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MAXIMAL SUBGROUPS OF FINITELY PRESENTED

SPECIAL INVERSE MONOIDS

ROBERT D. GRAY1 and MARK KAMBITES2

Abstract. We study the maximal subgroups (also known as group H-
classes) of finitely presented special inverse monoids. We show that the
maximal subgroups which can arise in such monoids are exactly the re-
cursively presented groups, and moreover every such maximal subgroup
can also arise in the E-unitary case. We also prove that the possible
groups of units are exactly the finitely generated recursively presented
groups; this improves upon a result of, and answers a question of, the
first author and Ruškuc. These results give the first significant insight
into the maximal subgroups of such monoids beyond the group of units,
and the results together demonstrate that (perhaps surprisingly) it is
possible for the subgroup structure to have a complexity which sig-
nificantly exceeds that of the group of units. We also observe that a
finitely presented special inverse monoid (even an E-unitary one) may
have infinitely many pairwise non-isomorphic maximal subgroups; this
contrasts sharply with the case of (non-inverse) special monoids, where
Malheiro showed that all idempotents lie in the D-class of 1, from which
it follows that all maximal subgroups are isomorphic.

1. Introduction

This paper is concerned with inverse monoids that admit presentations in
which each defining relation has the form w = 1. The study of these monoids,
which are termed special inverse monoids in the literature, is motivated both
intrinsically by a beautiful geometric theory, and extrinsically by connections
to other areas of semigroup theory and geometric group theory, including
most notably possible applications to the one-relator word problem (the
question of whether the word problem for one-relator monoids is decidable).
The one-relator word problem has been a natural open problem since the
resolution of the corresponding problem for groups by Magnus in 1932; it
has resisted extensive study (most notably by Adjan and co-authors) and is
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2 MAXIMAL SUBGROUPS OF SPECIAL INVERSE MONOIDS

widely regarded as one of the hardest and most important open problems
in semigroup theory.3

The study of special inverse monoids was initiated by Margolis, Meakin
and Stephen [15], motivated by successes in understanding special (non-
inverse) monoids, and the prospect of applying exciting geometric meth-
ods (such as the Scheiblich/Munn description of free inverse monoids and
Stephen’s folding procedure - see below and the survey [16] for details) which
had recently been developed for the study of inverse monoids. They showed
that Stephen’s procedure specialises to give a particularly beautiful geomet-
ric theory of Schützenberger graphs in the case of special inverse monoids,
and could be used to prove analogues of some of the results about the spe-
cial (non-inverse) case. The case of special one-relator inverse monoids
Inv〈A | w = 1〉 received particular attention, culminating in a celebrated
proof of Ivanov, Margolis and Meakin [9] that the one-relator word problem
(for general monoids) reduces to the word problem for certain one-relator
special inverse monoids. Since special inverse monoids have much more
evident geometric structure than general monoids, this opened up the possi-
bility that the kind of methods employed in geometric group theory could be
used to understand the word problem for one-relator special inverse monoids,
and hence the original one-relator word problem for monoids. This moti-
vated extensive further study of this area, with initial results including posi-
tive solutions to the word problem in certain important cases [6, 14, 16], but
the first author [4] eventually showing that, surprisingly, the word problem
for special one-relator inverse monoids in general is undecidable. However,
the case shown undecidable is not one arising from the reduction of the one-
relator word problem for monoids, so the latter remains open and a better
understanding of special inverse monoids may yet produce a solution.

In order to progress further, it seems that a deeper and more systematic
understanding of special inverse monoids is required. In particular, it is
necessary to understand the subgroup structure of such monoids. Associated
with every idempotent e of a monoid is a group He called the group H-
class of e, which is the largest subgroup of the monoid (with respect to
containment) containing e. For this reason, these are also called the maximal
subgroups of the monoid, and every subgroup of the monoid is contained in
a group H-class. The group H-class of the identity element is just the group
of units of the monoid and the group H-classes of distinct idempotents are
disjoint. Hence the main task in investigating the subgroup structure of a
monoid is to understand its group H-classes.

3For the avoidance of confusion, we note that neither one-relator groups nor one-relator
(special) inverse monoids are typically examples of one-relator monoids, since interpret-
ing a group or inverse monoid presentation as a monoid presentation will usually give
a different monoid. Indeed, non-trivial free groups require relations to define them as
monoids (in fact it can always be done with just a single relation [19]), while non-trivial
free inverse monoids are not even finitely presented as monoids [21]. A notable exception
is the bicyclic monoid, which is given by the presentation 〈p, q | pq = 1〉 as both a monoid
and an inverse monoid. In contrast, it transpires that one-relator groups are examples of
one-relator special inverse monoids. (This can be deduced from, for example, Lemma 2.1
below).
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An obvious question is to what extent the subgroup structure resembles
that found in the well-established theory of special (non-inverse) monoids,
where it is known that all group H-classes are isomorphic to the group of
units [13] and that one-relator examples have group of units (and therefore
group H-classes) which are one-relator groups. (This fact has fact played a
key role in Adjan’s resolution of some cases of the one-relator word problem
[1].) The first author and Ruškuc [5] recently investigated the (left, right and
two-sided) units, showing that in general the behaviour is very different from
the non-inverse case: unlike in the non-inverse case, there is a one-relator
special inverse monoid whose group of units is not a one-relator group, and
there is a finitely presented special inverse monoid whose group of units is
not finitely presented. One aim of this paper, realised in Section 4 below,
is to answer a question they posed [5, Question 8.6] by giving a complete
characterisation of the possible groups of units in finitely presented special
inverse monoids: it transpires that they are exactly the finitely generated,
recursively presented groups (Theorem 4.1).

The other main aim of this paper, in Section 5, is to initiate the study
of group H-classes more generally. In sharp contrast to the case of special
(non-inverse) monoids, and contrary to our own prior expectations and we
believe to those of most experts in the field, we show that these can dif-
fer wildly from the group of units. We introduce a powerful construction
(Theorem 5.3) which allows us to exactly characterise the possible group
H-classes in finitely presented special inverse monoids: these are exactly
the (not necessarily finitely generated) recursively presented groups (Corol-
lary 5.7). The same construction, combined with an old result of Higman
[12, Theorem 7.3], also allows us to produce an example of a single finitely
presented special inverse monoid in which every finite group arises as an
H-class (Corollary 5.12).

The main theme of this paper is that the subgroups of special inverse
monoids are potentially far wilder, and the structure of these monoids there-
fore more complex, than expected, but this does not mean there is no hope
of understanding them. Indeed, in order to establish these wild examples
we develop a new geometric approach to maximal subgroups, exploiting the
fact [22, Theorem 3.5] that they are isomorphic to the automorphism groups
of the Schützenberger graphs of the monoid. This approach, which contrasts
with the more algebraic/combinatorial approach of [4] and [5], also offers
new ways to obtain a positive understanding of group H-classes in particu-
lar cases and important sub-classes, which we will develop in future work.

2. Preliminaries

In this section we fix notation and briefly recall some relevant background
material from the geometric and combinatorial study of inverse monoids. For
additional background we refer the reader to [16] for combinatorial inverse
semigroup theory and [12] for combinatorial group theory.

Graphs. Throughout this paper we use the word graph to mean a (possibly
infinite) directed graph, possibly with loops and multiple edges, in which
each edge is labelled by a symbol from some alphabet. The graph is called
bi-deterministic if no two edges with the same label share a start vertex or
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an end vertex. A path in a graph is a sequence of edges e1, . . . , en such that
the end vertex of ei coincides with the start vertex of ei+1 for 1 ≤ i ≤ n− 1.
The path is called closed if its start vertex (the start vertex of e1) coincides
with its end vertex (the end vertex of en). The label of a path is the word
which is the concatenation in order of the labels of the edges. A path is
called simple if no two edges start at the same vertex or end at the same
vertex. A graph Γ is a subgraph of a graph Ω if the vertex and edge sets of
Γ are subsets of the vertex and edge sets respectively of Ω; it is said to be
an induced subgraph if in addition it contains every edge of Ω whose start
and end are vertices of Γ. A morphism φ : Γ → ∆ of graphs consists of a
map from the vertex set of Γ to the vertex set of ∆ and a map from the
edge set of Γ to the edge set of ∆ which for each edge preserves the label
and respects the start and end vertices.

