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Abstract

We introduce and study a system of coupled nonlocal nonlinear Schrödinger equations
that interpolates between the mixed, focusing-defocusing Manakov system on one hand and
a limiting case of the intermediate nonlinear Schrödinger equation on the other. We show
that this new system, which we call the intermediate mixed Manakov (IMM) system, admits
multi-soliton solutions governed by a complexification of the hyperbolic Calogero-Moser (CM)
system. Furthermore, we introduce a spatially periodic version of the IMM system, for which
our result is a class of exact solutions governed by a complexified elliptic CM system.
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1 Introduction

The nonlinear Schrödinger (NLS) equation is a fundamental model both for wave propagation in weakly
nonlinear, dispersive media [1] and in the theory of integrable systems [2]. The ability of the NLS equation to
model a variety of nonlinear physics together with its amenability to exact analytic methods has inspired the
development of various integrability-preserving generalizations and relative equations. Prominent among
these is the Manakov system [3, 4],

iut = uxx + u(σ1|u|2 + σ2|v|2),

ivt = vxx + v(σ1|u|2 + σ2|v|2)
(σ1, σ2 = ±1), (1.1)

a two-component variant of the NLS equation with applications to optics [5], water waves [6], and Bose-
Einstein condensates [7]. The Manakov system (1.1) comes in three cases, up to equivalence.1 The focusing,
σ1 = σ2 = +1, and defocusing, σ1 = σ2 = −1, cases of (1.1) are generalizations of the corresponding cases
of the NLS equation, which are recovered via the reduction v = u. The mixed, focusing-defocusing Manakov
system, (1.1) with σ1σ2 = −1, does not reduce to a one-component NLS equation, but is an interesting
integrable system in its own right, having recently been studied from the perspectives of boundary value
problems [8, 9] and soliton phenomena [10, 11, 12]. In this paper, we connect the mixed Manakov system
to nonlocal (integro-differential) NLS systems by introducing a nonlocal deformation of the former.

The intermediate mixed Manakov (IMM) system reads

iut = uxx + u(i + T )(|u|2)x − uT̃ (|v|2)x,

ivt = vxx + v(i− T )(|v|2)x + vT̃ (|u|2)x,
(1.2)

1The cases σ1 = −σ2 = +1 and σ1 = −σ2 = −1 of (1.1) are equivalent via u↔ v.
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with the integral operators

(Tf)(x) :=
1

2δ
−
∫
R

coth
( π

2δ
(x′ − x)

)
f(x′) dx′,

(T̃ f)(x) :=
1

2δ

∫
R

tanh
( π

2δ
(x′ − x)

)
f(x′) dx′,

(1.3)

where δ > 0 is an arbitrary parameter and the dashed integral indicates a principal value prescription at
x′ = x. The intermediacy of (1.2) corresponds to the fact, elaborated in Section 1.2, that it interpolates
between the mixed Manakov system, which is obtained in the limit δ ↓ 0, and the following system of
uncoupled Hilbert NLS (HNLS) equations [13, 14],

iut = uxx + u(i +H)(|u|2)x,

ivt = vxx + v(i−H)(|v|2)x
(1.4)

with H the Hilbert transform,

(Hf)(x) :=
1

π
−
∫
R

f(x′)

x′ − x
dx′, (1.5)

which is obtained in the δ → +∞ limit. In addition to generalizing the mixed Manakov system, the IMM
system falls neatly into two established classes of integrable systems, as we now describe.

1. The study of integro-differential NLS equations was initiated by Pelinovsky in [15], where the inter-
mediate NLS (INLS) equation

iut = uxx + u(i− σT )(|u|2)x (σ = ±1) (1.6)

was derived as a description of envelope waves in the intermediate long wave equation. The INLS
equation generalizes the standard NLS equation, which is recovered in the δ ↓ 0 limit. An inverse
scattering transform for the defocusing (σ = −1) INLS equation has been developed [16] and multi-
soliton solutions have been found in both the defocusing and focusing (σ = +1) cases [15, 17, 18].
Similar results for the HNLS equation (1.4), which is obtained from the INLS equation in the δ →
+∞ limit, have been established by Matsuno [13, 19, 20]. Moreover, and of particular relevance
to us, Matsuno established that soliton and certain spatially periodic solutions of the defocusing
HNLS equation (i.e., the first equation in (1.4)) are governed by the rational and trigonometric
Calogero-Moser (CM) systems, respectively, subject to certain constraints on their initial conditions
[21]. Gérard and Lenzmann have recently established several rigorous results for the focusing HNLS
equation (i.e., the second equation in (1.4)) including a novel Lax pair structure and global-in-time
multi-soliton solutions [14]. The IMM system is the first-studied two-component system in this class.

2. Several exactly-solvable systems involving both the T and T̃ operators (1.3) have recently been
introduced [22, 23, 24]; the IMM system provides a further example in this class. A prominent
feature of known such examples is the existence of families of solutions governed by CM systems. We
will show that the IMM system likewise has such solutions. However, in contrast to known examples,
which only have meaningful limits as δ → +∞, the IMM system is a genuine intermediate system in
the sense described above.

Our results on the IMM system are motivated by and use tools from the study of the classes of
systems discussed above. Most importantly, we view our results as hyperbolic and elliptic generalizations
of Matsuno’s work [21] on solving an integro-differential NLS equation (the HNLS equation (1.4)) using
rational and trigonometric CM systems. In the remainder of this section, we describe these results, establish
certain basic properties of the IMM system, outline our plan for the paper, and introduce the notation we
use in the main text.
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1.1 Summary of results

We establish a precise connection between the IMM system and the hyperbolic and elliptic cases of the CM
system, defined for N ∈ Z≥1 to be the system of ordinary differential equations (ODEs),

äj = −4

N∑
k 6=j

V ′(aj − ak) (j = 1, . . . , N) (1.7)

with

V (z) :=


1/z2 (I: rational case)

(π/2`)2/ sin2(πz/2`) (II: trigonometric case)

(π/2δ)2/ sinh2(πz/2δ) (III: hyperbolic case)

℘2(z; `, iδ) (IV: elliptic case),

(1.8)

where `, δ > 0 are free parameters and in case IV, ℘2(z; `, iδ) is equal to the Weierstrass elliptic function
with half-periods (`, iδ) up to an additive constant (see (3.5) for the precise definition, but note that the
value of the constant is irrelevant for (1.7)). These systems are exactly solvable [25, 26] and, as we describe
below, give rise to exact solutions to the IMM system. As mentioned above, our results extend a known
correspondence between the HNLS equation and the rational and trigonometric cases of the CM system
[21, 14].

More specifically, we construct solutions of the IMM system as the values on the real line of certain
meromorphic functions (one for u and one for v), following an idea due to Kruskal [27] (see also [28, 29, 30])
and applied to the HNLS system by Matsuno [21] (see also [14]). We make ansätze for these functions
involving (dynamical) parameters that determine the (simple) poles and the corresponding residues and an
additive term, which we refer to as the background.

Our first result, whose precise statement is given in Theorem 2.1, provides a recipe to construct N -
soliton solutions of the IMM system as the real-line values of 2iδ-periodic, meromorphic functions, each
with a constant background and N dynamical simple poles and corresponding residues. The poles of the
meromorphic functions are determined by certain solutions {aj}Nj=1 of the complexified hyperbolic CM

system. The corresponding residues {cj}Nj=1 are obtained as certain solutions of a linear system of ODEs

with coefficients depending on {aj}Nj=1.

Our second result is an adaptation of the first result that applies to the IMM system with 2`-periodic
boundary conditions; the precise statement is given in Theorem 3.1. We construct 2`-periodic solutions of
the IMM system as the real-line values of 2`- and 2iδ-periodic, meromorphic (i.e., elliptic) functions, each
having a dynamical background and N dynamical simple poles and corresponding residues. The parameters
{aj}Nj=1 are certain solutions of the complexified elliptic CM system and determine the poles of the elliptic

solutions to the IMM system. Similarly as in the first result, the parameters {cj}Nj=1 determine the residues

corresponding to these poles and solve a linear system of ODEs with coefficients depending on {aj}Nj=1. The
dynamical nature of the background is a new feature in the periodic setting; the dynamics is determined
by the value of a quantity λ, which solves an ODE of the form λ̇ = F

(
{aj}Nj=1, {cj}Nj=1

)
.

Our results are supplemented by examples with corresponding visualizations. The key step in construct-
ing such examples is to solve certain nonlinear constraints that the initial values of the time-dependent
parameters must satisfy. In the case of our first result, we develop methods to do this when N = 1, 2, 3;
this process gives rise to one-, two-, and three-soliton solutions of the IMM system, which strongly suggests
that the IMM system is integrable (and that it admits N -soliton solutions for N > 3) [31, 32]. We also
develop methods to solve the analogous constraints in the N = 2, 3 cases of our second result (we exclude
the N = 1 case from our second result as it would give only trivial (i.e., constant) solutions; see Section 3
for details).
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1.2 Basic properties of the IMM system

We collect some useful properties of the IMM system: limits to known systems, symmetries that we apply
in the main text, and a two-vector notation used in the proof of our results.

Limits. The nonlocal operators in the IMM system have simple representations as Fourier multipliers,
from which several basic properties (such as limits) of the IMM system follow. With the convention

f̂(k) :=
∫
R f(x)e−ikx dx, the Fourier transforms of the operators T and T̃ in (1.3) are [22]

(T̂ f)(k) = i coth(kδ)f̂(k),

( ̂̃Tf)(k) =
i

sinh(kδ)
f̂(k)

(k ∈ R \ {0}). (1.9)

Thus, in the limit δ → +∞,

(T̂ f)(k)→ i sgn(k)f̂(k),

( ̂̃Tf)(k)→ 0
(k ∈ R \ {0}). (1.10)

We recognize the Fourier multiplier i sgn(k) as that of the Fourier space representation of the Hilbert
transform (1.5). Hence, taking the δ → +∞ limit of (1.2) and using (1.10), we obtain the HNLS equation
(1.4).

In the limit δ ↓ 0, known asymptotic expansions of the T and T̃ operators [33] can be used to show
that the IMM equation (1.2) reduces to the mixed Manakov system (1.1) with σ1 = −σ2 = +1. Details are
given in Appendix C.

Symmetries. The IMM system, like the Manakov system, possesses the U(1)×U(1) symmetry,

(u, v)→ (eiθ1u, eiθ2v) (θ1, θ2 ∈ R) (1.11)

and the Galilean symmetry,(
u(x, t), v(x, t)

)
→ e−iηx+iη2t

(
u(x− 2ηt, t), v(x− 2ηt, t)

)
(η ∈ R). (1.12)

It is interesting to note that, in contrast to known systems involving T and T̃ operators, the IMM
system does not admit a natural discrete symmetry interchanging the two component equations (which
can be interpreted as non-chirality [22, 23, 24]). To be more specific, there is no combination of variable
interchange (u ↔ v), parity inversion (x → −x), time reversal (t → −t), and complex conjugation that
interchanges the component equations in (1.2).

Two-vector notation. The IMM system can be written as a single equation using the following
notation developed within similar contexts [22, 23].

Given C-valued functions Fj , Gj , j = 1, 2, we define the product(
F1

F2

)
◦
(
G1

G2

)
:=

(
F1G1

−F2G2

)
(1.13)

and the linear operators

T :

(
F1

F2

)
7→
(

T T̃

−T̃ −T

)(
F1

F2

)
:=

(
TF1 + T̃F2

−T̃F1 − TF2

)
, (1.14)

with T and T̃ as in (1.3). With this, the IMM equation (1.2) can be written as

iUt = Uxx + U ◦ (i + T )(U ◦ U∗)x, U :=

(
u
v

)
. (1.15)

In this way, the IMM system is a natural two-component variant of the INLS equation (1.6).
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1.3 Plan of the paper

In Section 2, an ansatz is used to construct soliton solutions of the IMM system controlled by the hyperbolic
CM system. The periodic version of the IMM system is introduced in Section 3, where we also extend the
results of Section 2 to the periodic setting. Properties of the special functions we use are collected in
Appendix A. Appendix B is devoted to a proof of the main result of Section 3, which (as we explain in
Section 3.1.2) essentially contains the proof of the main result of Section 2 as a special case. In Appendix C,
we provide details on the δ ↓ 0 limit of the IMM system discussed in Section 1.2. Appendix D contains a
derivation of useful expressions for the (squared) amplitudes of our solutions.

