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ABSTRACT
Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass
ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer
Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation
and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI
parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability
of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural
network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating
detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data
generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in
population inference analyses. We apply our method to an astrophysically-motivated EMRI population model, demonstrating the
potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that with 116 EMRI
detections LISA will measure the MBH mass function slope to a precision of 8.8%, the CO mass function slope to a precision
of 4.6%, the width of the MBH spin magnitude distribution to a precision of 10% and the event rate to a precision of 12% with
EMRIs at redshifts below 𝑧 = 6.

Key words: gravitational waves – methods: statistical – software: data analysis – stars: black holes – transients: black hole
mergers

1 INTRODUCTION

The Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al.
2017) is a planned space-based observatory capable of observing
gravitational waves (GWs) with frequencies ∼ 10−5–10−1 Hz. A
promising source of GWs in this band are extreme mass ratio in-
spiral (EMRI) systems, comprising a compact object (CO) orbit-
ing, and gradually inspiraling towards, a massive black hole (MBH;
Amaro-Seoane et al. 2007, 2023). EMRI systems typically com-
plete ∼ 104–105 orbital cycles in the LISA band and generate GWs
with an intricate frequency evolution. Relativistic effects, including
Lense–Thirring precession and pericentre precession, generate many
distinct sideband modes in the signal spectrum (Hughes et al. 2021;
Barack & Cutler 2004). The amplitude and phase evolution of these
modes is strongly dependent on the parameters of the MBH–CO
system, enabling precise measurements of these parameters (Babak
et al. 2017). In particular, the (redshifted) MBH and CO masses,
MBH spin and orbital eccentricity may be determined to accuracies
of ∼ 10−3%, and the sources localised in space to better than 10%
relative precision (Amaro-Seoane et al. 2007; Berry et al. 2019).
This level of measurement precision for MBHs surpasses both exist-
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ing electromagnetic techniques (Daly 2011) and LISA observations
of MBH binaries (Klein et al. 2016).

The number of EMRIs that will be detected is uncertain, largely
due to poorly constrained astrophysical parameters in current forma-
tion channel theories, but the detection rate is likely to be of order
101–103 yr−1 (Babak et al. 2017; Pan et al. 2021; Vázquez-Aceves
et al. 2022; Amaro-Seoane et al. 2023). During LISA’s proposed 4 yr
mission, we therefore expect to attain a sufficiently large catalogue
of EMRIs (each of which providing excellent measurements of their
parameters) to probe and resolve features of the MBH mass and
spin populations. For example, we expect to match the precision of
current observational estimates of an MBH mass power-law spectral
index, even for pessimistic EMRI detection rate predictions (Gair
et al. 2010). Such a catalogue also enables the testing of the wide
array of EMRI formation channel theories. Several EMRI forma-
tion channels have been suggested, including loss-cone scattering of
COs into inspiral orbits (Alexander 2017), radial migration of COs
by dynamical interaction with an accretion disc (Pan et al. 2021),
capture via the Kozai–Lidov mechanism due to the presence of a
binary MBH system (Naoz et al. 2022), and the tidal disruption of
main-sequence or helium stars on highly eccentric orbital trajecto-
ries around MBHs (Bortolas & Mapelli 2019). For a given formation
channel, the rate of EMRI production depends on astrophysical pa-
rameters (e.g., Broggi et al. 2022, for loss-cone or TDE channels)
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2 C. E. A. Chapman-Bird et al.

that are poorly constrained by existing observations. Determining the
relative contributions of the formation channels to the overall EMRI
rate therefore places constraints on these parameters; this could be
estimated from a catalogue of EMRI observations in a similar man-
ner to how ground-based GW observations are used to constrain their
source astrophysics (e.g., Zevin et al. 2021).

Extracting information about the astrophysical population requires
a hierarchical inference where the parameters of each EMRI in the
catalogue (and their associated uncertainties) are collectively used
to constrain the parameters of a chosen population model. However,
the catalogue only contains sources loud enough to cross a detection
threshold, and these are generally not representative of the under-
lying population: if these selection effects are ignored, the inferred
population parameters will be biased. EMRIs that are intrinsically
fainter (depending on their masses, spins or orbital parameters) and
more distant are less likely to be detected than their nearer and
louder counterparts. In practice, one may correct for this by deter-
mining the fraction of the proposed population that is detectable, and
re-weighting the population likelihood accordingly (Mandel et al.
2019; Alsing et al. 2022).

