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The nature of the bulk topological order of the 5/2 non-Abelian fractional quantum Hall state
and the steady-state of its edge are long-studied questions. The most promising non-Abelian model
bulk states are the Pfaffian (Pf), anti-Pffafian (APf), and particle-hole symmetric Pfaffian (PHPf).
Here, we propose to employ a set of dc current-current correlations (electrical shot noise) in order
to distinguish among the Pf, APf, and PHPf candidate states, as well as to determine their edge
thermal equilibration regimes: full vs. partial. Using other tools, measurements of GaAs platforms
have already indicated consistency with the PHPf state. Our protocol, realizable with available
experimental tools, is based on fully electrical measurements.

Introduction.— Manifestations of non-Abelian braid-
ing statistics [1] rely on foundational facets of strongly-
correlated many-body platforms, and may pave the way
towards establishing tools for topological quantum com-
putation [2]. A potential host of such quasiparticles is
the 5/2 fractional quantum Hall state [3, 4]. As far
as the nature of the bulk state is concerned, there has
been a number of proposals which lead to the same elec-
trical Hall conductance but differ in their edge struc-
ture and the two-terminal thermal conductance. The
three most prominent non-Abelian model states are the
Pfaffian (Pf) [1], its hole-conjugate version — the anti-
Pfaffian (APf) [5, 6], and the particle-hole symmetric
Pfaffian (PHPf) [7–12]. Experimental measurements of
two-terminal thermal conductance [13] can be explained
invoking either the APf or the PHPf state. More recent
experimental measurements of noise and thermal conduc-
tance are only consistent with the PHPf state [14, 15].
This is in contradiction with numerical evidence [16–24]
supporting either the Pf or APf state. Other candidates
include the Abelian 331, anti-331, 113 and K= 8 states
[25–27] and non-Abelian SU(2)2 and anti-SU(2)2 states
[28, 29], which are not consistent with experimental mea-
surements [13–15].

Another important classification concerns the edge of
such states. One may characterize the edge modes ac-
cording to their degree of equilibration, which varies with
the length of the edge. Previous studies [13, 15] have
demonstrated that the degree of thermal equilibration,
reached among the chiral modes, can be modified by
changing the length of the edge/interface [14, 15]. Ma-
jor differences in transport features may arise, depend-
ing on whether full or partial thermal equilibration is
approached. Thus, characterization of thermal equilibra-
tion regimes is an outstanding problem. It has also been
shown that the thermal equilibration length can be para-
metrically longer than the charge equilibration length
[30–33]. It is then reasonable to assume full charge equi-
libration regardless the degree of thermal equilibration.

Measurements of shot noise and thermal conductance
[14, 15] in a device made out of interfaces of the 5/2 state
and Abelian integer states are only consistent with the
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TABLE I. Current experimental and theoretical status for
classification of the non-Abelian 5/2 bulk states and their edge
thermal equilibration regimes. Crosses (red, green, blue) rep-
resent the experimental exclusion of corresponding scenarios.
Red, green, blue crosses exclude scenarios via measurements
of two-terminal thermal conductance [13], interface noise [14],
and interface thermal conductance [15], respectively. Theo-
retical proposals by Park et al. [34] and Yutushui et al. [35]
used thermal transport with electrical shot noise at the edge
and electrical transport with no equilibration, respectively, to
confirm corresponding scenarios. Our work can distinguish
among the yellow highlighted scenarios, thus completing the
table.

PHPf state. A detailed theoretical model for the exper-
iments in Ref. 14 and 15 was put forward in Ref. 36.
Preceding to those experiments, a number of theoreti-
cal studies [34, 37–50] analyzed the Pf and APf states
to explain the first thermal measurements on the 5/2
edge [13] along with some proposals [34, 35, 37, 38, 51]
to distinguish the bulk state. In particular, Ref. 51 pro-
posed that the Pf family members can be distinguished
using their chiral gravitons, which does not rely on edge
physics. Notably, Ref. 34 has addressed the challenges
of identifying the underlying state taking into account
different equilibration regimes. It was shown that elec-
trical shot noise combined with thermal transport can
uniquely point out the APf state, along with the degree
of equilibration. Those works did not take into account
that charge and thermal equilibration lengths can differ
by order of magnitudes [30–33]. They also fall short (c.f.
Table I) of providing unique diagnostics of the bulk topo-
logical state (Pf, APf, and PHPf) and, simultaneously,
the thermal equilibration regime. This is the challenge
addressed in this work.

ar
X

iv
:2

21
2.

05
73

2v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
2 

N
ov

 2
02

3



2

(a) Pf APf PHPf
LLL

2LL

LArm Lint

(b) V0

S D1

D2 G
ν νi ν

Lint

outer upper
lin
e

FIG. 1. (a) The edge structures of Pf, APf, and PHPf states:
Integer, charge-1/2 boson [4], and charge-neutral Majorana
modes are depicted as black, blue, and wiggly red lines, re-
spectively. Arrowheads show the chirality. The lowest Lan-
dau level (LLL) is same for all three states but the second
Landau level (2LL) is different. (b) Our proposed device: A
middle region of the Hall bar is depleted from filling ν to fill-
ing νi(< ν) creating two interfaces (“line”). Specifically, we
take {ν, νi} as {5/2, 2} or {5/2, 7/3} or {3, 5/2}. We call the
boundary of the vacuum with ν the “outer”, and with νi the
“upper”. We have four contacts, the source S (biased by a
dc voltage V0), a ground contact G, and two drains D1, D2.
Each circular arrow shows the chirality of charge propagation
of the respective filling. The geometric lengths LArm and Lint

are assumed to be of the same order of magnitude.

Our work relies on the setup depicted in Fig. 1, where
current-current correlations (CCC) are computed when
the 5/2 bulk state is interfaced with an Abelian quan-
tum Hall state. We calculate both dc auto- and cross-
correlations (from now on we drop the “dc” for sim-
plicity). Our results can discriminate between the full
and partial thermal equilibration regimes of the PHPf
state. In addition, our protocol is unique in being able
to distinguish among the Pf, APf, and PHPf states along
with their thermal equilibration regimes: full vs. par-
tial. Throughout the entire analysis, we assume that the
charge equilibration length (full equilibration has been
observed over a distance 28 µm at temperature 10 mK
in GaAs [14] and 3 µm at temperature 30 mK in graphene
[30]) is shorter than all the geometric lengths and that
there is no bulk-leakage [13, 34, 52, 53]. Our classifica-
tion, depicted in Table II, relies on both a qualitative
distinction between auto- and cross-correlations, as well
as quantitative differences. Our method applies for a
uniform edge – moving away from this assumption, e.g.
having puddles of Pf and APf separated by domain walls
[42, 43], would require technique beyond ours. The many-
puddle picture would facilitate heat leakage from the edge
to the bulk [54]. As long as the measured two-terminal
heat conductance is half-integer quantized, it weakens the

{ν, νi} State |FFull
1,2,c| FPartial

1 FPartial
2 |FPartial

c |

{5/2,2}
Pf ≈ 0 = 0 = 0 = 0

APf ≈ 0.28 = 0 ≈ 0.12 [34] = 0

PHPf ≈ 0 = 0 = 0 = 0

{5/2,7/3}
Pf ≈ 0 ≈ 0 ≈ 0 ≈ 0

APf ≈ 0.25 ≈ 0.5 ≈ 0.5 ≈ 0.27

PHPf ≈ 0.11 ≈ 0.26 ≈ 0.26 ≈ 0.26

{3,5/2}
Pf ≈ 0.15 ≈ 0.19 ≈ 0.19 ≈ 0.19

APf ≈ 0 ≈ 0.6 ≈ 0.6 ≈ 0.6

PHPf ≈ 0 ≈ 0 ≈ 0 ≈ 0

TABLE II. Summary of our results: F1, F2 are the auto-
correlation Fano factors for the drains D1, D2, respectively,
and Fc is the cross-correlation Fano factor. For full ther-
mal equilibration (fourth column) we have F1 = F2 = |Fc|
≡ |FFull

1,2,c|. We use ≈ 0 to indicate exponential suppression as
a function of the geometric lengths.

evidence for this non-uniform picture.