1.4 Notation

We use the shorthand notation
∑N
k 6=j for sums

∑N
k=1,k 6=j , etc. A dot above a variable indicates differ-

entiation with respect to time while a prime indicates differentiation with respect to the argument of a
function. Complex conjugation is denoted by ∗. The two-vector notation introduced in Section 1.2 is used
in Appendix B and at selected points in the main text.

2 Solitons

We will construct multi-soliton solutions of the IMM system by making an ansatz with time-dependent
complex poles and residues and showing that the poles evolve according to a complexified version of the
hyperbolic CM system while the residues solve a linear system of ODEs. To be more concrete, we first
introduce the following special function that will play a key role in our analysis,

α(z) :=
π

2δ
coth

(
π

2δ
z

)
; (2.1)

note that V (z) in Case III of (1.8) is equal to −α′(z).

Our ansatz for the soliton solutions of the IMM system is(
u(x, t)
v(x, t)

)
= λ

(
1
−1

)
+ i

N∑
j=1

cj(t)

(
α(x− aj(t)− iδ/2)
−α(x− aj(t) + iδ/2)

)
, (2.2)

where λ is a constant, which, without loss of generality, may be chosen to be real by the U(1) × U(1)
invariance of the IMM system (1.11), and {aj , cj}Nj=1 are complex-valued functions of t.

The key necessary condition for the ansatz (2.2) to be consistent is that {aj}Nj=1 satisfy the hyperbolic

CM system, (1.7) with V (z) in Case III of (1.8). The parameters {cj}Nj=1 must satisfy the following system
of first-order linear ODEs,

ċj = 2i

N∑
k 6=j

(cj − ck)V (aj − ak) (j = 1, . . . , N). (2.3)

The precise statement of our result is given as Theorem 2.1 in Section 2.1. One-, two-, and three-
soliton solutions, corresponding to the cases N = 1, 2, and 3 of Theorem 2.1 are given special attention in
Section 2.2.

2.1 Result

Our result is stated and followed by several remarks.
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Theorem 2.1. For N ∈ Z≥1 and λ ∈ R, let {aj , cj}Nj=1 be a solution of the system of ODEs consisting of
(1.7) and (2.3) on an interval [0, τ) for some τ ∈ (0,∞) ∪ {∞} and with initial conditions that satisfy

cj ȧj = 2λ+ 2i

N∑
k 6=j

ckα(aj − ak) (j = 1, . . . , N) (2.4)

and

cj

(
λ− i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
+ 1 = 0 (j = 1, . . . , N) (2.5)

at t = 0. Moreover, suppose that the conditions

−3δ

2
< Im(aj) < −

δ

2
(j = 1, . . . , N) (2.6)

and
aj 6= ak (1 ≤ j < k ≤ N) (2.7)

are satisfied for t ∈ [0, τ). Then, (2.2) solves the IMM system (1.2)–(1.3) on [0, τ).

2.1.1 Remarks on Theorem 2.1

1. We omit the proof of Theorem 2.1 because, as will be elaborated in Section 3.1.1, it is essentially a
special case of Theorem 3.1, which is stated in Section 3.1 and proven in detail in Appendix B.

2. Our solutions (2.2) obey the boundary conditions

lim
x→±∞

u(x, t) = − lim
x→±∞

v(x, t) = λ± i
π

2δ

N∑
j=1

cj(t), (2.8)

which follow from

lim
x→±∞

α(x+ iy) =
π

2δ
lim

x→±∞
coth

(
π

2δ
(x+ iy)

)
= ± π

2δ
. (2.9)

The boundary conditions (2.8) are time-independent. To see this, observe that (2.3) implies that∑N
j=1 cj is conserved in time (see Lemma B.1 in Appendix B.1 for details of this calculation). It can

further be seen, using (2.5), that
∑N
j=1 Im(cj) = 0 (see Sections 2.2.2–2.2.3 for details in the cases

N = 2, 3). Consequently, the second term determining the boundary conditions in (2.8) is purely
imaginary.

3. The ansatz (2.2) (or its complex conjugate appearing implicitly in (1.2)) can be written in terms of
the functions

A±(z) :=

(
α(z ∓ iδ/2)
−α(z ± iδ/2)

)
. (2.10)

using the two-vector notation introduced in Section 1.2. To establish our result, a crucial feature
of the functions (2.10) is that their derivatives A′±(x − aj) are eigenfunctions of the operator T in
(1.14) [22],

(T A′±(· − aj))(x) = ±iA′±(x− aj) (2.11)

when (2.6) holds.

4. The ansatz (2.2) satisfies the IMM system provided that the first-order system (2.3)–(2.4) is satisfied
and the conditions (2.6)–(2.7) hold. This first-order system is equivalent to the system of equations
(1.7) and (2.3) when equipped with compatible initial conditions satisfying (2.5) and when (2.7)
holds; see Proposition B.3 in Appendix B.1 for the precise statement. In this way, the first-order
system resembles the well-known Bäcklund transformation for the CM system [34].

5. The condition (2.7) excludes the possibility of pole collisions on the interval [0, τ). Such collisions
cannot occur in (repulsive) CM systems (1.7)–(1.8) with real-valued {aj}Nj=1, but are possible in the
complexified CM systems we use; see [35, 14] for details in Case I of (1.7)–(1.8).
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2.2 Examples of solutions

We present examples of solutions coming from the N = 1, 2, 3 cases of Theorem 2.1. Doing so involves
solving the nonlinear constraints (2.5) at t = 0 and using the equations of motion (1.7), (2.3) to propagate
this initial date forward in time. In the case N = 1 we obtain a fully explicit solution, while in the cases
N = 2, 3 we give numerical solutions2 arising from initial data that exactly solves the constraints.

To visualize our results, we employ the following formula for the squared amplitudes of the pole ansatz
solutions (2.2), for which a proof is given in Appendix D.1,(

|u|2
|v|2

)
= B

(
1
1

)
− i

N∑
j=1

(
α(x− aj − iδ/2)− α(x− a∗j + iδ/2)
α(x− aj + iδ/2)− α(x− a∗j − iδ/2)

)
. (2.12)

where

B := λ2 +

(
π

2δ

)2
∣∣∣∣∣
N∑
j=1

cj

∣∣∣∣∣
2

(2.13)

It is interesting to note that the dynamics of {cj}Nj=1 play no role in (2.12)–(2.13): because
∑N
j=1 cj is

conserved in time, only the initial values of {cj}Nj=1 are required to compute (2.13). We remark that an
analogous formula in the context of HNLS solitons was given in [21, Eq. (19)].

From (2.12)–(2.13) and the fact that the functions fj,±(x) = −i(α(x − aj ∓ iδ/2) − α(x − a∗j ∓ iδ/2))
decay rapidly (when (2.6) holds), it is clear that the soliton amplitudes exhibit localized excitations on the
(amplitude) background

√
B about the points x = Re(aj) for j = 1, . . . , N . Moreover, it is straightforward

to verify that (when (2.6) holds) fj,±(x) ≶ 0 is satisfied for x ∈ R; the u-solitons are “dark” while the
v-solitons are “bright.” This phenomenon is illustrated in the figures presented below.

The parameter δ can be removed in (1.7), (2.2)–(2.6), and (2.12) by the rescalings

x→ δx, t→ δ2t, (u, v)→ (u, v)/
√
δ, λ→ λ/

√
δ, aj → δaj cj →

√
δcj (2.14)

(for j = 1, . . . , N in the case of {aj , cj}Nj=1). These transformations provide the natural units for the
quantities in question, which we use in our figures.

2.2.1 One-soliton solutions

When N = 1, the system of equations (1.7) and (2.3) reduces to

ä1 = 0, ċ1 = 0, (2.15)

for which the general solution is

a1(t) = a1,0 + η1t, c1(t) = c1,0 (2.16)

for some complex constants a1,0, η1, and c1,0. The requirement (2.6) imposes the condition −3δ/2 <
Im(a1,0) < −δ/2. In terms of the parameters in (2.16), the conditions (2.4) and (2.5) at t = 0 read,
respectively

|c1,0|2
(

λ

c∗1,0
− iα(a1,0 − a∗1,0 + iδ)

)
= −1, c1,0η1 = 2λ, (2.17)

which, recalling (2.1) and the standard identities coth(z + iπ/2) = tanh(z), tanh(iz) = i tan(z), imply

|c1,0|2
(

1

2
η∗1 +

π

2δ
tan

(
π

δ
Im(a1,0)

))
= −1. (2.18)

2We note that the hyperbolic CM system can be solved exactly by linear algebra methods [25]. Moreover, a
method developed by Matsuno [21] to exactly solve a linear system of ODEs analogous to (2.3) could be adapted
for our purposes. However, for efficiency and due to the fact that exactly solving the elliptic CM system [26] is a
more challenging procedure, we focus on generating numerical examples in this paper.
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Figure 1: A one-soliton solution with the following (initial) parameter values: λ = 1/(10
√
δ),

a1(0) = −(2 + 12i/10)δ, c1(0) ≈ 0.98091
√
δ (the velocity of a1 is determined by (2.4)). The

resulting dynamics of the parameters is obtained from (2.16). The (amplitudes of the) solution
to the IMM system (1.2)–(1.3) is plotted in the upper frames at three points in time. The
corresponding dynamics of a1 is plotted in the lower frames, where a dot indicates the value at
each time, the bold line shows the trajectory since t = 0, and the dotted line shows the future
trajectory (until it exceeds the range of the plot).

This equation has a positive solution for |c1,0| if and only if η1 ∈ R and

η1 +
π

δ
tan

(
π

δ
Im(a1,0)

)
< 0. (2.19)

Suppose a1,0 ∈ C and v1 ∈ R satisfying (2.6) at t = 0 and (2.19) are given. Then c1,0 is determined up to
a phase by (2.18), but the requirement that λ is real and the second equation in (2.17) restrict c1,0 to be
real. Applying Theorem 2.1 to the ansatz (2.2) with N = 1, we arrive at the following explicit traveling
wave solution for the IMM system,(

u(x, t)
v(x, t)

)
=
c1,0η1

2

(
1
−1

)
+ ic1,0

(
α(x− a1,0 − η1t− iδ/2)
−α(x− a1,0 − η1t+ iδ/2)

)
, (2.20)

where

c1,0 =

√
2√

−
(
η1 + π

δ tan
(
π
δ Im(a1,0)

)) . (2.21)

An example of such a solution is presented in Fig. 1.

Remark 2.1. Note that when η1 = 0, we generate stationary solutions and λ = 0. Note, however, that
such solutions still have non-trivial asymptotics (see (2.12)–(2.13)). Via the Galilean transformation (1.12),
these solutions may be transformed into non-stationary solutions.
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2.2.2 Two-soliton solutions

We first develop a method for generating exact initial data for two-soliton solutions. When N = 2, the
constraints (2.5) reduce to

c1
(
λ− ic∗1α(a1 − a∗1 + iδ)− ic∗2α(a1 − a∗2 + iδ)

)
+ 1 = 0,

c2
(
λ− ic∗1α(a2 − a∗1 + iδ)− ic∗2α(a2 − a∗2 + iδ)

)
+ 1 = 0.

(2.22)

The imaginary parts of (2.22) read

Im(c1)λ− Re
(
c1c
∗
2α(a1 − a∗2 + iδ)

)
= 0,

Im(c2)λ− Re
(
c∗1c2α(a2 − a∗1 + iδ)

)
= 0.

(2.23)

We assume Im(c1) 6= 0, in which case the equations in (2.23) are satisfied provided that

c2 = −c1 + d (2.24)

for some d ∈ R (i.e., Im(c1 + c2) = 0) and that

λ = −
Re
(
c1(c∗1 − d)α(a1 − a∗2 + iδ)

)
Im(c1)

. (2.25)

Taking the real parts of (2.22) with (2.24)–(2.25) gives the following system,

Re(c1)Re
(
c1(c∗1 − d)α(a1 − a∗2 + iδ)

)
Im(c1)

+ i|c1|2α(a1 − a∗1 + iδ) + Im
(
c1(c∗1 − d)α(a1 − a∗2 + iδ)

)
− 1 = 0,(

Re(c1)− d
)
Re
(
c1(c∗1 − d)α(a1 − a∗2 + iδ)

)
Im(c1)

− Im
(
c∗1(c1 − d)α(a2 − a∗1 + iδ)

)
− i|c1 − d|2α(a2 − a∗2 + iδ) + 1 = 0.