Inverse monoids and Schützenberger graphs. An inverse monoid M

is a monoid such that for every m ∈ M there is a unique element m−1 ∈ M ,
called the inverse of m, that satisfies mm−1m = m and m−1mm−1 = m−1.
The map m 7→ m−1 satisfies (m−1)−1 = m and (mn)−1 = n−1m−1. If
A is a subset of M we write A−1 for the set of inverses of elements in A.
For brevity, we shall also sometimes use the notation m′ for the inverse
of m, especially when working with inverse monoid presentations. We say
an inverse monoid is generated by a subset A if is generated by A under
the multiplication and inversion operations, or equivalently, generated by
A∪A−1 under multiplication alone. If M is an inverse monoid generated by
a set A then the Cayley graph of M with respect to A has vertex set M and
a directed edge from m to mx labelled by x for all m ∈ M and x ∈ A∪A−1.
The Schützenberger graphs of M with respect to the generating set A are the
strongly connected components of the Cayley graph where two vertices u, v
belong to the same strongly connected component if there is a path from u

to v, and a path from v back to u. So the Schützenberger graph SΓ(m) of
m ∈ M is the subgraph of the Cayley graph induced on the set of vertices in
the strongly connected component containing m. Note that if M is a group
then it has just one Schützenberger graph, which is the entire Cayley graph.

Recall that in an inverse monoid M two elements m and n are R-related
if and only if they generate the same principal right ideal which is equivalent
to saying that mm−1 = nn−1. Dually m and n are L-related if m−1m =
n−1n and are H-related if they are both R- and L-related. If m ∈ M we
write SΓ(m) for the Schützenberger graph of m, and Hm, Rm etc for the
equivalence classes of M under Green’s relations. Note that the vertex set
of SΓ(m) is exactly Rm. We define the root of the graph SΓ(m) to be the
vertex mm−1, that is, the unique vertex corresponding to an idempotent
element of M . If w ∈ (A±1)∗ is a word over the generating set and its
inverses viewed as a formal alphabet then we may use w in place of m in
the above notation, to be interpreted as the element of M represented by
w. It may be shown that if sRt and su = t then tu−1 = s. It follows that if
mxRx where m ∈ M and x ∈ A±1 then mxx−1 = m and hence within the
Schützenberger graphs edges come in inverse pairs. For simplicity we will
often draw and speak of Schützenberger graphs of an A-generated inverse
monoid as only having edges labelled by letters from A, leaving it implicit
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that there are always edges labelled by their inverses in the reverse direction;
we shall sometimes speak of traversing edges “backwards”, by which we
formally mean traversing the corresponding inverse edge.

Inverse monoid presentations and the maximal group image. Let
A be a (not necessarily finite) alphabet. The free inverse monoid Inv〈A〉
is the unique (up to isomorphism) inverse monoid generated by A with the
property that every map from A to an inverse monoid extends to a morphism
from Inv〈A〉. More concretely, if we let A−1 be a set of formal inverses for
the generators in A and write A±1 for A ∪ A−1, it is the quotient of the
free monoid (A±1)∗ by the Wagner congruence, which is the congruence
generated by the relations ww−1w = w and uu−1ww−1 = ww−1uu−1 where
u,w ∈ (A±1)∗ and where by definition (aǫ11 . . . a

ǫk
k )−1 = a

−ǫk
k . . . a−ǫ1

1 . An
elegant geometric description for the free inverse monoid was given by Munn
[18], based on earlier work of Scheiblich [20]; we shall not make explicit use of
this, but the ideas they developed are central to geometric inverse semigroup
theory and implicitly used in much of what we do. A word w over A±1 is
called a fundamental idempotent if it represents an idempotent element of
the free inverse monoid on A. This is equivalent to saying that w represents
an idempotent element in every A-generated inverse monoid, and also to
saying that w represents the identity in the free group on A.

The inverse monoid defined by the presentation Inv〈A | R〉, where R ⊆
(A±1)∗ × (A±1)∗ is the quotient of the free inverse monoid Inv〈A〉 by the
congruence generated by R. An inverse monoid presentation is called special
if all relations have the form w = 1, and an inverse monoid is called special
if it admits a special inverse monoid presentation. A well-known fact about
special inverse monoid presentations is the following result, which essentially
says that fundamental idempotent relators can be incorporated into other
relators.

Lemma 2.1 (see for example [4], Lemma 3.3). Let A be an alphabet and
e, r1, . . . , rm ∈ (A±1)∗ with e a fundamental idempotent. Then

Inv〈A | e = r1 = r2 · · · = rm = 1〉 = Inv〈A | er1 = r2 = · · · = rm = 1〉.

We use Gp〈A | R〉 to denote the group defined by the presentation with
generators A and defining relators R, and we use Gp〈X〉 to denote the free
group on the set X. Let M = Inv〈A | R〉 and let G = Gp〈A | R〉 be its
maximal group image and let σ : M → G denote the canonical surjective
homomorphism from M to G. Let Γ be the Cayley graph of G with respect
to A. This defines a map σ from the disjoint union of the Schützenberger
graphs of M to the Cayley graph Γ of G, which maps vertices using σ and

each edge m
a
−→ ma in a Schützenberger graph maps to the unique edge in

Γ from σ(m) to σ(ma) labelled by a. This map σ is clearly a morphism of
labelled graphs. The inverse monoid M is called E-unitary if σ−1(1G) is
equal to the set of idempotents of M . It is known (see [23, Lemma 1.8])
that this is equivalent to the map σ being injective on every Schützenberger
graph of M .

Stephen’s procedure. We now describe a procedure due to Stephen [22]
for iteratively approximating Schützenberger graphs of inverse monoids.
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This procedure is the graphical version of the Todd–Coxeter coset enumer-
ation procedure from group theory generalised to inverse semigroup theory.
Since we will be working only with special inverse monoids in this paper we
will only describe the procedure in this case, even though it applies more
generally.

Let M = Inv〈A | R〉 be a special inverse monoid presentation and let Γ
be a graph labelled over A ∪ A−1 such that the edges in Γ occur in inverse
pairs. We define two operations:

(1) P -expansion: For every vertex v ∈ V (Γ) and every r ∈ R, if there
is no closed path at v labelled by R then we attach a simple closed
path at v labelled by r such that all the internal vertices of this
closed path are disjoint from Γ. (For every new edge we add we also
add the corresponding inverse edge so that all the edges still occur
in inverse pairs.)

(2) Edge folding: if there are edges e and f with the same label and the
same start or end vertex then we identify these edges (which also
identifies their start vertices and identifies their end vertices).

It follows from [22] that starting with any such graph Γ and special inverse
monoid presentation, the set of all graphs obtained by applying successive
P -expansions and edge foldings forms a directed system in the category of
(A ∪ A−1)-labelled graphs. We denote the limit of this system by Exp(Γ).
Given any word w ∈ (A±1)∗ we use Lw to denote the straight line graph
labelled by the word w. So Lw has vertex set {0, 1, . . . , |w|}, one pair of
inverse edges between i and i+1 for all 0 ≤ i ≤ |w|− 1, and the label of the
unique path of length |w| from the vertex 0 to the vertex |w| is equal to the
word w. The following is then a theorem of Stephen [22] specialised to the
case of special inverse monoids.

Theorem 2.2. Let M = Inv〈A | R〉 be a special inverse monoid and let
w ∈ (A±1)∗. Then the Schützenberger graph SΓ(w) is isomorphic to the
graph Exp(Lw) obtained by Stephen’s procedure starting with the straight
line graph Lw labelled by w.

3. Geometry of Schützenberger Graphs

In this section we establish some foundational results about the geometry
of Schützenberger graphs in special inverse monoids, which will be used to
establish our main theorems below, and are also likely to be of wider use in
the future development of the subject.

Extending automorphisms. We shall need the following technical result,
which gives a sufficient condition for an automorphism of a subgraph of
a Schützenberger graph to extend to an automorphism of the containing
graph.