Device and thermal equilibration regimes.— Our de-
vice is made out of interfaces of the filling ν and fill-
ing νi(< ν), c.f. Fig. 1. We choose {ν, νi} as {5/2, 2}
or {5/2, 7/3} or {3, 5/2} and we assume νi = 7/3 as
an Abelian state [13–15, 55]. The relevant lengths for
this device are (i) the internal characteristic lengths lfulleq

and lpareq , and (ii) the geometric lengths LArm and Lint

(cf. Fig. 1). lfulleq denotes the full thermal equilibration
length (full equilibration has been observed over a dis-
tance 160 µm at temperature 11 mK in GaAs [15]), over
which the heat transfer among all modes is fully facil-
itated, i.e., lfulleq ≪ (LArm, Lint) for full thermal equili-
bration. lpareq denotes the partial thermal equilibration
length, over which the heat transfer among modes of the
same Landau level is fully facilitated but heat transfer
among modes of different Landau Levels is negligible,
i.e., lpareq ≪ (LArm, Lint) ≪ lfulleq for partial thermal equili-
bration. Equilibrated modes form a chiral hydrodynamic
mode characterized by its electrical and thermal conduc-
tances. We refer to the direction parallel (anti-parallel) to
the charge flow as downstream (upstream). We note that
edge reconstruction cannot play any role in charge con-
ductance due to full charge equilibration [30, 32, 33, 56].
For full thermal equilibration, each mode is equilibrated
with other while for partial thermal equilibration, each
mode is equilibrated with other only in a given Landau
level. As edge reconstruction takes place in each Landau
level, the effect of edge reconstruction is washed out in
both the cases.

Heat transport and current-current correlations.— The
thermal conductance of a hydrodynamic mode is deter-
mined by the difference of the thermal conductances of
downstream and upstream modes (νQ) involved in the
equilibration process. For νQ > 0, νQ = 0, or νQ < 0,
the nature of heat transport in that hydrodynamic mode
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is, respectively, ballistic (B), diffusive (D), or antiballis-
tic (AB) [52, 57]. For the B, D, and AB heat trans-
port we have, respectively, exponentially suppressed, al-
gebraically decaying, and constant CCC as a function of
the geometric length of the mode [52, 57].

As contacts S and G in Fig. 2 are at different poten-
tials, there are potential drops in the device which hap-
pen in the regions marked as hot spots, H1, H2, resulting
in Joule heating [57]. Two possible hot spots can also ex-
ist near the drains D1, D2, though, heat generated there
can not flow back to the middle region due to their spe-
cific configurations and hence can not contribute to the
noise [57]. In addition, four noise spots (M, N, O, P ) are
formed due to the creation of thermally excited particle-
hole pairs and their splitting into different drains D1, D2

(Fig. 2) [57]. CCC are computed by collecting the con-
tributions from M,N,O, P . Let us elaborate on how the
charge-neutral Majorana mode ψ contributes to CCC, as
we know ψ alone cannot participate in particle-hole pair
splitting. However, we can define a creation operator
ψe∓2iϕ± (ϕ± denotes downstream and upstream charge-
1/2 boson, respectively) carrying an electron charge. As
ψ always propagates alongside ϕ±, they together can par-
ticipate in particle-hole pair splitting.

The nature of heat transport in the “outer”, “line”
and “upper” segments (cf. Fig. 1 and Fig. 2) deter-
mine the CCC [57–60]. We define a quantity νlistQ as
[νQ in “outer”, νQ in “line”, νQ in “upper”]. In our anal-
ysis, νlistQ becomes either [B, B, B] or [B, AB, B] or [AB,
AB, B] or [B, B, AB]. Hence, we have either exponen-
tially suppressed or constant CCC as a function of the
geometric lengths, which we use to discriminate among
the states and their thermal equilibration regimes. For
the [B, B, B] case the generated heat at H1, H2 flows
downstream and reaches directly to the drains D1, D2.
Only an exponentially suppressed, O(exp (−Lint/leq))
and O(exp (−LArm/leq)), amount of heat reaches M,N
and O,P with leq = lfulleq and leq = lpareq for full and partial
thermal equilibrations, respectively. Therefore an expo-
nentially suppressed CCC is found. For the [B, AB, B]
and [B, B, AB] cases the generated heat at H1, H2 flows
upstream along the “line” and “upper” segments, respec-
tively. Thus, M,N provide constant contributions to the
CCC, but the amount of heat that reaches O,P is ex-
ponentially suppressed. For the [AB, AB, B] case the
generated heat at H1, H2 flows upstream along both the
“line” and “outer” segments. Thus both M,N and O,P
provide constant contributions to CCC [61]. For partial
thermal equilibration, we treat the lowest and second
Landau levels dis-jointly while computing CCC. Given
impurity-facilitated inter-mode tunneling as well as inter-
mode interaction, equivalent (yet counter-propagating in
ν and νi) lowest Landau level modes become localized,
decoupling them from the transport processes along the
“line”. Hence, the modes in the lowest Landau level do
not contribute to CCC, while the modes in the second

Landau level do contribute.
Let us denote by I1 and I2 the currents entering

the drains D1 and D2, respectively. The corresponding
current-current auto-correlations are defined as δ2I1 =
⟨(I1−⟨I1⟩)2⟩ in D1 and δ2I2 = ⟨(I2−⟨I2⟩)2⟩ in D2, while
the cross-correlation is δ2Ic = ⟨(I1 − ⟨I1⟩) (I2 − ⟨I2⟩)⟩
[62]. The corresponding Fano factors are defined as
Fj = |δ2Ij |/2e⟨I⟩t(1 − t), with j ∈ {1, 2, c}, where I
is the source current and t = ⟨I1⟩/⟨I⟩. The Fano factors
are found to be [63] F1 = F2 = FO + FP + FM + FN

and Fc = F ′
O + F ′

P − FM − FN , where Fα is the con-
tribution to the auto-correlations from the noise spot
α ∈ {M,N,O, P} and F ′

β is the contribution to the cross-
correlation from the noise spot β ∈ {O,P}. We evaluate
these contributions as

2eIt(1− t)(FM + FN ) = 2
e2

h
(ν − νi)

νi
ν
kB(TM + TN ),

2eIt(1− t)(FO + FP ) =
1

ν2
(
ν2i SO + (ν − νi)

2SP

)
,

2eIt(1− t)(F ′
O + F ′

P ) =
νi(ν − νi)

ν2
(SO + SP ),

(1)

where kB is the Boltzmann constant, and we obtain
the temperatures TM = TN at M,N by solving self-
consistent equilibration equations and considering energy
conservations [57, 63]. We find the noise contributions
SO = SP by computing [57, 63]

SO = SP =

2e2

hlcheq

ν′ν−
ν+

∫
LArm

0

e
−2x

lcheq kB
[
T+(x) + T−(x)

]
dx

lcheq

[
1−

(
e

−LArm
lcheq

ν−
ν+

)]2
(2)

in the limit leq ≪ LArm, where ν
′ = (ν+ − ν−). Here

lcheq is the charge equilibration length, and T±(x) (which
depend on leq) are the temperature profiles in ν±, where
ν+ and ν− are the filling factors of the downstream and
the upstream mode in the “outer” segment, respectively.
T±(x) are calculated by solving the equations of heat
equilibration under the assumptions that no voltage drop
occurs along the “outer” segment and the lead contacts
are at zero temperature. We note that in some cases
we also have qualitative differences between the auto-
correlation and cross-correlation Fano factors apart from
their quantitative differences (see Table II).
The case {ν, νi} = {5/2, 2}.—
(a) Full thermal equilibration.— For the Pf and PHPf

states we have νlistQ = [7/2, 3/2, 2] and νlistQ = [5/2, 1/2, 2],
respectively. The nature of heat transport is [B, B, B] for
both states resulting in exponentially suppressed CCC.
For the APf state we have νlistQ = [3/2,−1/2, 2], thus the
nature of heat transport is [B, AB, B]. In this case FO +
FP , F

′
O +F ′

P are exponentially suppressed and FM +FN
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FIG. 2. Noise generation in our proposed device (see Fig. 1) for full (a) and partial (b,c) thermal equilibration, where in the
latter scenario the modes in the lowest Landau level localize in the “line” segment. Each circular arrow indicates the chirality
of charge propagation of the respective filling. Voltage drops occur at the hot spots H1, H2 (red circles), resulting in the
noise spots M,N,O, P (green circles) [57]. In (a) we have {ν, νi} as {5/2, 2} or {5/2, 7/3} or {3, 5/2}. In (b) we effectively
have the filling {νeff, νeff

i } = {1/2, 0} for {ν, νi} = {5/2, 2}. In (c) we effectively have the filling {νeff, νeff
i } = {1/2, 1/3} for

{ν, νi} = {5/2, 7/3} and {νeff, νeff
i } = {1, 1/2} for {ν, νi} = {3, 5/2}.

provides a constant contribution, leading to F1 = F2 =
|Fc| ≠ 0 (Table II and [63]).

