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ON THE FULL KOSTANT-TODA LATTICE AND THE FLAG VARIETIES.

I. THE SINGULAR SOLUTIONS

YUANCHENG XIE

Abstract. The full Kostant-Toda (f-KT) lattice is a natural generalization of the classical tridiagonal Toda lattice. We
study singular structure of solutions of the f-KT lattices defined on simple Lie algebras in two different ways: through
the τ -functions and through the Kowalevski-Painlevé analysis. The τ -function formalism relies on and is equivalent
to the representation theory of the underlying Lie algebras, while the Kowalevski-Painlevé analysis is representation
independent and we are able to characterize all the terms in the Laurent series solutions of the f-KT lattices via the
structure theory of the Lie algebras. Through the above analysis we compactify the initial condition spaces of f-KT

lattice by the corresponding flag varieties, that is fixing the spectral parameters which are invariant under the f-KT
flows, we build a one to one correspondence between solutions of the f-KT lattices and points in the corresponding flag
varieties. As all the important characters we obtain in the Kowalevski-Painlevé analysis are integral valued, results in
this paper are valid in any field containing the rational field.
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1. Introduction

The goal of the current paper is to study singular solutions of the so-called full Kostant-Toda (f-KT) lattice
which is a typical example of degenerate integrable system (a.k.a. super- or non-commutative integrable systems (c.f.
[43, 25, 47])) and their relations with geometry of the flag varieties.

Toda lattice is first introduced in 1967 by Toda [53, 54] as a Hamiltonian system describing the dynamics of a chain
of particles on a circle (the periodic case) or along a line (the non-periodic case) under certain exponential potentials
between the nearest neighbors. In 1974, Hénon [26] and Flaschka [21] first recognized that the real finite periodic
Toda lattice is an integrable system in the sense of Liouville, that is there exists half the dimension functionally
independent conserved quantities of the phase space. Flaschka [21, 20] and Manakov [40] then found a remarkable
change of variables so that Toda lattice could be put in the form of Lax pairs, and in this new form the Toda lattice
describes the evolution of tridiagonal Jacobi matrices on the iso-spectral manifold. Moser [42] then constructed the
general solutions for the finite real symmetric non-periodic Toda lattice via the isospectral deformation method. After
that the Toda lattice model went through a series of generalizations in various directions, for example, Bogoyavlensky
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2 YUANCHENG XIE

[6] constructed generalized periodic Toda lattice for each simple Lie algebra. Kostant [37], Olshanetsky-Perelomov
[45] and Symes [52] then showed that all the corresponding open Toda lattices are completely integrable systems by
constructing their solutions explicitly. Turning into the new century Toda lattice is still one of the most successful
models widely used to test various techniques developed in integrable systems with equally wide applications in many
other branches of mathematics such as representation theory, random matrix, orthogonal polynomials, geometry,
topology, and combinatorics etc.(c.f. [30, 15, 11, 48, 55, 31, 18, 19, 13]).

According to the theory of Kostant [37, 36], Toda lattice should be viewed as the coadjoint action of a Borel
subgroup B+ of a simple Lie group G on the dual b∗+ of its Lie algebra b+ = Lie(B+). Different realizations of b∗+
correspond to several different versions of Toda lattice. For example, in sln we can use the trace form to identify b∗+
either with the linear space consisting of all symmetric matrices or with the affine space consisting of matrices in the
lower Hessenberg form which corresponds to the classical QR and LU decompositions of SLn respectively. The phase
spaces of the classical Toda lattice consisting of the symmetric tridiagonal matrices or the tridiagonal Hessenberg
matrices can be viewed as the minimal indecomposable symplectic leaves. These systems are called symmetric Toda
lattice and Kostant-Toda lattice respectively, and they are clearly integrable with the conserved quantities given by
the Chevalley invariants. The totality of the Toda flows induced by these invariants are called the Toda hierarchy.
Deift, Li, Nanda and Tomei [16] considered the symmetric Toda flow on a generic orbit and showed that it is still
integrable with the extra conserved quantities given by the chopping method. Ercolani, Flaschka and Singer [17] then
studied the Toda flows on the Hessenberg matrices and obtained similar results, later these results are generalized by
Gekhtman and Shapiro [25] to Toda flows on all simple Lie algebras. Following [17], we call these systems the full
symmetric Toda hierarchy and the full Kostant-Toda (f-KT) hierarchy respectively. According to [5, 31], there exists
a map from the f-KT flows to the full symmetric Toda flows, and we will focus on the f-KT hierarchy in this paper.

As an integrable system, we insist that solutions of f-KT hierarchy should be constructed and analyzed explicitly. In
this respect, Kodama-McLaughlin [28] and Kodama-Ye [33] constructed the solutions explicitly for the full symmetric
Toda lattice and certain generalized Toda lattice defined on n × n matrices respectively via iso-spectral deformation
method. By a reduction procedure, the latter results can be used to study the f-KT flows on matrices in the Hessenberg
form (which includes Lie algebras in type An,Bn,Cn,G2 etc.). On the other hand the real regular soliton solutions
of f-KT hierarchy in type A and their asymptotic properties were studied in terms of the totally nonnegative parts of
the flag variety in [31].

The goal of the current paper is to understand the structures of singular solutions, i.e. solutions which blow up
in finite times, of the f-KT hierarchy defined on all simple Lie algebras, and we show that the compactification of
the phase spaces are exactly the flag varieties. The main techniques we use are representation theory of simple Lie
algebras and the Kowalevski-Painlevé analysis.

With a view to studying real solutions in the future we set up the f-KT hierarchy on split simple Lie algebras over
R in the main text. But to ease notations we only describe the main results for f-KT lattice (the first f-KT flow) over
C in this Introduction. Let g be a complex simple Lie algebra of rank ℓ, h a Cartan subalgebra of g and ∆+ a chosen
set of positive roots of g. Let Lg be the Lax matrix defined by

Lg = ℓ∑
i=1

Xαi
+ ℓ∑

i=1
ai(t)Hi + ∑

α∈∆+

bα(t)Yα,

where {Hi,1 ≤ i ≤ ℓ;Xα, Yα, α ∈∆+} is a Chevalley basis of g. Let n± = ∑
α∈∆±

RXα and b± = h+n± be the corresponding
nilpotent subalgebras and Borel subalgebras of g. Denote by G the adjoint group of g, and N−,B+ subgroups of G
with Lie algebras n− and b+ respectively. Then the full Kostant-Toda lattice is defined as

(1.1)
dLg

dt
= [B,Lg], with B = Πb+Lg,

where Πb+ is the projection to the upper Borel b+ along n−.
Let (ρi, V ωi) be the i-th fundamental g-module with highest weight vector vωi , where ωi,1 ≤ i ≤ ℓ are the funda-

mental weights. Let (⋅, ⋅) be a scalar Hermitian product on V ωi such that the weight vectors form an orthonormal
basis and the operator ρi(Xα) and ρi(Yα) are adjoint to each other (c.f. Section 2.2.2). Let the j-th τ -function τj be
defined as

τj(t) = (vωj , ρi(exp(tL0))vωi), 1 ≤ i ≤ ℓ,
where L0 = L(0) is the initial condition. We then have

Proposition 1.1 (Corollary 2.5). For t small enough, we have the following formula for the diagonal elements in
f-KT lattice:

(1.2) ai(t) = d

dt
ln τi(t), 1 ≤ i ≤ ℓ,

and the other entries bα, α ∈∆+ in Lg can be determined from ai(t) subsequently.
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The proof of Proposition 1.1 is based on the following factorization of the group element exp(tL0)
(1.3) exp(tL0) = u(t)b(t), with u(t) ∈ N−, b(t) ∈ B+,
which always exists when t is small enough. When there exists some t∗ ∈ C such that the factorization (1.3) could
not be performed which happens when there exists 1 ≤ k ≤ ℓ such that τk(t∗) = 0, we need to use the more general
factorization

exp(t∗L0) = u∗ẇ∗b∗,
where id ≠ ẇ∗ ∈ G is a representative of w∗ ∈W in the Weyl group. The set of t∗ where some of the τ -functions vanish
is called the Painlevé divisor. Expanding τ -functions around t∗ by setting t→ t + t∗ we obtain

(1.4) τk(t;w∗) = dk(vωk , etL0u∗ẇ∗v
ωk), 1 ≤ k ≤ ℓ.

One of the main purposes of the current paper is to identify which u ∈ N− and w ∈W can appear in formula (1.4) so
that ai(t)’s given by (1.2) still are solutions to the f-KT lattice. The conclusion is as follows

Theorem 1.2 (Theorem 3.23). For any u ∈ N− and w ∈W,

(1.5) τk(t;w) = (vωk , exp(tL0)uẇvωk), 1 ≤ k ≤ ℓ,
are τ-functions of the f-KT lattice. The diagonal elements ai(t)’s of Lg are given by formula (1.2).

This seemingly natural fact is somewhat nontrivial especially when the underlying field is R as it is known that in
type A there are real regular solutions of f-KT lattice with dimb+ many free parameters which do not hit any smaller
Bruhat cell (c.f. [24, 31]). We will also see that only solutions of the tridiagonal Kostant-Toda lattice will hit the
smallest Bruhat cell which is another hint of the non-triviality of Theorem 1.2.

We then use Kowalevski-Painlevé analysis to study these singular solutions (c.f. [23] for a discussion on the
tridiagonal case).

The Kowalevski-Painlevé analysis for nonlinear ordinary (partial) differential equations is an analogue of the
classical Frobenius method for ordinary differential equations near a regular singular point (c.f. [56]). The idea is
quite simple: we prepare some formal Laurent series as candidate solutions and substitute them into the differential
equations under investigation, then we recursively find the coefficients and show that the Laurent series converge and
are indeed meromorphic solutions. For example, we may assume solutions of (1.1) have the following form

ai(t) = ∞∑
k=0

aikt
δi+k 1 ≤ i ≤ ℓ, bα(t) = ∞∑

k=0
bαkt

γα+k α ∈∆+.
In practice, the Kowalevski-Painlevé analysis takes the following three steps:

(1) Identify the leading singularities and leading coefficients, i.e. δi, γα and ai0, bα0 in the above example.
(2) Find the resonances. Substituting the resulting form of Laurent series in step (1) into equation (1.1) and find

the coefficients recursively, the resonances are the the places where the iteration procedure to uniquely solve
the higher order coefficients fail and new free parameters to be introduced.

(3) Check the compatibility and convergence of the Laurent series. Express the other coefficients in the Laurent
series in terms of the free parameters in step (2) and check whether or not the compatibility conditions are
satisfied at the resonance levels. Show that the resulting formal Laurent series have a positive convergent
radius.

This method was first used by Kowalevski in her study of spinning tops [38] where she proposed the famous Kowalevski-
Painlevé criterion1 for integrability and found an integrable case known as Kowalevski top nowadays. Our work is
motivated directly by the results in [22, 23] on non-periodic tridiagonal Toda lattice and in [3] on periodic tridiagonal
Toda lattice where Kowalevski-Painlevé analysis was used to understand the finer geometry of the level set varieties
(Abelian varieties in the latter case). We show that all the three steps have appealing answers.