In the absence of a standard EMRI detection pipeline, the de-
tectability of a given EMRI is typically assessed with respect to
the signal-to-noise ratio (SNR) of the EMRI waveform (Gair et al.
2004, 2010; Babak et al. 2017). The detectable fraction of a pro-
posed population (the selection function) may therefore be estimated
by randomly drawing EMRI events from the population and comput-
ing their SNRs to determine the fraction of these samples that are
detectable. These selection function estimates may then be used to
re-weight the population likelihood and obtain unbiased inferences
of the population parameters.

The function that maps EMRI parameters to the waveform SNR is
complicated, so bias correction is computationally expensive. This
high cost comes from both the generation of complex long-duration
waveforms and the manipulation of these large data sets. Even ex-
ploiting graphics processing unit (GPU) acceleration and vectorisa-
tion, each SNR takes of order 1 s to compute for a 4 yr data-stream
duration. Using conservative estimates, if one draws 105 EMRIs for
each candidate population, and a population inference sampling run
consists of 105 candidate populations, full selection bias correction
would require 1010 GPU s. This is too costly for analyses includ-
ing selection bias correction in this manner to be conducted in a
reasonable amount of time.

Previous studies have addressed the issue of computational cost
by indirectly approximating the behaviour of the selection function
via: proxy distance thresholds (Laghi et al. 2021); a reduction in
EMRI parameter space complexity, for instance by neglecting the
dependence of eccentricity or inclination on detectability (Gair et al.
2010); a reduction of waveform complexity by only computing a
small number of sideband modes with faster, less accurate waveform
models (Chua & Cutler 2022). These approaches permit the rapid
computation of the selection function, but do not account for more
complex correlations between EMRI parameters and may introduce
systematic biases due to the approximations made. For instance, the
evolution of orbital eccentricity and inclination during an inspiral is
correlated with mass ratio, and the mode amplitudes (and therefore,
the overall SNR of the waveform) are correlated with both eccen-
tricity and inclination evolution. Therefore, even for parameters not
directly of interest to a given population study, the correlations be-
tween these parameters and event detectability must still be taken
into account to avoid biases in the results obtained.

In this work, we propose an alternative approach that leverages the
speed of the recently developed GPU-accelerated EMRI waveform

package FastEMRIWaveforms (FEW; Katz et al. 2021) and machine-
learning techniques to interpolate the EMRI SNR function, directly
correcting for an SNR-based selection bias without the need for ma-
jor systematic approximations or simplifications. In Section 2, we
outline the Bayesian population inference framework employed, in-
cluding the correction for selection biases. In Section 3, we introduce
our approach for estimating the selection bias with machine learn-
ing, which we achieve by replacing the bottleneck in the selection
bias calculation (the EMRI SNR function) with a neural network
interpolator. The effectiveness of our framework is demonstrated in
Section 4 for a typical EMRI population, presenting clearly the man-
ifestation of the selection bias in the obtained results and how this is
corrected for in practice; the corrected results provide an unbiased
estimate for the precision to which LISA observations could constrain
the astrophysical EMRI population. Finally, in Section 5, we perform
a global posterior consistency check to verify the analysis.

The method we describe in this paper is implemented in our open-
source code package poplar (Chapman-Bird 2023), which we plan
to use for (and develop alongside) future EMRI population studies.

2 HIERARCHICAL BAYESIAN INFERENCE
FRAMEWORK

Our goal is to infer the properties of an EMRI population model
using a catalogue of many EMRI observations.

For each EMRI in the catalogue, information about its parameters
𝜽𝑖 is encoded in the data, 𝒅, where the subscript 𝑖 ∈ [1, 𝑁obs] iden-
tifies the particular EMRI in the catalogue of 𝑁obs detections. The
posterior distribution for 𝜽𝑖 given the data is

𝑝(𝜽𝑖 |𝒅) =
𝜋(𝜽𝑖)L(𝒅 |𝜽𝑖)

Z(𝒅) , (1)

where 𝜋(𝜽𝑖) is the prior distribution on 𝜽𝑖 , L(𝒅 |𝜽𝑖) is the likelihood
of observing the data given a set of source parameters, and Z(𝒅) is
the evidence (marginalised likelihood). We estimate the parameters
of the EMRI by stochastically sampling the posterior distribution,
obtaining a set of posterior samples {𝑘𝜃𝑖} (Christensen & Meyer
2022), where the superscript 𝑘 ∈ [1, 𝑆𝑖] denotes each posterior
sample for a given event. The posterior 𝑝(𝜽𝑖 |𝒅) provides information
about a single EMRI source; by combining together the properties
of the catalogue of sources,we can constrain a population model.