(b) Partial thermal equilibration.— The modes in the
second Landau level equilibrate and form a hydrody-
namic mode connecting S,D2 and G,D1 individually.
Since only S is biased, CCC can only appear in D2, hence
F1 = |Fc| = 0 always. For the Pf and PHPf states we
have νQ = 3/2 and νQ = 1/2 for the mode connecting
S,D2 leading to the ballistic heat transport and an ex-
ponentially suppressed CCC. For the APf state we have
νQ = −1/2 for the mode connecting S,D2 leading to an-
tiballistic heat transport and a constant CCC (F2 ̸= 0)
(Table II and [34]).

The case {ν, νi} = {5/2, 7/3}.—
(a) Full thermal equilibration.— For the Pf state we

have νlistQ = [7/2, 1/2, 3]. The nature of heat transport
is [B, B, B], thus CCC are exponentially supressed. For
the APf and PHPf states we have νlistQ = [3/2,−3/2, 3]

and νlistQ = [5/2,−1/2, 3], respectively. The nature of
heat transport is [B, AB, B] for both the APf and PHPf
states. In these cases FO+FP , F

′
O+F ′

P are exponentially
suppressed and FM+FN provides a constant contribution
to the CCC, leading to F1 = F2 = |Fc| ≠ 0 (Table II and
63).

(b) Partial thermal equilibration.— For the Pf state we
have νlistQ = [3/2, 1/2, 1]. The nature of heat transport is
[B, B, B], thus CCC is exponentially supressed. For the
APf state we have νlistQ = [−1/2,−3/2, 1]. The nature of
heat transport is then [AB, AB, B], hence FO+FP , F

′
O+

F ′
P , FM + FN all provide constant contributions, leading

to F1 = F2 > |Fc| ≠ 0 (Table II and [63]). For the
PHPf state we have νlistQ = [1/2,−1/2, 1]. The nature of
heat transport is therefore [B, AB, B]. In this case FO +
FP , F

′
O +F ′

P are exponentially suppressed and FM +FN

provides a constant contribution to the CCC, leading to
F1 = F2 = |Fc| ≠ 0 (Table II and [63]).

The case {ν, νi} = {3, 5/2}.—
(a) Full thermal equilibration.— For the Pf state we

have νlistQ = [3,−1/2, 7/2]. The nature of heat transport
is [B, AB, B]. In this case FO + FP , F

′
O + F ′

P are expo-

nentially suppressed and FM + FN provides a constant
contribution to the CCC, leading to F1 = F2 = |Fc| ̸= 0
(Table II and 63). For the APf and PHPf states we have
νlistQ = [3, 3/2, 3/2] and νlistQ = [3, 1/2, 5/2]. The nature
of heat transport is [B, B, B] for both states, thus CCC
are exponentially supressed.

(b) Partial thermal equilibration.— For the Pf and
APf states we have νlistQ = [1,−1/2, 3/2] and νlistQ =
[1, 3/2,−1/2], respectively, thus the nature of heat trans-
ports are [B, AB, B] and [B, B, AB], respectively. In each
case FO +FP , F

′
O +F ′

P are exponentially suppressed and
FM + FN provides a constant contribution to the CCC,
leading to F1 = F2 = |Fc| ≠ 0 (Table II and 63). For
the PHPf state we have νlistQ = [1, 1/2, 1/2], leading to
the nature of heat transport as [B, B, B], thus CCC are
exponentially supressed.

Protocol.— Based on our results (Table II), we now
present a sequential protocol to distinguish both the bulk
Pf, APf, and PHPf states and the regimes of thermal
equilibration: full vs. partial. First we choose {ν, νi} =
{5/2, 2} and measure F1, F2, Fc. If F2 ̸= 0 then the state
is APf. If in addition F1 = F2 = |Fc| ̸= 0 then we have
full thermal equilibration, while if F1 = |Fc| = 0 then
we have partial thermal equilibration. If on the other
hand F1 = F2 = |Fc| = 0, then the state can be ei-
ther Pf or PHPf. Next we choose {ν, νi} = {5/2, 7/3}.
If F1 = F2 = |Fc| ̸= 0 then the state is PHPf. We
can distinguish between the full and partial thermal
equilibration regimes via the change in the Fano fac-
tors. If F1 = F2 = |Fc| = 0, then the state is Pf.
Thereafter, we choose {ν, νi} = {3, 5/2}. The value of
F1 = F2 = |Fc| ≠ 0 distinguish between the full or partial
thermal equilibration regimes. We mention that, in prin-
ciple, one can employ our method to distinguish among
the SU(2)2 family members (by suitably choosing {ν, νi})
[29], which are, however, inconsistent with experimental
measurements [13–15].

Summary and outlook.— We have considered a de-
vice comprising of the interface between the 5/2 state
with an Abelian state. We have considered the Pf, APf,
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and PHPf states. We have studied both the full and
partial thermal equilibration regimes, where heat trans-
fer among different Landau Levels is, respectively, fully
facilitated or negligible. Throughout our analysis, the
effective electro-chemical potential of the various edge
modes is assumed to be fully equilibrated, leading to full
charge equilibration [30–33]. Our CCC-based protocol
provides a new platform, different than other experimen-
tal platforms, capable of distinguishing among the Pf,
APf, and PHPf states along with their thermal equili-
bration regimes: full vs. partial (see Table II). Despite
of challenges and limitations to the experimental imple-
mentation, we note that we just need two interfaces for
making this device and one can tune the filling in the
middle region by changing the gate voltage. Various ex-
periments have already implemented devices based on in-
terfaces both in GaAs [14, 15, 56, 64, 65] and in graphene
[66–68].

The application of the idea outlined here goes beyond
the 5/2 non-Abelian state in GaAs, for example classi-
fying the 12/5 state [69–73] and other Abelian states
[58–60] in GaAs. They can also be extended to graphene
[74–77] quantum Hall. Another interesting possibility
is to study the non-Abelian phase of α-RuCl3 Kitaev
magnet [78–80].
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[19] A. Wójs, C. Tőke, and J. K. Jain, Landau-level mixing
and the emergence of pfaffian excitations for the 5/2 frac-
tional quantum hall effect, Phys. Rev. Lett. 105, 096802
(2010).

[20] M. Storni, R. H. Morf, and S. Das Sarma, Fractional
quantum hall state at ν = 5

2
and the moore-read pfaffian,

Phys. Rev. Lett. 104, 076803 (2010).
[21] E. H. Rezayi and S. H. Simon, Breaking of particle-hole

symmetry by landau level mixing in the ν = 5/2 quan-
tized hall state, Phys. Rev. Lett. 106, 116801 (2011).

[22] K. Pakrouski, M. R. Peterson, T. Jolicoeur, V. W.
Scarola, C. Nayak, and M. Troyer, Phase diagram of the
ν = 5/2 fractional quantum hall effect: Effects of landau-
level mixing and nonzero width, Phys. Rev. X 5, 021004
(2015).

[23] A. E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma,
Density matrix renormalization group study of incom-
pressible fractional quantum hall states, Phys. Rev. Lett.
100, 166803 (2008).

[24] A. E. Feiguin, E. Rezayi, K. Yang, C. Nayak, and
S. Das Sarma, Spin polarization of the ν = 5/2 quan-
tum hall state, Phys. Rev. B 79, 115322 (2009).

[25] B. Halperin, Theory of the quantized hall conductance,
Helv. Phys. Acta 56, 75 (1983).