For linear systems, the leading powers δi, γα are determined by the so-called indicial equations. But for non-linear
systems such as f-KT lattice, we need to identify them by balancing the minimal power terms, we have

Proposition 1.3 (Proposition 3.5, [51]). The Laurent series solutions of f-KT lattice have the following form

ai(t) = 1

t

∞∑
k=0

aikt
k 1 ≤ i ≤ ℓ, bα(t) = 1

tνα

∞∑
k=0

bαkt
k α ∈∆+,

where να = L(α)+1 and L(α) is the height of the root α. That is ai(t),1 ≤ i ≤ ℓ have at most simple pole singularities.

1Roughly this criterion says if a system on the complex domain is integrable, then it should have enough singular solutions with enough
free parameters (c.f. [1] for a precise statement).
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We then substituting these Laurent series into the f-KT lattice (1.1), multiplying out and equating to zero the
coefficients of successive powers of t. The first system, that is the nonlinear algebraic equations satisfied by ai0’s and
bα0’s are called the indicial equations. Note that bα0 can be obtained by solving linear equations once ai0’s are known.
Let Φ±w

2 be the set of positive (negative) coroots of g which are mapped into the set of negative (positive) ones by w.
Then we have

Theorem 1.4 (Proposition 3.9, Theorem 3.11). There is a one-to-one correspondence between solutions of the indicial
equations and elements of the Weyl group W of g. Let w ∈W, then the solution of indicial equations associated with
w is given by the following formula

awi0 = ∑
α̌∈Φ−w

κ(ωi,w
−1α̌),

where ωi is the ith fundamental weight, and κ(⋅, ⋅) is the bilinear form on h∗ induced by the restriction of the Killing
form to h.

In plain language, this theorem says that the coefficients of the sum of coroots in Φ+w in the basis of simple coroots
gives a solution to the indicial equations and all solutions of indicial equations can be produced in this way. This
finishes step (1) in our Kowalevski-Painlevé analysis.

The connection between indicial equations of tridiagonal Toda lattice and the coroot system was observed before
for example in [10, 23]. Since the coroot system of g is the root system of its Langlands dual ǧ, the results here may
have interesting applications in other branches of mathematics which we would like to explore in the future.

The other coefficients in the formal Laurent series satisfy the following recursive relations

(kI −Kw)
⎛⎜⎜⎜⎜⎜⎝

a1k
⋮

aℓk
bα1k

⋮

⎞⎟⎟⎟⎟⎟⎠
= R⃗(k)(a1l,⋯, anl, bα1l,⋯) with l < k.(1.6)

where I is the identity matrix, Kw depending on solutions of the indicial equations (and so depends on some w ∈W
by Theorem 1.4) is the so-called Kowalevski matrix and R⃗(k) depends only polynomially on items determined by
previous steps. It should be noted that whenever Kw has a positive integer eigenvalue k, then det(kI −Kw) = 0 and
the system (1.6) is not uniquely solvable. In such a case, we may take one (or several depending on the multiplicity
of k) of the aik, bαk to be a free parameter to uniquely determine the other ones. Thus positive integer eigenvalues ofKw are the resonances in step (2).

There are two types of eigenvalues for Kw: ℓ of them are constants given by degrees of the Chevalley invariants,
and we call them type “C” eigenvalues; the others depending on solutions of the indicial equations are called type
“X” eigenvalues. As it turns out that we can associate each type-X eigenvalue of Kw with a positive root α ∈ ∆+ of
g, and we denote such an eigenvalue by Ew

α . We then have

Theorem 1.5 (Theorem 3.18).

Ew
α = L(wα),

where L(α) is the height of root α ∈∆+.
Theorem 1.5 tells us that there is a Weyl group action acting on Ew

α which is equivariant to the Weyl group action
on the root system of g. This gives us precise information on all eigenvalues of Kw. In particular, we known thatKw has ℓ + l(w0) − l(w) many positive eigenvalues, where w0 ∈W is the longest Weyl group element and l(w) is the
length of w. This finishes step (2).

Now we recall that the Fredholm alternative theorem in linear algebra states that:

The linear system Ax = b has a solution iff yTb = 0 for every column vector y such that yTA = 0.
Applying this theorem to system (1.6) we see that at the non-resonant level, the condition is vacuous; while at

a resonant level k, this may impose nontrivial conditions on R⃗(k) which leads to decreasing of the number of free
parameters. This is the compatibility condition we need to check in step (3). We show that all the compatibility
conditions for Laurent series solutions of f-KT lattice are automatically satisfied. This is intrinsically related with the
underlying Lie algebra structure. As the formal Laurent series solutions we found in Proposition 1.3 are all weight
homogeneous, it can be proved by majorant method that they are convergent Laurent series (c.f. [1]). This finishes
step (3) for our Kowalevski-Painlevé analysis.

2Sets like Φ±
w

were studied by Papi (c.f. [46]).
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After matching all the parameters appearing in the Laurent expansion of τ -functions in (1.5) with the free param-
eters in the Laurent series from the Kowalevski-Painlevé analysis, we finally conclude Theorem 1.2.

Equivalently, we have

Theorem 1.6 (Theorem 3.26). All the Laurent series solutions of f-KT lattice are parameterized by G/B+ ×Cℓ, where
G/B+ is the flag variety and C

ℓ parametrizes the data for spectral parameters.

We remark that fixing the spectral parameters, Theorem 1.6 is saying that flag varieties are the initial condition
spaces of the f-KT lattices which is the analogue of Okamoto’s initial condition spaces for Painlevé transcendents (c.f.
[44]). Note also that as all the important characters we obtained in the Kowalevski-Painlevé analysis are integral
valued, results in this paper are actually valid in any fields containing the rational field.

The rest of the paper is organized as follows. In Section 2 we introduce τ -functions for f-KT hierarchy. In Section
3 we carry out complete Kowalevski-Painlevé analysis for the f-KT lattice. In Section 4 we use f-KT lattice on rank
2 type B Lie algebra as an example to illustrate the main results. In Section 5 we formulate several related problems
to be considered in the future.

Acknowledgments The paper is partly based on the author’s Ph.D. thesis [57], and the author would like to thank
Yuji Kodama for his guidance and many useful suggestions. The author would also like to thank Yu Li for many
useful discussions. This work is partially supported by the National Key Research and Development Program of
China (No. 2021YFA1002000), by the National Natural Science Foundation of China under the Grant No. 12301304
and by the Boya Postdoctoral Fellowship of Peking University.

2. τ-functions of f-KT hierarchy

2.1. The f-KT hierarchy. Let g be a split simple Lie algebra of rank ℓ over R, that is there exists a splitting Cartan
subalgebra h ⊂ g such that for all X ∈ h,adgX is triangularizable. Choose a set of simple roots Π = {α1, α2, . . . , αℓ} for(g,h) and denote by ∆± the sets of positive and negative roots respectively and ∆ =∆+ ∪∆−. Let {Xα, α ∈∆;Hi,1 ≤
i ≤ ℓ} be a Chevalley basis3 of g. More precisely, let Hα ∈ h be the unique element such that α(Hα) = 2, and (c.f. [7])

(1) [Hαi
,Hαj

] = 0, 1 ≤ i, j ≤ ℓ.
(2) [Hαi

,Xα] = ⟨α,αi⟩Xα, 1 ≤ i ≤ ℓ,α ∈ ∆, where ⟨β,α⟩ = 2κ(β,α)/κ(α,α) and κ(⋅, ⋅) is the non-degenerate
symmetric bilinear form on h∗ induced by the restriction of the Killing form κ(⋅, ⋅) to h.

(3) [Xα,X−α] =Hα is a Z-linear combination of Hα1
, . . . ,Hαℓ

.
(4) If α,β are independent roots, β − qα, . . . , β + pα the α-string through β, then [Xα,Xβ] = 0 if p = 0, while[Xα,Xβ] = ±(q + 1)Xα+β if α + β ∈∆.

Here Cij = ⟨αj , αi⟩ is the Cartan matrix of g. We sometimes denote Hi ∶=Hαi
,1 ≤ i ≤ ℓ and Yα ∶=X−α for α ∈∆+.

Let n± = ∑
α∈∆±

RXα and b± = h+ n± be the corresponding nilpotent subalgebras and Borel subalgebras of g. Then g

admits the following decomposition,

g = n− ⊕ h⊕ n+ = n− ⊕ b+.

Let Gad be the adjoint group of g which in our case is just the connected component of the identity in Aut(g).
The action of Gad on g induces an action of Gad on S(g), the symmetric algebra over g. By Chevalley’s theorem

one knows that there exist algebraically independent homogeneous elements Ij ∈ S(g)Gad

, j = 1,2, . . . , ℓ, referred to as

Chevalley invariants, which generates S(g)Gad

. Let mj = deg(Ij) − 1,1 ≤ j ≤ ℓ which are sometimes called the Weyl
exponents.

The f-KT hierarchy is defined as follows: Let Lg be the Lax matrix given by

(2.1) Lg = ℓ∑
i=1

Xi +

ℓ∑
i=1

ai(t)Hi + ∑
α∈∆+

bα(t)Yα,

where ai(t) and bα(t) are functions of the multi-time variables t = (tmk
∶ k = 1,2, . . . , ℓ). For each time variable, we

have the generalized Toda hierarchy defined as

(2.2)
∂Lg

∂tmk

= [Bk, Lg], with Bk = Πb+∇Ik,

where ∇ is the gradient with respect to the Killing form, i.e. for any x ∈ g, dIk(x) = κ(∇Ik, x), and Πb+ represents
the b+-projection. Here the Chevalley invariants Ik = Ik(Lg) for example in type A can be taken as

Ik(Lg) = 1

k + 1
tr(Lk+1

g ), which gives ∇Ik = Lk
g.

3Here any Cartan-Weyl basis would work, and the choice of Chevalley basis is not necessary but convenient.
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The first equation in (2.1) is called the f-KT lattice. In this case we can take B = B1 = Πb+Lg in (2.1) and write
t = t1. The theories we present here apply to f-KT hierarchy, but to make it concise we will use f-KT lattice to
demonstrate some of the main results. In the following we will use t and t to indicate results for f-KT hierarchy and
f-KT lattice respectively.

2.2. Some background on Lie theory.

2.2.1. Structure theory. We denote by gC the complexification of g in the following. Let g = k + p be a Cartan
decomposition of g with respect to the Killing form κ so that k is the Lie algebra of a maximal compact subgroup of
Gad and p is the orthogonal complement to k with respect to Re(κ). Let θ be the corresponding Cartan involution
so that θ = 1 on k and θ = −1 on p. Then a compact form of gC can be taken as u = k + ip. In terms of the Chevalley
basis taken in Section 2.1, u can be written as

u = ∑
1≤i≤ℓ

R(iHi) + ∑
α∈∆

R(Xα −X−α) + ∑
α∈∆

Ri(Xα +X−α).
Note that gC = g⊕ ig = u⊕ iu, i.e. both g and u are real forms of gC.