Lemma 3.1. Let M = Inv〈A | R〉 be a special inverse monoid, let e be a
fundamental idempotent in (A±1)∗, and let Ω be any connected subgraph of
SΓ(e) such that Ω contains the vertex e of SΓ(e) and the word e can be read
from the vertex e entirely within Ω. Then every automorphism of Ω extends
uniquely to an automorphism of SΓ(e).
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Proof. Consider an automorphism θ of Ω. Suppose that it maps the vertex
e to ew where w is a word labelling a path in Ω from e to its image vertex
under θ. Such a path exists since Ω is connected. Now since the word e

can be read from the vertex e of Ω and there is an automorphism of Ω
sending e to ew it follows that e can also be read from ew. Hence, it follows
that ewe is R-related to e, and the path labelled by the word ewe can be
read within Ω starting at the vertex e. The inverse of the automorphism
θ maps ew to e and must map e to ew−1. Indeed, since there is a path in
Ω labelled by w from e to ew it follows that there is a path labelled by w

from θ−1(e) to θ−1(ew) = e and hence θ−1(e) = ew−1. Since there is an
automorphism of Ω sending e to ew−1, and since the word e can be read
within Ω at e, it follows that the word e can be read within Ω starting at
ew−1. In particular ew−1e is R-related to e. But if ew−1e is R-related to e

then its inverse ewe is L-related to e, and we conclude that ewe is H-related
to e. Also, since e labels a closed path in the graph Ω starting and ending
at the vertex e, and θ is an automorphism of Ω sending e to ew it follows
that e also labels a closed path in Ω starting and ending at the vertex ew.
Hence ew = ewe is H-related to e, in other words it belongs to the group
H-class He. Now for any vertex in Ω since Ω is connected we can choose a
word u over A∪A−1 labelling a path from the vertex e of Ω to that vertex.
Since θ maps e to ew it follows that the vertex at the end of the path from
e labelled by u must map to ewu. So the automorphism θ is given by the
map eu 7→ ewu. But ew = ewe so this is the map eu 7→ (ew)eu where
ew ∈ He. It is then a consequence of Green’s Lemma [8, Lemma 2.2.2]
that left multiplication by ew defines a bijection from Re to itself which
induces an automorphism of the Schützenberger graph SΓ(e). Hence the
automorphism θ of Ω extends uniquely to an automorphism of SΓ(e). Since
θ was an arbitrary automorphism of Ω this completes the proof. �

An alternative way of seeing why the previous lemma is true is via Stephen’s
procedure: since the word e can be read inside Ω from the vertex e of SΓ(e),
and it is a connected subgraph of SΓ(e), it follows that the Schützenberger
graph SΓ(e) can be constructed by starting from Ω and using Stephen’s
procedure. Since Stephen’s procedure is automorphism-invariant, it follows
that every automorphism of Ω will extend (uniquely, since an automorphism
of an inverse automaton is uniquely determined by what it is does to any
single vertex) to an automorphism of SΓ(e).

E-unitary special inverse monoids. The following result, part of which
is due directly to Stephen [23] and part of which we deduce from his work,
shows that the Schützenberger graphs of an E-unitary special inverse monoid
are isomorphic to certain induced subgraphs of the Cayley graph of the
maximal group image.

Lemma 3.2. Let M = Inv〈A | R〉 be an E-unitary special inverse monoid
and let w ∈ (A±1)∗, and let Γ be the Cayley graph of the maximal group
image G = Gp〈A | R〉 with respect to A. Then the Schützenberger graph
SΓ(w) is embedded into the Cayley graph Γ by σ as an induced subgraph.
Moreover, the embedded copy of SΓ(w) is the smallest subgraph of Γ such
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that the word w can be read from 1 and every relator word r ∈ R can be read
at every vertex of SΓ(w).

Proof. The fact the graph embeds as an induced subgraph is [23, Lemma 3.5].
For the final part, let ∆ be the smallest subgraph of Γ in which word w can
be read from 1 and every relator word r ∈ R can be read at every vertex of
∆. It follows from Stephen’s procedure (Theorem 2.2) that, as a subgraph of
Γ, the graph SΓ(w) contains all the vertices and edges of ∆. Conversely, it
follows from the argument in [23] preceding the statement of [23, Lemma 3.1]
that for every edge x in the Schützenberger graph SΓ(w) there is a path in
SΓ(w) from the vertex 1 labelled by a word of the form vp1p2 . . . pk where v
is a prefix of w and each pi is a prefix of some defining relator r ∈ R, such
that this path traverses the edge x in some direction. It follows that SΓ(w)
is contained in ∆ and hence SΓ(w) = ∆. �

Morphisms between labelled digraphs and Schützenberger graphs.

In several arguments we will construct a labelled digraph and then assert
the existence of a morphism to this graph from a Schützenberger graph. The
key lemma we need for this is the following.

Lemma 3.3. Let M = Inv〈A | R〉 be a special inverse monoid, and let Ω
be a bi-deterministic A-labelled graph in which for every vertex v in Ω and
every r ∈ R there is a closed path in Ω at v labelled by r. Then for every
vertex w of Ω there is a morphism from SΓ(1) to Ω that sends the root of
SΓ(1) to w.

Proof. We need to define a map and then show that it is a well-defined
morphism.

Let T be the infinite graph constructed iteratively from a single vertex
by adding a loop labelled by r at every vertex for every r ∈ R, but not
performing any edge folding. We view each of these loops as oriented in
such a way that the word r is the label of the path given by reading the loop
clockwise. By a proper subpath of a loop of T we mean a path π with initial
vertex being the vertex at which the loop was attached in the construction
of T , and π is a simple path which traverses the loop clockwise but does
not visit every vertex of the loop i.e. the end vertex of π is not equal to
the start vertex of π. Note that if r ∈ R is the label of a loop in T then
any proper subpath of this loop is labelled by a proper prefix of the word
r. From the construction it follows that every vertex u of T there is a
unique sequence (π1, π2, . . . , πk) where each πi is a proper subpath of a loop
and π1π2 . . . πk is a path from the root of T to u. We define a map from
the vertex set of T to vertices in Ω where the vertex u with corresponding
sequence (π1, π2, . . . , πk) of proper subpaths of loops maps to the vertex in
Ω obtained by following the path labelled by p1 . . . pk starting at the vertex
w of Ω, where pi is the label of the path πi for 1 ≤ i ≤ k. This gives a
well-defined (by uniqueness of the sequences of proper subpaths of loops)
map from the vertices of T to the vertices of Ω. As a consequence of the
assumptions that Ω is bi-deterministic and in Ω every relator from R can
be read from every vertex in Ω, this map extends uniquely to a morphism
of graphs which maps edges of T to the edges of Ω. Let us use φ to denote
this graph morphism from T to Ω.
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It follows from Stephen’s procedure that SΓ(1) is obtained by bi-determinising
T . We claim that φ induces a well-defined graph morphism from SΓ(1) to Ω.
To see this note that two vertices v and u of T are identified in SΓ(1) if and
only if there is a path in T between these vertices labelled by a word that
freely reduces to the empty word in the free group. Since φ is a morphism
it follows that there is a path in Ω between φ(v) and φ(u) labelled by the
same word that freely reduces to the empty word in the free group. Since
the graph Ω is bi-deterministic it follows that φ(v) = φ(u). Hence φ induces
a well-defined map from the vertices of SΓ(1) to the vertices of Ω. Two
edges e and f of T are identified in SΓ(1) if and only if they have the same
label, say a ∈ A, and their start vertices v and u are identified in SΓ(1).
But we have already seen that this means that φ(v) = φ(u) which, since Ω
is bi-deterministic means that both e and f must be mapped to the unique
edge in Ω with start vertex φ(v) = φ(u) and labelled by a. This shows that
φ induces a well defined map from the edges of SΓ(1) to the edges of Ω.

It remains to verify that φ induces a morphism of graphs from SΓ(1) to
Ω. Let e be an edge in SΓ(1). Choose an edge f in T such that f is equal to
e when T is bi-determinised, that is, f is a member of the equivalence class
of edges that represented e. Since φ is a morphism from T to Ω it follows
that the start vertex of f in T maps to the start vertex of φ(f) in Ω, and the
end vertex of f in T maps to the end vertex of φ(f) in Ω. But by definition
φ(e) = φ(f) and φ maps the start vertex e to the same place as the start
vertex of f , and similarly for the end vertices. It follows that φ induces a
morphism of graphs from SΓ(1) to Ω. �

Note that previous lemma is not true if one drops the condition that Ω is
bi-deterministic. The following two results will be useful.

Lemma 3.4. [4, Corollary 3.2] Let M = Inv〈A | R〉 be an inverse monoid.
If xaa−1y is right invertible where a ∈ A ∪A−1 and x, y ∈ (A ∪A−1)∗ then
xaa−1y = xy in M .