[26] G. Yang and D. E. Feldman, Experimental constraints
and a possible quantum hall state at ν = 5/2, Phys. Rev.
B 90, 161306 (2014).

[27] G. Yang and D. E. Feldman, Influence of device geometry
on tunneling in the ν = 5

2
quantum hall liquid, Phys. Rev.

B 88, 085317 (2013).
[28] X. G. Wen, Non-abelian statistics in the fractional quan-

tum hall states, Phys. Rev. Lett. 66, 802 (1991).
[29] J. K. Jain, Incompressible quantum hall states, Phys.

Rev. B 40, 8079 (1989).
[30] S. K. Srivastav, R. Kumar, C. Sp̊anslätt, K. Watanabe,

T. Taniguchi, A. D. Mirlin, Y. Gefen, and A. Das, Van-
ishing thermal equilibration for hole-conjugate fractional
quantum hall states in graphene, Phys. Rev. Lett. 126,
216803 (2021).

[31] R. A. Melcer, B. Dutta, C. Sp̊anslätt, J. Park, A. D.
Mirlin, and V. Umansky, Absent thermal equilibration
on fractional quantum hall edges over macroscopic scale,
Nature Communications 13, 376 (2022).

[32] R. Kumar, S. K. Srivastav, C. Sp̊anslätt, K. Watanabe,
T. Taniguchi, Y. Gefen, A. D. Mirlin, and A. Das, Obser-
vation of ballistic upstream modes at fractional quantum
hall edges of graphene, Nature Communications 13, 213
(2022).

[33] S. K. Srivastav, R. Kumar, C. Sp̊anslätt, K. Watanabe,
T. Taniguchi, A. D. Mirlin, Y. Gefen, and A. Das, Deter-
mination of topological edge quantum numbers of frac-
tional quantum hall phases by thermal conductance mea-
surements, Nature Communications 13, 5185 (2022).

[34] J. Park, C. Sp̊anslätt, Y. Gefen, and A. D. Mirlin, Noise
on the non-abelian ν = 5/2 fractional quantum hall edge,
Phys. Rev. Lett. 125, 157702 (2020).

[35] M. Heiblum (unpublished); M. Yutushui, A. Stern, and
D. F. Mross, Identifying the ν = 5

2
topological or-

der through charge transport measurements, Phys. Rev.

Lett. 128, 016401 (2022).
[36] M. Hein and C. Sp̊anslätt, Thermal conductance and

noise of majorana modes along interfaced ν = 5/2 frac-
tional quantum hall states, arXiv:2211.08000 (2022).

[37] D. E. Feldman and F. Li, Charge-statistics separation
and probing non-abelian states, Phys. Rev. B 78, 161304
(2008).

[38] H.-H. Lai and K. Yang, Distinguishing particle-hole con-
jugated fractional quantum hall states using quantum-
dot-mediated edge transport, Phys. Rev. B 87, 125130
(2013).

[39] X. Wan and K. Yang, Striped quantum hall state in a
half-filled landau level, Phys. Rev. B 93, 201303 (2016).

[40] S. H. Simon, Interpretation of thermal conductance of
the ν = 5/2 edge, Phys. Rev. B 97, 121406 (2018).

[41] B. Lian and J. Wang, Theory of the disordered ν = 5
2

quantum thermal hall state: Emergent symmetry and
phase diagram, Phys. Rev. B 97, 165124 (2018).

[42] C. Wang, A. Vishwanath, and B. I. Halperin, Topological
order from disorder and the quantized hall thermal metal:
Possible applications to the ν = 5/2 state, Phys. Rev. B
98, 045112 (2018).

[43] D. F. Mross, Y. Oreg, A. Stern, G. Margalit, and
M. Heiblum, Theory of disorder-induced half-integer
thermal hall conductance, Phys. Rev. Lett. 121, 026801
(2018).

[44] D. E. Feldman, Comment on “interpretation of thermal
conductance of the ν = 5/2 edge”, Phys. Rev. B 98,
167401 (2018).

[45] K. K. W. Ma and D. E. Feldman, Partial equilibration
of integer and fractional edge channels in the thermal
quantum hall effect, Phys. Rev. B 99, 085309 (2019).

[46] S. H. Simon, M. Ippoliti, M. P. Zaletel, and E. H. Rezayi,
Energetics of pfaffian–anti-pfaffian domains, Phys. Rev.
B 101, 041302 (2020).

[47] H. Asasi and M. Mulligan, Partial equilibration of anti-
pfaffian edge modes at ν = 5/2, Phys. Rev. B 102,
205104 (2020).

[48] W. Zhu, D. N. Sheng, and K. Yang, Topological inter-
face between pfaffian and anti-pfaffian order in ν = 5/2
quantum hall effect, Phys. Rev. Lett. 125, 146802 (2020).

[49] P.-S. Hsin, Y.-H. Lin, N. M. Paquette, and J. Wang, Ef-
fective field theory for fractional quantum hall systems
near ν = 5/2, Phys. Rev. Research 2, 043242 (2020).

[50] S. H. Simon and B. Rosenow, Partial equilibration of the
anti-pfaffian edge due to majorana disorder, Phys. Rev.
Lett. 124, 126801 (2020).

[51] F. D. M. Haldane, E. H. Rezayi, and K. Yang, Graviton
chirality and topological order in the half-filled landau
level, Phys. Rev. B 104, L121106 (2021).

[52] C. Sp̊anslätt, J. Park, Y. Gefen, and A. D. Mirlin, Topo-
logical classification of shot noise on fractional quantum
hall edges, Phys. Rev. Lett. 123, 137701 (2019).

[53] A. Aharon-Steinberg, Y. Oreg, and A. Stern, Phe-
nomenological theory of heat transport in the fractional
quantum hall effect, Phys. Rev. B 99, 041302 (2019).

[54] R. A. Melcer, A. Gil, A.-K. Paul, P. Tiwary, V. Uman-
sky, M. Heiblum, Y. Oreg, A. Stern, and E. Berg, Heat
conductance of the quantum hall bulk, arXiv:2306.14977
(2023).

[55] M. Dolev, Y. Gross, R. Sabo, I. Gurman, M. Heiblum,
V. Umansky, and D. Mahalu, Characterizing neutral
modes of fractional states in the second landau level,
Phys. Rev. Lett. 107, 036805 (2011).



7

[56] Y. Cohen, Y. Ronen, W. Yang, D. Banitt, J. Park,
M. Heiblum, A. D. Mirlin, Y. Gefen, and V. Umansky,
Synthesizing a ν=2/3 fractional quantum hall effect edge
state from counter-propagating ν=1 and ν=1/3 states,
Nature Communications 10, 1920 (2019).

[57] C. Sp̊anslätt, J. Park, Y. Gefen, and A. D. Mirlin, Con-
ductance plateaus and shot noise in fractional quantum
hall point contacts, Phys. Rev. B 101, 075308 (2020).

[58] S. Manna, A. Das, and M. Goldstein, Shot noise as
a diagnostic in the fractional quantum hall edge zoo,
arXiv:2307.05173 (2023).

[59] S. Manna, A. Das, and M. Goldstein, Shot noise clas-
sification of different conductance plateaus in a quan-
tum point contact at the ν = 2/3 edge, arXiv:2307.05175
(2023).

[60] S. Manna and A. Das, Experimentally motivated order of
length scales affect shot noise, arXiv:2307.08264 (2023).

[61] In the partial thermal equilibration regime, algebraic
corrections, O

(√
LArm/lfulleq

)
and O

(√
Lint/lfulleq

)
, to the

CCC originate due to weak heat loss from the second
Landau level to the lowest Landau level [34]. In the limit
lpareq ≪ (LArm, Lint) ≪ lfulleq , these corrections become neg-
ligible.

[62] We define the time average of an operator x as ⟨x⟩ =
limτ→∞ 1

τ

∫ τ

−τ
x(t)dt.

[63] See the supplementary material for technical details of
the calculations.

[64] S. Biswas, R. Bhattacharyya, H. K. Kundu, A. Das,
M. Heiblum, V. Umansky, M. Goldstein, and Y. Gefen,
Shot noise does not always provide the quasiparticle
charge, Nature Physics 18, 1476 (2022).