(2.26)

The first equation in (2.26) is linear in d; provided the coefficient of d in (2.26) is nonzero, we can
solve explicitly for d in terms of c1, a1, and a2. Substituting the resulting expression for d into the second
equation in (2.26) and clearing out denominators gives a seventh-degree polynomial equation in Re(c1)
with real coefficients given by functions of a1, a2, and Im(c1). The coefficient of the highest-order term
in this polynomial has the form Im(c1)f(a1, a2), where f(a1, a2) is nonzero for generic a1, a2. Thus, we
may choose Im(c1) 6= 0 and generic a1, a2 satisfying (2.6)–(2.7) to obtain a seventh-degree polynomial in
Re(c1) with real coefficients, which is guaranteed to have at least one real root. When this root together
with our chosen values of Im(c1) and a1, a2 corresponds to a nonzero coefficient of d in the first equation in
(2.26), we have obtained a solution of the constraints (2.22), and admissible initial data for Theorem 2.1.
An example of such a solution is provided in Figs. 2–3.

2.2.3 Three-soliton solutions

The ideas from Section 2.2.2 can be extended to treat higher-N cases, though the systems of polynomial
equations become more complicated and we only present key details. When N = 3, the constraints (2.5)
reduce to

c1
(
λ− ic∗1α(a1 − a∗1 + iδ)− ic∗2α(a1 − a∗2 + iδ)− ic∗3α(a1 − a∗3 + iδ)

)
+ 1 = 0,

c2
(
λ− ic∗1α(a2 − a∗1 + iδ)− ic∗2α(a2 − a∗2 + iδ)− ic∗3α(a2 − a∗3 + iδ)

)
+ 1 = 0,

c3
(
λ− ic∗1α(a3 − a∗1 + iδ)− ic∗2α(a3 − a∗2 + iδ)− ic∗3α(a3 − a∗3 + iδ)

)
+ 1 = 0.

(2.27)

Similarly to before, by considering linear combinations of the imaginary parts of (2.27), it may be
shown that

c3 = −(c1 + c2) + d (2.28)
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Figure 2: A two-soliton solution with the following (initial) parameter values: λ ≈ 1.6376/
√
δ,

a1(0) = −(2 + 12i/10)δ, a2(0) = (3− 11i/10)δ, c1(0) ≈ (0.29908 + i)
√
δ, c2(0) ≈ −(0.14219 + i)

√
δ

(the initial velocities of a1, a2 are determined by (2.4)). The resulting dynamics of the parameters
is obtained from (1.7) and (2.3). The (amplitudes of the) solution to the IMM system is plotted
in the upper frames at four points in time. The corresponding dynamics of a1, a2 is plotted in
the lower frames, where dots indicate the values at each time, the bold lines show the trajectories
since t = 0, and the dotted line shows the future trajectories (until they exceed the range of the
plot).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3: The trajectories of the parameters c1, c2 in the two-soliton solution in Fig. 2. The black
dots indicate the values at t = 0, while the colored dots indicate the values at the subsequent
times depicted in Fig. 2. Note that some colored dots are very close or coincident, as c1, c2 only
move appreciably when a1, a2 are close together.
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Figure 4: A three-soliton solution with the following (initial) parameter values: λ ≈ −1.1187/
√
δ,

a1(0) = −(2 + 12i/10)δ, a2(0) = (3 − 11i/10)δ, a3(0) = −(7 + 13i/10)δ, c1(0) ≈ (0.81989 −
0.77721i)

√
δ, c2(0) ≈ (−0.77840 + 0.83807i)

√
δ, c3(0) ≈ −(0.95540 + 0.060857i)

√
δ (the initial

velocities of a1, a2, a3 are determined by (2.4)). The resulting dynamics of the parameters is
obtained from (1.7) and (2.3). The (amplitudes of the) solution to the IMM system (1.2)–(1.3)
is plotted in the upper frames at four points in time. The corresponding dynamics of a1, a2, a3 is
plotted in the lower frames, where dots indicate the values at each time, the bold lines show the
trajectories since t = 0, and the dotted lines show the future trajectories (until they exceed the
range of the plot).

for some d ∈ R (i.e., Im(c1 + c2 + c3) = 0 and, provided Im(c1 + c2) 6= 0,

λ = −
Re
(
c1(c∗1 + c∗2 − d)α(a1 − a∗3 + iδ) + c2(c∗1 + c∗2 − d)α(a2 − a∗3 + iδ)

)
Im(c1 + c2)

(2.29)

must hold.

By substituting (2.28)–(2.29) into (2.27), clearing out denominators, and taking the real and imaginary
parts of each equation, we obtain a system of four independent polynomial equations in the variables Re(c1),
Re(c2), Im(c1), Im(c2), and d with real coefficients. Once a1, a2, a3 are specified, these equations, together
with the requirement that Im(c1 + c2) 6= 0, can be solved by standard methods (when a solution exists).
In Figs. 4–5, we provide an example of a three-soliton solution generated using this procedure.

3 Periodic case

We consider the IMM system (1.2) with spatially periodic boundary conditions u(x + 2`, t) = u(x, t) and
v(x+2`, t) = v(x, t) for some ` > 0. In this case, the T and T̃ operators (1.3) can be represented as integral
operators on the interval [−`, `) with a certain 2`-periodic kernel; we refer to [36] for justification of this
claim in a similar context. We define the periodic IMM system to be (1.2) with

(Tf)(x) :=
1

π
−
∫ `

−`
ζ1(x′ − x; `, iδ)f(x′) dx′,

(T̃ f)(x) :=
1

π

∫ `

−`
ζ1(x′ − x+ iδ; `, iδ)f(x′) dx′,

(3.1)

where

ζ1(z; `, iδ) := ζ(z; `, iδ)− ζ(`; `, iδ)

`
z, (3.2)

with ζ(z; `, iδ) the Weierstrass ζ-function with half-periods ` and iδ.
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Figure 5: The trajectories of the parameters c1, c2, c3 in the three-soliton solution in Fig. 4.
The black dots indicate the values at t = 0, while the colored dots indicate the values at the
subsequent times depicted in Fig. 4. Note that some colored dots are very close or coincident, as
each cj (j = 1, 2, 3) only moves appreciably when its corresponding parameter aj is close to at
least one other ak (k 6= j).

We will adapt the main result of Section 2 to the spatially periodic setting. A key object in doing so is
the elliptic CM system, Case IV of (1.7)–(1.8). In order to construct solutions of the periodic IMM system
controlled by the elliptic CM system, we modify the ansatz (2.2) in a number of ways.

We replace the hyperbolic special function α(z) defined in (2.1) with a particular elliptic generalization,

α(z) := ζ2(z; `, iδ), (3.3)

where

ζ2(z; `, iδ) := ζ(z; `, iδ)− ζ(iδ; `, iδ)

iδ
z. (3.4)

We further define

℘2(z; `, iδ) := −∂zζ2(z; `, iδ) = ℘(z; `, iδ) +
ζ(iδ; `, iδ)

iδ
; (3.5)

note that V (z) in Case IV of (1.8) is thus equal to −α′(z). Basic properties of and identities for these
special functions can be found in Appendix A.

Our main result on the periodic IMM system is that it admits solutions in the form(
u(x, t)
v(x, t)

)
= e2iNγ0t

(
λ(t)

(
1
−1

)
+ i

N∑
j=1

cj(t)

(
α(x− aj(t)− iδ/2)
−α(x− aj(t) + iδ/2)

))
, (3.6)

where
γ0 :=

π

2`δ
; (3.7)

observe that λ has been promoted to a dynamical quantity.

More specifically, we will show that the periodic IMM system has solutions in the form (3.6) with the
parameters satisfying the following conditions: {aj}Nj=1 solve the elliptic CM system, Case IV of (1.7)–(1.8),

12



{cj}Nj=1 satisfy the constraint3

N∑
j=1

cj = 0 (3.8)

and solve the ODEs (2.3) with V (z) in Case IV of (1.8), and λ solves

λ̇ =
1

2

N∑
j=1

N∑
k 6=j

(cj − ck)κ′(aj − ak), (3.9)

where
κ(z) := α(z)2 − V (z), (3.10)

with α(z) and V (z) given by (3.3) and Case IV of (1.8), respectively. (As in the case of Theorem 2.1, there
are constraints on the initial conditions of these parameters as well as technical conditions on the behavior
of {aj}Nj=1; see Theorem 3.1 below for the precise statement of the result described above.)

It is interesting to note that the constraint (3.8) means that no nontrivial traveling wave solutions with
N = 1 can be obtained from the ansatz (3.6); correspondingly, the case N = 2 of (3.6) with (3.8) is the
simplest nontrivial one.

The precise statement of the result described above is given in Section 3.1 as Theorem 3.1 and the
corresponding proof can be found in Appendix B. Analysis of the N = 2, 3 cases of Theorem 3.1 is
performed in Section 3.2, where visualizations of particular solutions are also provided.

3.1 Result

Our result is stated and followed by several remarks and a discussion of its relation to Theorem 2.1. We
emphasize that α(z) and V (z) are given by (3.3) and Case IV of (1.8), respectively.

Theorem 3.1. For N ∈ Z≥2, let λ and {aj , cj}Nj=1 be a solution of the system of ODEs consisting of (1.7),
(2.3), and (3.9) on an interval [0, τ) for some τ ∈ (0,∞) ∪ {∞} and with initial conditions that satisfy

cj

(
λ∗ − i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
+ 1 = 0 (j = 1, . . . , N) (3.11)

and (3.8) at t = 0. Moreover, suppose that the conditions (2.6) and

aj 6= ak mod 2` (1 ≤ j < k ≤ N) (3.12)

are satisfied for t ∈ [0, τ). Then, (3.6) solves the periodic IMM system, (1.2) with (3.1), on [0, τ).

3.1.1 Remarks on Theorem 3.1

We give several comments on our result, some of which highlight differences versus Theorem 2.1.

1. The ansatz (2.2) with (3.3) is not 2`-periodic for generic {cj}Nj=1 because ζ2(z) is only quasi-2`-
periodic (A.4) and this necessitates the constraint (3.8).

2. The derivatives of the functions A±(z) in (2.10) with α(z) as in (3.3) are no longer eigenfunctions of
the periodic T operator (1.14) with (3.1), but instead satisfy the relations [37]

(T A′+(· − aj))(x) = iA′+(x− aj) + 2iγ0

(
0
1

)
, T (A′−(· − aj))(x) = −iA′−(x− a∗j ) + 2iγ0

(
1
0

)
.

(3.13)

3If the constraint (3.8) is satisfied at t = 0, it satisfied at future times; see Lemma B.1 for details. Hence, in
Theorem 3.1, (3.8) is only imposed at t = 0.
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The prefactor e2iNγ0t is required to make the ansatz (3.6) consistent in the presence of new terms
proportional to γ0 generated through (3.13) (see Proposition B.1 and its proof in Appendix B for
details).

3. The proof of Theorem 3.1 involves the use of functional identities for α(z) and V (z) at key points.
These identities involve more terms in the elliptic case than in the hyperbolic case (see Appendix A
for details). To make the ansatz (3.6) consistent in the presence of these new terms, we promote λ
to a complex dynamical quantity (see Proposition B.1 and its proof in Appendix B for details).

3.1.2 The relation between Theorems 2.1 and 3.1

We described the key changes to adapt Theorem 2.1 to the spatially periodic setting in Section 3.1.1. To
recover a special case of Theorem 2.1 from Theorem 3.1, one takes a limit as ` → ∞ in Theorem 3.1. In
this limit, the periodic IMM system (1.2) with (3.1) becomes the real-line IMM system (1.2) with (1.3)
and the elliptic functions α(z) and V (z) degenerate to their hyperbolic counterparts (see Appendix A.2 for
details). It is then straightforward to verify that Theorem 3.1 essentially becomes Theorem 2.1 (note that
(A.11) implies that (3.9) becomes λ̇ = 0; we may assume λ is a real constant without loss of generality by
(1.11)). The outstanding issue is the constraint (3.8), which is essential in the periodic case but superfluous
(though not inconsistent) in the real-line case. Thus, in the limit described above, Theorem 3.1 becomes a
specialization of Theorem 2.1 with the additional constraint (3.8).