Lemma 3.5. Suppose M = Inv〈A | R〉 is an E-unitary inverse monoid, and
T is a set of relators which hold in the maximal group image Gp〈A | R〉.
Then the inverse monoid N = Inv〈A | R ∪ T 〉 is E-unitary.

Proof. Suppose s ∈ N is an element which maps to 1 in the maximal group
image. Choose a word w over A±1 representing s. Since the relations in T

already hold in the maximal group image of M , w also represents 1 in the
maximal group image of M . Since M is E-unitary this means w represents
an idempotent in M , and hence also in N which is a quotient of M . �

4. Exact characterisation of groups of units

It is known that the group of units of a finitely presented special in-
verse monoid is always finitely generated: this is implicit in the work of
Ivanov, Margolis and Meakin [9, Proposition 4.2], and an explicit proof can
be found as [5, Theorem 1.3]. The first author and Ruškuc [5] have recently
shown that for every finitely generated subgroup H of a finitely presented
group G, there is a finitely presented special inverse monoid with group of
units the free product G ∗H. Thus, every finitely generated subgroup of a
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finitely presented group (which by Higman’s embedding theorem [7] means
every finitely generated recursively presented group), is a free factor of the
group of units of a finitely presented special inverse monoid. They ask [5,
Question 8.6] the natural question of whether the “free factor” can be elimi-
nated, in other words, whether every finitely generated recursively presented
group arises as the group of units of some finitely presented special inverse
monoid. In this section we answer this question in the positive, giving an
exact characterisation of the possible groups of units of finitely presented
special inverse monoids.

Theorem 4.1. The groups of units of finitely presented special inverse
monoids are exactly the finitely generated, recursively presented groups (or
equivalently, the finitely generated subgroups of finitely presented groups).

Proof. The fact that groups of units in finitely presented special inverse
monoids are finitely generated is [5, Theorem 1.3] (and also implicit in [9,
Proposition 4.2]). The fact that they are recursively presented can easily
be shown by using the special inverse monoid presentation to recursively
enumerate all relations w = 1 which hold in the special inverse monoid, and
then using those where w factorises as a product of chosen representatives
of a generating set for the group of units to enumerate relations which hold
in the group. (Alternatively, it follows from Corollary 5.7 below, which is
proved independently of Theorem 4.1.)

For the converse, let H be a finitely generated, recursively presented
group. By the Higman embedding theorem [7] we may assume that H

is a (finitely generated, and hence recursively enumerable) subgroup of a
finitely presented group G. Choose a finite special monoid presentation for
G, say G = Mon〈A | r1, . . . , rk〉, supposing without loss of generality that H
is generated as a monoid by some (possibly empty if H is the trivial group)
subset B of A, and that for each a ∈ A there is a unique formal inverse
a ∈ A (with a = a) and aa = 1 is among the defining relators for G. Let
p0, . . . , pk, z and d be symbols not in A, and consider the special inverse
monoid

M = Inv〈 A, p0, . . . , pk, z, d | piap
′
ipia

′p′i = 1 (a ∈ A, i = 0, . . . , k)

pirid
′p′i = 1 (i = 1, . . . , k)

p0dp
′
0 = 1

zbz′zb′z′ = 1 (b ∈ B)

z

(
k∏

i=0

p′ipi

)

z′ = 1 〉.

noting that the order of the product in the final relator is unimportant
because the factors are fundamental idempotents.

We note that the presentation does not automatically identify the formal
inverse of a generator in A with its inverse in the inverse monoid, so a, a,
a′ and a′ may be four distinct elements of M . However, recalling that the
defining relators for G include relators of the form aa and aa, notice that
at any vertex in a Schützenberger graph of M with edges labelled by all the
pis coming in, and for any generator a ∈ A, Stephen’s procedure will as a
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consequence of the second and third families of relators in the presentation
for M attach closed paths labelled aad′, aad′ and d which bi-determinise to
give closed paths labelled aa and aa. Thus, for every vertex u with edges
labelled by all the pis coming in, and for any generator a ∈ A, there is an
edge leaving u labelled by a to a vertex v with a parallel reverse edge from
v back to u labelled by a.

Note also that the group defined by this presentation, which is the max-
imal group image of M , is easily seen to be a free product of G (generated
by A) with a free group freely generated by {p0, . . . , pk, z}, with d mapping
to 1.

Let Γ be the Cayley graph of G with respect to A. Note that from the
assumptions on the presentation chosen for G every edge in Γ labelled by a

has a unique reverse edge labelled by a.
We call a vertex of SΓ(1) a z-vertex if it has a z-edge coming in, and a

p-vertex if it has edges coming in labelled by pi for all i = 0, . . . , k. Notice
that it follows from the final relation in the presentation that every z-vertex
is a p-vertex.

We claim that every p-vertex of SΓ(1) has an embedded copy of Γ with its
root at this vertex. Indeed, let v be a p-vertex. It follows by the first type of
relation in the presentation that v has a-edges going out for all a ∈ A, and
that these edges all lead to p-vertices. Moreover, by the above argument,
v has a-edges coming in for each a ∈ A, and each comes from the vertex
to which the corresponding a-edge going out leads. A simple inductive
argument shows that all words over A±1 can be read from v staying always
at p-vertices. Now for each p-vertex and each defining relator ri of G, there
must be closed paths at v labelled d and rid

′, which since SΓ(1) is a bi-
deterministic graph means there must be a closed path at every p-vertex
labelled by ri.

It then follows from Lemma 3.3 (applied with G playing the role of the
monoid, Γ as its Schützenberger graph, and SΓ(1) as the Ω in the statement
of the lemma) that for each p-vertex v, there is a morphism from Γ to SΓ(1)
taking 1 to v. Indeed, by the assumptions on the monoid presentation
defining G having the relations aa = 1 for all a ∈ A it follows that G =
Mon〈A | r1, . . . , rk〉 = Inv〈A | r1, . . . , rk〉 = T . Hence it follows that working
with this inverse monoid presentation for G then the Cayley graph of Γ of
G is isomorphic to SΓT (1) the Schützenberger graph of 1 of G viewed as
the inverse monoid T . Now from the observations in the previous paragraph
it follows that all the p-vertices in SΓM(1) that can be reached from a
fixed p-vertex by a word over A ∪ A−1 is also a p-vertex, and for every
vertex in that set every relator labels a closed path. Also the graph on
this collection of p-vertices is clearly bi-deterministic since it is a subgraph
of SΓM(1) which is bi-deterministic. Hence the conditions Lemma 3.3 are
satisfied which completes the proof of the claim that for each p-vertex v,
there is a morphism from Γ to SΓM (1) taking 1 to v. Moreover, by our
observations above about the maximal group image being the free product
of G (generated by A) with a free group freely generated by {p0, . . . , pk, z},
with d mapping to 1, it follows that if we compose this morphism from
Γ to SΓ(1) with the map from SΓ(1) to the maximal group image we see
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that distinct vertices of Γ will map to elements which differ in the maximal
group image, and therefore must be different in M , so that the map from Γ
to SΓ(1) is injective. Note also that it follows from this argument that in
addition to the edges labelled by generators from A the embedded copy of
Γ at a p-vertex v also has a loop labelled by d at every vertex. Moreover, by
mapping to the maximal group image it is readily seen that these account
for all the edges between vertices in this embedded copy of Γ, that is, the
induced subgraph of SΓ(1) on this set of vertices is isomorphic to Γ with a
loop labelled by d added to every vertex.

In particular, the end of the z-vertex starting at 1 is a p-vertex, and
therefore is the root of an embedded copy of Γ. Moreover, an easy inductive
argument using the penultimate relation in the presentation shows that every
vertex in this copy of Γ corresponding to an element of the subgroup H is
a z-vertex. Since in the embedded copy of Γ every edge labelled by b ∈ B

has a corresponding reverse edge labelled by b ∈ B it then follows that for
every word w over B (including the empty word), zwz′ can be read both
into and out of the start vertex of SΓ(1) which means that these elements
represent units of the inverse monoid M . Furthermore, it is easy to see that
for any two such words zuz′ and zvz′ we have that (zuz′)(zvz′) = z(uv)z′ in
M (by Lemma 3.4 since zuz′ and zvz′ are both right invertible in M), and
zuz′ = zvz′ in M if and only if u = v in H. For the non-trivial direction
of the latter claim, if zuz′ = zvz′ in M then zuz′ = zvz′ in the maximal
group image which implies u = v in the maximal group image of M and
thus u = v in H. It follows that the set of elements of M represented by
the set of words {zwz′ : w ∈ B∗} forms a subgroup of the group of units of
M that is isomorphic to the group H. Call this subgroup C.