[65] M. Hashisaka, T. Ito, T. Akiho, S. Sasaki, N. Ku-
mada, N. Shibata, and K. Muraki, Coherent-incoherent
crossover of charge and neutral mode transport as evi-
dence for the disorder-dominated fractional edge phase,
arXiv:2212.13399 (2022).

[66] C. Kumar, M. Kuiri, and A. Das, Equilibration of quan-
tum hall edge states and its conductance fluctuations
in graphene p-n junctions, Solid State Communications
270, 38 (2018).

[67] C. Kumar, S. K. Srivastav, and A. Das, Equilibra-
tion of quantum hall edges in symmetry-broken bilayer
graphene, Phys. Rev. B 98, 155421 (2018).

[68] A. K. Paul, M. R. Sahu, K. Watanabe, T. Taniguchi,
J. K. Jain, G. Murthy, and A. Das, Electrically switch-
able tunneling across a graphene pn junction: evidence
for canted antiferromagnetic phase in ν = 0 state,
arXiv:2205.00710 (2022).

[69] N. Read and E. Rezayi, Beyond paired quantum hall

states: Parafermions and incompressible states in the
first excited landau level, Phys. Rev. B 59, 8084 (1999).

[70] W. Bishara, G. A. Fiete, and C. Nayak, Quantum hall
states at ν = 2

k+2
: Analysis of the particle-hole conju-

gates of the general level-k read-rezayi states, Phys. Rev.
B 77, 241306 (2008).

[71] J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S.
Sullivan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, Electron correlation in the
second landau level: A competition between many nearly
degenerate quantum phases, Phys. Rev. Lett. 93, 176809
(2004).
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The supplemental material contains the following details:

1. Proposed device and configurations and general expression for the current-current correlations (CCC) in
Section SI.

2. Expressions for the CCC for three specific cases of edge equilibrations in the device in Section SII.

3. CCC values for specific cases with Pfaffian (Pf), anti-Pf (APf), and particle-hole-Pf (PHPf) states in
different configurations in Section SIII.

SI. DEVICE AND GENERAL EXPRESSION OF
CCC

In this section we re-describe our proposed device in
Section SIA to facilitate the follow up discussions for the
readers. In Section SIB we derive general expression for
the CCC in our device.

A. Proposed device

Our device is a Hall bar with filling ν and a depleted
middle region with filling νi(< ν), c.f. Fig. S1. We choose
{ν, νi} as {5/2, 2} or {5/2, 7/3} or {3, 5/2}. We have a
source contact S which is biased by a dc voltage V0, a
ground contact G, and two drains D1, D2.

LArm Lint

V0

S D1

D2 G
ν νi ν

Lint

outer upper

lin
e

FIG. S1. Our proposed device (same as in main text): A
Hall bar with filling ν with the middle region depleted to
νi(< ν). This creates two interfaces (“line”). We choose
{ν, νi} as {5/2, 2} or {5/2, 7/3} or {3, 5/2}. We also have
the boundary of the vacuum with ν (“outer”) and with νi
(“upper”). There are four contacts: a source S (biased by
a dc voltage V0), a ground G, and two drains D1, D2. Each
circular arrow indicates the chirality of charge propagation of
the respective filling. LArm and Lint, the geometric lengths,
are assumed to be of the same order of magnitude.

B. General expression for the CCC

ΔIS

ΔIG

ΔVM, TM

ΔVN, TN

LArm Lint

V0

S D1

D2 GLint

outer upper

lin
e

O M
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ΔIr

FIG. S2. Noise generation in our proposed device (see
Fig. S1), where charge and heat are equilibrated in each seg-
ment. Each circular arrow shows the chirality of charge propa-
gation of the respective filling. Voltage drops occur at the hot
spots H1, H2 (red circles), resulting in noise spots M,N,O, P
(green circles) [1]. The current fluctuations ∆IS and ∆IG are
at O and P , respectively. We denote fluctuations in the lo-
cal voltages at the noise spots M and N by ∆VM and ∆VN ,
respectively. The temperatures at the noise spots M and N
are TM and TN , respectively. We denote the current fluctua-
tions in the segments of the middle region, with filling νi, as
∆Iu,∆Id,∆Il,∆Ir.

Let us denote by I1 and I2 the currents entering the
drains D1 and D2, respectively (Fig. S2). The corre-
sponding current-current auto-correlations are defined
as δ2I1 = ⟨(I1 − ⟨I1⟩)2⟩ in D1 and δ2I2 = ⟨(I2 −
⟨I2⟩)2⟩ in D2, while the cross-correlation is δ2Ic =
⟨(I1 − ⟨I1⟩) (I2 − ⟨I2⟩)⟩, where we define the time aver-
age of an operator x as ⟨x⟩ = limτ→∞ 1

τ

∫ τ

−τ
x(t)dt. We

consult Fig. S2 and follow Ref. [1] to write

(I1 − ⟨I1⟩) = ∆Iu +∆Ir,

(I2 − ⟨I2⟩) = ∆Id +∆Il.
(S1)

The current fluctuations ∆Iu,∆Id,∆Il,∆Ir, are com-
posed of the voltage fluctuations, ∆VM ,∆VN , and the
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S2

thermal fluctuations ∆Ithu ,∆I
th
d ,∆I

th
l ,∆I

th
r . We write

∆Il = (ν − νi)
e2

h
∆VM +∆Ithl ,

∆Iu = νi
e2

h
∆VM +∆Ithu ,

∆Ir = (ν − νi)
e2

h
∆VN +∆Ithr ,

∆Id = νi
e2

h
∆VN +∆Ithr ,

(S2)

where e is the electron charge and h is the Planck’s con-
stant. The voltage fluctuations are

ν
e2

h
∆VM = ∆IS −∆Ithl −∆Ithu ,

ν
e2

h
∆VN = ∆IG −∆Ithr −∆Ithd .

(S3)

From Eq. (S1) we find

(I1 − ⟨I1⟩) = νi
e2

h
∆VM +∆Ithu + (ν − νi)

e2

h
∆VN +∆Ithr

=
νi
ν
∆IS +

(ν − νi)

ν
∆IG

+
(ν − νi)

ν
(∆Ithu −∆Ithd ) +

νi
ν
(∆Ithr −∆Ithl ),

(S4)

and

(I2 − ⟨I2⟩) =
νi
ν
∆IG +

(ν − νi)

ν
∆IS

+
(ν − νi)

ν
(∆Ithd −∆Ithu ) +

νi
ν
(∆Ithl −∆Ithr ).

(S5)

We obtain the expressions of δ2I1, δ
2I2 and δ2Ic as

δ2I1 = 2

(
e2

h

)
νi
ν
(ν − νi)kB(TM + TN )

+
1

ν2

[
ν2i ⟨(∆IS)2⟩+ (ν − νi)

2⟨(∆IG)2⟩
]
,

(S6)

δ2I2 = 2

(
e2

h

)
νi
ν
(ν − νi)kB(TM + TN )

+
1

ν2

[
ν2i ⟨(∆IG)2⟩+ (ν − νi)

2⟨(∆IS)2⟩
]
,

(S7)

and

δ2Ic = −2

(
e2

h

)
νi
ν
(ν − νi)kB(TM + TN )

+
νi(ν − νi)

ν2

[
⟨(∆IG)2⟩+ ⟨(∆IS)2⟩

]
,

(S8)

where TM , TN are, respectively, the temperatures at the
noise spots M and N . To derive Eqs. (S6) to (S8) we

have used the local Johnson-Nyquist relations for thermal
noise,

⟨(∆Ithl )2⟩ = 2e2

h
(ν − νi)kBTM ,

⟨(∆Ithu )2⟩ = 2e2

h
νikBTM ,

⟨(∆Ithr )2⟩ = 2e2

h
(ν − νi)kBTN ,

⟨(∆Ithd )2⟩ = 2e2

h
νikBTN ,

⟨(∆Ithi ∆Ithj )⟩ = 0, for i ̸= j and i, j ∈ {l, u, r, d},

(S9)

where kB is the Boltzmann constant. The Fano factors
are then defined as

Fj =
|δ2Ij |

2e⟨I⟩t(1− t)
, (S10)

where j ∈ {1, 2, c}, I is the source current and t =
⟨I1⟩/⟨I⟩.