Note that the real form g of gC defines a conjugation operation on gC. That is if Z = X + iY ∈ gC for X,Y ∈ g,
then we put Zc =X − iY . This operation induces an automorphism g ↦ gc of the adjoint group Gad

C
such that for any

X ∈ gC we have (expX)c = expXc. Let

(2.3) G̃ = {g ∈ Gad

C ∣ gc = g}.
Then G̃ is the set of all elements g ∈ Gad

C
which stabilize g, and G ⊆ G̃. Let M̃ be the set all a ∈ Had

C
such that a2 = 1,

then

G̃ ∩Had

C = M̃Had.

Let M = M̃ ∩G, then M =K ∩ T where K and T are subgroups of Gad

C
corresponding to k and t ∶= ih, respectively.

Remark 2.1. M̃ and M measure disconnectness of the corresponding real Cartan subgroups and play important
roles in the structure and representation theory of real Lie groups (c.f. [27]), in Whittaker theory (c.f. [35]), and
in the study of topology of real isospectral manifolds associated with blowups of Toda lattices (c.f. [34, 9]) etc. For
our discussion of singular structure of f-KT lattice, we will mainly focus on behavior of f-KT lattice on the identity
component in the following while leaving the exploration of the other connections mentioned above elsewhere.

Let Gs

C
be a fixed simply connected Lie group having gC as its Lie algebra. The adjoint representation defines a

homomorphism Ad ∶ Gs

C
→ Gad

C
, in fact an exact sequence:

1→ Z(Gs

C)→ Gs

C

Ad
Ð→ Gad

C → 1,

where Z(Gs

C
) is the center of Gs

C
.

Let U s and Gs be subgroups of Gs

C
with Lie algebras u and g respectively. Let N s

−,H
s,N s

+ be the subgroups of Gs

and Nad
− ,Had,Nad

+ be the subgroups of Gad associated with n−,h and n+, respectively. Let Gs
o = N s

−H
sN s
+, then by

Bruhat decomposition of Gs
C
, Gs

o is an open connected subset of Gs. Note that the map

Ad: Gs

o → Gad

o ,

is a diffeomorphism.

Lemma 2.2 ([37]). One has

(Ad−1Gad

o ) ∩Gs = Z(Gs)Gs

o.

Furthermore if c, c′ ∈ Z(Gs) are distinct then cGs
o and c′Gs

o are disjoint so that the connected components of Z(Gs)Gs
o

are uniquely of the form cGs

o for c ∈ Z(Gs).
We can thus identify Gs

o with Gad
o by the above diffeomorphism. This means that N s

− and Nad
− , Hs and Had and

also N s
+ and Nad

− are all identified. We identify them in the following and drop all the superscripts whenever there is
no confusion.

2.2.2. Representation theory. The analytic weight lattice Γ associated with (U s, T ) consists of λ ∈ h∗
C
satisfying the

following two equivalent conditions (c.f. [27]):

(1) λ(X) ∈ 2πiZ whenever X ∈ t satisfies expX = 1;
(2) There is a multiplicative character ξλ of T with ξλ(expX) = eλ(X) for all X ∈ t.
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Extending λ ∈ h∗
C
by linearity to hC, we obtain a linear functional λ on hC which takes real values on h and the

corresponding multiplicative character ξλ on the subgroup Hs

C
of Gs

C
corresponding to hC.

Recall that the algebraic lattice P ⊂ h∗
C
is defined by

P = {λ ∈ h∗C ∣ 2κ(λ,α)
κ(α,α) ∈ Z, α ∈∆} .

Now the fundamental weights ωi ∈ P,1 ≤ i ≤ ℓ, are defined by the relation 2κ(ωi, αj)/κ(αj, αj) = δij and we have the
direct sum

P = ℓ∑
i=1

Zωi.

It is known that for the simply connected Lie group Gs

C
we have Γ = P . The cone P+ of dominant weights is defined

as

P+ = {λ ∈ P ∣ κ(λ,αi) ≥ 0, 1 ≤ i ≤ ℓ}.
Then all the finite dimensional irreducible representations of g (and also Gs

C
) are parameterized by λ ∈ P+. Let N0 be

the set of nonnegative integers, then we have

P+ = ℓ∑
i=1

N0ωi.

Let (ρ,V λ
C
) be a (finite dimensional) irreducible gC-module with highest weight λ ∈ P+. Then a theorem due

to Weyl known as the “unitary trick” states that the (finite-dimensional) representation of Gs, Us,g,u, holomorphic
representation of Gs

C
and complex-linear representation of gC on V λ

C
are all equivalent (c.f. [27]). A Hermitian (positive

definite) inner product on V λ
C

which is invariant under U s can be introduced as follows: Let ⟨⋅, ⋅⟩ be any Hermitian

inner product on V λ
C

which is linear in the second factor and conjugate linear in the first one, then a Hermitian inner
product satisfying the requirement can be obtained as

(2.4) (u, v) = ∫
Us

⟨ρ(x) ⋅ u, ρ(x) ⋅ v⟩dx.
Since elements in U s act as unitary operators on V λ

C
under the Hermitian inner product defined in (2.4), we can take

an orthonormal basis for V λ
C

consisting of weight vectors of t. We fix once and for all a highest weight vector vλ ∈ V λ
C

such that (vλ, vλ) = 1.
Extending the Cartan involution θ on g by linearity to an automorphism of gC, we then define a conjugate linear

map on gC by putting X∗ = θ(−Xc) for any X ∈ gC. Then we have X∗α = X−α and H∗α = Hα. Since Gs

C
is simply

connected, the ∗-operation on gC induces a unique ∗-operation on Gs

C
such that (ρ(g∗) ⋅ v1, v2) = (v1, ρ(g) ⋅ v2) for

g ∈ Gs

C
. For g ∈ G and v ∈ V λ, we write ρ(g) ⋅ v as gv in the following for simplicity whenever there is no ambiguity.

2.3. τ-functions of f-KT hierarchy. Taking g ∈ Go, then we can write

g = n−hn+
where n± ∈ N± and h ∈ H . Note that n+v

λ = vλ and (n−)∗vλ = vλ, we obtain (taking h = expX for some X ∈ h)
(2.5) ξλ(h) = eλ(X) = (vλ, gvλ).

Let e = ℓ∑
i=1

Xi. For L ∈ e + b−, let ΘL(t) = ℓ∑
k=1

tmk
∇Ik(L) ∈ g. Let L0 ∶= Lg(0), and consider the following

LU-factorization of the group element exp(ΘL0
(t)) (which always exists for t small enough):

(2.6) exp(ΘL0
(t)) = u(t)b(t) with u(t) ∈ N−, b(t) ∈ B+.

Proposition 2.3. The solution Lg(t) of f-KT hierarchy is given by

(2.7) Lg(t) = Adu−1(t) ⋅L0 = Adb(t) ⋅L0.

Proof. Let L(t) = Adb(t) ⋅L0, then L(t) obviously satisfies the same initial condition as Lg(t) and we would like
to verify that it also satisfies the same differential equation as Lg(t). Taking derivative with respect to t = t1 on both
sides of the equation

exp(ΘL0
(t))) = u(t)b(t),

we obtain
d

dt
exp(ΘL0

(t)) = L0ub = ubL0 = u̇b + uḃ,
where ẋ means the derivative of x(t) with respect to t = t1. When t is small, this equation is meaningful for any
simple Lie algebra and the associated connected Lie group: L0 exp(ΘL0

(t)) (resp. exp(ΘL0
(t))L0) means we use
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exp(ΘL0
(t)) to translate the vector L0 at the origin from the right (resp. left), and the equation says the effect is

the same as the sum of the translation of two other vectors. We can rewrite the equation as

Adu−1(t) ⋅L0 = Adb(t) ⋅L0 = u−1u̇ + ḃb−1.
Note that these are all tangent vectors at the unit element of G and can be viewed as elements in g = n− ⊕ b+. By
definition we obtain the decomposition of L(t) as

u−1u̇ = Πn−L and ḃb−1 = Πb+L.

Now differentiating L = Adb(t) ⋅L0, we obtain

dL

dt
= ḃb−1L −Lḃb−1 = [Πb+L,L].

Thus L(t) satisfies the same differential equation as Lg(t), the uniqueness theorem of the differential equation implies
that L(t) = Lg(t).

Now take g in equation (2.5) to be exp(ΘL0
(t)) and consider the decomposition exp(ΘL0

(t)) = n−(t)h(t)n+(t)
with n−(t) = u(t) and h(t)n+(t) = b(t), we obtain

ξλ(h(t)) = (vλ, exp(ΘL0
(t))vλ).

Assume

h(t) = exp( ℓ∑
i=1

hi(t)Hi),
then

ξωi
(h(t)) = e⟨ωi,

ℓ∑
i=1

hi(t)Hi⟩ = e⟨∑j C
−1
ij αj ,

ℓ∑
k=1

hk(t)Hk⟩

= e∑j,khk(t)C
−1
ij Cjk = ehk(t)δik = ehi(t).

For λ = ωi,1 ≤ i ≤ ℓ, taking diagonals of ḃb−1 = Πb+L, we obtain ḣh−1 = ∑ai(t)Hi, so that

ḣi(t) = ai(t) for i = 1, . . . , ℓ,
which gives ai(t) = d

dt
ln ξωi

(h(t)). Thus
Definition 2.4. We define the i-th τ-function of the f-KT hierarchy as

(2.8) τi(t) = (vωi , exp(ΘL0
(t))vωi), 1 ≤ i ≤ ℓ.

Corollary 2.5. For t small enough, we have the following formula for the diagonal elements in f-KT hierarchy:

(2.9) ai(t) = d

dt
ln τi(t), 1 ≤ i ≤ ℓ.

Remark 2.6. Proposition 2.3 and Corollary 2.5 result from discussion with Y.Kodama, and we agree to use them
both here and in [29] for quite different purpose.

Remark 2.7. Note that in the above proof we did not use the specific form of the matrix L(t) at all, which means

the above formula is valid for much wider systems. Let L(t) = ℓ∑
i=1

a(t)Hi + ∑
α∈∆

bα(t)Xα ∈ g be any element, and define

the Toda like equations

dL

dt
= [B,L], with B = Πb+L,

where Πb+ is the projection to the upper Borel b+ along n−, then the diagonal elements are given by the following
formula

ai(t) = d

dt
ln τi(t), 1 ≤ i ≤ ℓ, for t small enough.

The f-KT lattice is special in that all the other matrix elements bα of L(t) are determined by the diagonal elements
ai(t) (c.f. [57] for an expression of bα in terms of τ-functions in type A).
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2.4. Singular solutions of the f-KT lattice. Our main concern in the current paper is the structure of singular
solutions of f-KT lattice which is equivalent to the divisor structure of τ -functions by equation (2.9). To proceed we
extend the base field to C and note the following theorem of Kostant:

Proposition 2.8 ([35]). For a simple complex Lie algebra g there exists an ℓ-dimensional linear subspace s ⊂ b− such
that elements in the affine subspace e + s are regular. The map

N− × (e + s) → e + b−(n,X) ↦ AdnX,

is an isomorphism of affine varieties.