The population model 𝑝pop (𝜽 |𝝀) describes the astrophysical dis-
tribution of EMRI source parameters. It is described by a set of
hyperparameters 𝝀 that determine the shape of the population, and a
Poissonian mean event rate R that parameterises how often EMRIs
occur. We use the hyper prefix to differentiate these population-level
(hyper)parameters from the event-level EMRI parameters. By esti-
mating the hyperparameters, we constrain the relative probabilities
of different population shapes and event rates in accordance with the
contents of the catalogue. We perform this hyperparameter estima-
tion in a hierarchical Bayesian inference framework (Mandel et al.
2019).

To obtain an estimate of 𝝀 and R, we sample the hyperparameter
posterior distribution

𝑝(𝝀,R|{𝜽}) = 𝜋(𝝀)𝜋(R)L({𝜽}|𝝀)L({𝜽}|R)
Z({𝜽}) , (2)

where 𝜋(𝝀) and 𝜋(R) are hyperprior distributions, andZ({𝜽}) is the
hyperevidence. The hyperparameter likelihood L({𝜽}|𝝀) is defined
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as

L({𝜽}|𝝀) =
𝑁obs∏
𝑖=1

1
𝑆𝑖𝛼(𝝀)

𝑆𝑖∑︁
𝑗=1

𝑝pop ( 𝑗𝜽𝑖 |𝝀)
𝜋(𝜽𝑖)

, (3)

where. in general, the population probability of each posterior sam-
ple must be re-weighted by the prior used in the EMRI parameter
estimation step (Mandel et al. 2019). In our case, we adopt uniform
priors on all EMRI parameters and this re-weighting simplifies to a
proportionality constant. The rate likelihood L({𝜽}|R) is

L({𝜽}|R) = exp[−R𝛼(𝝀)] [R𝛼(𝝀)]𝑁obs . (4)

Here, the selection function 𝛼(𝝀) is a corrective factor applied to
account for the presence of selection bias on the observations: of the
(unknown) number of events that occurred, only a subset 𝑁obs were
detected. It may be written as

𝛼(𝝀) =
∫

𝑝det (𝜽)𝑝pop (𝜽 |𝝀) d𝜃, (5)

for some detection probability 𝑝det (𝜽), and represents the fraction of
a population (described by a particular set of hyperparameters 𝝀) that
is detectable. Performing an inference including the selection effects
should produce results unbiased by detectability (Mandel et al. 2019).

To use this inference framework, one must specify:

(i) A method for obtaining {𝜽};
(ii) The form of 𝑝pop (𝜽 |𝝀);
(iii) The selection effects for the observations.

Once these three ingredients have been formally defined, we can
construct (and ultimately, sample) the hyperposterior, Eq. (2). We
introduce the approach we use to obtain posterior samples for each
detected EMRI in Section 2.1; we detail the form of our population
model in Section 2.2, and we outline our treatment of detectability
and the modelling of selection effects in Section 2.3.

2.1 EMRI parameter estimation

Despite recent reductions in EMRI waveform computation time to
the sub-second level (Katz et al. 2021), standard Bayesian parameter
estimation techniques are too costly for the event posteriors to be
sampled directly en-masse as is required in population studies. We
instead opt to approximate the EMRI likelihood (and by extension,
posterior) with a Fisher matrix approach, operating under the linear
signal approximation (LSA; Cutler & Flanagan 1994), in which the
likelihood is approximated by a multivariate normal distribution,

𝑝(𝑑 |𝜽) ≈ N
(
𝜽 , Γ−1

)
, (6)

where the covariance matrix of the distribution is the inverse of the
Fisher information matrix (FIM) Γ of the EMRI waveform. The LSA
is only valid in the high-SNR limit (which may lie far above the
detection threshold), which should be verified before it is used to
approximate likelihoods (Vallisneri 2008). The FIM is given by