SII. EXPRESSION FOR THE CCC FOR THREE
SPECIFIC CASES OF EDGE EQUILIBRATIONS

We assume that the charge is fully equilibrated, hence
charge transport is ballistic, moving “downstream” along
each segment of the device (Fig. S1). We call the di-
rection opposite to charge flow (“upstream”) antiballis-
tic. For the cases we consider, heat is also equilibrated
and heat transport can be either ballistic or antiballistic
in each segment of the device. Specifically we calculate
CCC for the following three cases:
1) heat transport is ballistic in “outer”, antiballistic in

“line”, and ballistic in “upper” segments,
2) heat transport is antiballistic in “outer”, antiballis-

tic in “line”, and ballistic in “upper” segments,
3) heat transport is ballistic in “outer”, ballistic in

“line”, and antiballistic in “upper” segments.

A. CCC when heat transport is ballistic in
“outer”, antiballistic in “line”, and ballistic in

“upper” segments

We consult Fig. S3 and derive expressions of CCC
when heat transport is ballistic in “outer”, antiballistic
in “line”, and ballistic in “upper” segments.

1. Temperature calculation

We refer to Fig. S3. Here we calculate the expression
of the temperatures TM , TN at the noise spots M,N ,
respectively. We assume zero temperature in the con-
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FIG. S3. Noise generation in our proposed device (see
Fig. S1): Charge is fully equilibrated, hence charge trans-
port is ballistic, moving “downstream” along each segment of
the device. Each circular arrow shows the chirality of charge
propagation of the respective filling. We call the direction op-
posite to charge flow (“upstream”) antiballistic. Heat is also
equilibrated and the heat transport is ballistic in “outer”,
antiballistic in “line”, and ballistic in “upper” segments, as
shown by the arrows. Voltage drops occur at the hot spots
H1, H2 (red circles), resulting in the noise spots M,N,O, P
(green circles) [1].

tacts/leads. Conservation of energy at H1, N,H2,M im-
plies the following expressions [1]:

JD2
+ Jl = PH1

+ Jd,

JG + Jr = Jd,

JD1 + Jr = PH2 + Ju,

JS + Jl = Ju,

(S11)

where Ji is the heat current along i ∈
{S,G,D1, D2, u, r, d, l}th segment, and PH1

, PH2

are, respectively, the dissipated powers in the hot spots
H1, H2. We write

JS = 0, Ju =
κ

2
T 2
M (δc)u, JD1

=
κ

2
T 2
H2

(δc)1,

JG = 0, Jd =
κ

2
T 2
N (δc)d, JD2

=
κ

2
T 2
H1

(δc)2,

Jl =
κ

2
T 2
H1

(δc)l, Jr =
κ

2
T 2
H2

(δc)r,

(S12)

where

κ =
π2k2B
3h

, PH1
= PH2

=
e2V 2

0

h

(ν − νi)νi
2ν

, (S13)

and TM , TN , TH1
, TH2

are the temperatures at
M,N,H1, H2 respectively. The dissipated powers
PH1

, PH2
arise due to the Joule heating of the associ-

ated voltage drop at H1, H2, respectively. We obtain
PH1

= PH2
, since the voltage drop only depends on ν

and νi [1]. Here (δc)i = |(cdown − cup)i| is the modulus
of difference between the central charges of downstream
and upstream modes in the ith segment of the device.

Taking all these into account we find

κ

2
T 2
H1

(δc)2 +
κ

2
T 2
H1

(δc)l = PH1 +
κ

2
T 2
N (δc)d,

0 +
κ

2
T 2
H2

(δc)r =
κ

2
T 2
N (δc)d,

κ

2
T 2
H2

(δc)1 +
κ

2
T 2
H2

(δc)r = PH2
+
κ

2
T 2
M (δc)u,

0 +
κ

2
T 2
H1

(δc)l =
κ

2
T 2
M (δc)u,
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and hence,

[(δc)1 + (δc)r]

(δc)r
(δc)d

κ

2
T 2
N = PH2

+
κ

2
(δc)uT

2
M ,

[(δc)2 + (δc)l]

(δc)l
(δc)u

κ

2
T 2
M = PH1

+
κ

2
(δc)dT

2
N .

(S15)

Therefore,

κ

2
(δc)uT

2
M

[
1 +

(δc)2 + (δc)l
(δc)l

]

=
κ

2
(δc)dT

2
N

[
1 +

(δc)1 + (δc)r
(δc)r

]
.

(S16)

We note that (δc)u = (δc)d, (δc)2 = (δc)1, (δc)l = (δc)r,
hence TM = TN . Thus we find

κT 2
M

2

(δc)1
(δc)r

(δc)d = PH2
=
e2V 2

0

h

(ν − νi)νi
2ν

, (S17)

and, finally,

TM = TN =
eV0
πkB

√
3(ν − νi)νi

ν

(δc)r
(δc)1(δc)d

. (S18)

2. Noise spot contributions

We refer to Fig. S3. Here we calculate the contribu-
tions ⟨(∆IS)2⟩, ⟨(∆IG)2⟩ of the noise spots O,P , respec-
tively. To evaluate ⟨(∆IS)2⟩, ⟨(∆IG)2⟩ we need to com-
pute the following integral [1],

⟨(∆IS)2⟩ = ⟨(∆IG)2⟩

=
2e2

hlcheq
ν
ν−
ν+

∫
LArm

0

dx
e

−2x

lcheq kB[T+(x) + T−(x)]

[1− (e
−LArm

lcheq
ν−
ν+

)]2
,

(S19)

where lcheq is the charge equilibration length, ν = (ν+ −
ν−), and T±(x) are the temperature profiles in ν±, re-
spectively. We note that T±(x) depend on the thermal
equilibration length leq, to be further discussed below.
Here ν+ is the filling factor of the downstream mode and
ν− is the filling factor of the upstream mode.
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To compute T±(x) we solve the following differential
equation for the local temperatures,

[
∂xT

2
+

∂xT
2
−

]
=
γ

l

[
−cup cup
−cdown cdown

] [
T 2
+

T 2
−

]
, (S20)

where l =
(ν+−ν−)leq

ν+ν−
and cdown (cup) is the central charge

of the downstream (upstream) mode. Here γ is a param-
eter of order unity, characterizing the deviation of the ra-
tio of intermode charge and heat tunneling conductances
from Wiedemann-Franz law [1], where the Wiedemann-
Franz law corresponds to γ = 1. We assume that there
are no voltage drops along the “outer” segment (Fig. S3),
hence there is no Joule heating contribution in the fol-
lowing [1]. The boundary conditions are

T+(0) = 0, T−(LArm) = TM . (S21)

The temperature profiles are found to be

T 2
+ = T 2

M

(
cup − cupe

−αx/leq

cup − cdowne−αLArm/leq

)
,

T 2
− = T 2

M

(
cup − cdowne

−αx/leq

cup − cdowne−αLArm/leq

)
,

(S22)

where α =
−(cdown−cup)γν+ν−

ν . Plugging the tempera-
ture profiles into Eq. (S19), we can derive the expression
of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩. We note that for full ther-
mal equilibration with length lfulleq , we have leq = lfulleq ,
while for partial thermal equilibration with length lpareq ,
we have leq = lpareq . We are interested in the limit where

LArm ≫ leq and LArm ≫ lcheq.

B. CCC when heat transport is antiballistic in
“outer”, antiballistic in “line”, and ballistic in

“upper” segments

We consult Fig. S4 and derive expressions for the CCC
when heat transport is antiballistic in “outer”, antibal-
listic in “line”, and ballistic in “upper” segments.