Practically, to prove Theorem 2.1, one takes the proof of Theorem 3.1 in Appendix B, drops the
condition (3.8), and makes the replacements κ(z)→ (π/2δ)2 (A.11) and γ0 → 0 throughout.

3.2 Examples of solutions

Analogously to Section 2.2, where methods for generating and examples of soliton solutions are provided,
we consider the cases N = 2, 3 of Theorem 3.1 (recall that the case N = 1 does not exist). The key step,
as before, is solving the nonlinear constraints (3.11), now subject to (3.8). The N = 2 case is solved in
full, giving an algorithm for finding all solutions of the constraints (3.8) with (3.11) when N = 2. In the
case N = 3, we manipulate the constraints into a manageable form and provide a method for generating
a restricted class of solutions. We also provide visualizations of solutions of the periodic IMM system
resulting from these methods.

The squared amplitudes of the solutions of the periodic IMM system constructed by Theorem 3.1 are
given by (

|u|2
|v|2

)
= B

(
1
1

)
− i

N∑
j=1

(
α(x− aj − iδ/2)− α(x− a∗j + iδ/2)
α(x− aj + iδ/2)− α(x− a∗j − iδ/2)

)
, (3.14)

where

B(t) := |λ(t)|2 +
1

2

N∑
j=1

N∑
k=1

cj(t)ck(t)∗κ
(
aj(t)− ak(t)∗ + iδ

)
; (3.15)

see Appendix D.1 for a proof. As in the real-line case, B is apparently dynamical, but actually conserved
in time; see Appendix D.2 for a proof. Thus, the dynamics of λ and {cj}Nj=1 play no role in (3.14)–(3.15).

As in the real-line case, our solutions exhibit4 “dark” excitations in the u-amplitude and “bright”
excitations in the v-amplitude. We provide visualizations of example solutions below with units obtained
from (2.14) and ` expressed in units of δ.5

4To see this, one again verifies that (when (2.6) holds) fj,±(x) = −i(α(x− aj ∓ iδ/2)− α(x− a∗j ± iδ/2)) ≶ 0 is
satisfied for x ∈ [−`, `).

5To see that (2.14) is still applicable when α(z) and V (z) are given by (3.3) and Case IV of (1.8), respectively,
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3.2.1 Two-wave solutions

We consider the constraints (2.5) with N = 2 at some fixed time; by imposing (3.8) as c2 = −c1, using
the U(1) × U(1) invariance of the IMM system (1.11), we may assume λ ∈ R (at this fixed time). The
constraints are thus given by (2.22) (with α(z) defined in (3.3)), which we rearrange to

|c1|2
(
λ

c∗1
− i
(
α(a1 − a∗1 + iδ)− α(a1 − a∗2 + iδ)

))
= −1,

|c1|2
(
λ

c∗1
+ i
(
α(a2 − a∗1 + iδ)− α(a2 − a∗1 + iδ)

))
= 1.

(3.17)

By adding and subtracting the equations in (3.17), we obtain

i
(
α(a1 − a∗1 + iδ) + α(a2 − a∗2 + iδ)− α(a1 − a∗2 + iδ)− α(a2 − a∗1 + iδ)

)
=

2

|c1|2
,

λ

c∗1
=

i

2

(
α(a1 − a∗1 + iδ)− α(a2 − a∗2 + iδ)− α(a1 − a∗2 + iδ) + α(a2 − a∗1 + iδ)

)
.

(3.18)

The first equation in (3.18) is equivalent to

g(Re(a1 − a2)) = i
(
α(2i Im(a1) + iδ) + α(2i Im(a2) + iδ)

)
− 2

|c1|2
, (3.19)

where
g(z) := i

(
α(z + i Im(a1 + a2) + iδ)− α(z − i Im(a1 + a2) + iδ)

)
. (3.20)

We note that both sides of (3.19) are real by the invariance of α(z) under Schwarz conjugation (A.7). We
suppose the imaginary parts of a1, a2 satisfying (2.6) are given and investigate the solvability of (3.19) for
Re(a1 − a2). To do this, we first analyze the function g(z).

The function g(z) is real-valued for real arguments and 2`-periodic by (A.4). We determine its extrema
for z ∈ [0, 2`). The derivative of g(z) is found, using (3.3) and (3.5), to be

g′(z) = −i
(
V (z + i Im(a1 + a2) + iδ)− V (z − i Im(a1 + a2) + iδ)

)
, (3.21)

which is clearly an elliptic function. In the nondegenerate case, where 2i Im(a1+a2) 6= 0 mod 2iδ (otherwise
g(z) is the zero function), g′(z) is a degree-four elliptic function, taking each value four times, counting
multiplicity, within a period parallelogram. By inspecting (3.21), we see that within a period parallelogram,
the set of zeroes of g′(z) is {0, `, iδ, `+ iδ}, all of which are simple. By inserting the first two of these into
(3.20), we find that

0 ≤ σg(x) ≤
∣∣2iα(i Im(a1 + a2) + iδ)

∣∣ (x ∈ R), (3.22)

where
σ = sgn(2iα(i Im(a1 + a2) + iδ)). (3.23)

The equation (3.18) is solvable when its right-hand side lies in the range of g(x),

0 ≤ σ
(

i
(
α(2i Im(a1) + iδ) + α(2i Im(a2) + iδ)

)
− 2

|c1|2

)
≤
∣∣2iα(i Im(a1 + a2) + iδ)

∣∣. (3.24)

We now make use of the observations above. Suppose Im(a1), Im(a2) and |c1| are chosen so that (3.24)
holds. Then, (3.19) can be solved for Re(a1 − a2). Using this solution, the first equation in (3.18) holds.
The second equation in (3.18) is then solved after choosing a phase for c1 such that the solution for λ is
real. This provides admissible initial data for Theorem 3.1; an example solution corresponding to such
initial data is given in Figs. 6–7.

we recall the scaling formulas for the Weierstrass ζ- and ℘-functions [38, Eqs. (23.10.17–23.10.18)],

ζ(cz; c`, cδ) = c−1ζ(z; `, δ), ℘(cz; c`, cδ) = c−2℘(z; `, δ), (3.16)

valid for arbitrary c ∈ C\{0} and observe that (3.16) extends to the ζ2- and ℘2-functions defined in (3.4) and (3.5),
respectively.
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Figure 6: A periodic two-wave solution with ` = πδ and the initial parameter values λ(0) ≈
1.7836/

√
δ, a1(0) = −(2 + 4i/3)δ, a2(0) ≈ (1.9780− i)δ, c1(0) = −c2(0) ≈ (0.56146 + 0.64878i)

√
δ

(the initial velocities of a1, a2 are determined by (2.4). The resulting dynamics of the parameters
are obtained from (1.7) and (2.3). The (amplitudes of the) solution (2.2) to the periodic IMM
system (1.2) with (3.1) is plotted in the upper frames at four points in time. The corresponding
dynamics of a1, a2 is plotted in the lower frames, where dots indicate the values at each time,
the bold lines show the trajectories since t = 0, and the dotted lines show the future trajectories
(which, in this example, are time-periodic).

Remark 3.1. When N = 2 and c2 = −c1 is imposed, the elliptic CM system, Case IV of (1.7)–(1.8) is
reduced to

ä1 = −ä2 = −4V ′(a1 − a2). (3.25)

By introducing the variables a± := a1 ± a2, the first equation in (3.25) can be written as the system
ä+ = 0 and ä− = −8V ′(a−), the latter of which is solved by the sixth Painlevé transcendent with particular
parameter values; see [39] for details.

3.2.2 Three-wave solutions

Similar to the three-soliton case considered in Section 2.2.3, the question of solving constraints to generate
three-wave initial data is significantly more difficult than its two-wave counterpart. We present a method
to generate a restricted class of N = 3 solutions from Theorem 3.1.

We consider the constraints (2.5) with N = 3 at some fixed time; by imposing (3.8) as c3 = −c1 − c2,
using the U(1) × U(1) invariance of the IMM system (1.11), we may assume λ ∈ R (at this fixed time).
The constraints are thus given by (2.27) (with α(z) defined in (3.3)).

To proceed, we write
c2 = wc1 (w ∈ C \ {0}) (3.26)

so that c3 = −(1 + w)c1. Then, adding the three equations in (2.27) leads to

i
(
α(a1 − a∗1 + iδ) + α(a3 − a∗3 + iδ)− α(a1 − a∗3 + iδ)− α(a3 − a∗1 + iδ)

)
− 2 Im

(
w
(
α(a2 − a∗1 + iδ)− α(a2 − a∗3 − iδ)− α(a3 − a∗1 + iδ) + α(a3 − a∗3 + iδ)

))
+ i|w|2

(
α(a2 − a∗2 + iδ) + α(a3 − a∗3 + iδ)− α(a2 − a∗3 + iδ)− α(a3 − a∗2 + iδ)

)
=

3

|c1|2
. (3.27)

We rewrite (3.27) as
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Figure 7: The trajectories of the parameters λ and c1, c2 in the periodic two-wave solution in Fig. 6.
The black dots indicate the positions of λ and c1, c2 at t = 0. The parameter λ is effectively static
(equal to its initial value) on the time interval depicted in Fig. 6, but the dotted line shows its
future trajectory up to the maximal time t = 20δ2. For the parameters c1, c2, the colored dots
indicate the values at the subsequent times depicted in Fig. 6, the bold lines show the trajectories
up to the last time in Fig. 6 (t = 6δ2/5), and the dotted lines show the future trajectories up to
the maximal time t = 10δ2.
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g13(Re(a1 − a3)) + |w|2g23(Re(a2 − a3))

= i
(
α(2i Im(a1,0) + iδ) + |w|2α(2i Im(a2) + iδ) + (1 + |w|2)α(2i Im(a3) + iδ)

)
− 3

|c1|2

− 2 Im
(
w
(
α(a2 − a∗1 + iδ)− α(a2 − a∗3 − iδ)− α(a3 − a∗1 + iδ) + α(a3 − a∗3 + iδ)

))
, (3.28)

where
gjk(z) := i

(
α(z + i Im(aj + ak) + iδ)− α(z − i Im(aj + ak) + iδ)

)
(j, k = 1, 2, 3), (3.29)

in generalization of (3.20).

Note that (3.28) is independent of λ. To obtain an second equation independent of λ, we multiply the
first equation in (2.27) by w and subtract the second equation in (2.27), yielding

− iw
(
α(a1 − a∗1 + iδ)− α(a1 − a∗3 + iδ)− α(a2 − a∗1 + iδ) + α(a2 − a∗3 + iδ)

)
− i|w|2

(
α(a1 − a∗2 + iδ)− α(a1 − a∗3 + iδ)− α(a2 − a∗2 + iδ) + α(a2 − a∗3 + iδ)

)
=

1− w
|c1|2

. (3.30)

Suppose the parameters a1, a2, a3 can be chosen so that (3.28) and (3.30) can be solved for |c1| and w
and consider the first equation in (2.27), which we write as

|c1|2
(
λ

c∗1
− i
(
α(a1 − a∗1 + iδ) + w∗α(a1 − a∗2 + iδ)− (1 + w∗)α(a1 − a∗3 + iδ)

)
+ 1 = 0. (3.31)

By an appropriate choice of phase for c1, (3.31) can be solved to yield a real value for λ. While we have
been unable to find a general procedure to determine a1, a2, a3 such that (3.28) and (3.30) are consistent
equations for |c1| and w, we will discuss the simplified problem arising when the real parts of a1, a2, a3 are
chosen to be identical and w is assumed to be real.

Suppose a1, a2, a3 are given such that Re(a1) = Re(a2) = Re(a3) and assume w ∈ R \ {0}. Then,
both (3.28) and (3.30) are quadratic in w and linear in 1/|c1|2 with real coefficients. These equations are
straightforwardly solved for w and |c1| (when a solution exists), after which λ ∈ R can be found as described
above. This provides admissible initial data for Theorem 3.1; an example solution corresponding to such
initial data is given in Figs. 8–9.