Γℓ𝑚 = ⟨𝜕ℓℎ|𝜕𝑚ℎ⟩, (7)

where 𝜕ℓℎ refers to the derivative of the waveform strain ℎ(𝑡) with
respect to the ℓ-th parameter of 𝜽 , evaluated at 𝜽 . The noise-weighted
inner product is defined as

⟨𝑥 |𝑦⟩ = 4ℜ
[∫ ∞

0

𝑥∗ ( 𝑓 ) 𝑦̃( 𝑓 )
𝑆𝑛 ( 𝑓 )

d 𝑓
]
, (8)

where 𝑥( 𝑓 ) is the Fourier transform of a time-domain strain 𝑥(𝑡),
ℜ refers to the real part and 𝑆𝑛 ( 𝑓 ) is the one-sided power spectral

density (PSD) of the detector (Maggiore 2008). We adopt the analytic
fit to the LISA PSD derived in Robson et al. (2019). Using the FIM,
we can rapidly produce posterior distributions for a catalogue of
EMRIs.

Specifics of our EMRI event catalogue simulation pipeline, includ-
ing both waveform generation and FIM computation, are discussed
in Appendix A.

2.2 Population model

For simplicity, we choose a population model that is a product of
independent univariate subpopulations, such that

𝑝pop (𝜽 |𝝀) =
∏
𝑥∈𝜽

𝑝𝑥 (𝑥 |𝝀𝑥), (9)

where 𝑥 denote EMRI parameters and 𝝀𝑥 the corresponding hyper-
parameters that describe the shape of the subpopulation. The mathe-
matical form of these subpopulations is summarised in Table 1, and
in detail:

• Mass functions for both MBHs and stellar-mass black holes are
well approximated by power laws, albeit with additional substruc-
ture present when examined in detail (Shankar 2013; Abbott et al.
2023). We therefore model the MBH and CO mass distributions
𝑝𝑀 (𝑀 |𝜆𝑀 , 𝑀min, 𝑀max) and 𝑝𝜇 (𝜇 |𝜆𝜇 , 𝜇min, 𝜇max) as power laws,
with index 𝜆𝑥 and limits [𝑥min, 𝑥max], which have the form

𝑝𝑥 (𝑥 |𝜆𝑥 , 𝑥min, 𝑥max) =
1 + 𝜆𝑥

𝑥
1+𝜆𝑥
max − 𝑥

1+𝜆𝑥
min

𝑥𝜆𝑥 . (10)

• The form of the MBH spin magnitude distribution
𝑝𝑎 (𝑎 |𝜇𝑎 , 𝜎𝑎) is dependent on a number of astrophysical processes
during the formation and evolution of MBHs and their host galax-
ies (Volonteri 2010; Sesana et al. 2014). Incorporating these into
our population model and characterising their impact on inference
results is beyond the scope of this study. For simplicity, we instead
choose a truncated normal distribution with mean 𝜇𝑎 and variance
𝜎2
𝑎 as has been done in previous analyses of the stellar-mass binary

black hole (BBH) mergers (Roulet & Zaldarriaga 2019; Miller et al.
2020). This is written as

𝑝𝑥 (𝑥 |𝜇𝑥 , 𝜎𝑥) =
1
𝜎

𝜓 [(𝑥 − 𝜇𝑥)/𝜎𝑥]
Ψ [(𝐵 − 𝜇𝑥)/𝜎𝑥] − Ψ [(𝐴 − 𝜇𝑥)/𝜎𝑥]

, (11)

where 𝜓(𝑥) and Ψ(𝑥) are the probability density and cumulative
distribution functions (CDF) of the standard normal distribution,
respectively. The limits [𝐴, 𝐵] are chosen to be [0.001, 0.999] as
waveform generation is unstable at extremal spins beyond these lim-
its.

• High initial orbital eccentricities (> 0.99) are expected for EM-
RIs formed by relaxation mechanisms, but significant orbital eccen-
tricity will be lost before the GW emission of the system enters the
LISA band (Peters & Mathews 1963), broadening the distribution
and shifting it to lower eccentricities (Amaro-Seoane 2020). To re-
flect this behaviour, we choose a uniform eccentricity distribution
𝑒0 ∈ [0.1, 0.5], with upper limit chosen to reflect that the waveform
model is a series expansion in eccentricity and should therefore not
be trusted for high eccentricities (Fujita & Shibata 2020; Isoyama
et al. 2022). The waveform model also consists of a system of ordi-
nary differential equations (ODEs) that must be solved (Katz et al.
2021). The lower limit of the eccentricity distribution is chosen due
to increasing stiffness in this ODE system at lower eccentricities
leading to high computational cost (Burden & Faires 1993). We do
not anticipate the validity of our approach to be affected by this lower
eccentricity cut-off.
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Table 1. The functions, free parameters, and limits of the sub-population
distributions 𝑝𝑥 (𝑥 |𝝀𝑥 ) , the product of which is the EMRI population chosen.
The hyperparameters 𝝀𝑥 are estimated via population inference. The upper
limit for 𝑡plunge is reduced to 2 yr for our validation analysis (Section 5).