1. Temperature calculation

We refer to Fig. S4. Here we calculate the expression
for the temperatures TM , TN at the noise spots M,N ,
respectively. We assume zero temperature in the con-
tacts/leads. Conservation of energy at H1, N,H2,M im-
plies the following expressions [1]:

Jl = JD2 + PH1 + Jd,

JG + Jd = Jr,

Jr = JD1
+ PH2

+ Ju,

JS + Ju = Jl,

(S23)
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FIG. S4. Noise generation in our proposed device (see
Fig. S1): Charge is fully equilibrated, hence charge trans-
port is ballistic, moving “downstream” along each segment of
the device. Each circular arrow shows the chirality of charge
propagation of the respective filling. We call the direction op-
posite to charge flow (“upstream”) antiballistic. Heat is also
equilibrated and the heat transport is antiballistic in “outer”,
antiballistic in “line”, and ballistic in “upper” segments, as
shown by the arrows. Voltage drops occur at the hot spots
H1, H2 (red circles), resulting in noise spotsM,N,O, P (green
circles) [1].

where Ji is the heat current along i ∈
{S,G,D1, D2, u, r, d, l}th segment, and PH1

, PH2

are, respectively, the dissipated powers in the hot spots
H1, H2. We write

JS =
κ

2
T 2
M (δc)S , Ju =

κ

2
T 2
M (δc)u, JD1

= 0,

JG =
κ

2
T 2
N (δc)G, Jd =

κ

2
T 2
N (δc)d, JD2

= 0,

Jl =
κ

2
T 2
H1

(δc)l, Jr =
κ

2
T 2
H2

(δc)r,

(S24)

where

κ =
π2k2B
3h

, PH1
= PH2

=
e2V 2

0

h

(ν − νi)νi
2ν

, (S25)

and TM , TN , TH1
, TH2

are the temperatures at
M,N,H1, H2, respectively. The dissipated powers
PH1

, PH2
arise due to the Joule heating of the associ-

ated voltage drop at H1, H2, respectively. We obtain
PH1

= PH2
, since the voltage drop only depends on ν

and νi [1]. Here (δc)i = |(cdown − cup)i| is the modulus
of difference between the central charges of downstream
and upstream modes in the ith segment of the deivce.

With all these in mind we find

κ

2
T 2
H1

(δc)l = 0 + PH1 +
κ

2
T 2
N (δc)d,

κ

2
T 2
N (δc)G +

κ

2
T 2
N (δc)d =

κ

2
T 2
H2

(δc)r,

κ

2
T 2
H2

(δc)r = 0 + PH2
+
κ

2
T 2
M (δc)u,

κ

2
T 2
M (δc)S +

κ

2
T 2
M (δc)u =

κ

2
T 2
H1

(δc)l,

(S26)
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and thus

[(δc)G + (δc)d]
κ

2
T 2
N = PH2 +

κ

2
(δc)uT

2
M ,

[(δc)S + (δc)u]
κ

2
T 2
M = PH1 +

κ

2
(δc)dT

2
N .

(S27)

Therefore,

T 2
M =

[(δc)G + 2(δc)d]

[(δc)S + 2(δc)u]
T 2
N . (S28)

We note that (δc)u = (δc)d, (δc)2 = (δc)1, (δc)l =
(δc)r, (δc)S = (δc)G, hence TM = TN . Thus we find

TM = TN =
eV0
πkB

√
3(ν − νi)νi

ν

1

(δc)G
. (S29)

2. Noise spot contributions

To calculate the contributions ⟨(∆IS)2⟩, ⟨(∆IG)2⟩
from the noise spots O,P , respectively, we can use the
same equations as in Section SIIA 2.

C. CCC when heat transport is ballistic in
“outer”, ballistic in “line”, and antiballistic in

“upper” segments

LArm Lint

V0

S D1

D2 GLint

outer upper

lin
e

O M

H1

H2

N P

ν νi ν

u

l

d

r

S

D2

D1

G

FIG. S5. Noise generation in our proposed device (see
Fig. S1): Charge is fully equilibrated, hence charge transport
is ballistic, moving “downstream” along each segment of the
device. Each circular arrow shows the chirality of charge prop-
agation of the respective filling. We call the direction opposite
to charge flow (“upstream”) antiballistic. Heat is also equili-
brated and the heat transport is ballistic in “outer”, ballistic
in “line”, and antiballistic in “upper” segments, as shown by
the arrows. Voltage drops occur at the hot spots H1, H2 (red
circles), resulting in noise spots M,N,O, P (green circles) [1].

We consult Fig. S5 and derive expressions for the CCC
when heat transport is ballistic in “outer”, ballistic in
“line”, and antiballistic in “upper” segments.

1. Temperature calculation

We refer to Fig. S5. Here we calculate the expression
of the temperatures TM , TN at the noise spots M,N ,
respectively. We assume zero temperature in the con-
tacts/leads. Conservation of energy at H1, N,H2,M im-
plies the following expressions [1]:

JD2 + Jd = PH1 + Jl,

JG + Jd = Jr,

JD1
+ Ju = PH2

+ Jr,

JS + Ju = Jl,

(S30)

where Ji is the heat current along i ∈
{S,G,D1, D2, u, r, d, l}th segment, and PH1

, PH2

are, respectively, the dissipated powers in the hot spots
H1, H2. We write

JS = 0, Ju =
κ

2
T 2
H2

(δc)u, JD1 =
κ

2
T 2
H2

(δc)1,

JG = 0, Jd =
κ

2
T 2
H1

(δc)d, JD2
=
κ

2
T 2
H1

(δc)2,

Jl =
κ

2
T 2
M (δc)l, Jr =

κ

2
T 2
N (δc)r,

(S31)

where

κ =
π2k2B
3h

, PH1 = PH2 =
e2V 2

0

h

(ν − νi)νi
2ν

, (S32)

and TM , TN , TH1
, TH2

are the temperatures at
M,N,H1, H2, respectively. The dissipated powers
PH1

, PH2
arise due to the Joule heating of the associ-

ated voltage drop at H1, H2, respectively. We obtain
PH1

= PH2
, since the voltage drop only depends on ν

and νi [1]. Here (δc)i = |(cdown − cup)i| is the modulus
of difference between the central charges of downstream
and upstream modes in the ith segment of the deivce.
Thereby we find

κ

2
T 2
H1

(δc)2 +
κ

2
T 2
H1

(δc)d = PH1
+
κ

2
T 2
M (δc)l,

0 +
κ

2
T 2
H1

(δc)d =
κ

2
T 2
N (δc)r,

κ

2
T 2
H2

(δc)1 +
κ

2
T 2
H2

(δc)u = PH2 +
κ

2
T 2
N (δc)r,

0 +
κ

2
T 2
H2

(δc)u =
κ

2
T 2
M (δc)l,

(S33)

and hence,

[(δc)2 + (δc)d]
κ

2
T 2
H1

= PH1
+
κ

2
(δc)lT

2
M ,

[(δc)1 + (δc)u]
κ

2
T 2
H2

= PH2
+
κ

2
(δc)rT

2
N .

(S34)

Therefore,

T 2
N [

(δc)r
(δc)d

((δc)2 + (δc)d) + (δc)r]

= T 2
M [

(δc)l
(δc)u

((δc)1 + (δc)u) + (δc)l].

(S35)
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We note that (δc)u = (δc)d, (δc)2 = (δc)1, (δc)l =
(δc)r, (δc)S = (δc)G, hence TM = TN . Thus we find

TM = TN

=
eV0
πkB

√
3(ν − νi)νi

ν

[
(δc)r
(δc)d

((δc)2 + (δc)d)− (δc)l

]− 1
2

.

(S36)

2. Noise spot contributions

To calculate the contributions ⟨(∆IS)2⟩, ⟨(∆IG)2⟩
from the noise spots O,P , respectively, we can use the
same equations as in Section SIIA 2.

SIII. COMPUTATION OF CCC VALUES

Here we compute the CCC for specific choices of {ν, νi}
and for the Pf, APf, and PHPf states and different edge
equilibration regimes.