4 Discussion

In this paper, we have introduced a new intermediate nonlinear Schrödinger system, which interpolates
between the mixed Manakov system and the HNLS equation, and solved it by developing relations with CM
many-body systems. More specifically, we constructed exact multi-soliton solutions of the IMM system on
the real line governed by the hyperbolic CM system and corresponding multi-wave solutions of the periodic
IMM system governed by the elliptic CM system. Our results strongly suggest that the IMM system is an
integrable model and worthy of further study; we list some such possibilities below.

1. We have presented methods to solve the nonlinear constraints of Theorems 2.1 and 3.1 for small
values of N . Analogous nonlinear constraints have arisen in the study of N -soliton solutions of the
half-wave maps [40] and spin Benjamin-Ono [24] equations; these constraints can be linearized [23, 24]
and systematically solved by linear algebra for arbitrary N ≥ 1. Thus, it is an interesting question
as to whether the same can be done in the present case. We note any such method would expectedly
also apply to the soliton solutions of the HNLS equation [21].

2. Continuum limits of CM systems have been the subject of a number of recent studies [41, 42, 43, 14].
It would be interesting to understand if there is a relation between the IMM system and continuum
limits of the hyperbolic and elliptic CM systems (or the two-particle species generalizations of versions
of these CM systems [44, 22]).
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Figure 8: A periodic three-wave solution with ` = πδ and the initial parameter values λ(0) ≈
−4.6166/

√
δ, a1(0) = −13iδ/10, a2(0) = −5iδ/6, a3(0) = −3iδ/4, c1(0) ≈ −2.5617

√
δ, c2(0) ≈

1.0219
√
δ, c3(0) ≈ 1.5398

√
δ (the initial velocities of a1, a2, a3 are determined by (2.4)). The

resulting dynamics of the parameters is obtained from (1.7) and (2.3). The (amplitudes of the)
solution (2.2) to the periodic IMM system (1.2) with (3.1) is plotted in the upper frames at four
points in time. The corresponding dynamics of a1, a2, a3 is plotted in the lower frames, where dots
indicate the values at each time, the bold lines show the trajectories since t = 0, and the dotted
lines show the future trajectories up to the maximal time t = 13δ2/10.
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Figure 9: The trajectories of the parameters λ and c1, c2, c3 in the periodic three-wave solution in
Fig. 8. The black dots indicate the positions of λ and c1, c2, c3 at t = 0. The colored dots indicate
the values at the subsequent times depicted in Fig. 8, the bold lines show the trajectories up to
the last time in Fig. 8 (t = 3δ2/10), and the dotted lines show the future trajectories, up to the
maximal times t ≈ 0.42δ2 for λ (where the trajectory exceeds the range of the plot) and t = δ2 for
the c1, c2, c3 parameters. Note that for both c2 and c3, the colored dots coincide at certain points
in time.
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3. The IMM system is related to two recently-introduced integrable systems: the non-chiral intermediate
long wave equation [22] and the non-chiral intermediate Heisenberg ferromagnet equation [23]. Like
these equations, the IMM system involves the integral operators T and T̃ and admits multi-soliton
solutions described by a CM system subject to certain constraints. These equations admit Lax pairs
and infinite numbers of conservation laws, so it would be interesting to investigate the existence of
similar structures for the IMM system.

4. The original derivation of the INLS equation (1.6) as carried out in [15] uses a multiscale expansion
technique, with the intermediate long wave equation as a starting point. It would be interesting to
know if there is a similar correspondence between the non-chiral intermediate long wave equation [22]
and the IMM system, i.e., if the IMM system describes envelope waves in the non-chiral intermediate
long wave equation.

5. By using the method in Appendix C, it may be shown that the σ = +1 and σ = −1 cases of the
system

iut = uxx + u(i− σT )(|u|2)x − σuT̃ (|v|2)x,

ivt = vxx + v(i− σT )(|v|2)x − σvT̃ (|u|2)x
(4.1)

are reducible to the focusing and defocusing Manakov systems (1.1), respectively, in the limit δ ↓ 0.
It would be interesting to study these intermediate versions of the focusing and defocusing Manakov
systems from the perspective of integrability.
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Lenells for useful discussions and collaboration on closely related subjects. We are grateful for stimulating
conversations with Katia Gallo and Daniel Qvarng̊ard on vector nonlinear Schrödinger equations and Anton
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Grant 211-0122. This article is based on results obtained in the master’s thesis of A.F. in theoretical physics
at KTH Royal Institute of Technology.

A Special functions

We collect identities for the special functions needed in the main text. Identities for elliptic variants of α(z)
and V (z), defined in (3.3) and Case IV of (1.8), respectively, are given in Appendix A.1. The identities
for the hyperbolic variants of α(z) and V (z), defined in (2.1) and Case III of (1.8), respectively, can be
obtained by degeneration of the corresponding elliptic identities in the limit ` → ∞. The procedure for
doing so is provided in Appendix A.2.

A.1 Elliptic functions

We refer to [38, Chapter 23] for definitions of the Weierstrass functions ζ(z; `, iδ) and ℘(z; `, iδ). The
modifications of these functions we use, α(z) = ζ2(z; `, iδ) and V (z) = ℘2(z; `, iδ), are defined in terms
of these basic functions in (3.4)–(3.5); the function κ(z) is defined in (3.10). These functions satisfy the
identities

α′(z) = − V (z), (A.1)

α(z)2 = V (z) + κ(z), (A.2)

α(z − a)α(z − b) = α(a− b)
(
α(z − a)− α(z − b)

)
+

1

2
(κ(z − a) + κ(z − b) + κ(a− b)

)
+

3ζ(iδ; `, iδ)

2iδ
. (A.3)
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for z, a, b ∈ C. Moreover, the following periodicity properties hold,

α(z ± 2`) = α(z)± π

δ
, V (z ± 2`) = V (z), κ(z ± 2`) = κ(z)± 2π

δ
α(z) +

(
π

δ

)2

(A.4)

and
α(z ± 2iδ) = α(z), V (z ± 2iδ) = V (z), κ(z ± 2iδ) = κ(z). (A.5)

Proofs of each identity (A.2)–(A.5), excepting the periodicity properties of κ(z), can be found in [36,
Appendix A]. The periodicity properties of κ(z) follow from those of α(z) and V (z) in (A.4)–(A.5) and the
definition of κ(z) (3.10).

The following parity properties hold as consequences of the fact that ζ(z) is an odd function, ζ(−z) =
−ζ(z), and ℘(z) is an even function, ℘(−z) = ℘(z), and the definitions (3.4)–(3.5) and (3.10),

α(−z) = −α(z), V (−z) = V (z), κ(−z) = κ(z), κ′(−z) = −κ′(z). (A.6)

The Weierstrass ζ- and ℘-functions with one real and one imaginary half-period are invariant under
Schwarz conjugation, ζ(z∗)∗ = ζ(z) and ℘(z∗)∗ = ℘(z). From the definitions (3.4)–(3.5) and (3.10), it
follows that also

α(z∗)∗ = α(z), V (z∗)∗ = V (z), κ(z∗)∗ = κ(z). (A.7)

A.2 Hyperbolic functions

Consider the limit

lim
`→∞

ζ(z; `, iδ) =
π

2δ
coth

(
π

2δ
z

)
− 1

3

(
π

2δ

)2

z, (A.8)

which gives, in particular,

lim
`→∞

ζ(iδ; `, iδ)

iδ
= −1

3

(
π

2δ

)2

. (A.9)

It follows from (A.8)-(A.9) and (3.4) that the special functions α(z) and V (z) in the elliptic and hyperbolic
cases are related via the limit `→∞,

lim
`→∞

ζ2(z; `, iδ) =
π

2δ
coth

(
π

2δ
z

)
, lim

`→∞
℘2(z; `, iδ) =

(
π
2δ

)2
sinh2

(
π
2δ z
) , (A.10)

and, moreover,

lim
`→∞

κ(z; `, iδ) =

(
π

2δ

)2

, (A.11)

using (3.10). The hyperbolic counterpart of each identity in Appendix A.1, excepting (A.4), can be obtained
by making the replacements (A.9)–(A.11).

B Proofs

This section contains a detailed proof of Theorem 3.1. The proof, which is built on three propositions, is
given in Appendix B.1. The proofs of the supporting propositions are given in Appendices B.2–B.4.
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B.1 Proof of Theorem 3.1

We first establish conditions under which the ansatz (3.6) solves the periodic IMM system.

Proposition B.1. The ansatz (3.6) solves the periodic IMM system, (1.2) with (3.1), provided that the
time evolution equations (2.3)–(2.4) and (3.9), the equality constraints (3.8) and (3.11), and the inequality
constraints (2.6) and (3.12) are satisfied.

Proof. See Appendix B.2.

We next show that the time evolution equations and two of the constraints in Proposition B.1 are
compatible. We first prove this for the constraint (3.8).

Lemma B.1. Let {aj , cj}Nj=1 be a solution of (2.3) on [0, τ) such that (3.8) holds at t = 0 and (3.12) holds
on [0, τ). Then, (3.8) holds on [0, τ).

Proof. Let

C :=

N∑
j=1

cj . (B.1)

By differentiating (B.1) with respect to time and inserting (2.3), we have

Ċ =

N∑
j=1

ċj = 2i

N∑
j=1

N∑
k 6=j

(cj − ck)V (aj − ak). (B.2)

As the summand of the double sum is well-defined by the assumption that (3.12) holds and anti-symmetric
with respect to the interchange j ↔ k (because V (z) is an even function (A.6)), the double sum vanishes
and we have Ċ = 0. Thus, C is equal to its initial value on [0, τ). In particular, if (3.8) holds at t = 0, we
have C = 0 at t = 0 and consequently on [0, τ).

The preceding lemma is used to prove the following proposition, which states that the constraint (3.11)
is also compatible with the system of first-order ODEs in Proposition B.1.

Proposition B.2. Let λ and {aj , cj}Nj=1 be a solution of (3.9) and (2.3)–(2.4) on [0, τ) such that (3.8)
and (3.11) hold at t = 0 and (3.12) holds on [0, τ). Then, (3.11) holds on [0, τ).

Proof. See Appendix B.3.

Together, Propositions B.1–B.2 show that a solution of the first-order system of equations (2.3)–(2.4)
and (3.9) on [0, τ) where (i) the initial conditions satisfy (3.8) and (3.11) and (ii) the conditions (2.6) and
(3.12) hold on [0, τ) can be used to construct a solution of the periodic IMM system. The next proposition
states that under certain conditions, a solution of the system of equations consisting of the CM equations
of motion (1.7) and the time evolution equations for {cj}Nj=1 (2.3) and λ (3.9) also solves the first-order
system of Propositions B.1–B.2.

Proposition B.3. Let λ and {aj , cj}Nj=1 be a solution of (1.7), (2.3), and (3.9) on [0, τ) such that (2.4)
and (3.8) hold at t = 0 and (3.12) holds on [0, τ). Then, (2.4) is satisfied on [0, τ).

Proof. See Appendix B.4.
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The observations above can now be used to prove the theorem. Suppose we are given λ and {aj , cj}Nj=1

that satisfy (i) the equations of motion (1.7), (2.3), and (3.9) on [0, τ), (ii) the equality constraints (3.8)
and (3.11) at t = 0, and (iii) the inequality constraints (2.6) and (3.12) on [0, τ). By Proposition B.3,
we have that the first-order equations of motion for {aj}Nj=1 (2.4) are satisfied on [0, τ). Lemma B.1
and Proposition B.2 then show that the constraints (3.8) and (3.11), respectively, hold on [0, τ). The
assumptions of Proposition B.1 are now satisfied and consequently the ansatz (3.6) with our supposed
solution λ and {aj , cj}Nj=1 provides a solution of the periodic IMM system on [0, τ). This completes the
proof.

B.2 Proof of Proposition B.1

Using (1.15), the ansatz (3.6) may be written as

U = e2iNγ0t

(
λE + i

N∑
j=1

cjA+(x− aj)

)
(B.3)

with

E :=

(
1
−1

)
(B.4)

and A±(z) as in (2.10) (the function A− appears in U∗ and is thus needed below). Observe that E in (B.4)
acts as the identity on two-vectors under the operation ◦ defined in (1.13).

