefficients of the equation for A are expressed
in terms of the coefficients of the equation for u. Their
explicit expressions fully coincide with the same coeffi-
cients of the high-order NLSE for the amplitude A de-
rived in Refs. [37, 38] by the methods of multiple scales
and averaged Lagrangian. This fact proves the full cor-
respondence between the results obtained by three dif-
ferent approaches of classical mechanics in application to
the theory of nonlinear wave modulation.
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