𝑥 𝑝𝑥 (𝑥 |𝝀𝑥 ) 𝝀𝑥 [𝑥min, 𝑥max ]

𝑀 Power-law 𝜆𝑀 , 𝑀min, 𝑀max [𝑀min, 𝑀max]
𝜇 Power-law 𝜆𝜇 , 𝜇min, 𝜇max [𝜇min, 𝜇max]
𝑎 Trunc. Normal 𝜇𝑎 ,𝜎2

𝑎 [0.001, 0.999]
𝑒0 Uniform — [0.1, 0.5]
cos 𝜄0 Uniform — [0, 𝜋/3]
sin 𝜃𝑆 Uniform — [0, 𝜋 ]
sin 𝜃𝐾 Uniform — [0, 𝜋 ]
Δ𝜙 Uniform — [0, 2𝜋 ]
𝑡plunge Uniform — [0, (2, 10) ] yr
𝑧 𝑝𝑧 (𝑧) — [0, 6]

• Orbital inclination 𝜄0 is similarly truncated due to ODE stiffness
issues, but is otherwise distributed uniformly on the unit sphere along
with other angular parameters.

• We choose a redshift distribution that is uniform in comoving
volume and in comoving time (Hogg 1999); this has the form

𝑝𝑧 (𝑧) ∝
1

(1 + 𝑧)𝐸 (𝑧)

(∫ 𝑧

0

d𝑧′

𝐸 (𝑧′)

)2
, (12)

where

𝐸 (𝑧) =
√︃
Ω𝑀 (1 + 𝑧)3 +ΩΛ, (13)

and we assume a standard cosmology with Ω𝑀 = 0.3 and ΩΛ =

1−Ω𝑀 = 0.7. The upper redshift limit for this distribution is chosen
to be 𝑧 = 6 such that the detectable region of parameter space is not
significantly truncated (otherwise, selection effects will be artificially
suppressed). Increasing the redshift limit leads to high computational
costs as the event rate R must also be increased accordingly, as the
event rate density has remained constant but the comoving volume
over which we are distributing events has grown.

The chosen form of these subpopulations is motivated primarily by
computational simplicity. However, our approach is flexible and can
be applied to the hierarchical inference of any population model.

2.3 Selection effects

In the absence of a specific EMRI search pipeline, we model the
detection probability as a binary SNR threshold, as is typical for
EMRI studies (Gair et al. 2010; Babak et al. 2017; Bonetti & Sesana
2020). This may be written as

𝑝det (𝜽) = H(𝜌n − 𝜌t), (14)

where 𝜌n is a (noise-realized) SNR, H(𝑥) is the Heaviside step
function and 𝜌t is a chosen threshold SNR. We obtain 𝜌2

n by drawing
a sample from a non-central 𝜒2 distribution with two degrees of
freedom and non-centrality parameter 𝜌2

opt (Maggiore 2008),

𝑝

(
𝜌2

n

���𝜌2
opt

)
=

1
2

exp

(
−
𝜌2

n + 𝜌2
opt

2

)
𝐼0

(
𝜌n𝜌opt

)
, (15)

where 𝐼0 (𝑥) is a modified Bessel function of the first kind
(Abramowitz & Stegun 1964), and 𝜌2

opt is the square of the opti-
mal matched-filter SNR

𝜌2
opt = ⟨ℎ|ℎ⟩. (16)

We assume that 𝜌n is the positive square root of 𝜌2
n; while noise

fluctuations can lead to negative values, this is not expected for large
values around our detection threshold. One may analytically compute
the mean detection probability in Eq. (14) over all noise realizations
by directly computing the non-central 𝜒2 CDF 𝑝(𝜌2

n > 𝜌2
t |𝜌2

opt),
such that

𝑝det (𝜽) = 1 − 𝑝

(
𝜌2

n > 𝜌2
t

���𝜌2
opt

)
, (17)

where an overline denotes the mean.
We approximate the selection function Eq. (5) by evaluating the

