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Dirac points (DP) in Hermitian systems play a key role in topological phenomena. Their existence in
non-Hermitian systems is then desirable, but the addition of loss or gain transforms DPs into pairs
of Exceptional Points (EPs) joined by a Fermi arc, which exhibit interesting but different properties.
When the transition to a non-Hermitian system results from the opening of a radiation channel, the
system can also support bound states in the continuum (BICs), which are non-radiative resonant
states that appear within the band of radiation states. We theoretically show that simultaneous
band-crossing of two BICs can prevent the formation of EPs and Fermi arcs, resulting in genuine
Hermitian DPs, which are nonetheless embedded in the continuum of radiation states. Dirac points
embedded in the continuum (DECs) are a new topological entity that combines the rich physics
associated with DPs with the ideal resonant properties of BICs in non-Hermitian systems.

Degeneracy between energy bands has raised interest
since the beginning of quantum mechanics [1]. A Dirac
point (DP) in a Hermitian system occurs at the intersec-
tion in a point of two dispersion bands, exhibiting a linear
slope that forms a conical surface [2–4]. The result is a
degenerate state with identical eigenvalues and two or-
thogonal eigenstates. Recently, the topological concepts
and applications of Hermitian systems are being exported
to non-Hermitian systems [5–7], in particular, DPs [8–
10]. However, when the system becomes non-Hermitian,
the eigenstates cease to be orthogonal and the eigenvalues
become complex, with the imaginary part being related
to losses. In this transformation, the DP gives rise to
a pair of Exceptional points (EP) connected by a Fermi
arc [11, 12]. Just at the EP, the two bands coalesce and
the Hamiltonian is described by a non-diagonal Jordan
matrix with identical complex eigenvalues and identical
eigenstates [13]. The band crossing is produced at the
Fermi arc, forming the two halves of a Riemann surface.
Non-orthogonal eigenstates in non-Hermitian systems re-
sult in non-trivial dynamics [13, 14], including asym-
metric mode switching [15, 16], topological half-charges
in polarization states [17], high sensitive measurements
[18, 19] or directional lasing and chiral modes [20].

Open systems are a particular kind of non-Hermitian
systems. The eigenstates in these systems are resonances
coupled to the continuum, resulting in energy radiation.
Cancellation of the radiation channels by different mech-
anisms, including symmetry protection or destructive
interference, results in Bound states in the continuum
(BICs). BICs appear in the parameter space correspond-
ing to the radiation continuum as confined eigenstates
inserted within the dispersion band of complex eigenval-
ues. However, the eigenvalue in a BIC is real, thus the
radiation channel is suppressed, resulting in an infinite
lifetime or propagation distance. Although BICs were
proposed in quantum mechanics [21, 22], they are a gen-
eral wave phenomena [23] and have been found in a vari-
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ety of physical settings including acoustic [24], quantum
[25], and, prominently photonic [26–30] platforms.

A unique situation occurs when BICs interact with
EPs, resulting in BICs flipping position with EPs [31],
exchanging of dispersion band at the Fermi arc [32], or
obtaining ultra-low loss EPs in a dual-BIC scheme [33].
Here, we explore a new situation where two BICs meet
and interchange bands by crossing the Fermi arc. As the
eigenvalues of the two BICs are purely real, the system
is locally Hermitian at the crossing point. Interestingly,
when the BICs resonances are broad enough, the EPs
cease to exist and a gap is opened along the Fermi arc, ex-
cept at the point where the two BICs cross. At this point,
the two dispersion bands join with a conical and linear
slope, the eigenstates are orthogonal, and the eigenvalues
are real and degenerated, thus resembling a DP. However,
this finding differs from previous approaches, where the
DP itself is non-Hermitian [8–10], in that radiation losses
are totally canceled at the DP, while it is surrounded
by non-orthogonal eigenstates with complex eigenvalues.
This is therefore a new paradigm where a Hermitian
DP is embedded within the non-Hermitian continuum.
A Dirac point embedded in the continuum (DEC) is a
new topological entity that can retain all the physics re-
lated to DPs (topologically protected edge states, back-
scattering immune transport, [34–36]) in addition to the
resonant properties associated with BICs [37], and po-
tentially opens the door to a plethora of new phenomena
yet to be discovered.