Remark 2.9. When g = sln(C), the choice of s may be made so that e+s is the space of traceless companion matrices.

Let FΛ be the isospectral variety consisting Lax matrices with fixed Chevalley invariants Λ = {I1, . . . , Iℓ}, i.e.
FΛ ∶= {L ∈ e + b− ∣ L has Chevalley invariants Λ}.

With any fixed choice of s, Proposition 2.8 says that for any L ∈ FΛ there exists a unique u ∈ N− and CΛ ∈ e + s
such that

L = u−1CΛu,

and we can use this s to embed the iso-spectral variety FΛ into the flag variety G/B+:
(2.10)

cΛ ∶ FΛ → G/B+
L ↦ uB+.

We then have the following

Proposition 2.10. Each f-KT flow maps to the flag variety as

L0 u0B+

L(t)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0u(t)B+= u0 exp(ΘL0
(t))B+= exp(ΘCΛ

(t))u0B+

cΛ

Ad
u(t)−1

cΛ

where L0 = u−10 CΛu0.

When there exists some t∗ ∈ Cℓ such that the factorization (2.6) could not be performed, we need to use the
following more general factorization

exp(ΘL0
(t∗)) = u∗ẇ∗b∗,

where id ≠ ẇ∗ ∈ G is a representative of w∗ ∈W . This means that the f-KT flow hits the boundary of a Bruhat cell
which happens when there exists 1 ≤ k ≤ ℓ such that τk(t∗) = 0 and the solution becomes singular at t = t∗. The set
of t∗ where some of the τk vanish is called the Painlevé divisor. Setting t→ t + t∗, then

τk(t;w∗) = (vωk , u−10 eΘCΛ
(t)u0u∗ẇ∗b∗v

ωk).
Note that

b∗v
ωk = dkvωk ,

where dk ∈ C is a constant, we obtain

(2.11) τk(t;w∗) = dk(vωk , eΘCΛ
(t)uẇ∗v

ωk) 1 ≤ k ≤ ℓ,
where u = u0u∗ ∈ N−.
Remark 2.11. Note that a priori the proof of Proposition 2.3 and thus the conclusion of Corollary 2.5 can only be
applied to regular solutions of f-KT hierarchy. To study singular solutions, we need to identify which w ∈W and which
u ∈ N− can appear in formula (2.11). Counting the dimensions of FΛ and G/B+, it seems natural to expect that the
compactification of cΛ(FΛ) in G/B+ is the whole G/B+. However, this fact is somewhat nontrivial especially when the
field is restricted to R as there are real regular solutions of f-KT hierarchy with dimb+ many free parameters which
do not hit any smaller Bruhat cells. We will use Kowalevski-Painlevé analysis to study singular solutions in Section
3 (c.f. [23] for a discussion on the tridiagonal case).
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3. Local study: Kowalevski-Painlevé analysis

In this section we carry out a local study on the structure of Laurent series solutions of the f-KT lattice. The
Kowalevski-Painlevé analysis for non-periodic tridiagonal Toda lattice was carried out by Flaschka and Zeng (c.f. [22]
[23]), and the corresponding results for the periodic tridiagonal Toda lattice was obtained by Adler and van Moerbeke
in the framework of algebraically integrable systems (c.f. [3] [1]).

3.1. Preliminaries on weight homogeneous systems. Following [1], we introduce some terminologies regarding
weight homogeneous vector fields and their weight homogeneous Laurent solutions.

Definition 3.1. (1) Let ν = (ν1, . . . , νn) be a collection of positive integers without a common factor. We say
that a polynomial f ∈ C[x1, . . . , xn] is a weight homogeneous polynomial of weight k (with respect to ν) if

f(αν1x1, . . . , α
νnxn) = αkf(x1, . . . , xn),

for all (x1, . . . , xn) ∈ Cn and α ∈ C. We denote the weight of f by ̟(f) henceforth with ν and n being fixed.
(2) A polynomial vector field V in C

n, given by

d

dt
xi = fi(x1, . . . , xn), (i = 1, . . . , n)(3.1)

is called a weight homogeneous vector field of weight k (with respect to ν) if each of the polynomials f1, . . . , fn
is weight homogeneous (with respect to ν) and if ̟(fi) = νi + k =̟(xi) + k for i = 1, . . . , n.

(3) If (3.1) is a polynomial weight homogeneous vector field of weight 1, then a Laurent series solution to (3.1)
of the form

xi(t) = 1

tνi

∞∑
k=0

xikt
k, i = 1, . . . , n(3.2)

with x0 = (x10, . . . , xn0) ≠ 0, is called a weight homogeneous Laurent solution.

In the following we call a polynomial weight homogeneous vector field of weight 1 a weight homogeneous vector
field for brevity. We list several known properties for a weight homogeneous vector field and their weight homogeneous
Laurent solutions.

Proposition 3.2 ([1], Proposition 7.6). Suppose that V is a weight homogeneous vector field on C
n, given by (3.1),

and x(t) = (x1(t), . . . , xn(t)) is a weight homogeneous Laurent solution for V. Then the leading coefficients xi0 satisfy
the non-linear algebraic equations

ν1x10 + f1(x10, . . . , xn0) = 0,
⋮(3.3)

νnxn0 + fn(x10, . . . , xn0) = 0,
while the subsequent terms xik satisfy

(k ⋅ In −K(x(0)))x(k) = R⃗(k),(3.4)

where x(k) = ⎛⎜⎝
x1k

⋮

xnk

⎞⎟⎠ and R⃗(k) = ⎛⎜⎝
R1k

⋮

Rnk

⎞⎟⎠ are n × 1 column vectors and In is the n × n identity matrix; each Rik is a

polynomial, which depends on the variables x1l, . . . , xnl with 0 ≤ l < k only. Also, the (i, j)-th entry of the n×n-matrixK is the regular function on C
n, defined by

Kij ∶= ∂fi

∂xj

+ νiδij ,(3.5)

where δ is the Kronecker delta.

The set of equations (3.3) is called the indicial equation of V . Its solution set is called the indicial locus, and is
denoted by I. The n × n matrix K defined in (3.5) is called the Kowalevski matrix.

Theorem 3.3 ([1]). In the above setting, the following results regarding the spectrum of K and the weight homogeneous
Laurent solutions are known.

(1) For any m ∈ I, the Kowalevski matrix K(m) always has −1 as an eigenvalue. The corresponding eigenspace
contains (ν1m1, . . . , νnmn)T as an eigenvector ([1], Proposition 7.11).

(2) If we have p constants of motion of weight k whose differentials are independent at m ∈ I, then k is an
eigenvalue of K(m) with multiplicity at least p ([1], Theorem 7.30).
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(3) Let m ∈ I be an arbitrary element, then

m(t) ∶= (m1

tν1
,⋯,

mn

tνn
) ,(3.6)

is a solution to (3.1) for t ≠ 0 ([1], Proposition 7.14).
(4) For a polynomial weight homogeneous vector field (3.1), their weight homogeneous Laurent solutions x(t)

given by (3.2) converge ([1], Theorem 7.25).

Remark 3.4. Note that in [1] the authors only consider singular solutions for what they called algebraically integrable
systems, and for holomorphic solutions (which is an important part of all Laurent series solutions), −1 is of course
not part of the spectrum of K. Note also that f-KT lattice as we consider here is not an algebraically integrable system
in the sense of Adler and van Moerbeke (c.f. [1] for definition), and in some sense it is a degenerate one (c.f. [17]
[47] for an explanation).

3.2. f-KT lattice as a weight homogeneous system. Now we come back to our study on the f-KT lattice. Note
that the f-KT lattice (1.1) can be written as

dai

dt
= bi (1 ≤ i ≤ ℓ),

dbα

dt
= − ℓ∑

i=1
(α(Hαi

)ai) bα + ℓ∑
i=1

Nαi,−α−αi
bα+αi

, α ∈ ∆+,(3.7)

where bi = bαi
, [Hαi

, Yα] = −α(Hαi
)Yα and [Xαi

, Yα+αi
] = Nαi,−α−αi

Yα for α,α+αi ∈∆+. In the Chevalley basis chosen
in Section 2.1, for independent roots α and β, if β − qα, . . . , β + pα is the α-string through β, then Nα,β = ±(q + 1) if
p ≥ 1 and Nα,β = 0 if α + β /∈ ∆.

Recall that the height of α ∈ ∆ is defined as L(α) = ℓ∑
i=1

ci for α = ℓ∑
i=1

ciαi. Equations (3.7) by definition define a

polynomial weight homogeneous vector field of weight 1 with ̟(ai) = 1 and ̟(bα) = L(α) + 1 = να, and a weight
homogeneous Laurent series solution has the following form

ai(t) = 1

t

∞∑
k=0

aikt
k, bα(t) = 1

tνα

∞∑
k=0

bαkt
k.(3.8)

The following proposition shows that the weight homogeneous Laurent solutions (3.8) are the only Laurent series
solutions the f-KT lattice (3.7) may have.

Proposition 3.5. Solutions of the form (3.8) exist, and all Laurent series solutions of f-KT are of this form (Note
that we don’t require ai0 ≠ 0 or bα0 ≠ 0 here).

Proof. The existence part will be dealt with later. Note from the differential equations (3.7) that bα’s can be
recursively solved once ai’s are known. So to prove this Proposition, we essentially only need to show that the worst
singularities for ai’s are just simple poles (singularity of the first order). We prove this by contradiction. To detect
the worst singularities, we may assume at least one of the ai’s has a pole of order bigger than or equal to 2 at t = 0,
i.e.

ai(t) = 1

tδ

∞∑
k=0

aikt
k,(3.9)

where δ ≥ 2 for 1 ≤ i ≤ ℓ and there exists 1 ≤ i = κ ≤ ℓ such that aκ0 ≠ 0.
The equations for bαj

then read as

dbαj

dt
= − ℓ∑

i=1
(aiαj(Hαi

)) bαj
+

ℓ∑
i=1

Nαi,−αj−αi
bαj+αi

.(3.10)

Substituting the Laurent series (3.9) into (3.10), we observe that on the left hand side of the κ-th equation of (3.10)
it has a pole of order at most δκ + 2 with respect to t at t = 0, while on the right hand side the term aκbακ

produces
a pole of order 2δκ + 1 ≥ δκ + 3 > δκ + 2 by assumption, so we need to have another term from the right hand side
to balance this higher order singular term aκbακ

by requiring that either there exists another aj0 ≠ 0 (j ≠ κ) or one
of the terms bαj+ακ

could do the job. In either case, this will cause another equation in (3.10) to have higher order
singularities on the right hand side than the left hand side. This argument continues, and in the end we see that all
equations in (3.10) have terms with higher order poles on the right hand side than the left hand side. Comparing the
coefficients of t−2δ−1, we get

−δ
ℓ∑

i=1
(αj(Hαi

)ai0)aj0 + ℓ∑
i=1

Nαi,−αj−αi
bαj+αi,0 = 0, 1 ≤ j ≤ ℓ.
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Since there are at most ℓ−1 non-vanishing bαj+αi
, we can eliminate them from the above system to obtain a quadratic

homogeneous equation satisfied by ai0’s. Now we continue this process to deal with equations satisfied by bα with root
length L(α) = 2,3, . . . until we reach the unique highest root α0. When the number of roots in height k+1 equals the
number of roots in height k, we can solve bα (L(α) = k + 1) uniquely and substitute them into equations on the next
height. And we get at least 1 homogeneous equation for ai0’s when the number of roots in height k + 1 is less than
the number of roots in height k (We get two homogeneous equations of the same degree in type D at places where
the number of roots jumps by 2 at contiguous heights). Eventually, we get ℓ homogeneous polynomial equations in
the ℓ variables (a10, a20, . . . , aℓ0) after we eliminate all the bα0’s. It can then be checked that ai0 = 0,1 ≤ i ≤ ℓ is the
only solution for the ℓ homogeneous polynomial equations when δ > 1 which leads to the desired contradiction.