A. {ν, νi} = {5/2, 2} with an APf state and full
thermal equilibration

Here heat transport is ballistic in “outer”, antibal-
listic in “line”, and ballistic in “upper” segments, and
we consult Section SIIA and Fig. S3. From Eq. (S18)
with {ν, νi} = {5/2, 2}, (δc)r = 1/2, (δc)1 = 3/2, and
(δc)d = 2 we find

TM = TN =
eV0√
5πkB

. (S37)

Here we have leq = lfulleq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| =
8e3V0

5
√
5πh

≈ 0.227
e3V0
h

. (S38)

The source current is I = 5e2V0/(2h), while the trans-
mission coefficient is t = 2/(5/2) = 4/5. We thus obtain
the corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
=

2√
5π

≈ 0.284. (S39)

B. {ν, νi} = {5/2, 7/3} with a PHPf state and full
thermal equilibration

Here heat transport is ballistic in “outer”, antiballistic
in “line”, and ballistic in “upper” segments, and we con-
sult Section SIIA and Fig. S3. From Eq. (S18) with

{ν, νi} = {5/2, 7/3}, (δc)r = 1/2, (δc)1 = 5/2, and
(δc)d = 3 we find

TM = TN =

√
7eV0

15πkB
. (S40)

Here we have leq = lfulleq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| =
28
√
7e3V0

675πh
≈ 0.0349

e3V0
h

. (S41)

The source current is I = 5e2V0/(2h), while the trans-
mission coefficient is t = (7/3)/(5/2) = 14/15. We thus
obtain the corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
≈ 0.112. (S42)

C. {ν, νi} = {5/2, 7/3} with an APf state and full
thermal equilibration

Here heat transport is ballistic in “outer”, antiballistic
in “line”, and ballistic in “upper” segments, and we con-
sult Section SIIA and Fig. S3. From Eq. (S18) with
{ν, νi} = {5/2, 7/3}, (δc)r = 3/2, (δc)1 = 3/2, and
(δc)d = 3 we find

TM = TN =

√
7eV0√
45πkB

. (S43)

Here we have leq = lfulleq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| =
28

√
7e3V0

45
√
45πh

≈ 0.078
e3V0
h

. (S44)

The source current is I = 5e2V0/(2h), while the trans-
mission coefficient is t = (7/3)/(5/2) = 14/15. We thus
obtain the corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
≈ 0.2507. (S45)

D. {ν, νi} = {5/2, 7/3} with a PHPf state and partial
thermal equilibration

Here heat transport is ballistic in “outer”, antiballistic
in “line”, and ballistic in “upper” segments, and we con-
sult Section SIIA and Fig. S3. We note that for partial
thermal equilibration, the counter-propagating modes in
the lowest Landau levels of ν and νi localize in the “line”
segment and do not contribute to the CCC, while the
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modes in the second Landau levels do contribute. We
effectively have the fillings {νeff, νeffi } = {1/2, 1/3} for
{ν, νi} = {5/2, 7/3}. From Eq. (S18) with {νeff, νeffi } =
{1/2, 1/3}, (δc)r = 1/2, (δc)1 = 1/2, and (δc)d = 1 we
find

TM = TN =
eV0√
3πkB

. (S46)

Here we have leq = lpareq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| =
4e3V0

9
√
3πh

≈ 0.0816
e3V0
h

. (S47)

The source current is I = 5e2V0/(2h), while the trans-
mission coefficient is t = (7/3)/(5/2) = 14/15. We thus
obtain the corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
≈ 0.2625. (S48)

E. {ν, νi} = {5/2, 7/3} with an APf state and partial
thermal equilibration

Here heat transport is antiballistic in “outer”, antibal-
listic in “line”, and ballistic in “upper” segments, and
we consult Section SII B and Fig. S4. We note that for
partial thermal equilibration, the counter-propagating
modes in the lowest Landau levels of ν and νi local-
ize in the “line” segment and do not contribute to the
CCC, while the modes in the second Landau levels do
contribute. We effectively have the filling {νeff, νeffi } =
{1/2, 1/3} for {ν, νi} = {5/2, 7/3}. From Eq. (S29) with
{νeff, νeffi } = {1/2, 1/3}, (δc)G = 1/2 we find

TM = TN =

√
2√
3

eV0
πkB

. (S49)

Here we have leq = lpareq . We note that the “outer” seg-
ment is in the antiballistic regime. Therefore, a constant
noise for ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ is expected [1]. We use
Ref. 1 to calculate ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩,

⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ =
e2

h
νeff

(
ν−
ν+

)
kBTM

×
[√

πΓ( 2+α
α )

2Γ( 32 + 2
α )

+ 2F1

(
− 1

2
,
2

α
;
2 + α

α
;
cdown

cup

)]
,

(S50)

where νeff = 1/2, ν+ = 1, ν− = 1/2, kBTM =√
2eV0/(

√
3π), γ = 1, cdown = 1, cup = 3/2, α =

−(cdown − cup)γν+ν−/νeff = 1/2. We find ⟨(∆IS)2⟩ =
⟨(∆IG)2⟩ ≈ 0.07e3V0/h. Therefore, we obtain

(δ2I1 = δ2I2) ≈ 0.1543
e3V0
h

, δ2Ic ≈ −0.0845
e3V0
h

.

(S51)

The source current is I = 5e2V0/(2h), while the trans-
mission coefficient is t = (7/3)/(5/2) = 14/15. We thus
obtain the corresponding Fano factors,

F1 = F2 =
δ2I1

2eIt(1− t)
≈ 0.4959, |Fc| ≈ 0.271. (S52)

F. {ν, νi} = {3, 5/2} with a Pf state and full thermal
equilibration

Here heat transport is ballistic in “outer”, antibal-
listic in “line”, and ballistic in “upper” segments, and
we consult Section SIIA and Fig. S3. From Eq. (S18)
with {ν, νi} = {3, 5/2}, (δc)r = 1/2, (δc)1 = 3, and
(δc)d = 7/2 we find

TM = TN ≈ 0.077
eV0
kB

. (S53)

Here we have leq = lfulleq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| ≈ 0.128
e3V0
h

. (S54)

The source current is I = 3e2V0/h, while the transmis-
sion coefficient is t = (5/2)/3 = 5/6. We thus obtain the
corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
≈ 0.155. (S55)

G. {ν, νi} = {3, 5/2} with a Pf state and partial
thermal equilibration

Here heat transport is ballistic in “outer”, antiballistic
in “line”, and ballistic in “upper” segments, and we con-
sult Section SIIA and Fig. S3. We note that for partial
thermal equilibration, the counter-propagating modes in
the lowest Landau levels of ν and νi localize in the
“line” segment and do not contribute to the CCC, while
the modes in the second Landau levels do contribute.
We effectively have the filling {νeff, νeffi } = {1, 1/2} for
{ν, νi} = {3, 5/2}. From Eq. (S18) with {νeff, νeffi } =
{1, 1/2}, (δc)r = 1/2, (δc)1 = 1, and (δc)d = 3/2 we
find

TM = TN = 0.5
eV0
πkB

. (S56)

Here we have leq = lpareq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| = 0.5
e3V0
πh

. (S57)
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The source current is I = 3e2V0/(h), while the transmis-
sion coefficient is t = (5/2)/3 = 5/6. We thus obtain the
corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
≈ 0.19. (S58)

H. {ν, νi} = {3, 5/2} with an APf state and partial
thermal equilibration

Here heat transport is ballistic in “outer”, ballistic in
“line”, and antiballistic in “upper” segments, and we con-
sult Section SIIC and Fig. S5. We note that for partial
thermal equilibration, the counter-propagating modes in
the lowest Landau levels of ν and νi localize in the
“line” segment and do not contribute to the CCC, while
the modes in the second Landau levels do contribute.
We effectively have the filling {νeff, νeffi } = {1, 1/2} for
{ν, νi} = {3, 5/2}. From Eq. (S36) with {νeff, νeffi } =

{1, 1/2}, (δc)r = 3/2, (δc)d = 1/2, (δc)2 = 1, and
(δc)l = 3/2 we find

TM = TN = 0.5
eV0
πkB

. (S59)

Here we have leq = lpareq . We note that the “outer”
segment is in the ballistic regime. Hence, we expect
an exponential suppression of ⟨(∆IS)2⟩ = ⟨(∆IG)2⟩ [1].
Therefore, we find

δ2I1 = δ2I2 = |δ2Ic| = 0.5
e3V0
πh

. (S60)

The source current is I = 3e2V0/(h), while the transmis-
sion coefficient is t = (5/2)/3 = 5/6. We thus obtain the
corresponding Fano factors,

F1 = F2 = |Fc| =
δ2I1

2eIt(1− t)
= 0.6. (S61)
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