In this paper, we use a simple model based on a generic
two-level system to demonstrate the formation of DECs.
The concept is then corroborated in a more complex
photonic system based on hyperbolic waveguides [38–41]
with anisotropic background [42, 43], showing a perfect
agreement.

The two-level system models the coupling between two
resonances with amplitudes E1 and E2, which evolve as
a function of a parameter, in our case the propagation
distance z. Then, considering the mode propagation con-
stant or momentum, κj , the attenuation constant asso-
ciated to the radiation channel, αj , and the coupling be-
tween the two resonances, q, the dynamics of the system

ar
X

iv
:2

21
2.

05
86

4v
1 

 [
ph

ys
ic

s.
op

tic
s]

  1
2 

D
ec

 2
02

2

mailto:david.artigas@icfo.eu


2

is described by the Hamiltonian H [14, 15]:

i
d

dz

[
E1

E2

]
= H

[
E1

E2

]
=

[
κ1 − iα1 q

q κ2 − iα2

] [
E1

E2

]
, (1)

The system supports harmonic solutions of the type Ej =
aje

iβjz, where the eigenvalue β can be described in terms
of the momentum mismatch, ∆κ = κ2 − κ1, and the
attenuation mismatch, ∆α = α2 − α1, as:

β =

(
κav − iαav ±

1

2

√
4q2 + (∆κ− i∆α)

2

)
. (2)

Here, κav = (κ2 + κ1)/2 and αav = (α2 + α1)/2 are
the averaged momentum and attenuation constant, re-
spectively. Fig. 1(a) shows the typical eigenvalue bands
of the system as a function of the coupling q and the
momentum mismatch ∆κ. The EP appears at ∆κ = 0
and q = ∆α/2, with eigenvalue β = κav − iαav. At the
Fermi arc (∆κ = 0), both eigenvalues intersect with equal
Re(β) but different Im (β). This results in the line with
different losses joining the two EPs in Fig. 1a. When
∆α = 0, the two EPs collapse at ∆κ = 0, q = 0, into a
single EP, or complex DP, with one complex eigenstate
[10]. Consequently, an attenuation mismatch is needed
for the Fermi arc to exist.

Contrary to absorption losses, radiation losses are dic-
tated by the structural and geometrical parameters de-
scribing an open system. In particular, losses can be
canceled due to the presence of a BIC, which usually
appears as isolated points within the leaky dispersion
band. However, in systems with a single radiation chan-
nel, BICs can form continuous lines of real eigenvalues
inserted within dispersion bands of complex eigenvalues.
The latter situation has been predicted in anisotropic
waveguides [42, 44], photonic crystal slabs with environ-
ment design [32], and appears naturally in surface BICs
[45]. Taking into account that radiation losses are related
to the resonant quality factor by αi ∝ Q−1 and following
the quadratic scaling rule of Q in terms of the system
parameters [37], a line of BICs in level i can conveniently
be modeled in the Hamiltonian (1) by an absorption:

αi = α0iq
2/(q2 + w2

i ), (3)

where wi is the width of the BIC resonance in level i, and
α0i is the radiation loss far away from the BIC (q >> wi).

The situation described in Ref. [32] can be simulated
by considering a single BIC in the E1 resonance and
choosing wi = 0.1 to minimally affect the position of the
EPs. The result in Fig. 1b is a BIC line that crosses the
Fermi arc, exchanging dispersion band. The presence of
the BIC at q = 0 results in Im{β1} = 0, while the posi-
tions of the EPs have not changed perceptibly. BICs with
a broader resonance can affect the EPs position, but the
EPs do not disappear.