Remark 3.6. After finishing this paper we noted that the fact that ai(t)’s have at worst simple pole singularities had
already been observed by Singer in [51] with similar argument and we keep the proof here to be consistent with the
style in the following sections.

3.3. The indicial equations for f-KT lattice. Now we can substitute the Laurent series (3.8) into the differential
equations (3.7) and follow Proposition 3.2 to get Laurent solutions of (3.7). As a first step we need to deal with the
indicial equations (3.3) for f-KT lattice, more explicitly we have

(3.11)
ai0 + bi0 = 0 1 ≤ i ≤ ℓ,
ν(α)bα0 − ℓ∑

i=1
(α(Hαi

)ai0) bα0 + ℓ∑
i=1

Nαi,−α−αi
bα+αi,0 = 0, α + αi ∈∆+.

Note that the values of bα0’s are uniquely determined by values of ai0, so the vector a⃗0 = (a10, . . . , aℓ0) will be our
concern in the following.

We first note the following interesting fact regarding the cardinality of the Weyl group W of a simple Lie algebra
g.

Lemma 3.7. List all the positive roots of a simple Lie algebra g by their heights, and assume that there are m

different heights, and there are ℓi positive roots in height i 1 ≤ i ≤m, then

∣W∣ = 1ℓ−ℓ12ℓ1−ℓ23ℓ2−ℓ3⋯mℓm−1−ℓm(m + 1)ℓm .

Remark 3.8. The fact in Lemma 3.7 is surely known to experts but we couldn’t identify a proper reference, and it
is not hard to check it for all simple Lie algebras directly. For example, in Lie algebra of type Aℓ, we have m = ℓ,
ℓi = ℓ + 1 − i and ∣W∣ = (ℓ + 1)!.

Now we have

Proposition 3.9. The indicial equations (3.11) have ∣W∣ many solutions where W is the Weyl group of g, and all
of them are non-negative integral-valued vectors.

Proof. Following the proof of Proposition 3.5, we can eliminate all the bα0’s from the indicial equations (3.11) and
obtain ℓ polynomial equations for ai0’s (The difference from Proposition 3.5 is that when δ = 1 the ℓ equations are
not homogeneous anymore, thus admitting nontrivial solutions). Note that we get k degree j polynomial equation
for ai0’s exactly when ℓj−1 − ℓj = k. By Lemma 3.7 and Bézout’s theorem, we know that the number of solutions of
the indicial equations is at most ∣W∣.

To show the second part of this Proposition, we construct ∣W∣ many different solutions for (3.11) explicitly.
Let

τ̃i(t;w) = (vωi , exp(te)ẇ ⋅ vωi) = taw
i0 ,(3.12)

where e = ℓ∑
i=1

Xαi
, ẇ ∈ G is a representative of w ∈ W , vωi is the highest weight vector in the i-th fundamental

representation V ωi and (⋅, ⋅) is the Hermitian product on V ωi introduced in Section 2.2.2. Then it can be checked
directly that

awi (t) = d

dt
ln τ̃i(t;w) = awi0

t

is a solution to (3.7) in the form of Theorem 3.3 and awi0 is a solution to (3.11).

Remark 3.10. Proposition 3.9 shows that for Λ ∈ Cℓ the isospectral variety FΛ intersects with all the Painlevé

divisors, equivalently this means that cΛ(FΛ) intersects with all the Bruhat cells.

Note that Proposition 3.9 also means that each solution a⃗0 = (a10, . . . , aℓ0) of the algebraic system (3.11) is
associated with a Weyl group element and is a set of non-negative integers. This is a non-trivial fact and we would
like to explore its combinatoric meaning in the following.
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We denote by Φ±w the set of positive (negative) coroots of (g,h) which are mapped into the set of negative (positive)
coroots of (g,h) by w, then Φ±w and their complements are closed under addition in the set of positive (negative)
coroots by which we mean the sum of any two elements in each set either belongs to the same set or is not in the
coroot system.

The more precise one-to-one correspondence between Weyl group elements and solutions of indicial equations (3.11)
comes in the following manner.

Theorem 3.11. Let

∑
α̌∈Φ+w

α̌ = ℓ∑
j=1

q̌jα̌j , q̌j ∈ N0,

where α̌ denotes the coroot associated with α ∈∆+. Then the vectors q⃗w = (q̌1, . . . , q̌ℓ),w ∈W are solutions a⃗0 =(a10, . . . , aℓ0) to the indicial equations (3.11) and they give all solutions to the indicial equations.
We denote the solution of indicial equations associated with w ∈W by a⃗w0 , then reformulating the above result we

have

awi0 = ∑
α̌∈Φ−w

κ(ωi,w
−1α̌),(3.13)

where ωi is the ith fundamental weight, and κ(⋅, ⋅) is the bilinear form on h∗ induced by the restriction of the Killing
form to h which is invariant under the Weyl group action.

Proof. We would like to identify the degrees of the τ̃i(t;w)’s introduced in the proof of Proposition 3.9 explicitly.
For every αi ∈ Π there is an associated homomorphism

ϕi ∶ SL2 → G.

Consider the 1-parameter subgroups in G defined by

xi(t) = ϕi (1 t

0 1
) , yi(t) = ϕi (1 0

t 1
) , α̌i(t) = ϕi (t 0

0 t−1
) .

Let si ∈W be a simple reflection, then its representative in G is given by

ṡi ∶= ϕi ( 0 1
−1 0

) .
Then we have

ṡiα̌i(t−1) = yi(−t−1)xi(t)yi(−t−1).(3.14)

For w ∈W , we choose a reduced expression w = si1si2⋯sin ∈W and set ẇ = ṡi1 ṡi2 ⋅ ⋅ ⋅ ⋅ ⋅ ṡin to be a representative of
w in G. It is well-known that this product is independent of the choice of reduced expressions for w (c.f. [39]).

We would like to show that

τ̃j(t;w) ∝ n∏
l=1

tκ(sil+1sil+2⋯sinωj ,α̌il
).

where τ̃j is defined in (3.12) and α̌il is the il-th coroot.
First we note that

τ̃j(t;w) ∝ σj(t;w) ∶= (vωj , xin(t)xin−1(t)⋯xi1(t)ṡi1 ṡi2⋯ṡinvωj).
So our goal in the following is to show that

σj(t;w) = n∏
l=1

tκ(sil+1sil+2⋯sinωj ,α̌il
).(3.15)

For k = 1,2, . . . , n + 1, we prove by reverse induction on k, that

σj(t;w(k)) = n∏
l=k

tκ(sil+1sil+2⋯sinωj ,α̌il
).(3.16)

where w(k) = siksik+1⋯sin . The start of the induction is clear. Suppose that the result holds for k + 1, i.e., for

w(k+1) = ṡik+1⋯ṡin , and consider ẇ(k) = ṡik ṡik+1⋯ṡin . Denote g(k) = xin(t)xin−1(t)⋯xik(t). Then, since w(k+1)ωj and

w(k)ωj are extremal weights, and w(k)ωj = sikw(k+1)ωj ≤ w(k+1)ωj we have

σj(t;w(k)) = (vωj , g(k+1)xik(t)ẇ(k) ⋅ vωj)
= (vωj , g(k+1)ẇ(k+1) ⋅ vωj)(ẇ(k+1) ⋅ vωj , xik(t)ẇ(k) ⋅ vωj).
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By equation (3.14), we have

σj(t;w(k)) = (vωj , g(k+1)ẇ(k+1) ⋅ vωj)(ẇ(k+1) ⋅ vωj , yik(t−1)ṡik α̌ik(t−1)yik(t−1)ẇ(k) ⋅ vωj)
= tκ(sik+1 ...sinωj ,α̌ik

)σj(t;w(k+1)).
Equation (3.16) for k now follows from the inductive hypothesis.

From equation (3.15), we get

σj(t;w) = n∏
l=1

tκ(ωj,sim⋯sil+2sil+1 α̌il
).

Now we note that

n∑
l=1

sin⋯sil+2sil+1 α̌il

records in a step by step manner which positive coroots are mapped to the negative ones by w, more explicitly

w ⋅ sin⋯sil+2sil+1 α̌il = si1⋯sin ⋅ sin⋯sil+2sil+1α̌il= si1⋯sil α̌il ,

which is a negative coroot for any 1 ≤ l ≤ n and they are all of them. We are done!

Remark 3.12. The essential ingredient of the proof of Theorem 3.11 is contained in the proof of Lemma 7.5 [41],
and with proper notion it turns out to be a very special case of a general formula for generalized minors there.

Remark 3.13. In Theorem 3.11, we relate the solutions of the indicial equations with the actions of the Weyl group
elements on the coroot system. Since at the Lie algebra level, the coroot system of g is isomorphic to the root system
of its Langlands dual ǧ whose Cartan matrix is the transpose of the Cartan matrix of g, the relation we found here
might be interesting in other branches of mathematics. Similar links between tridiagonal Toda lattice and coroots were
observed for example in [23] and [10].

Y. Li pointed out to me that properties of the sets Ψ±w (the dual of Φ±w) were investigated in [46] by P. Papi. Let
Ψ±w be the set of positive (negative) roots of (g,h) which are mapped into the set of negative (positive) ones by w−1.
Let

∑
α∈Ψ+w

α = ℓ∑
j=1

qjαj ,

then Papi showed that the sets Ψ±w ⊆ ∆± associated with w ∈W are uniquely determined by the property that these
sets and their complements in ∆± respectively are closed under addition. More precisely,

Theorem 3.14 ([46]). S ⊆∆+ is associated with some w ∈W if and only if it satisfies the following properties:

(1) If α,β ∈ S and α + β ∈ ∆, then α + β ∈ S.
(2) If α + β ∈ S,α,β ∈ ∆+, then α ∈ S or β ∈ S.