We compute each term in (1.15) with (B.3) and (3.8). The first two terms are found to be

iUt = −2Nγ0U + ie2iNγ0t

(
λ̇E + i

N∑
j=1

(
ċjA+(x− aj)− cj ȧjA′+(x− aj)

))
(B.5)

and

Uxx = ie2iNγ0t
N∑
j=1

cjA
′′
+(x− aj). (B.6)

We compute the nonlinear term in (1.15) in several steps starting from

(U ◦U∗)x = −iλ

N∑
j=1

c∗jA
′
−(x− a∗j ) + iλ∗

N∑
j=1

cjA
′
+(x− aj) +

N∑
j=1

N∑
k=1

cjc
∗
k

(
A+(x− aj) ◦A−(x− a∗k)

)
x
, (B.7)

where we have used that A+(x − ak)∗ = A−(x − a∗k) as a consequence of (A.7). To proceed, we need the
identity

A+(x− aj) ◦A−(x− a∗k) = α(aj − a∗k + iδ)
(
A+(x− aj)−A−(x− a∗k)

)
+

1

2

(
K+(x− aj) +K−(x− a∗k) + κ(aj − a∗k + iδ)E

)
+

3ζ(iδ)

2iδ
E, (B.8)

where

K±(z) :=

(
κ(z ∓ iδ/2)
−κ(z ± iδ/2)

)
, (B.9)

which follows from (A.3) by specializing variables. By differentiating (B.8) with respect to x, we find(
A+(x−aj)◦A−(x−a∗k)

)
x

= α(aj−a∗k+iδ)
(
A′+(x−aj)−A′−(x−a∗k)

)
+

1

2

(
K ′+(x−aj)+K ′−(x−a∗k)

)
(B.10)

and inserting this into (B.7) gives

(U ◦ U∗)x = − iλ

N∑
j=1

c∗jA
′
−(x− a∗j ) + iλ∗

N∑
j=1

cjA
′
+(x− aj)
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+

N∑
j=1

N∑
k=1

cjc
∗
kα(aj − a∗k + iδ)

(
A′+(x− aj)−A′−(x− a∗k)

)
+

1

2

N∑
j=1

N∑
k=1

cjc
∗
k

(
K ′+(x− aj) +K ′−(x− a∗k)

)
, (B.11)

but the final line vanishes by (3.8).

We now require the following result from [37], which will be used to compute the action of T on
(U ◦ U∗)x.

Lemma B.2. When (2.6) is satisfied, the operator T has the actions (3.13) on the functions A′+(x− aj)
and A′−(x− a∗j ).

It thus follows from (3.13) that

((i + T )A′+(· − aj))(x) = 2iA′+(x− aj) + 2iγ0

(
0
1

)
, ((i + T )A′−(· − a∗j ))(x) = 2iγ0

(
1
0

)
(B.12)

under the condition (2.6). Hence, applying (i + T ) to (B.11) (with the final line removed) gives

(i + T )(U ◦ U∗)x = − 2λ∗
N∑
j=1

cjA
′
+(x− aj) + i

N∑
j=1

N∑
k=1

cjc
∗
kα(aj − a∗k + iδ)

(
2A′+(x− aj)− 2γ0E)

= − 2

N∑
j=1

cjA
′
+(x− aj)

(
λ∗ − i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
− 2iγ0

N∑
j=1

N∑
k=1

cjc
∗
kα(aj − a∗k + iδ)E.

(B.13)

By inserting (2.5) and
N∑
j=1

N∑
k=1

cjc
∗
kα(aj − a∗k + iδ) = −iN, (B.14)

which follows from (2.5) and (3.8), into the first and second terms in (B.13), respectively, we obtain

(i + T )(U ◦ U)x = −2Nγ0E + 2

N∑
j=1

A′+(x− aj). (B.15)

Next, ◦-multiplication of (B.15) by U leads to

U◦(i+T )(U◦U)x = −2Nγ0U+2e2iNγ0tλ

N∑
j=1

A′+(x−aj)+2ie2iNγ0t
N∑
j=1

N∑
k=1

cjA+(x−aj)◦A′+(x−ak). (B.16)

We will now employ the identities

A+(x− aj) ◦A′+(x− aj) = −1

2
A′′+(x− aj) +

1

2
K ′+(x− aj) (B.17)

and

A+(x− aj) ◦A′+(x− ak) = − α(aj − ak)A′+(x− ak)− V (aj − ak)
(
A+(x− aj)−A+(x− ak)

)
+

1

2
K ′+(x− ak) +

1

2
κ′(aj − ak)E, (B.18)
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which are obtained by differentiating (A.2) and (A.3), respectively and specializing variables. We evaluate
the double sum in (B.16), using (B.17) and (B.18) for terms with j = k and j 6= k, respectively; this leads
to

U ◦ (i + T )(U ◦ U)x = − 2Nγ0U + 2e2iNγ0tλ

N∑
j=1

A′+(x− aj)− ie2iNγ0t
N∑
j=1

cj
(
A′′+(x− aj)−K ′+(x− aj)

)
− 2ie2iNγ0t

N∑
j=1

N∑
k 6=j

cjα(aj − ak)A′+(x− ak)

− 2ie2iNγ0t
N∑
j=1

N∑
k 6=j

cjV (aj − ak)
(
A+(x− aj)−A+(x− ak)

)
+ ie2iNγ0t

N∑
j=1

N∑
k 6=j

cjK
′
+(x− ak) + ie2iNγ0t

N∑
j=1

N∑
k 6=j

cjκ′(aj − ak)E. (B.19)

All terms in K ′+(x − aj) in (B.19) vanish by (3.8) (to see this, swap j ↔ k in the first double sum in the
fourth line and add to this the K ′+(x−aj) terms in the first line). Using this, swapping j ↔ k in the double
sum in the second line, rewriting the double sum in the third line as

N∑
j=1

N∑
k 6=j

cjV (aj − ak)
(
A+(x− aj)−A+(x− ak)

)
=

1

2

N∑
j=1

N∑
k 6=j

(cj − ck)V (aj − ak)
(
A+(x− aj)−A+(x− ak)

)
=

N∑
j=1

N∑
k 6=j

(cj − ck)V (aj − ak)A+(x− aj), (B.20)

symmetrizing the second double sum in the fourth line, and rearranging, (B.19) becomes

U ◦ (i + T )(U ◦ U)x = − 2Nγ0U +
i

2
e2iNγ0t

N∑
j=1

N∑
k 6=j

(cj − ck)κ′(aj − ak)E

− 2ie2iNγ0t
N∑
j=1

N∑
k 6=j

(cj − ck)V (aj − ak)A+(x− aj)

+ e2iNγ0t
N∑
j=1

A′+(x− aj)

(
2λ− 2i

N∑
k 6=j

ckα(aj − ak)

)
− ie2iNγ0t

N∑
j=1

cjA
′′
+(x− aj).

(B.21)

Inserting (B.5), (B.6), and (B.21) into (1.15) yields

iUt − Uxx − U ◦ (i + T )(U ◦ U∗)x = e2iNγ0t

(
iλ̇+

i

2

N∑
j=1

N∑
k 6=j

(cj − ck)κ′(aj − ak)

)
E

+ e2iNγ0t
N∑
j=1

A+(x− aj)

(
− ċj + 2i

N∑
k 6=j

(cj − ck)V (aj − ak)

)

+ e2iNγ0t
N∑
j=1

A′+(x− aj)

(
cj ȧj − 2λ− 2i

N∑
k 6=j

ckα(aj − ak)

)
. (B.22)

Then, the linear independence of E and {A+(x − aj), A′+(x − aj)}Nj=1 for distinct {aj}Nj=1 (3.12) implies
that the periodic IMM system (1.15) is satisfied when (2.3)–(2.4) and (3.9) hold.
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B.3 Proof of Propositon B.2

We start by making the definition

Dj := cj

(
λ∗ − i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
(j = 1, . . . , N). (B.23)

We will show each Dj is conserved when the initial conditions {Dj(0) = −1}Nj=1 are satisfied. In this proof
we repeatedly use that α(z) is a 2iδ-periodic, odd function and that V (z) is a 2iδ-periodic, even function;
see (A.5)–(A.6).

By differentiating (B.23) with respect to t using and rearranging, we have

Ḋj − cj λ̇∗ = ċj

(
λ∗ − i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
+ i

N∑
k=1

cjc
∗
kȧjV (aj − a∗k + iδ)

− i

N∑
k=1

cj ċ
∗
kα(aj − a∗k + iδ)− i

N∑
k=1

cjc
∗
kȧ
∗
kV (aj − a∗k + iδ), (B.24)

We consider the first and second lines of (B.24) separately.

By inserting (2.3) and (2.4), the first line of (B.24) becomes

2iλ∗
N∑
k 6=j

(cj − ck)V (aj − ak) + 2

N∑
k=1

N∑
l 6=j

c∗k(cj − cl)α(aj − a∗k + iδ)V (aj − al)

+ 2iλ

N∑
k=1

c∗kV (aj − a∗k + iδ)− 2

N∑
k=1

N∑
l 6=j

c∗kclα(aj − al)V (aj − a∗k + iδ) (B.25)

To proceed, we need the following identity

α(aj − a∗k + iδ)V (aj − al) + α(aj − al)V (aj − a∗k + iδ) =

α(a∗k − al + iδ)
(
V (aj − a∗k + iδ)− V (aj − al)

)
− 1

2

(
κ′(aj − a∗k + iδ) + κ′(aj − al)

)
, (B.26)

which is obtained by differentiating (A.3) and specializing variables. Inserting (B.26) into (B.25) gives

2iλ∗
N∑
k 6=j

(cj − ck)V (aj − ak) + 2iλ

N∑
k=1

c∗kV (aj − a∗k + iδ)

+ 2

N∑
k 6=j

N∑
l=1

cjc
∗
l α(aj − a∗l + iδ)V (aj − ak)− 2

N∑
k 6=j

N∑
l=1

ckc
∗
l α(ak − a∗l + iδ)V (aj − al)

− 2

N∑
k=1

N∑
l 6=j

c∗kclα(a∗k − al + iδ)V (aj − a∗k + iδ) +

N∑
k=1

N∑
l 6=j

c∗kcl
(
κ′(aj − a∗k + iδ) + κ′(aj − al)

)
, (B.27)

where we have renamed indices k ↔ l in the second line. The definition of Dj (B.23) allows us to rewrite
(B.27) as

2i

N∑
k 6=j

(Dj −Dk)V (aj − ak) + 2iλ

N∑
k=1

c∗kV (aj − a∗k + iδ)

− 2

N∑
k=1

N∑
l 6=j

c∗kclα(a∗k − al + iδ)V (aj − a∗k + iδ) +

N∑
k=1

N∑
l 6=j

c∗kcl
(
κ′(aj − a∗k + iδ) + κ′(aj − al)

)
. (B.28)
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We now turn to the second line of (B.24), which upon insertion of (2.3) and (2.4) reads

−2

N∑
k=1

N∑
l 6=k

cj(c
∗
k− c∗l )α(aj −a∗k + iδ)V (a∗k−a∗l )− 2i

N∑
k=1

cj

(
λ∗− i

N∑
l 6=k

c∗l α(a∗k−a∗l )

)
V (aj −a∗k + iδ). (B.29)

By making the replacements aj → a∗k, a∗k → aj , al → a∗l in (B.26), we find

α(aj − a∗k + iδ)V (a∗k − a∗l )− α(a∗k − a∗l )V (aj − a∗k + iδ) =

α(aj − a∗l − iδ)
(
V (a∗k − a∗l )− V (aj − a∗k + iδ)

)
− 1

2

(
κ′(aj − a∗k + iδ)− κ′(a∗k − a∗l )

)
. (B.30)

Inserting (B.30) into (B.29) and simplifying, we arrive at

− 2iλ∗
N∑
k=1

cjV (aj − a∗k + iδ)− 2

N∑
k=1

N∑
l 6=k

cj
(
c∗kα(aj − a∗k + iδ)− c∗l α(aj − a∗l + iδ)

)
V (a∗k − a∗l )

− 2

N∑
k=1

N∑
l 6=k

cjc
∗
l α(aj − a∗l + iδ)V (aj − a∗k + iδ)−

N∑
k=1

N∑
l 6=k

cjc
∗
l κ′(aj − a∗k + iδ) +

N∑
k=1

N∑
l 6=k

cjc
∗
l κ′(a∗k − a∗l ).