A more interesting situation occurs when both reso-
nances present a BIC. By tuning the system parameters,

the two BICs can be made to coincide at the Fermi arc
where they exchange band. Figure 1c shows the situation
for two lines of BICs with w1 = w2 = 0.4. A gap between
the two bands is opened all along the Fermi arc except at
the crossing between the two BICs. Examination of the
point where BICs cross shows that two orthogonal eigen-
states coexist, the eigenvalues are identical and real, and
the slope of the eigenvalue band at this point is linear
showing a conical surface. Thus, this point is not the co-
alescence of two bands in a single EP or complex DP [10],
as the eigenvalues are real. Neither is a non-Hermitian
DP where gain a loses are balanced [8], as in our case the
radiation losses at the point where the two BICs cross is
zero and thus the system is locally Hermitian. However,
the point is surrounded by complex eigenvalues, which
are non-Hermitian. Therefore, its properties correspond
to a DP, which however is located in the space of pa-
rameters that corresponds to the radiation continuum.
In other words, it is a Dirac point embedded in the con-
tinuum (DEC). DECs existence only requires that the
BICs resonances are broad enough to avoid the existence
of EPs and are also possible when the crossing BICs are
points in the dispersion band.

To show DECs existence in a specific system, we con-
sider a structure in Fig. 1d based on a planar waveg-
uide made of a Type II hyperbolic film (or core), a
birefringent substrate with elliptical dispersion, and an
isotropic cladding. Each media in the waveguide is
characterized by a diagonal permittivity tensor given by
ε̂ = diag (εo, εo, εe). The hyperbolic film, with a thickness
D, is characterized by positive extraordinary and nega-
tive ordinary dielectric constants (εef > 1, εof < 0), i.e.,
Type II hyperbolic dispersion [41]. The substrate shows
negative birefringence, with εos > εes > 1. The refrac-
tive index of the isotropic dielectric cladding is εc ≥ 1.
We consider the film and substrate optical axes (OAs) to
be aligned and lay parallel to the waveguide interfaces.
The angle φ shows the propagation direction with respect
to the OA (Fig. 1d).

We analyze the structure using a modified transfer ma-
trix method, where part of the code includes analytical
routines to improve accuracy [42, 44, 46]. The result pro-
vides the mode field amplitudes and eigenvalues, i.e., the
effective index N , which is related to the eigenvalue or
propagation constant, β, as N = β/k0, with free space
wavenumber k0 = 2π/λ and free space wavelength λ.
Being a birefringent structure, N changes with the prop-
agation direction φ. In the case of negative birefringent
substrates, the waveguide supports guided modes when
N > nos and leaky modes when nes < N < nos. Leaky
modes are improper complex solutions of the eigenmode
equation where the imaginary part of N gives a good ap-
proximation to the actual radiation losses and the eigen-
vector properly describes the field at the vicinity of the
film. They form leaky branches, which are the equiva-
lent of resonant bands in generalized non-Hermitian ra-
diating systems. The waveguide under study can sup-
port different types of modes with hybrid transverse elec-
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FIG. 1. Eigenvalues bands of a two-level system in terms of the coupling q and the phase mismatch ∆κ, with α1 = 1 and
α2 = 2. (a) Losses are constant for any value of q, and ∆κ. (b), The E1 level contains a BIC line with a width resonance
w1 = 0.1, the result is the BIC line at q = 0 passing through the Fermi arc. (c), Both resonances contain a BIC line at
q = 0 with a width resonance w1 = 0.4, which results in a DEC. (d) Hyperbolic photonic structure composed of an isotropic
cladding, a negative birefringent substrate, and a Type II hyperbolic film. The OA is oriented along the z direction. The angle
φ indicates the propagation direction.