Moreover, any such set is associated to a unique w ∈W .

A consequence of Theorem 3.11 is that the vector q⃗w = (q̌1, . . . , q̌ℓ) uniquely determines w ∈W which can also be
proved directly.

Papi then showed that there exists a one-to-one correspondence between reduced expressions of elements w ∈ W
and orderings of the set Ψ+w satisfying

(1) If α,β ∈ Ψ+w, α < β, and α + β ∈∆, then α + β ∈ Ψ+w and α < α + β < β.
(2) If α + β ∈ Ψ+w, α, β ∈∆+, then α or β (or both) belong to Ψ+w and one of them precedes α + β.

More precisely, let si1⋯sim be a reduced expression of w ∈ W , then the order on Ψ+w associated with this reduced
expression is

β1 ∶= αi1 ; βk ∶= si1⋯sik−1(αik), k = 2, . . . ,m.

Remark 3.15. It is interesting to see the consequence of this refined correspondence between W and ordered subset
of ∆+ on f-KT lattice. This might be linked with the Deodhar decomposition of the real flag variety and asymptotic
properties of the real solutions of the f-KT lattice (c.f. [31] for type A case).
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3.4. Spectra of the Kowalevski matrix. Up to now we have given rather complete characterizations for the
leading coefficients in the Laurent series solutions, we would like to understand more about higher order terms of the
homogeneous Laurent solutions by exploring the spectrum of the Kowalevski matrices Kw, w ∈W . For f-KT lattice
we first make the following definition for the spectrum of Kowalevski matrices.

Lemma 3.16 (Definition). The eigenvalues of Kw are all integers and they can be divided into two types: ℓ of them
are constants given by the degrees of the Chevalley invariants, and we say that they belong to type “C”; the others
depend on solutions of the indicial equations which are a priori unknown, and we call them type “X” eigenvalues.

Our next goal is to understand these type “X” eigenvalues. The following characterization of the type-X eigenvalues
is originally obtained by some brutal force calculations.

Theorem 3.17 ([57]). There are dim n− many type-X eigenvalues and each of them is associated with a positive
(resp. negative) root α ∈ ∆+ of (g,h). Denote by Ew

α the eigenvalue of Kw associated with α ∈ ∆+, then Ew
α is given

by

(3.17) Ew
α = −L(α) − ℓ∑

i=1
α(hαi

)awi0 with α ∈∆+.
An equivalent form of (3.17) is given as follows.

Theorem 3.18. For each w ∈W and α ∈∆+ we have

(3.18) Ew
α = L(wα).

We make several remarks before giving the proof of Theorem 3.18.

Remark 3.19. An immediate consequence of formula (3.18) is that there is a Weyl group action acting on the “X”
type eigenvalues Ew

α which is equivariant to the Weyl group action on the root system of (g,h).
Corollary 3.20. Let Λw be the set of positive eigenvalues of Kw, then for the Laurent series solutions corresponding to
w ∈W we have ∣Λw ∣ = dim b− − l(w) where l(w) is the length of the Weyl group element. Note that since the number of
positive (negative) roots is the same as the length of the longest Weyl group element w0, we have ∣Λw ∣ = ℓ + l(w0) − l(w)
where ℓ comes from the ℓ type “C” parameters.

Now we give a proof for Theorem 3.18. The link between Theorem 3.17 and Theorem 3.18 is built through the
following lemma.

Lemma 3.21. For any w ∈W, we have

(w − 1) ℓ∑
i=1

ωi = ∑
α∈Ψ−w

α,

where Ψ−w is the set of negative roots of (g,h) which are mapped into the set of positive ones by w−1.

Proof. Lemma 3.21 is classical in Lie theory. For example it was used by Knapp in [27] (Lemma 5.112) to give a
proof of Weyl character formula. We provide a proof here just for completeness.

Let ρ = 1

2
∑

α∈∆+

α = ℓ∑
i=1

ωi, then for any w ∈W we have

−ρ = 1

2
∑{α ∣ α < 0, w−1α > 0} + 1

2
∑{α ∣ α < 0, w−1α < 0}

and

wρ = −1
2
w∑{β ∣ β < 0, wβ > 0} − 1

2
w∑{β ∣ β < 0, wβ < 0}

= −1
2
∑{wβ ∣ β < 0, wβ > 0} − 1

2
∑{wβ ∣ β < 0, wβ < 0}

= −1
2
∑{α ∣ w−1α < 0, α > 0} − 1

2
∑{α ∣ w−1α < 0, α < 0}

= 1

2
∑{α ∣ w−1α > 0, α < 0} − 1

2
∑{α ∣ w−1α < 0, α < 0}

Adding these two expressions together, we obtain

(w − 1)ρ = ∑{α ∣ α < 0, w−1α > 0}.
Equipped with Lemma 3.21, Theorem 3.18 can be proved as follows.
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Proof. [Proof of Theorem 3.18] By (3.13) we have

Ew
α = −L(α) − ℓ∑

i=1
α(hαi

)awi0
= −L(α) − ℓ∑

i=1
α(hαi

) ∑
β∈Φ−w

κ(ωi,w
−1β̌)

= −L(α) − ∑
β∈Φ−w

ℓ∑
i=1

κ(α, α̌i)κ(ωi,w
−1β̌)

= ℓ∑
i=1

κ(α, ω̂i) − ∑
β∈Φ−w

κ(α,w−1β̌)
= ℓ∑

i=1
κ(α,w−1ω̂i) (by Lemma 3.21)

= L(wα),
where ω̂i ∈ h∗, 1 ≤ i ≤ ℓ are taken so that κ(αi, ω̂j) = δij .
3.5. Compatibility conditions. We have seen in Theorem 3.11 that c(FΛ) meets all the Bruhat cells, so that the
at worst simple pole singularities in Proposition 3.5 are all produced by various τ -functions τk(t;w∗),1 ≤ k ≤ ℓ for
w ∈W through equation (2.9). For each positive integer eigenvalue (counting multiplicity) of Kw we may introduce a
free parameter into the Laurent series solutions. Adjoint conditions (1) (a Fredholm type condition) for the system
(3.4) must be checked to ensure that these free parameters are not killed in later iteration steps. Corollary 3.20 then
states that fixing spectral parameters which is invariant under the f-KT flow, for each w ∈W the maximal number of
free parameters in the corresponding Laurent series solutions awi (t), w ∈W , 1 ≤ i ≤ ℓ matches with the dimension of
the Bruhat cell N−ẇB+/B+.

The general theory for verifying these adjoint conditions are limited (c.f. [1], Proposition 7.17, Proposition 7.22 for
some general information for algebraically integrable systems), however, in our specific cases these adjoint conditions
are automatically satisfied. The reason is as follows. Recall that f-KT lattice written in terms of the entries ai’s and
bα’s of the Lax matrix Lg takes the following form

dai

dt
= bi (1 ≤ i ≤ ℓ),

dbα

dt
= − ℓ∑

i=1
(α(Hαi

)ai) bα + ℓ∑
i=1

Nαi,−α−αi
bα+αi

, α ∈ ∆+.(3.19)

Arguing along the same line as in the proof of Proposition 3.5 and proof of Proposition 3.9 we can express all the
bα, α ∈ ∆+ in terms of ai, 1 ≤ i ≤ ℓ and obtain ℓ higher order differential equations for ai(t)’s, then all the bα(t) can
then be subsequently determined. That is all the free parameters in the Laurent series solutions (3.8) of f-KT lattice
are generated by coefficients aik, k ≥ 1, 1 ≤ i ≤ ℓ of ai(t)’s (which is equivalent to coefficients of bαi

, 1 ≤ i ≤ ℓ).
The adjoint conditions that need to be checked arise from the differential equations for various bα+αi

’s (i.e. the
second part of the system (3.19)) as there might exist more than one way to reach bα+αi

from ai and bβ, β ∈ ∆+
through (3.19) where bβ’s have lower height than bα+αi

. To see that all the adjoint conditions are automatically

satisfied, let us consider the centerless affine Lie algebra g(1) = C((t, t−1))⊗ g⊕d where C((t)) = C[t−1]⊕ tC[[t]] and
d is the derivation which acts on C((t, t−1))⊗ g by d

dt
. Note that the Lg(t)’s can be viewed as elements in g(1), and

the Kostant-Toda lattice (1.1) is nothing but the algebraic relation [d, Lg(t)] = [B(t), Lg(t)] in g(1). The consistency
requirement we need here comes from the basic fact in the structure theory of Lie algebras: for each root α ∈∆+ the
root vector Xα can be generated by commutators of root vectors associated with simple roots and is one dimensional,
thus independent of the root paths we take to reach it. In the current case under consideration, we similarly have
that once ai(t)’s are chosen then all the bα(t)⊗Yα’s are uniquely determined by commutators of d and ai(t)⊗Hi no
matter which root path we choose (c.f. [2] for a partial inverse of the results here on the tridiagonal periodic Toda
lattice).

Thus we have

Corollary 3.22. For the Laurent series solutions (3.8) associated with w ∈W, there are exactly ∣Λw ∣ = ℓ+ l(w0)− l(w)
many independent free parameters in it.

At last, by Proposition 3.5 all the formal Laurent series solutions we constructed are weight homogeneous, then
by Theorem 3.3 we know that they converge and indeed are meromorphic solutions of f-KT lattice.



F-KT ON SIMPLE LIE ALGEBRAS 17

3.6. f-KT lattice and flag variety. In summary we have

Theorem 3.23. For any Λ ∈ Cℓ, w ∈W and u ∈ N−
(3.20) τk(t;w) = (vωk , exp(ΘCΛ

(t))uẇvωk), 1 ≤ k ≤ ℓ,
are τ-functions of f-KT lattice. The diagonal elements are given by

(3.21) ak(t) = d

dt
ln τk(t), 1 ≤ k ≤ ℓ,

and all the other entries bα(t), α ∈ ∆+ in the Lax matrix Lg(t) can be subsequently determined from the ak(t)’s.
As function of t, τ -functions as given in (3.20) are holomorphic functions in the complex domain, so their zeroes

are isolated. From this fact we deduce

Corollary 3.24. If the Toda flow exp(tCΛ)uB+ hits a smaller Bruhat cell, then it intersects with that Bruhat cell
transversely.

To further illustrate the relation between Laurent series solutions of the f-KT lattice and the corresponding τ -
functions, we would like to demonstrate how the free parameters in ai(t) and the type “X” eigenvalues of the
Kowalevski matrices arise from the τ -functions defined in (3.20).

We first note the following easy lemma.

Lemma 3.25. Suppose x(t) = d
dt
log y(t), and y(t) = ∞∑

i=0
bit

i+k, where b0 = 1, k ∈ Z+. Assume that the coefficients

of y(t) are generated by n independent free parameters, i.e. bi ∈ C[bα1
, bα2

, . . . , bαn
] for all integers i ≥ 0. Then a

basis of free parameters appearing in the coefficient of the Laurent series of x(t) = ∞∑
j=0

ajt
j−1 (a0 = k) can be chosen

as {aα1
, aα2

, . . . , aαn
}.