Monte Carlo sum

𝛼(𝝀) ≈ 1
𝑁t

𝑁t∑︁
𝑘=0

𝑝det (𝜽𝑘), (18)

where {𝜽𝑘} are sampled from 𝑝pop (𝜽 |𝝀). As the variance on this
approximation scales inversely with 𝑁t, one must compute 𝑝det (𝜽)
(and therefore 𝜌opt) of the order of 105 times for each computation of
𝛼(𝝀) to achieve percent-level accuracy; even with parallelisation, this
would be prohibitively expensive with typical computing resources
(taking of the order of minutes) for use in a typical sampling run,
in which 𝛼(𝝀) must be computed once per hyperlikelihood call.
We address this problem by replacing the SNR function with an
accurate and rapid interpolator, allowing for Eq. (18) to be evaluated
in parallel at a sufficiently low computational cost to be practical for
use in inference problems.

3 INTERPOLATING OVER SIGNAL-TO-NOISE RATIO

The principal requirements for our SNR interpolator are that it must
be accurate and unbiased across the EMRI parameter space: inaccu-
racies may bias the results of our population inference. It must also
be sufficiently fast as to not bottleneck the sampling process, capa-
ble of estimating SNRs for 105 sets of EMRI parameters in < 1 s.
These constraints are particularly challenging to meet due to the
high dimensionality of the EMRI parameter space (13 dimensions,
as defined in Appendix A).

Fortunately, we can reduce the number of parameters that we
need to interpolate over by considering how the SNR of an EMRI
waveform depends on each parameter. We can ignore the orbital
phase parameters (Φ𝑟 ,Φ𝜃 ,Φ𝜙) due to their negligible correlation
with SNR, as the initial phase becomes relatively unimportant for
an inspiral with ∼ 104 orbital cycles. Additionally, as SNR scales
inversely with luminosity distance 𝑑L, we may further reduce the
dimensionality of the parameter space by fixing 𝑑L in training data
and applying this scaling post-interpolation: we use 𝑑L = 1 Gpc for
convenience.

Despite eliminating four dimensions of the EMRI parameter space,
we are still in a regime where standard interpolation schemes are inef-
fective. As a representative example, we consider spline interpolation
schemes with piecewise polynomials of zeroth, first, and third order:
these are more commonly known as nearest neighbour, linear, and
cubic spline interpolation respectively (Piegl & Tiller 1987). Our
requirement for a fast interpolator prevents us from interpolating
over points randomly distributed in the parameter space, as the com-
plexity of the algorithms used for this scales quadratically with the
number of basis points (Barber et al. 2013) and the computational
cost of these methods quickly becomes impractical. Instead, we may
use grid-based versions of these techniques. However, these meth-
ods suffer from the curse of dimensionality: the Euclidean distances
between neighbouring grid verticies grows as the dimensionality of
the space increases, which leads to poor interpolation accuracy.

MNRAS 000, 1–12 (2023)
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To demonstrate the unsuitability of linear interpolation in prac-
tice, we generate 𝜌opt on a regular grid with 106 total grid points
and construct the aforementioned spline interpolators with this grid
as a basis. We then compute a testing set of 106 SNRs from ran-
domly sampled sets of EMRI parameters and compare the interpo-
lator output at these points by calculating the discrepancies between
the true and predicted SNRs, denoted 𝜌true and 𝜌pred, respectively.
The cumulative distribution of the (i) absolute and (ii) relative differ-
ences between prediction and truth for the three spline interpolation
schemes we consider are shown in Figure 1. As expected, the grid-
based interpolator performance is poor regardless of the order of the
piecewise polynomial used. While linear or spline interpolation of-
fers marginal improvement over nearest neighbour interpolation, the
low spatial resolution of the grid limits the improvements. The ma-
jority of the interpolated SNRs are inaccurate by at least 50%, with
absolute errors typically exceeding 10 (or even as high as 100 in ex-
treme cases). As we will demonstrate in Section 5, this performance
is inadequate for unbiased population inference.