tric and magnetic (TE/TM) polarization. We are inter-
ested in the modes existing near φ = 90◦, which consist
of a finite set of TE-dominant normally ordered hyper-
bolic (TENH) modes and a TM-dominant (TMd) plas-
mon [46]. As D/λ increases, TENH modes grow above
the cutoff, first as a leaky mode to become guided when
N > nos. The TMd plasmon depends primordially on
the film/cladding interface properties and can be de-
signed to be leaky in the region of interest. In addi-
tion, the resulting leaky branches support interference
BICs (INT-BICs), and polarization separable BICs (PS-
BICs), which are the equivalent in other systems to acci-
dental and symmetry-protected BICs, respectively [42].
INT-BICs feature a hybrid TE/TM polarization with a
propagation direction φ that can be parameter tuned in
terms of the waveguide parameters [44, 47]. In contrast,
PS-BICs are either pure TE or TM polarized and ap-
pear at the propagation direction orthogonal to the OA,
φ = 90◦ [42].

Without loss of generality, the results were obtained
using the following values for the relative permittivity:
εc = 1 for the cladding, εef = 1.752 and εof = −1.77 for
the hyperbolic film, and εes = 1.252 and εos = 4 for the
substrate. Note that the ordinary wave in the substrate
is the radiation channel as it features the higher εr of the
cladding and substrate. Non-local effects and material
absorption are not considered [48], which is consistent
with experimental structures recently demonstrated us-

ing a film of hyperbolic natural materials [49].

The nature of BICs and their relationship with EPs
and DECs can be unveiled by analyzing the angular dis-
persion diagrams, i.e., the effective index for the modes
supported by the structure in terms of the propagation
direction φ. We do that for different electrical thick-
nesses D/λ, considering λ fixed. Experimentally, in low-
dispersive materials, varying the operational wavelength
for a fixed D would yield similar qualitative results. The
two mode dispersion curves for D/λ = 0.20 in Fig. 2a
correspond to a TMd plasmon (higher N), which at
φ = 90◦ is pure TM, becoming hybrid TM dominant all
along the branch. At 74◦ < φ < 106◦ the TMd plasmon
is leaky (N < nc = 2), while beyond this range is guided
(N > nc = 2). The second mode is the fundamental
TENH0, which is leaky in all the range of existence except
at the BICs. This branch supports three BICs: a PS-BIC
at φ = 90◦ with TE polarization and an INT-BIC at each
side. As D/λ increases, the TENH0 branch approaches
the TMd-plasmon branch, until at D/λ ≈ 0.31 the two
branches seem to intersect at φ = 90◦ (see Fig. 2b). If
D/λ increases further, the two branches depart apart, as
shown by Fig. 2c for D/λ = 0.45. However, two impor-
tant effects should be highlighted. First, the branches at
φ = 90◦ exchange polarization, so that at d/λ = 0.45 the
lower branch corresponds to the TMd-plasmon and the
upper branch is the TENH0 mode. Second, the PS-BIC
crosses to the upper branch, while the INT-BICs remain
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FIG. 2. (a), (b), and (c), angular dispersion diagram showing the effective index N in terms of the propagation direction
φ for different electrical thicknesses D/λ (indicated in each panel). The line color in every branch indicates the normalized
mode decay length L = 1/β. The black dot and dot-dashed lines indicate the substrate extraordinary, nes, and ordinary, nos,
refractive indices, respectively. TMd stands for the TM-dominant plasmon and TENHi for the TE-dominant, normally-ordered
hyperbolic mode with order index i. (d) Effective index bands in terms of φ and D/λ showing the EPs and one PS-BIC crossing
the Fermi arc.

at the lower branch, approaching each other as D/λ in-
creases. A close examination of this transition in Fig.
2d unveils the existence of two EPs and a Fermi arc at
D/λ = 0.307, and the crossing of the PS-BIC through
the Fermi arc, exchanging branch. The result locally re-
sembles Fig. 1b, with φ and D/λ playing the role of
the coupling between states q and the propagation con-
stant mismatch ∆κ, respectively. Note that at the point
φ = 90◦ in the Fermi arc, there are two solutions for N ,
one of them is real (the BIC) and the other complex (the
TMd plasmon), therefore the system is non-Hermitian
for all points in Fig. 2d.