Proof. Coefficients of x(t) can be recursively obtained from the coefficients of y(t) through the relation y′(t) =
x(t)y(t). More precisely, the lemma follows from the following recursive relations

j∑
i=0

aj−ibi = (j + k)bj, j ≥ 0,
where b0 = 1 and a0 = k.

Proof. [Proof of Theorem 3.23] By Theorem 3.18 and Corollary 3.22, we know exactly where the free parameters
arise in the Laurent series solutions. To prove Theorem 3.23 we match these parameters with free parameters
appearing in τ -functions (3.20).

Note that the general τ -functions (3.20) can be written as

(3.22) τi(t;w) = (vωi , etCΛuẇvωi) = (vωi , etCΛeU ẇvωi) 1 ≤ i ≤ ℓ, w ∈W , u = eU ∈ N−.
As U ∈ n− and CΛ ∈ e + s ⊆ e + n− (ℓ-dimensional), we can write U = ∑

α∈∆+

UαYα and CΛ = e + ℓ∑
i=1

CiYβi
, βi ∈ ∆+. Note

that as functions of Uα,Ci and t, τi(t;w)’s are weight homogeneous functions if we assign weights ̟(Uα) = −L(α),
̟(Ci) = −L(βi) and ̟(t) = 1, that is weights of Uα,Ci are given by the heights of the corresponding roots.

Writing the τ -functions in its Taylor expansion form with respect to t:

τi(t;w) = ∞∑
j=0

τijt
j+ki 1 ≤ i ≤ ℓ,

where τi0 = 1 and ki depending on w ∈W is the leading exponent of τi(t;w), then we have

(1) with the assignned weights for Uα,Ci and t, τi(t;w) is weighted homogeneous with weight ki(w),
(2) the free parameters τij in the Taylor expansion of τi(t;w)’s come from Uα and Ci, α ∈∆+,
(3) let I ⊆ ∆+ be such that {Uα, α ∈ I;Ci,1 ≤ i ≤ ℓ} is the set of minimum generators of free parameters in

τ(t;w), equivalently this means {Uα, α ∈ I} is a coordinate system for the Bruhat cell N−ẇB+, then a basis of
free parameters in the Taylor expansion of τ -functions can be taken as subset of {τik,1 ≤ i ≤ ℓ, k = L(α), α ∈
I or k = L(βj),1 ≤ j ≤ ℓ} (the cardinality of the generators is ℓ + ∣I ∣).

By Lemma 3.25 we thus have matched all the free parameters in Laurent series solutions with free parameters in
τ -functions (3.20) and finish the proof of Theorem 3.23.

Finally we have the following global structure for all of the Laurent series solutions of f-KT lattice.

Theorem 3.26. For any Λ ∈ Cℓ, the compactification of cΛ(FΛ) is G/B+. All the Laurent series solutions of f-KT
hierarchy are parameterized by G/B+ ×Cℓ, where G/B+ is the flag variety and C

ℓ parametrizes the data for spectral
parameters.
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Proof. The Laurent series solutions associated with w ∈ W and the τ -functions associated with the same w ∈ W
have the same singularity structure and contain the same number of free parameters at the same positions, thus they
give the same solution for the f-KT lattice.

Remark 3.27. (1) There should exist an explicit correspondence between Bruhat decomposition of the flag variety
here and the Bruhat order in the study of the full symmetric Toda lattice (c.f. [12]).

(2) The Laurent series solutions studied in this paper actually contain solutions for various intermediate Kostant-
Toda lattices (c.f. [23, 14]). For example, Laurent series solutions corresponding to w0 will force bα = 0
for α /∈ Π, so they give solutions to the classical tridiagonal Kostant-Toda lattice. The other solutions of
tridiagonal Kostant-Toda lattice can be obtained by manipulating the free parameters so that bα = 0 for α /∈ Π
(c.f. Section 4 for an explicit example). So in some sense the Laurent series solutions can see all of the
coadjoint orbits simultaneously.

Corollary 3.28. Only f-KT flows belong to solutions of the tridiagonal Kostant-Toda lattice intersect with the smallest
dimensional Bruhat cell.

4. An example:f-KT lattice on so5(C)
In this section we consider f-KT lattice on the rank 2 type B Lie algebra as an example to illustrate the main

results in the previous sections.
Let V be a 5 dimensional vector space, and Ψ a non-degenerate symmetric bilinear form on V of maximal index

2. Then the quadratic form Q associated to Ψ is Q(x) = 1

2
Ψ(x,x) for x ∈ V . We take a basis Ξ = (e−2, e−1, e0, e1, e2)

of V such that Ψ(ei, ej) = (−1)iδi,−j , then in particular we have Ψ(e0, e0) = 1 and

Q(∑xiei) = 1

2
x2

0 +

2∑
i=1
(−1)ixix−i.

The (Gram) matrix of Ψ with respect to basis Ξ is

M2 =
⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

The Lie algebra so5(C) we consider here is the orthogonal Lie algebra associated with (V,Ψ).
The f-KT lattice on so5(C) is defined as

dL

dt
= [B,L],

where

L =
⎛⎜⎜⎜⎜⎜⎝

a2 1 0 0 0
b2 2a1 − a2 1 0 0
2c1 2b1 0 1 0
4d1 0 2b1 a2 − 2a1 1
0 4d1 −2c1 b2 −a2

⎞⎟⎟⎟⎟⎟⎠
and B =

⎛⎜⎜⎜⎜⎜⎝

a2 1 0 0 0
0 2a1 − a2 1 0 0
0 0 0 1 0
0 0 0 a2 − 2a1 1
0 0 0 0 −a2

⎞⎟⎟⎟⎟⎟⎠
.

More explicitly, we have

d

dt
a2 = b2 d

dt
a1 = b1

d

dt
b2 = (2a1 − 2a2)b2 + 2c1 d

dt
b1 = (a2 − 2a1)b1 − c1

d

dt
c1 = −a2c1 + 2d1 d

dt
d1 = −2a1d1.

It can be checked directly that the Laurent series solutions have the following form

ai(t) = ∞∑
k=0

aikt
k−1, bi(t) = ∞∑

k=0
bikt

k−2,

c1(t) = ∞∑
k=0

c1kt
k−3, d1(t) = ∞∑

k=0
d1kt

k−4.
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Substituting them into the above differential equations, we get

∞∑
k=0
(k − 1)a2ktk−2 = ∞∑

k=0
b2kt

k−2,
∞∑
k=0
(k − 1)a1ktk−2 = ∞∑

k=0
b1kt

k−2,

∞∑
k=0
(k − 2)b2ktk−3 = 2[∞∑

i=0
(a1i − a2i)ti−1][ ∞∑

j=0
b2jt

j−2] + 2 ∞∑
k=0

c1kt
k−3,

∞∑
k=0
(k − 2)b1ktk−3 = [∞∑

i=0
(a2i − 2a1i)ti−1][ ∞∑

j=0
b1jt

j−2] − ∞∑
k=0

c1kt
k−3,

∞∑
k=0
(k − 3)c1ktk−4 = −(∞∑

i=0
a2it

i−1)( ∞∑
j=0

c1jt
j−3) + 2 ∞∑

k=0
d1kt

k−4,

∞∑
k=0
(k − 4)d1ktk−5 = −2(∞∑

i=0
a1it

i−1)( ∞∑
j=0

d1jt
j−4).

Comparing the power of t for k = 0, we obtain the following indicial equations for the leading coefficients

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−a20 = b20, −a10 = b10,
−2b20 = 2(a10 − a20)b20 + 2c10,
−2b10 = (a20 − 2a10)b10 − c10,
−3c10 = −a20c10 + 2d10,
−4d10 = −2a10d10.

Note that c10, d10 are determined once we know a20 and a10. Eliminating c10 from the third and fourth equations
in (4.1), we get a degree 2 equation for a20 and a10. Substituting either of the expressions of c10 from the third or
fourth equation to the fifth one we get an expression for d10 and substituting this expression to the last equation we
get a degree 4 equation for a10 and a20. So the maximal number of solutions is 8 = ∣W∣.

Let h be the set of diagonal elements of so5(C). This is a commutative subalgebra of so5(C). Let
Hi = E−i,−i −Ei,i, (1 ≤ i ≤ 2).

Let (εi)1≤i≤2 be the basis of h∗ dual to (Hi) such that εi(E−j,−j −Ej,j) = δij . Then a basis of h can be taken as

Hε2−ε1 =H2 −H1, Hε1 = 2H1.

The positive roots of so5(C) are
α2 = ε2 − ε1, α1 = ε1, α3 = α1 + α2 = ε2, α4 = 2α1 + α2 = ε1 + ε2,

and the coroots are

α̌2 = α2, α̌1 = 2α1, α̌3 = 2(α1 + α2) = α̌1 + 2α̌2, α̌4 = 2α1 + α2 = α̌1 + α̌2.

The Weyl group elements are given by

WB2
= { e, sB2 , s

B
1 ,w21 = sB2 sB1 ,w12 = sB1 sB2 ,w212 = sB2 sB1 sB2 ,
w121 = sB1 sB2 sB1 , sB2 sB1 sB2 sB1 = w0

} ,
where sB2 = s−2s1, sB1 = s−1s0s−1 with si the simple reflection (i, i + 1). We have

Table 1. Weyl group action on coroots

α̌2 α̌1 2α̌2 + α̌1 α̌2 + α̌1

e α̌2 α̌1 2α̌2 + α̌1 α̌2 + α̌1

sB1 α̌2 + α̌1 −α̌1 2α̌2 + α̌1 α̌2

sB2 −α̌2 2α̌2 + α̌1 α̌1 α̌2 + α̌1

w21 α̌2 + α̌1 −(2α̌2 + α̌1) α̌1 −α̌2

w12 −(α̌2 + α̌1) 2α̌2 + α̌1 −α̌1 α̌2

w121 α̌2 −(2α̌2 + α̌1) −α̌1 −(α̌2 + α̌1)
w212 −(α̌2 + α̌1) α̌1 −(2α̌2 + α̌1) −α̌2

w0 −α̌2 −α̌1 −(2α̌2 + α̌1) −(α̌2 + α̌1)
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Thus we have

∑
α̌∈Φe

α̌ = 0; ∑
α̌∈Φ

sB
1

α̌ = α̌1; ∑
α̌∈Φ

sB
2

α̌ = α̌2;

∑
α̌∈Φw21

α̌ = α̌2 + 2α̌1; ∑
α̌∈Φw12

α̌ = 3α̌2 + α̌1; ∑
α̌∈Φw121

α̌ = 3α̌2 + 3α̌1;

∑
α̌∈Φw212

α̌ = 4α̌2 + 2α̌1; ∑
α̌∈Φw0

α̌ = 4α̌2 + 3α̌1.