To complete the proof that the group of units of M is isomorphic to H it
suffices to check that M has no units other than those in C. By [5, Theorem
1.3] and [9, Proposition 4.2] the relators in a special inverse monoid can be
factorised into subwords representing units, in such a way that the factors
generate the entire group of units. So it suffices to check that if a relator can
be written uvw where u, v and w represent units then v is in C. First notice
that if we add relations to the presentation identifying d and the generators
in A with 1, we obtain a natural morphism from M onto the monoid:

N = Inv〈 p0, . . . , pk, z | pip
′
i = 1 (i = 0, . . . , k)

zz′ = 1

z

(
k∏

i=0

p′ipi

)

z′ = 1 〉

Notice that N itself has trivial group of units: indeed, it has a homomor-
phism onto the bicyclic monoid B = Inv〈b | bb′ = 1〉 taking z to b2 and all
the pis to b. Any unit in N must map to 1 under this map. If there are
non-trivial units there must be a proper prefix of a relator which maps to 1
under this map, but it is easy to see that all prefixes of relators map to b or
b2. Note that this argument in particular shows that none of the generators
{p0, p1, . . . , pk, z} is invertible in N .
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Clearly units in M must map to units in N ; so units in M must map to 1
in N . Thus, it suffices to consider factorisations of uvw of relators (with u or
w possibly empty) such that u, v and w map to 1 inN , and show that in such
cases v either is not a unit or is necessarily in C. The only such factorisations
of relators in the presentation of M are (i) the factorisations (piap

′
i)(pia

′p′i)
of the first type of relation, and (ii) the factorisations (zbz′)(zb′z′) of the
penultimate type. That these are the only such factorisations can be proved
using fact that none of the generators {p0, p1, . . . , pk, z} is invertible in N ,
and hence certainly none of them or their inverses are equal to 1 in N . In
case (ii) we can see that the factors are already in C, so to complete the
proof of the theorem it suffices to show that piap

′
i is not a unit for each

a ∈ A and i ∈ I0.
To this end, we define an infinite graph Ω recursively as follows. The

graph Ω has a root vertex at which for each x ∈ {z, p0, . . . , pi} there is an
x-edge going out of the vertex with a copy of Ωx at the far end, where, Ωx

is defined as follows For each i ∈ {0, 1, . . . , k}, a pi-zone Ωpi consists of a
copy of the free monoid Cayley graph on A (rooted at 1) with

• at each vertex and for each x ∈ {z, p0, . . . , pk}, an x-edge going out
with a copy of Ωx at the far end;

• at each vertex (except the root) an edge coming in labelled pi, with
a copy of Ωp′i

at the far end;
• if i ≥ 1, at each vertex v and for each relator ri an edge labelled d

from v to the end of the path starting at v and labelled ri; and
• if i = 0, at each vertex v a loop labeled d.

A z-zone Ωz consists of a copy of the Cayley graph Γ of the group G with
respect to the generating set A with

• at each vertex and for each x ∈ {z, p0, . . . , pk} an x-edge going out
with a copy of Ωx at the far end;

• at each vertex and for each x ∈ {p0, . . . , pk} an x-edge coming in
with a copy of Ωx′ at the far end;

• at each vertex of the copy of Γ corresponding to an element of H, a
z-edge coming in with a copy of Ωz′ at the far end; and

• at each vertex a loop labelled d.

For x ∈ {z, p0, . . . , pk}, an x′-zone Ωx′ consists of a root vertex with

• for each y ∈ {z, p0, . . . , pk} with y 6= x an y-edge going out with a
copy of Ωy at the far end.

See Figure 1 for an illustration of the graph Ω.
It is immediate from the definition of the zones that Ω is bi-deterministic,

since we were careful to ensure that there are never two edges with the same
label leaving the same vertex, and that where we attach a Ωx at the end of
a new edge, it is of a type whose root has no existing x-edge coming in.

Next we claim that every relator can be read around a closed path at every
vertex. First notice that every vertex is the start of a z-edge leading into a z-
zone, and a pi edge leading into either a pi-zone or a z-zone (not necessarily
at the root). With this observation it is easy to check that the defining
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ΓH

Γ \ ΓHA∗

z p0 pk. . .

pi

p0

...

pi . .
.

pk

z p0 . . . pk

z p0 . . . pk

pk
...

p0

z

p0
... pi
...
pk

z

p0
...

pj (j 6= i)
. .
.

pk

Figure 1. An illustration of part of the graph Ω con-
structed in the proof of Theorem 4.1. The black vertex is
the root, the square in the centre represents a z-zone Ωz

with the copy of Γ partitioned into vertices ΓH representing
elements of H and its complement, while the triangle on the
left represents a pi-zone Ωpi where the d-labelled edges in the
pi-zone have been omitted from the diagram.

relators which are fundamental idempotents can all be read (necessarily
along a closed path, since the graph is bi-deterministic) at every vertex.

For the relators of the form pirid
′p′i, notice that reading the initial pi from

any vertex will take us into either a pi-zone or a z-zone. If it is a pi-zone
then ri can be read in the free monoid Cayley graph, and we have inserted
a d-edge from there back to the point at which we came in. If it is a z-zone
then since ri represents 1 in G, it can be read around a closed path, and
d can then be read around a loop. In both cases, the original p′i can then
be read back along the original edge to the start point. Similarly, for the
relators of the form p0dp

′
0, reading p0 from any vertex takes us to a p0-zone

or a z-zone, whereupon we can read d around a loop and then p′0 back to
the start.

Since Ω is bi-deterministic and in Ω every relator can be read around
a closed path at every vertex it follows from Lemma 3.3 that there is a
morphism from the Schützenberger graph SΓ(1) to Ω. Notice for each i,
that the vertex which pi maps to under this morphism is the root of a pi-
zone, and therefore for each a ∈ A has no a-edge coming in. It follows that
ap′i cannot be read into the root of Ω, and hence ap′i cannot be read into the
root of SΓ(1). Therefore, the word ap′i is not left invertible, which means
that piap

′
i cannot be a unit. This completes the proof. �

We remark that in fact the graph Ω constructed in the proof of Theo-
rem 4.1 is isomorphic (via the given morphism) to SΓ(1). To show this
requires more work and is not needed for the above proof of the theorem,
but an alternative proof of the theorem could be obtained by establishing
this fact, observing that the automorphism group of Ω is easily seen to beH,
and using the fact that the group of units in an inverse monoid is always the
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automorphism group of SΓ(1). In fact this viewpoint provided the intuition
from which we arrived at the presentation used in the proof.

We also remark on the high proportion of the proof which is devoted to
showing that we do not have extra “undesired” group elements. Proving
that unwanted things do not live in particular subgroups seems to be by
some distance the hardest problem when working in this area, in the same
way that proving certain words are not equal is often the hardest part of
working with a group or monoid presentation.

It remains an open question which groups arise as groups of units of one-
relator special inverse monoids. Theorem 4.1 does not really provide any
help with this particular question, since even after eliminating fundamental
idempotent relators using Lemma 2.1, the number of relations in the pre-
sentation constructed will be one more than the number of relations in a
special monoid presentation for the underlying group, which may already
be more than the number of relations in a group presentation. We shall see
below (Corollary 5.8) that every finitely generated subgroup of a one-relator
group arises as a group H-class of a one-relator special inverse monoid, but
we do not know if all such groups arise as groups of units of one-relator
special inverse monoids. We also do not know whether groups of units in
one-relator special inverse monoids are necessarily finitely presented. It was
shown in [5] that a positive answer to the latter question would imply that
all one-relator groups are coherent, resolving a long-standing open problem
first posed by G. Baumslag [2, page 76]. We refer to the recent survey article
of Wise [25] for more background on this and other aspects of the theory of
coherent groups.

5. Group H-classes

In the previous section we exactly characterised possible groups of units of
finitely presented special inverse monoids; these are (as was already known)
all finitely generated, and it is natural to ask whether the same is true for
the other group H-classes in such a monoid. Indeed, in the case of special
(non-inverse) monoids it is even known that the other group H-classes are
all isomorphic to the group of units, so one might even ask if this is the
case for special inverse monoids. In section we shall show that the answer
to both questions is negative: it transpires that every recursively presented
group (not just the finitely generated ones) can arise as a group H-class in
a finitely presented special inverse monoid! The same construction will also
allow us to show that a finitely presented special inverse monoid can have
infinitely many pairwise non-isomorphic group H-classes.