As the electrical thickness D/λ increases further, the
two INT-BICs in the TMd plasmon branch finally joints
at φ = 90◦, resulting in a wide area with low losses [37].
In addition, a new TENH1 mode appears from the cutoff
featuring a PS-BIC (Fig. 3a). Near D/λ ≈ 0.88, the
TMd plasmon and TENH1 bands intersect, with both
branches having a BIC at the intersection point φ = 90◦

(Fig. 3b). As D/λ increases, both branches again split
apart (Fig. 3c). By examining the electromagnetic field
at each branch, we observe that the branches have ex-
changed polarization again, so that the second branch
in Fig. 3c now is the TENH1 mode, while the third
branch is the TMd plasmon. We can also observe that
the wide low loss area resulting after the BICs merging is
now in the third branch, confirming the BIC exchange of
branches. However, the underlying phenomena, in this

case, is different from Fig. 2, as now two BICs are cross-
ing at the same point, which is the necessary condition
to obtain a DEC. A close examination by plotting the
two effective index bands, N , in terms of φ and D/λ
(Fig. 3d) shows that in this case, the two bands cross
at a single point, φ = 90◦ and D/λ = 0.8804, the two
electromagnetic fields at this point are orthogonal and,
as both of them are non-radiating BICs, both eigenval-
ues N are real, thus the system is locally Hermitian. In
addition, the two bands show a conical slope, resulting
in a DEC which greatly resembles the one described by
the much simpler two-level model in Fig. 1c. Finally,
note that for D/λ = 0.95, a new branch of TENH2 mode
appears above the cutoff in Fig. 3c. This mode has a
PS-BIC at φ = 90◦ and as D/λ increases further, the
branch will cross the TMd-plasmon branch, resulting in
a new DEC. This process will be repeated for all the new
TENHn branches appearing as D/λ is increased.

Photonic waveguides with a hyperbolic film are a con-
venient setting to put forward the DEC concept. Her-
mitian systems based on planar waveguides can present
DPs that transform into EPs when a radiation channel is
opened [43]. The much richer variety of modes in the hy-
perbolic film provides the leaky TMd plasmon, which can
support INT-BICs. This being a surface wave, N is not
affected by a D/λ increase, allowing its interaction with
the consecutive leaky TENH branches. This interaction
can originate either pairs of EPs united by Fermi arcs,
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FIG. 3. (a), (b), and (c) same as Fig. 2 but for higher electrical thicknesses D/λ, as indicated in each panel. d, Effective index
bands in terms of φ and D/λ showing a Dirac Point embedded in the continuum (DEC).

which can be crossed by one BIC, or DECs. We however
advance DECs existence in other photonic arrangements
that support BICs, such as coupled waveguides, photonic
crystals, or resonant structures, as well as in acoustic or
quantum systems.

DECs are a new topological entity enriching the fields
of topological physics. Similarly to standard DPs, two
conical eigenvalue surfaces intersect at the DEC with
a single real eigenvalue and two coexisting orthogonal
eigenstates. However, they originate due to the inter-
action of two BICs, which prevent the existence of EPs
and open a gap all along the Fermi arc except at the
DEC. When compared with standard BICs, a DEC of-
fers a unique characteristic, as it is a degenerate reso-
nance that provides infinite propagation distances or life-

times for two different orthogonal states. In addition,
although DECs show the same features as DPs in a Her-
mitian system, they are surrounded by radiation states.
In other words, unlike other DPs in non-Hermitian sys-
tems that requires anti-PT symmetry [8], DECs are sur-
rounded by states where the PT-symmetry does not hold.
Consequently, all the physical properties of DP in Hermi-
tian systems need to be reevaluated in the framework of
DECs, which may lead to novel forms of electromagnetic
and quantum manipulation of wave states.
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diskrete Eigenwerte. Uber das Verhalten von Eigenwerten
bei adiabatischen Prozessen, Zeitschrift für Physik 30,
467 (1929).

[22] F. H. Stillinger and D. R. Herrick, Bound states in the
continuum, Physical Review A 11, 446 (1975).

[23] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos,
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