(B.31)

It is possible to further simplify (B.31) in two ways. Firstly, we note that the double sum in the first
line of (B.31) vanishes by symmetry. Secondly, using (3.9), the last sum in (B.31) can be reexpressed as

N∑
k=1

N∑
l 6=k

cjc
∗
l κ′(a∗k − a∗l ) = −1

2

N∑
k=1

N∑
l 6=k

cj(c
∗
k − c∗l )κ′(a∗k − a∗l ) = −cj λ̇∗. (B.32)

Using these simplifications, (B.31) becomes

− 2iλ∗
N∑
k=1

cjV (aj − a∗k + iδ)− 2

N∑
k=1

N∑
l 6=k

cjc
∗
l α(aj − a∗l + iδ)V (aj − a∗k + iδ)

−
N∑
k=1

N∑
l 6=k

cjc
∗
l κ′(aj − a∗k + iδ)− cj λ̇∗ (B.33)

Let us return to our original expression. Inserting (B.28) and (B.33) in place of the first and second
lines of (B.24), respectively leads to the equation

Ḋj = 2i

N∑
k 6=j

(Dj −Dk)V (aj − ak)

− 2iλ∗
N∑
k=1

cjV (aj − a∗k + iδ)− 2

N∑
k=1

N∑
l 6=k

cjc
∗
l α(aj − a∗l + iδ)V (aj − a∗k + iδ)

+ 2iλ

N∑
k=1

c∗kV (aj − a∗k + iδ)− 2

N∑
k=1

N∑
l 6=j

c∗kclα(a∗k − al + iδ)V (aj − a∗k + iδ)

+

N∑
k=1

N∑
l 6=j

c∗kcl
(
κ′(aj − a∗k + iδ) + κ′(aj − al)

)
−

N∑
k=1

N∑
l 6=k

cjc
∗
l κ′(aj − a∗k + iδ). (B.34)

We may rewrite the second and third lines of (B.34) as, respectively,

−2i

N∑
k=1

cj

(
λ∗−i

N∑
l 6=k

c∗l α(aj−a∗l +iδ)

)
V (aj−a∗k+iδ) = −2i

N∑
k=1

(
Dj+icjα(aj−a∗k+iδ)V (aj−a∗k+iδ) (B.35)
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and

2i

N∑
k=1

c∗k

(
λ+ i

N∑
l 6=j

clα(a∗k − al + iδ)

)
V (aj − a∗k + iδ) = 2

N∑
k=1

(D∗k + icjα(aj − a∗k + iδ)
)
V (aj − a∗k + iδ).

(B.36)

The fourth line of (B.34) is now shown to vanish. From Lemma B.1 and (3.8), we have that
∑N
l 6=j cl = −cj ,∑N

k=1 c
∗
k = 0, and

∑
l 6=k c

∗
l = −c∗k; inserting these into the third line in (B.34) gives

−
N∑
k=1

cjc
∗
kκ′(aj − a∗k + iδ) +

N∑
k=1

cjc
∗
kκ′(aj − a∗k + iδ) = 0. (B.37)

Thus, replacing the second, third, and fourth lines of (B.34) by (B.35), (B.36), and (B.37), respectively, we
obtain the following system of linear ODEs for {Dj}Nj=1,

Ḋj = 2i

N∑
k 6=j

(Dj −Dk)V (aj − ak)− 2i

N∑
k=1

(Dj −D∗k)V (aj − a∗k + iδ) (j = 1, . . . , N). (B.38)

It is clear that (B.38) admits the solution {Dj(t) = −1}Nj=1 on [0, τ). To see that this solution is unique

when {Dj(0) = −1}Nj=1, it suffices to note that all coefficients of {Dj , D
∗
j }Nj=1 in the linear system (B.38)

are regular on [0, τ) as a consequence of the assumption that (3.12) holds on [0, τ). By comparing the
constraint (3.11) with the definition of Dj (B.23), we understand that this solution is equivalent to the
conservation of (3.11) on [0, τ). This completes our proof.

B.4 Proof of Proposition B.3

We first establish the following lemma.

Lemma B.3. Let λ and {aj , cj}Nj=1 be a solution of (2.3)–(2.4) on [0, τ) such that (3.8) and (3.11) hold
at t = 0 and (3.12) holds on [0, τ). Then,

cj 6= 0 (j = 1, . . . , N) (B.39)

holds on [0, τ).

Proof. The constraint (3.11) will be violated if cj = 0 for any j = 1, . . . , N . Under our assumptions,
Proposition B.2 guarantees that (3.11) holds on [0, τ), so this would be a contradiction.

Using Lemma B.3, we relate certain solutions of the systems of equations (i) (2.3)–(2.4) and (3.9) and
(ii) (1.7), (2.3), and (3.9).

Lemma B.4. Let λ and {aj , cj}Nj=1 be a solution of (2.3)–(2.4) and (3.9) on [0, τ) such that (3.8) and
(3.11) hold at t = 0 and (3.12) holds on [0, τ). Then, (1.7) holds on [0, τ).

Proof. By differentiating (2.4) with respect to time and inserting (2.3), we compute

cj äj − 2λ̇

= −ċj ȧj + 2i

N∑
k 6=j

(
ċkα(aj − ak)− ck(ȧj − ȧk)V (aj − ak)

)
= −2iȧj

N∑
k 6=j

(cj − ck)V (aj − ak) + 2i

N∑
k 6=j

(
2i

N∑
l 6=k

(ck − cl)α(aj − ak)V (ak − al)− ck(ȧj − ȧk)V (aj − ak)

)
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= −2i

N∑
k 6=j

(cj ȧj − ckȧk)V (aj − ak)− 4

N∑
k 6=j

N∑
l 6=k

(ck − cl)α(aj − ak)V (ak − al). (B.40)

Next, by inserting (2.4) into (B.40), isolating diagonal terms, and simplifying, we find

cj äj − 2λ̇

= 4

N∑
k 6=j

(
N∑
l 6=j

clα(aj − al)−
N∑
l 6=k

clα(ak − al)

)
V (aj − ak)− 4

N∑
k 6=j

N∑
l 6=k

(ck − cl)α(aj − ak)V (ak − al)

= 4

N∑
k 6=j

N∑
l 6=j,k

cl
(
α(aj − al)− α(ak − al)

)
V (aj − ak) + 4

N∑
k 6=j

(cj + ck)α(aj − ak)V (aj − ak)

− 4

N∑
k 6=j

N∑
l 6=j,k

(ck − cl)α(aj − ak)V (ak − al) + 4

N∑
k 6=j

(cj − ck)α(aj − ak)V (aj − ak)

= 4

N∑
k 6=j

N∑
l 6=j,k

cl
(
α(aj − al)− α(ak − al)

)
V (aj − ak)

+ 4

N∑
k 6=j

N∑
l 6=j,k

cl
(
α(aj − ak)− α(aj − al)

)
V (ak − al) + 8

N∑
k 6=j

cjα(aj − ak)V (aj − ak). (B.41)

We now insert the identities(
α(aj − al)− α(ak − al)

)
V (aj − ak) = −

(
α(aj − ak)− α(aj − al)

)
V (ak − al)

− 1

2

(
κ′(aj − ak)− κ′(ak − al)

)
, (B.42)

which can be obtained by differentiating (A.3) and specializing variables, and

α(z)V (z) = −1

2

(
V ′(z) + κ′(z)

)
, (B.43)

which follows from (A.1)–(A.2), into (B.41). This yields

cj äj − 2λ̇ = − 2

N∑
k 6=j

N∑
l 6=j,k

cl
(
κ′(aj − ak)− κ′(ak − al)

)
− 4

N∑
k 6=j

cjV
′(aj − ak)− 4

N∑
k 6=j

cjκ′(aj − ak).

(B.44)

Given
∑N
l 6=j,k cl = −cj − ck by Lemma B.1 and (3.8) and inserting (3.9) into (B.44), it follows that

cj äj − 2λ̇

= 2

N∑
k 6=j

(cj + ck)κ′(aj − ak) + 2

N∑
k 6=j

N∑
l 6=j,k

clκ′(ak − al)− 4

N∑
k 6=j

cjV
′(aj − ak)− 4

N∑
k 6=j

cjκ′(aj − ak)

= −2

N∑
k 6=j

(cj − ck)κ′(aj − ak)−
N∑
k 6=j

N∑
l 6=j,k

(ck − cl)κ′(ak − al)− 4

N∑
k 6=j

cjV
′(aj − ak), (B.45)

where we have symmetrized the double sum, using that κ′(z) is an odd function (A.6), in the second

step. Employing the summation identity
∑N
k=1

∑N
l 6=k sk,l =

∑N
k 6=j

∑N
l 6=j,k sk,l + 2

∑N
k 6=j sj,k for symmetric

complex arrays {sk,l}Nk,l=1 together with (3.9) in (B.45) implies that

cj äj = −4

N∑
k 6=j

cjV
′(aj − ak). (B.46)

By Lemma B.3, we may divide (B.46) through by cj to obtain (1.7). This completes the proof.
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Consider the initial value problem consisting of the time evolution equations (1.7), (2.3), and (3.9) and
initial data satisfying (2.4) and (3.8) at t = 0. By the Picard-Lindelöf theorem, this initial value problem
admits a unique local solution, which may be uniquely extended (see, e.g., [45, Corollary 3.2]) as long as (i)
no solution variable goes to infinity and (ii) (3.12) holds (so that the functions defining the ODEs remain
locally Lipschitz).

Similarly, consider the initial value problem consisting of the time evolution equations (2.3)–(2.4) and
(3.9) and the same initial data as imposed for the previous initial value problem (excepting the initial
velocities of {aj}Nj=1; because (2.4) is a first-order equation, the initial velocities are not imposed, but will
nonetheless match as (2.4) is a condition on the initial data in the first problem and a time evolution
equation in the second). This initial value problem has a unique local solution, which may be uniquely
extended as long as (i) no solution variable goes to infinity and (ii) (3.12) and (B.39) hold. However,
Lemma B.3 shows that the condition (B.39) cannot be violated.

By Lemma B.4, the solutions to the two initial value problems must coincide on any interval [0, τ) on
which (3.12) holds; this implies the result.

C Details on the local limit

The operators T and T̃ in (1.3) satisfy [46, 22]

(Tf)(x) = − 1

2δ

∫ x

−∞
f(x′) dx′ +

1

2δ

∫ ∞
x

f(x′) dx′ +O(δ),

(T̃ f)(x) = − 1

2δ

∫ x

−∞
f(x′) dx′ +

1

2δ

∫ ∞
x

f(x′) dx′ +O(δ)

as δ ↓ 0. (C.1)

By inserting the expansions (C.1) with f = (|u|2)x and f = (|v|2)x into (1.2), we obtain

iut = uxx + iu(|u|2)x −
1

δ
u|u|2 +

1

2δ
u(|u+∞|2 + |u−∞|2) +

1

δ
u|v|2 − 1

2δ
u(|v+∞|2 + |v−∞|2) +O(δ),

ivt = vxx + iv(|v|2)x +
1

δ
v|v|2 − 1

2δ
v(|v+∞|2 + |v−∞|2)− 1

δ
v|u|2 +

1

2δ
v(|u+∞|2 + |u−∞|2) +O(δ),

(C.2)

where
u±∞ := lim

x→±∞
u(x), v±∞ := lim

x→±∞
v(x). (C.3)

By imposing |u+∞|2 + |u−∞|2 = |v+∞|2 + |v−∞|2 and rescaling u→
√
δu and v →

√
δv in (C.2), we obtain

(1.1) with σ1 = −σ2 = −1 in the limit δ ↓ 0.

D Amplitudes of solutions

The derivation of (2.12)–(2.13) and (3.14)–(3.15) is provided in Appendix D.1. A proof of the constancy
of the quantity B in (3.15) is given in Appendix D.2.