Our construction will need some preliminary results, starting with the
following straightforward group-theoretic fact:

Lemma 5.1. Let K be a subgroup of a group G, and t ∈ G. Then the
setwise stabiliser of K ∪ tK under the left translation action of G,

{g ∈ G | g(K ∪ tK) = K ∪ tK},

is either equal to, or an index 2 overgroup of, K ∩ tKt−1, with equality
provided K ∩ tKt = ∅.
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Proof. Let

H = {g ∈ G | gK = K and gtK = tK}

be the intersection of the setwise stabilisers of K and tK. We claim that
H = K∩tKt−1. Indeed, if g ∈ K∩tKt−1 then for every h ∈ K we have gh ∈
K, while writing g = tkt−1 with k ∈ K we have gth = tkt−1th = t(kh) ∈ tK,
so that g ∈ H. Conversely, if g ∈ H then gK = K and gtK = tK; the first
equation gives g ∈ K and the second gives t−1gtK = K so that t−1gt ∈ K

and g ∈ K ∩ tKt−1.
Now if g(K ∪ tK) = K ∪ tK then because left cosets form a partition

either (i) gK = K and gtK = tK or (ii) gK = tK and gtK = K. It follows
that there is a morphism from the stabiliser of K ∪ tK to the cyclic group
Z2, taking g to 0 in case (i) and 1 in case (ii). By definition the kernel of this
morphism is H = K ∩ tKt−1, so the latter has index 1 or 2 in the stabiliser,
depending on whether the morphism is trivial or surjective.

Moreover, if K ∩ tKt = ∅ then case (ii) cannot arise. Indeed, if gK = tK

and gtK = K then the first equation gives g = th for some h ∈ K, where-
upon the second gives tht ∈ K; but now tht lies inK∩tKt, contradicting our
hypothesis that this intersection is empty. Thus, in this case the morphism
is trivial and we have equality. �

Lemma 5.2. Let K be a finitely presented group, and H a recursively enu-
merable subgroup of K. Then there exists a finitely presented group con-
taining two conjugate subgroups K1 and K2 such that K1

∼= K2
∼= K and

K1 ∩ K2
∼= H. Moreover, this group can be chosen in such a way that

tK1t
−1 = K2 for some t such that K1 ∩ tK1t = ∅.

We note that a subgroup of a finitely presented group is recursively enu-
merable if and only if it is generated by a recursively enumerable set.

Proof. Let G1 be an HNN extension of K, with stable letter t conjugating
each element of H to itself. Since K is finitely presented and H is recur-
sively enumerable, G1 is finitely generated and recursively presented by a
presentation consisting of the presentation for K with an extra generator t

and extra relations twt−1 = w for each word w representing an element of
H. So by the Higman embedding theorem, G1 can be embedded in a finitely
presented group G2. But now G2 contains two conjugate subgroupsK1 = K

and K2 = tKt−1, which intersect exactly in a copy of H, as required. Fi-
nally, it follows easily from Britton’s Lemma [12, page 181] that K1 ∩ tK1t

is empty in G1 and hence also in G2. �

Theorem 5.3. Let G be a group, and H a subgroup of G. Then there
exists an E-unitary special inverse monoid M such that for every finite

subset X ⊆ G, the setwise stabiliser in G of the union of the left H-cosets
determined by X,

K = {g ∈ G | gXH = XH},

is isomorphic to a group H-class in M . If G is finitely presented and H

is finitely generated then M can be chosen to be finitely presented with the
same number of defining relations as G (unless G is free, in which case M

will have 1 defining relation). If H is trivial then M can be chosen to be the
free product of G with a free inverse monoid.
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Proof. Let Gp〈A | R〉 be a group presentation for G, choosing A to be finite
if G is finitely generated and R to be finite if G is finitely presented. If G
is free choose A to be a free generating set and R to be empty. Let B be a
set of words over A±1 representing a monoid generating set for H, choosing
B to be empty if H is trivial and finite if H is finitely generated. Let Γ be
the Cayley graph of G with respect to A.

Let y and z be new symbols not in A, and define

M = Inv〈A, y, z | R, aa′ = a′a = 1 (a ∈ A),

zbz′zb′z′ = yby′yb′y′ = 1 (b ∈ B)〉.

Notice that the presentation is finite provided G is finitely presented and H

is finitely generated, and clearly presents the free product G ∗ Inv〈y, z〉 if H
is trivial (since we chose B to be empty in that case). In the case that the
presentation is finite, since all the relators except those in R are fundamental
idempotents, repeated application of Lemma 2.1 will give a special inverse
monoid presentation for M with |A| + 2 generators and |R| relations (or 1
relation if R is empty, so that G is free).

Because the relators in R do not feature the letters y and z and the
relators not in R are all fundamental idempotents. It follows easily that this
presentation when interpreted as a group presentation yields a free product
G ∗ Gp〈y, z〉 of G with a free group of rank 2, so this free product is the
maximal group image of M . In particular, it follows that A generates a copy
of G inside the group of units of M .

To see that M is E-unitary first note that

N = Inv〈A, y, z | R, aa′ = a′a = 1 (a ∈ A)〉 = G ∗ Inv〈y, z〉

is the inverse monoid free product of the group G and a free inverse monoid,
both of which are E-unitary, and hence G ∗ Inv〈y, z〉 is E-unitary. The fact
that the free product of two E-unitary inverse monoids is again E-unitary
can be proved, for example, by applying a result of Stephen [24, Theorem
6.5] that gives sufficient conditions for the amalgamated free product of two
E-unitary inverse semigroups to be E-unitary; see [4, Proof of Theorem
3.8] for details. Hence, N is E-unitary, and since the relators of the form
zbz′zb′z′ = yby′yb′y′ = 1 hold in every group, it follows from Lemma 3.5
that M is E-unitary.

Now let X be a finite set of words over the generators, representing a
finite subset of G, and consider the element

e =
∏

x∈X

xz′zy′yx′,

noting that the order of the product is unimportant, and the element e is
idempotent, because the factors are fundamental idempotents and idempo-
tents commute in inverse semigroups. We claim that the H-class of e is
isomorphic to K.

To this end, consider the Schutzenberger graph SΓ(e). First, we note
that it contains a copy of the Cayley graph Γ, rooted at e. Indeed, any
word over A±1 is right invertible in M (because of the relations of the form
aa′ = a′a = 1) and hence readable from e, and two words representing the
same element in G are equal in M (because of the relators in R and those of
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the form aa′ = a′a = 1), so that the corresponding paths from e must end
in the same place. Conversely, if two words u and v over A±1 label paths
from e ending in the same place then eu = ev in M , and hence also in the
maximal group image, which means that u = v in the maximal group image
G ∗Gp〈y, z〉 and hence u = v in G.

We claim next that the vertices of SΓ(e) corresponding to elements of
XH ⊆ G are exactly those which have both a y-edge and a z-edge coming
in. Indeed, suppose x ∈ X and h ∈ H so that xh ∈ XH. Since the word
defining e can be read from the root of SΓ(e), the word xz′zy′yx′ (which
occurs as a factor of e after a fundamental idempotent prefix) can be read
from e, so the vertex corresponding to x has both a y-edge (call it e) and a
z-edge coming in. In particular in the case h = 1 this shows that xh = x

does have both a y-edge and a z-edge coming in. If h 6= 1 then h is a product
of elements of our chosen generating set for H, so is represented by a word
of the form b1 . . . bk where each b1, . . . , bk ∈ B. Now from the start of the
y-edge e we can read the (right invertible) word (yb1y

′)(yb2y
′) . . . (ybky

′),
and it is easy to see that the final letter of this word must be read along a
y-edge coming into the vertex corresponding to xh. An identical argument
shows that there is a z-edge coming into this vertex.