Therefore according to Theorem 3.11 we have the following 8 solutions for the indicial equations (4.1) which can also
be checked directly

Table 2. Solutions of the indicial equations

Level.case a20 a10 b20 b10 c10 d10
0.1 0 0 0 0 0 0
1.1 0 1 0 −1 0 0
1.2 1 0 −1 0 0 0
2.1 1 2 −1 −2 2 −2
2.2 3 1 −3 −1 −3 0
3.1 3 3 −3 −3 3 0
3.2 4 2 −4 −2 −4 −2
4.1 4 3 −4 −3 0 0

For k ≥ 1, the coefficients of the Laurent series solutions can be found by the following iterative procedure:

(k − 1)a2k − b2k = 0, (k − 1)a1k − b1k = 0,
(k − 2 − 2a10 + 2a20)b2k + 2b20a2k − 2b20a1k − 2c1k = 2 k−1∑

i=1
b2i(a1,k−i − a2,k−i),

(k − 2 − a20 + 2a10)b1k − b10a2k + 2b10a1k + c1k = k−1∑
i=1

b1i(a2,k−i − 2a1,k−i),(4.2)

(k − 3 + a20)c1k + c10a2k − 2d1k = − k−1∑
i=1

a2ic1,k−i,

(k − 4 + 2a10)d1k + 2d10a1k = −2 k−1∑
i=1

a1id1,k−i.

The coefficient matrix kI −K in the order (a2k, a1k, b2k, b1k, c1k, d1k) has the following form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k − 1 0 −1 0 0 0
0 k − 1 0 −1 0 0

2b20 −2b20 k − 2 − 2a10 + 2a20 0 −2 0
−b10 2b10 0 k − 2 − a20 + 2a10 1 0
c10 0 0 0 k − 3 + a20 −2
0 2d10 0 0 0 k − 4 + 2a10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 4.1. The determinant of kI − K can be calculated directly as (by taking the indicial equations (4.1) into
account)

det(kI −K) = (k − 2)(k − 4)(k − 1 + 2a20 − 2a10)(k − 1 − a20 + 2a10)(k − 2 + a20)(k − 3 + 2a10),
so again the k’s where K degenerates are all integers. Note that 2,4 are degrees of the Chevalley invariants, and the
other 4 are eigenvalues of X-type. Let Eα2

∶= 1− 2a20 + 2a10, Eα1
∶= 1+ a20 − 2a10, Eα3

∶= 2− a20, Eα4
∶= 3− 2a10, then

we can make the following table (see Table 3).

Here we can see explicitly that the Weyl group action on Eα is equivariant to the Weyl group action on the root
system of so5(C).
Remark 4.2. From Table 2 and Equations (4.2) we can also easily read all the sub-hierarchies of the f-KT hierarchy.

(1) a2(t) = b2(t) = c1(t) = d1(t) ≡ 0, and only a1(t) and b1(t) are nontrivial. In this case, a1(t) and b1(t) can be
explicitly solved and the flow can only enter into the smaller Bruhat cell associated with s1.

(2) a1(t) = b1(t) = c1(t) = d1(t) ≡ 0, and only a2(t) and b2(t) are nontrivial. Similarly, a2(t) and b2(t) can be
explicitly solved and the flow can only enter into the smaller Bruhat cell associated with s2.
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Table 3. Spectra of the Kowalevski matrix

Level.case Eα2
Eα1

Eα3
Eα4

W l(w) Number of free parameters
0.1 1 1 2 3 e 0 6

1.1 3 −1 2 1 sB1 1 5

1.2 −1 2 1 3 sB2 1 5
2.1 3 −2 1 −1 w21 2 4
2.2 −3 2 −1 1 w12 2 4
3.1 1 −2 −1 −3 w121 3 3
3.2 −3 1 −2 −1 w212 3 3
4.1 −1 −1 −2 −3 w0 4 2

(3) c1(t) = d1(t) ≡ 0, and a2(t), a1(t), b2(t), b1(t) are nontrivial. This is the classical tridiagonal Kostant-Toda
lattice, and the flow can enter into the smaller Bruhat cells associated with s1, s2 and w0 which are cases
1.1, 1.2 and 4.1 respectively. This is consistent with the results in [23]. Note also that in case 4.1, by (4.2)
a20 = 4, a10 = 3 forces c1(t) = d1(t) ≡ 0, which means that only flows of the classical tridiagonal Kostant-Toda
lattice can enter into the smallest dimensional Bruhat cell. This counter-intuitive result is not easily deduced
from the τ-function formalism.

(4) d1(t) ≡ 0, and all the other matrix elements are nontrivial. This is the so-called 2-banded Kostant-Toda lattice
(c.f. [32, 57]), and the flows can enter into all the smaller Bruhat cells except the ones associated with w21

and w212 which are cases 2.1 and 3.2 respectively. Note again that in case 3.1, d1(t) is forced to be 0 which
is different from case 2.2 where d1(t) is set to be 0 by letting d12 = 0. That is only the flows of the 2-banded
Kostant-Toda lattice can enter into the Bruhat cell associated with w121.

At last we comment that for the tridiagonal Kostant-Toda lattice, that is in cases 0.1, 1.1, 1.2 and 4.1, the spectra
of the Kowalevski matrices are (1,1,2,2), (−1,1,2,4), (−1,1,2,3) and (−3,−1,2,4) respectively, which do not have
simple expressions as in Theorem 3.18. Therefore, in some sense it is simpler and more fruitful to study f-KT lattice
and all the coadjoint orbits of B+ on b∗+ together.

5. Further problems

In this last section, we formulate several problems based on results in this paper to be considered in the future.

5.1. Free parameters as canonical coordinates on the flag varieties. When ai(t)’s, bα(t)’s are viewed as
entries of the Lax matrix, the free parameters in the Laurent series solutions (3.8) can be viewed as functionals
on the space of all Lax matrices. According to Theorem 3.26, these free parameters also provide a natural set of
coordinates for the corresponding flag varieties. As these free parameters arise from a dynamical system in a rather
natural manner, we have reasons to believe these coordinates enjoy some good dynamical properties. For example,
the Poisson brackets among them as functionals on the space of Lax matrices should have a particularly nice form
which could be useful as a new method in constructing constants of motion. It had been noticed since 1980s (c.f.
[22]) that for the tridiagonal Toda lattice, the free parameters in the most degenerate Laurent series solution are
determined by the constants of motion. We expect similar things happening in the f-KT lattice case.

The advantage of these free parameters as constants of motion compared with the chopping method (c.f. [17, 25])
is as follows: To carry out the chopping method, we need to choose a particular realization of the f-KT lattice in
a representation of the Lie algebra in the Lax form (1.1). For example, as we have sl4(C) ≅ so6(C), the chopping
method provides us two sets of mutually non-Poisson commutative constants of motion (c.f. [17, 50]). The system
(3.7) however only involves the information from the Cartan matrix which is intrinsic to the corresponding Lie algebra.
That is, both sets of constants of motion for sl4(C) ≅ so6(C) f-KT lattice should be expressed in terms of the free
parameters in the Laurent series solutions.

When we try to solve the system (1.6) at the resonant steps k = Ew
α > 0, we have the freedom to choose which aik’s

or bαk’s we would like to choose as free parameters, and this provides us differential coordinate systems for certain
charts of the flag varieties. It is then interesting to study the transitions from one charts to another. According to
Lemma 3.25 and the generalized Chamber Ansatz (c.f. Theorem 7.1, [41]), we further see that these free parameters
and therefore all constants of motion can be expressed as rational functions of the generalized minors of exp(ΘL0

(t)).
It would be nice to relate the above transition of charts to the cluster mutation on the flag varieties (c.f. [4]).

5.2. Real solutions of the f-KT lattice. Now we come back to consider f-KT lattice defined on a split simple
Lie algebra (g,h) over R. Note that the proof of Proposition 2.3 goes through for all g ∈ G0, and τi(t)’s in (2.8)
are well defined and are real analytic if L0 is real. Since solutions of the indicial equations (3.11) and the spectra
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of the Kowalevski matrices (3.18) are all integers, the Laurent series solutions (3.8) are all real valued if all the free
parameters introduced into the Laurent series are real. Thus real solutions of f-KT hierarchy may still have all kinds
of singular behavior as in the complex cases. A more meaningful question is the following.

Problem 5.1. For a given L0, which Bruhat cells the f-KT flows may hit? And what are the large time asymptotical
behaviors for the corresponding real solutions of f-KT hierarchy?

Since we now understand all possible types of singular solutions of f-KT hierarchy, the first question is an analogue
of the classical connection problem (c.f. [56] for solution of the connection problem of hypergeometric series). At one
of the extremes, the real regular solutions of Toda flows and their asymptotic behaviors especially in type A have
been intensively studied (c.f. [37, 24, 31]). It is known to Kostant that in the tridiagonal case the Kostant-Toda flows

are complete when all the bαi
,1 ≤ i ≤ ℓ are positive which is associated with a special element in M̃ in Section 2.2.1.

In this case the Kostant-Toda lattice is conjugate to the classical tridiagonal symmetric Toda lattice whose phase
space is compact. The cases when bαi

’s have indefinite signs and the solutions blow up in finite time were studied
by Casian, Kodama and Ye (c.f. [34, 10]). Gekhtman and Shapiro later pointed out that the regularity condition
Kostant give is only sufficient but not necessary (c.f. [24]).

For tridiagonal Kostant-Toda lattice defined on slℓ+1(R), let λ1, . . . , λs be distinct eigenvalues of L0 ∶= L(0). Assume
that to each eigenvalue λi there corresponds exactly one Jordan box and let v1, . . . , vℓ+1 the corresponding Jordan
basis. Denote by V (L0) the matrix with columns v1, . . . , vℓ+1, and assume V (L(0)) has the following LU-factorization

V (L0) = nL0
bL0

, nL0
∈ N−, bL0

∈ B+.
Then we have

Theorem 5.2 ([24]). The solution of the Kostant-Toda lattice is nonsingular if and only if

(1) all λi (i = 0, . . . , s) are real such that λ1 > ⋅ ⋅ ⋅ > λs,
(2) the matrix nL0

is totally positive, that is all its nontrivial minors are positive.

Theorem 5.2 is also valid for the f-KT lattice. Note that since all the conditions in Theorem 5.2 are open conditions,
the maximal number of parameters in the generic real regular solutions for f-KT lattice on slℓ+1 is dim n−+ℓ = ℓ(ℓ+1)/
2 + ℓ. These solutions do not hit any lower dimensional Bruhat cells, which in particular shows that the seemingly
obvious conclusion of Theorem 3.23 is not that trivial.

We also comment that the asymptotic behavior of real regular solutions for tridiagonal Kostant-Toda lattice had
been studied by Kostant in [37] which generalized Moser’s result [42] in type A. For f-KT hierarchy in type A, the
asymptotic behaviors of real regular solutions are described by the so-called Bruhat interval polytopes via the moment
map techniques (c.f. [31]). Not much is known for f-KT hierarchy on other type Lie algebras at the moment (c.f. [57]
for some lower rank examples in type B).
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