D.1 Derivation

Using (B.3), we write

U ◦U∗ = |λ|2E− iλ

N∑
j=1

c∗jA−(x− a∗j ) + iλ∗
N∑
j=1

cjA+(x− aj) +

N∑
j=1

N∑
k=1

cjc
∗
kA+(x− aj) ◦A−(x− a∗k). (D.1)
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We now insert (B.8), which gives

U ◦ U∗ = |λ|2E − iλ

N∑
k=1

c∗kA−(x− a∗k) + iλ∗
N∑
j=1

cjA+(x− aj)

+

N∑
j=1

N∑
k=1

cjc
∗
kα(aj − a∗k + iδ)

(
A+(x− aj)−A−(x− a∗k)

)
+

1

2

N∑
j=1

N∑
k=1

cjc
∗
k

(
K+(x− aj) +K−(x− a∗k) + κ(aj − a∗k + iδ)E +

3ζ(iδ; `, iδ)

iδ
E

)

= |λ|2 + i

N∑
j=1

cj

(
λ∗ − i

N∑
k=1

c∗kα(aj − a∗k + iδ)

)
A+(x− aj)

− i

N∑
j=1

c∗j

(
λ+ i

N∑
k=1

ckα(a∗j − ak − iδ)

)
A−(x− a∗j )

+
1

2

N∑
j=1

N∑
k=1

cjc
∗
k

(
K+(x− aj) +K−(x− a∗k) + κ(aj − a∗k + iδ)E +

3ζ(iδ; `, iδ)

iδ
E

)
. (D.2)

By using (3.11), we arrive at

U ◦ U∗ = |λ|2E − i

N∑
j=1

(
A+(x− aj)−A−(x− a∗j )

)
+

1

2

N∑
j=1

N∑
k=1

cjc
∗
k

(
K+(x− aj) +K−(x− a∗k) + κ(aj − a∗k + iδ)E +

3ζ(iδ; `, iδ)

iδ
E

)
. (D.3)

We now consider the periodic and real-line cases separately.

Periodic case. By imposing the constraint (3.8), the second line of (D.3) simplifies considerably,

U ◦ U∗ = |λ|2E − i

N∑
j=1

(
A+(x− aj)−A−(x− a∗j )

)
+

1

2

N∑
j=1

N∑
k=1

cjc
∗
kκ(aj − a∗k + iδ)E. (D.4)

By recalling the notation (1.13) and the definitions of A±(z) (2.10) and E (B.4), we obtain (3.14)–(3.15).

Real-line case. We take the limit of (D.3) as `→∞. By using (A.9) and (A.11), which together with
the definition of (B.9) further imply

lim
`→∞

K±(z) =

(
π

2δ

)2

E, (D.5)

in (D.3), we obtain

U ◦ U∗ = λ2E − i

N∑
j=1

(
A+(x− aj)−A−(x− a∗j )

)
+

(
π

2δ

)2 N∑
j=1

N∑
k=1

cjc
∗
kE, (D.6)

where we have used that λ ∈ R in this case. By writing the last term in (D.6) as
(
π
2δ

)2∣∣∑N
j=1 cj

∣∣2E and
recalling the notation (1.13) and the definitions of A±(z) (2.10) and E (B.4), we obtain (2.12)–(2.13).
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D.2 Conservation of B

We prove that B defined in (3.15) is conserved when the conditions of Theorem 3.1 are met. The precise
statement is given and followed by the proof.

Proposition D.1. Let u and v be a solution of the periodic IMM system constructed in Theorem 3.1 on
[0, τ) with corresponding parameters λ and {aj , cj}Nj=1. Then, B defined in (3.15) is conserved on [0, τ).

D.2.1 Proof of Proposition D.1

By integrating the first row of (3.14) over x ∈ [−`, `) and rearranging the result, we have

2`B =

∫ `

−`
|u|2 dx+ i

N∑
j=1

∫ `

−`

(
α(x− aj − iδ/2)− α(x− a∗j + iδ/2)

)
dx. (D.7)

We will show, in turn, that the first6 and second terms on the right-hand side of (D.7) are conserved in
time.

Lemma D.1. The quantity ∫ `

−`
|u|2 dx (D.8)

is conserved when u solves the periodic IMM system.

Proof. By differentiating the first quantity in (D.8) with respect to t and inserting (1.2), we obtain

d

dt

∫ `

−`
|u|2 dx =

∫ `

−`
(utu

∗ + uu∗t ) dx =∫ `

−`

((
− iuxx − iu(i + T )(|u|2)x + iuT̃ (|v|2)x

)
u∗ + u

(
iu∗xx + iu∗(−i + T )(|u|2)x − iu∗T̃ (|u|2)x

))
dx. (D.9)

After cancelling terms in (D.9), we are left with

d

dt

∫ `

−`
|u|2 dx =

∫ `

−`

(
− iuxxu

∗ + iuu∗xx + 2|u|2(|u|2)x
)

dx. (D.10)

The integral of the first two terms vanishes by the self-adjointness of second derivative while the third term

is a total derivative and integrates to zero. Hence
∫ `
−` |u|

2 dx is conserved on solutions of the periodic IMM
system.

To show that the second term in (D.7) is conserved in time, we first note the following identity relating
the ζ1- and ζ2-functions (in what follows, we suppress the second and third arguments of these functions
for notational simplicity) defined in (3.2) and (3.4), respectively,

ζ2(z) = ζ1(z) + γ0z. (D.11)

Equation (D.11) may be established by using the definitions (3.2) and (3.4), the standard elliptic identity
[38, Eq. 23.2.14] ζ(`)(iδ)− ζ(iδ)` = iπ/2 and the definition of γ0 (3.7).

It thus follows from (3.3) and (D.11) that∫ `

−`

(
α(x− aj − iδ/2)− α(x− a∗j + iδ/2)

)
dx =

6We note that
∫ `

−`
|v|2 dx can similarly be shown to be conserved in time.
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∫ `

−`

(
ζ1(x− aj − iδ/2)− ζ1(x− a∗j + iδ/2)

)
dx− γ0

∫ `

−`
(aj − a∗j + iδ) dx. (D.12)

Recalling (2.6), we use the following exact integrals [36, Proposition B.1],∫ `

−`
ζ1(x− a) dx =

{
+iπ −2δ < Im(a) < 0

−iπ 0 < Im(a) < 2δ
(D.13)

in (D.12) to write

i

N∑
j=1

∫ `

−`

(
α(x− aj − iδ/2)− α(x− a∗j + iδ/2)

)
dx = − 2Nπ − 2iγ0`

N∑
j=1

(aj − a∗j ) + 2Nγ0`δ

= −Nπ +
2π

δ

N∑
j=1

Im(aj), (D.14)

where we have inserted the definition of γ0 (3.7) in the second step.

It remains to show that (D.14) is conserved in time; this is accomplished with the following lemma.

Lemma D.2. Let λ and {aj , cj} be a solution of (1.7), (2.3), and (3.9) on [0, τ) such that (2.4), (3.8), and
(3.11) hold at t = 0 and (2.6) and (3.12) hold on [0, τ). Then, the sum of the imaginary parts of {aj}Nj=1,

N∑
j=1

Im(aj) =
1

2i

N∑
j=1

(aj − a∗j ) (D.15)

is conserved on [0, τ).

Proof. By Lemma B.1, Proposition B.2, and Proposition B.3, we have that (3.8), (3.11), and (2.4), respec-
tively, hold on [0, τ) and thus may be used freely in what follows. Also, we repeatedly use the fact that
α(z) is a 2iδ-periodic (A.5) and odd (A.6) function below.

We differentiate (D.15) with respect to t and insert (2.4) to obtain

d

dt

N∑
j=1

Im(aj) =
1

2i

N∑
j=1

(ȧj − ȧ∗j )

= − i

N∑
j=1

1

cj

(
λ+ i

N∑
k 6=j

ckα(aj − ak)

)
+ i

N∑
j=1

1

c∗j

(
λ∗ − i

N∑
k 6=j

c∗kα(a∗j − a∗k)

)
. (D.16)

To proceed, we solve (3.11) for 1/cj and substitute the result into (D.16); this gives

d

dt

N∑
j=1

Im(aj) = i

N∑
j=1

(
λ∗ − i

N∑
l=1

c∗l α(aj − a∗l + iδ)

)(
λ+ i

N∑
k 6=j

ckα(aj − ak)

)

− i

N∑
j=1

(
λ+ i

N∑
l=1

clα(a∗j − al + iδ)

)(
λ∗ − i

N∑
k 6=j

c∗kα(a∗j − a∗k)

)

= − λ∗
N∑
j=1

N∑
k 6=j

ckα(aj − ak)− λ
N∑
j=1

N∑
k 6=j

c∗kα(a∗j − a∗k)

+ λ

N∑
j=1

N∑
l=1

c∗l α(aj − a∗l + iδ) + λ∗
N∑
j=1

N∑
l=1

clα(a∗j − al + iδ)

+ i

N∑
j=1

N∑
k 6=j

N∑
l=1

(
ckc
∗
l α(aj − ak)α(aj − a∗l + iδ)− c∗kclα(a∗j − a∗k)α(a∗j − al + iδ)

)
. (D.17)
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Next, we use (3.11) to replace the quantities λ∗ck and λ∗cl (and their complex conjugates) in (D.17):

d

dt

N∑
j=1

Im(aj) =

N∑
j=1

N∑
k 6=j

α(aj − ak)− i

N∑
j=1

N∑
k 6=j

N∑
l=1

ckc
∗
l α(aj − ak)α(ak − a∗l + iδ)

+

N∑
j=1

N∑
k 6=j

α(a∗j − a∗k) + i

N∑
j=1

N∑
k 6=j

N∑
l=1

c∗kclα(a∗j − a∗k)α(a∗k − al + iδ)

−
N∑
j=1

N∑
l=1

α(aj − a∗l + iδ) + i

N∑
j=1

N∑
k=1

N∑
l=1

ckc
∗
l α(aj − a∗l + iδ)α(ak − a∗l + iδ)

−
N∑
j=1

N∑
l=1

α(a∗j − al + iδ)− i

N∑
j=1

N∑
k=1

N∑
l=1

c∗kclα(a∗j − al + iδ)α(a∗k − al + iδ)

+ i

N∑
j=1

N∑
k 6=j

N∑
l=1

(
ckc
∗
l α(aj − ak)α(aj − a∗l + iδ)− c∗kclα(a∗j − a∗k)α(a∗j − al + iδ)

)
. (D.18)

All double sums in (D.18) vanish by symmetry; note also that the k = j terms in the triple sums in the
third and fourth lines cancel with each other. With these simplifications, (D.18) can be written as

d

dt

N∑
j=1

Im(aj) =

i

N∑
j=1

N∑
k 6=j

N∑
l=1

ckc
∗
l

(
α(aj − a∗l + iδ)α(ak − a∗l + iδ)− α(aj − ak)α(ak − a∗l + iδ) + α(aj − ak)α(aj − a∗l + iδ)

)
− i

N∑
j=1

N∑
k 6=j

N∑
l=1

c∗kcl
(
α(a∗j − al + iδ)α(a∗k − al + iδ)− α(a∗j − a∗k)α(a∗k − al + iδ) + α(a∗j − a∗k)α(a∗j − al + iδ)

)
.

(D.19)

Note that the first and second lines in (D.19) are related by complex conjugation. Any manipulation of
the first line can be extended to the second line using this symmetry. We apply (A.3) with z = aj + iδ/2,
a = ak + iδ/2, and b = a∗l − iδ/2 to (D.19), which leads to

d

dt

N∑
j=1

Im(aj) =
i

2

N∑
j=1

N∑
k 6=j

N∑
l=1

ckc
∗
l

(
κ(aj − ak) + κ(aj − a∗l + iδ) + κ(ak − a∗l + iδ) +

3ζ(iδ)

iδ

)

− i

2

N∑
j=1

N∑
k 6=j

N∑
l=1

c∗kcl

(
κ(a∗j − a∗k) + κ(a∗j − al + iδ) + κ(a∗k − al + iδ) +

3ζ(iδ)

iδ

)
. (D.20)

By using (3.8) (which implies
∑N
k 6=j ck = −cj) in (D.20), we arrive at

d

dt

N∑
j=1

Im(aj) = − i

2

N∑
j=1

N∑
l=1

(
cjc
∗
l κ(aj − a∗l + iδ)− c∗jclκ(a∗j − al + iδ)

)
+

i

2

N∑
j=1

N∑
k 6=j

N∑
l=1

(
ckc
∗
l κ(ak − a∗l + iδ)− c∗kclκ(a∗k − al + iδ)

)
. (D.21)

Both sums in (D.21) vanish by symmetry, using the fact that κ(z) is an even function (A.6), and the result
follows.

Applying Lemma D.1 to our supposed solution of the periodic IMM system on [0, τ) and using
Lemma D.2 in (D.14), we find that the right-hand side of (D.7) is conserved on [0, τ). It follows that
B is constant-in-time.
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