For the converse, since M is E-unitary by Lemma 3.2 we may consider
SΓ(e) as a subgraph of the Cayley graph ∆ of the maximal group image,
which we have already observed is a free product of G (generated by A)
with a free group on y and z. This Cayley graph ∆ partitions into a “tree”
of copies of the Cayley graph of G, in other words, a collection of copies
of Γ (which we shall call components), joined by cut edges labelled y and
z. See Figure 2 for an illustration of the graph ∆. Let ∆′ be the quotient
graph whose vertices are the components, and with an edge between two
components exactly if ∆ has an edge between two vertices in the respec-
tive components with the same label. (Note that ∆′ is not bi-deterministic;
indeed it will typically have many edges leaving with the same label.) Let
SΓ(e)′ be the corresponding quotient of SΓ(e).4 We claim that the only
vertex of SΓ(e)′ with both a y-edge and a z-edge coming in is that corre-
sponding to the component of e.

By Lemma 3.2, SΓ(e) is equal to the smallest subgraph of the Cayley
graph ∆ such that e can be read from 1 and every relator from the pre-
sentation for M can be read at every vertex of SΓ(e). It follows from this
that SΓ(e)′ can be formed from the image in ∆′ by iteratively tracing paths

4In general the precise structure of SΓ(e)′ will depend on the cardinalities of G and XH

(which if infinite has the same cardinality as H since X is finite). If κ is the cardinality
of G and µ is that of XH then ∆′ will be a tree where every vertex has κ many in- and
out-edges labelled by y and also κ many in- and out-edges labelled by z. The subgraph
SΓ(e)′ will have a root vertex with κ many out-edges labelled by each of y and z, and
µ many in-edges labelled by y and z. Every vertex in SΓ(e)′ will have κ many many
out-edges labelled by each of y and z. Any vertex with an in-edge labelled by y will have
µ many in-edges labelled by y, and any vertex with an in-edge labelled by z will have µ

many in-edges labelled by z. Furthermore SΓ(e)′ is a tree since it is a subgraph of the
tree ∆′. In particular the only vertex in SΓ(e)′ with both a y-edge and a z-edge coming
in is the root vertex. It follows that all vertices of SΓ(e) with both an y-edge and a z-edge
coming in are within the component of e.
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ΓXH

Γ \ ΓXH

y z

y z

y z

y z

y

z

Figure 2. An illustration of part of the graph SΓ(e) within
the Cayley graph ∆ of the maximal group image G∗Gp〈z, y〉.
Each square in the figure is a copy of the Cayley graph Γ of
G, each partitioned into the vertices ΓXH corresponding to
the elements XH, depicted as shaded regions in the figure,
and the complement of this set. The graph SΓ(e) contains
all the red edges and has vertex set equal to the union of all
the copies Γ to which these red edges are incident. The graph
∆′ is the non-bi-deterministic quotient of ∆ with vertices the
copies of Γ (i.e. the squares) and all y- and z-edges between
them. The graph SΓ(e)′ is the corresponding quotient of
SΓ(e).

labelled by yy′ and zz′ in ∆′, in other words, either adding a y-edge out of
an existing vertex to a new vertex, or or adding a y-edge out of an existing
vertex to a new vertex and another y-edge coming into the new vertex, or
adding a y-edge into an existing vertex which already has a y-edge into it,
or corresponding operations with z-edges. Therefore, the only way a vertex
can acquire a y-edge coming in is if either (i) it is created as a new ver-
tex at the end of a y-edge or (ii) it already had a y-edge coming in. This,
any vertex with a y-edge coming in (except for the component of e) must
have been created with a y-edge coming in. The dual statement applies to
z-edges. But a vertex clearly cannot be created with both a y-edge and a
z-edge coming in.

Finally, suppose a vertex v of SΓ(e) within the component of e has a
y-edge coming in. Then by Lemma 3.2 (or [23, Lemma 3.1]) the start vy′

of that edge must reachable from the vertices in the path traced out by e

in ∆ (which means either a vertex in the component of e, or a vertex of
the form exy′ or exz′ for some x ∈ X) by following a path labelled by a
product of proper prefixes of the defining relators. Consider such a path
where the number of relator-prefixes is minimal. Consider the projection
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of M onto Z taking all generators in A to 0 and the generators y and z

to 1. The entire component of e clearly maps to 0, and exy′, exz′ (for all
x ∈ X) and vy′ map to −1. All relator-prefixes map to non-negative values,
so the only way this can happen is if the path starts at exy′ or exz′ for
some x ∈ X, and the relator-prefixes are of the form yby′ or zbz′ for b ∈ B.
If we try to mix relator-prefixes of the form yby′ with those of the form
zbz′ then the path clearly leaves the component of e, and can only return
by eventually following zb′z back to the same point, which contradicts the
minimality of the number of relator-prefixes in the product. This can be
seen e.g. by considering the structure of SΓ(e) as a subgraph of the Cayley
graph ∆ of the maximal group image G∗Gp〈y, z〉, as illustrated in Figure 2,
and observing that this fact is clearly true within the Cayley graph ∆ of
this free product and hence must also be true within the subgraph SΓ(e).
Moreover, if we use only relator-prefixes of the form zbz′ we will clearly
not end at vy′; so we must use relator-prefixes only of the form yby′. By a
similar argument, this means our path must start at exy′. So in summary,
we have a path from exy′ to vy′ labelled by a product of words from yBy′.
But this means there is a path from ex to v labelled by a product of words
from B, which means that v corresponds to an element of XH as required.

Now let Ω be the graph which is the Cayley graph Γ with additional y- and
z-edges coming into the vertices corresponding to elements of XH. Clearly,
the automorphisms of Ω are exactly the automorphisms of Γ which map
elements of XH to elements of XH, in other words. The automorphisms
all come from elements of G acting by left translation, so this means the
automorphism group of Ω is isomorphic to the setwise stabiliser of XH

under the left translation action of G, in other words, to K.
Since Ω is a connected subgraph of SΓ(e) rooted at e (in fact Ω is an

induced subgraph of SΓ(e)), and since e itself can be read in Ω, it follows
from Lemma 3.1 that every automorphism of Ω will extend uniquely to an
automorphism of SΓ(e). On the other hand, any automorphism of SΓ(e)
must clearly preserve the set of vertices which have a both a y-edge and
a z-edge coming in, that is, the set of vertices corresponding to XH. It
follows easily that it must preserve the embedded copy of Ω, and hence is an
extension of an automorphism of Ω. Thus, K is exactly the automorphism
group of SΓ(e), which by [22, Theorem 3.5] is isomorphic to the group H-
class He of e. �

Theorem 5.4. Let H be a recursively enumerable subgroup of a finitely
presented group. Then there is an E-unitary finitely presented special inverse
monoid with a group H-class isomorphic to H.

Proof. By Lemma 5.2 there is a finitely presented group G with a finitely
generated subgroup K and an element t such that K ∩ tKt−1 ∼= H and
K ∩ tKt = ∅. By Lemma 5.1 this means H is isomorphic to the stabiliser
of K ∪ tK. Now by Theorem 5.3 there is a finitely presented special inverse
monoid with the latter as a group H-class. �

Corollary 5.5. There exist E-unitary finitely presented special inverse monoids
with group H-classes which are not finitely generated.
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To give a concrete illustration of Corollary 5.5, in the next result we
shall show how to construct a specific example of a finitely presented special
inverse monoid in which there is a maximal subgroup that is not finitely
generated.

Proposition 5.6. Let M be the inverse monoid defined by the presentation

Inv〈a, b, q, t, y, z | aqa′q′ = 1, bqb′q′ = 1, tat′a′ = 1, tbt′b′q′ = 1,

cc′ = c′c = 1 (c ∈ {a, b, q, t}),

zdz′zd′z′ = ydy′yd′y′ = 1 (d ∈ {a, a′, b, b′})〉.

Then M is a finitely presented E-unitary special inverse monoid that con-
tains a group H-class that is not finitely generated. Specifically, the H-class
He in M of the idempotent e = (z′zy′y)(tz′zy′yt′) is not finitely generated.

Proof. We begin with the direct product L of a free group of rank 2 and the
infinite cyclic group

L = Gp〈a, b〉 × Z = Gp〈a, b, q | aq = qa, bq = qb〉.

Let H = 〈a, b〉 ≤ L be the free subgroup generated by {a, b}, and U =
〈a, qb〉 ≤ L the subgroup generated by {a, qb}. It is immediate from the
definitions that H is isomorphic to the free group of rank 2 with respect
to the generating set {a, b}. It is straightforward to show that U is also
isomorphic to a free group of rank 2 with respect to the generating set
{a, qb}; indeed, observe that

Gp〈a, b, q | aq = qa, bq = qb〉

= Gp〈a, b, q, x | x = qb, aq = qa, bq = qb〉

= Gp〈a, x, q | aq = qa, xq = qx〉 ∼= Gp〈a, x〉 × Z,

from which it is clear the subgroup generated by {x = qb, a} is free of rank
2 with respect to this generating set.

Furthermore, it was proved by Moldavanskĭı in [17, Lemma 1] that H ∩
U ≤ L is not finitely generated. Indeed, the proof of [17, Lemma 1] shows
that H ∩ U is equal to the normal closure of a in the free group Gp〈a, b〉
which is shown to be a free group of infinite rank and hence not finitely
generated.

Since H and U are both isomorphic to the free group of rank 2 we can
form the HNN extension

G = Gp〈a, b, q, t | aq = qa, bq = qb, tat−1 = a, tbt−1 = qb〉

of L with respect to the isomorphism φ : H → U that maps a 7→ a and
b 7→ qb. Since G is an HNN extension of L it follows that L naturally
embeds in G and hence so do H and U . Hence H = 〈a, b〉 ≤ G is a finitely
generated subgroup G that is isomorphic to the free group of rank 2, and
in G we have that H ∩ tHt−1 = H ∩ φ(H) = H ∩ U which is not finitely
generated. Furthermore, it follows from Britton’s Lemma applied to the
HNN extension L that H ∩ tHt = ∅. Hence by Lemma 5.1

K = {g ∈ G : g(H ∪ tH) = H ∪ tH} = H ∩ tHt−1

and hence in G the stabiliser K of the union of cosets H ∪ tH is not finitely
generated.
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Now using this group G, the subgroup H, and the coset representatives
X = {1G, t}, it then follows from Theorem 5.3 and its proof that that if M
is the inverse monoid defined by the presentation

Inv〈a, b, q, t,
︸ ︷︷ ︸

A

y, z | aqa′q′ = 1, bqb′q′ = 1, tat′a′ = 1, tbt′b′q′ = 1
︸ ︷︷ ︸

R

,

cc′ = c′c = 1 (c ∈ {a, b, q, t}),

zdz′zd′z′ = ydy′yd′y′ = 1 (d ∈ {a, a′, b, b′}
︸ ︷︷ ︸

B

)〉.

thenM is a finitely presented E-unitary special inverse monoid that contains
a group H-class that is not finitely generated. In particular, from X =
{1G, t} we obtain the idempotent

e = (z′zy′y)(tz′zy′yt′)

in the proof of Theorem 5.3 and then the maximal subgroup He of M is
isomorphic to K and hence is not finitely generated. �

Another corollary of Theorem 5.4 is the following.

Corollary 5.7. The possible group H-classes of finitely presented special
inverse monoids (and of E-unitary finitely presented, recursively presented,
and E-unitary recursively presented special inverse monoids) are exactly the
(not necessarily finitely generated) recursively presented groups.

Proof. Higman [7, Corollary to Theorem 1] showed that every recursively
presented group embeds “effectively” in a finitely presented group; although
an exact definition of “effectively” is not given, it is clear from the argument
that this implies that the image will be a recursively enumerable subgroup
of the finitely presented group. Hence, by Theorem 5.4, every such group is
a group H-class of some E-unitary finitely presented special inverse monoid.

Conversely, suppose M = Inv〈A | R〉 is a finitely (or recursively) pre-
sented special inverse monoid, and let e ∈ M be an idempotent represented
by some word w over A±1. Since one can recursively enumerate relations
which hold in M , one can enumerate all words in the H-class of e (by listing
a word v as soon as one discovers that the relations vv′ = w and v′v = w

hold in M), and all relations which hold between such words. Thus, the
H-class of e is a recursively presented group. �

The fact that the construction in Theorem 5.3 preserves the number of
relators in the underlying group (except when free) means it can be applied
in particular to one-relator inverse monoids.

Corollary 5.8. Every finitely generated subgroup of a one-relator group
arises as a group H-class in a one-relator special inverse monoid.

We do not know any examples of one-relator special inverse monoids (E-
unitary or otherwise) containing group H-classes which are not embeddable
in a one-relator group, or which are not finitely generated.

Question 5.9. Is every group H-class in a one-relator special inverse monoid
necessarily embeddable in a one-relator group?
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Question 5.10. Is every group H-class in a one-relator special inverse
monoid necessarily finitely generated?

Recall that a group is said to have the Howson property (or finitely gener-
ated intersection property) if the intersection of two finitely generated sub-
groups is always finitely generated. Free groups have this property [12,
Proposition 3.13] but in contrast there are one-relator groups (even hyper-
bolic ones) which do not [11, 10]. However, we do not know of any example
of a one-relator group containing two conjugate finitely generated subgroups
whose intersection is not finitely generated; nor are we aware of any proof
that this cannot happen. If it can happen then this would imply a neg-
ative answer to Question 5.10. Indeed, by applying Lemma 5.1 and The-
orem 5.3 we could obtain an E-unitary one-relator special inverse monoid
with a group H-class that is a finite index overgroup of a group that is not
finitely generated, and hence by [12, Proposition 4.2] not itself not finitely
generated.

Question 5.11. Is the intersection of two conjugate finitely generated sub-
groups in a one-relator group necessarily finitely generated?

Another application of Theorem 5.3 is to construct examples of finitely
presented special inverse monoids with infinitely many pairwise non-isomorphic
groupH-classes. This contrasts sharply with the case of special (non-inverse)
monoids, where by a result of Malheiro [13] all idempotents lie in the D-class
of 1, and therefore all group H-classes are necessarily isomorphic to each
other.

Corollary 5.12. There exists an E-unitary finitely presented special inverse
monoid (in fact, a free product of a finitely presented group with a finite rank
free inverse monoid) in which every finite group arises as a group H-class.

Proof. Take G to be any finitely presented group with every finite group as
a subgroup (for example, Higman’s universal group into which embeds every
finitely generated group [12, Theorem 7.3]), and H to be the trivial group.
Then every finite group arises as a finite union of left H-cosets and is its own
stabiliser under left translation, so Theorem 5.3 gives a finitely presented E-
unitary special inverse monoid (in fact, a free product of G with a finite rank
free inverse monoid) in which they all arise as group H-classes. �

We conclude by remarking on a natural and related, if slightly tangential,
open question. Belyaev [3] showed that an analogue of Higman’s embedding
theorem holds for inverse semigroups: every recursively presented inverse
semigroup embeds in a finitely presented one. We do not know if a corre-
sponding result holds for special inverse monoids.

Question 5.13. Does every recursively presented special inverse monoid
embed as a subsemigroup (or even as a submonoid) in a finitely presented
special inverse monoid?

The results of this section also lead naturally to the question of what can
be said about maximal submonoids of a finitely presented special inverse
monoid M . These are the submonoids of the form eMe where e is an
idempotent of M . Can these monoids be completely described? The results
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of this section already give some information about this class of monoids:
for example the group of units of eMe is equal to the H-class He of M and
hence need not be finitely generated.
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Comput. Sci., 33(2-3):331–334, 1984.

[20] H. E. Scheiblich. Free inverse semigroups. Proc. Amer. Math. Soc., 38:1–7, 1973.
[21] B. M. Schein. Free inverse semigroups are not finitely presentable. Acta Math. Acad.

Sci. Hungar., 26:41–52, 1975.
[22] J. B. Stephen. Presentations of inverse monoids. J. Pure Appl. Algebra, 63(1):81–112,

1990.



MAXIMAL SUBGROUPS OF SPECIAL INVERSE MONOIDS 25

[23] J. B. Stephen. Inverse monoids and rational subsets of related groups. Semigroup
Forum, 46(1):98–108, 1993.

[24] J. B. Stephen. Amalgamated free products of inverse semigroups. J. Algebra,
208(2):399–424, 1998.

[25] D. T. Wise. An invitation to coherent groups. In What’s next?—the mathematical
legacy of William P. Thurston, volume 205 of Ann. of Math. Stud., pages 326–414.
Princeton Univ. Press, Princeton, NJ, 2020.


	1. Introduction
	2. Preliminaries
	Graphs
	Inverse monoids and Schützenberger graphs
	Inverse monoid presentations and the maximal group image
	Stephen's procedure

	3. Geometry of Schützenberger Graphs
	Extending automorphisms
	E-unitary special inverse monoids
	Morphisms between labelled digraphs and Schützenberger graphs

	4. Exact characterisation of groups of units
	5. Group H-classes
	References