3.1 Interpolation with neural networks

Neural networks are highly flexible mathematical tools that are ca-
pable of learning complex relationships in high-dimensional spaces
(Goodfellow et al. 2016). For our purposes, we need a neural net-
work that takes a vector as an input (the EMRI parameters) and
produces a scalar output (the SNR estimate). We opt for the multi-
layer perceptron (MLP) algorithm (Hastie et al. 2001) as it fits this
specification. MLPs are fast and capable of high accuracy, satisfy-
ing our requirements well. The design and training of this MLP are
discussed in Appendix B. The trained network achieves two orders
of magnitude of improvement in accuracy compared to other inter-
polation approaches, as shown in Figure 1; the majority of the test
data are predicted to percent-level accuracy. This network is capable
of producing 105 SNR estimates in < 0.1 s, which is six orders of
magnitude faster than calculating the SNR directly.

As the MLP was trained with an L1 loss function, which minimises
the absolute difference between the prediction and truth (Goodfellow
et al. 2016), it does not perform as well in terms of fractional error
for 𝜌opt ≪ 1. This manifests as a larger upper tail in the relative
CDF. However, this does not translate to a reduction in performance,
as these signals are too weak to be detectable across the majority of
the luminosity distance distribution. If adequate performance across
all SNR scales is required, this may be achieved with the appropriate
choice of loss function, for instance by training on the log of the
SNR. By choosing not to train on log SNRs, we prioritise the regions
of parameter space corresponding to larger SNRs in the data set
(at the fiducial luminosity distance of 1 Gpc). As these SNRs will
be pushed towards the detection threshold at larger distances, and
the majority of our luminosity distance distribution is above 1 Gpc,
estimating these larger SNRs well has the greatest impact on accurate
detectability estimates.

3.2 Interpolating over the selection function

Using our trained interpolator network to produce SNR estimates,
we are now able to approximate 𝛼(𝝀) via Eq. (18) with the interpo-
lated SNR as an input. However, two issues still remain that must be
addressed before this may be applied in practice. First, this setup still
requires that the parameter set {𝜽} is drawn from 𝑝pop (𝜽 |𝝀) for each
hyperlikelihood call; this is a slow operation, even for the relatively
simple population models in Table 1. It is also inefficient, because

𝛼(𝝀) will typically not vary significantly across the high-probability
region of the posterior, where the majority of samples are drawn.
Second, the stochastic nature of the Monte Carlo selection function
estimates itself presents challenges in sampling: the hyperlikelihood
surface becomes noisy, which can be problematic for the reliable
convergence of sampling algorithms. These issues prohibit the use
of our stochastic selection function estimates in hyperposterior sam-
pling and must be solved.

To address these problems and further accelerate our bias-
corrected likelihood, we extend the idea of interpolating over high-
dimensional spaces with MLPs further. A second MLP trained prior
to sampling can be used to interpolate directly over 𝛼(𝝀). The ar-
chitecture and training settings for this MLP are discussed in Ap-
pendix B. Using this second MLP step greatly reduces the time per
likelihood call, achieving a further order of magnitude of speedup
with respect to stochastic estimation of the selection function. For
our chosen population model, the resulting computational cost of the
numerator and denominator in Eq. (2) become roughly equivalent.
Further speedup is achieved with vectorised evaluation of the hy-
perlikelihood, as the selection function MLP is capable of handling
many sets of hyperparameters at no additional cost provided that
sufficient GPU memory is available. This vectorisation would not be
practical if one were to estimate the selection function values with
the stochastic approach. With the main limitations of our method
addressed, we are now able to produce selection function estimates
usable in sampling at low computational cost.

4 UNBIASED POPULATION INFERENCE RESULTS

With our strategy for selection bias correction formulated, we are now
properly equipped to tackle an EMRI population inference problem.
We begin by simulating a catalogue of EMRI observations. To esti-
mate how well LISA will resolve the shape of the EMRI population
in a realistic scenario, we choose hyperparameter values supported
by recent black hole population studies:

• While constraints have been placed on the slope of the MBH
mass function by current observations (Shankar 2013), the mass
function for MBHs hosting EMRIs is subject to additional selection
effects that are poorly understood at present (Babak et al. 2017).
Recent work has estimated that the spectral index of this power
law after the inclusion of selection effects is 𝜆𝑀 ≈ −1.43 in the
mass range [𝑀min, 𝑀max] = [105, 107] 𝑀⊙ (Babak et al. 2017).
We assume that the slope of the CO mass function is equal to the
median value observed in stellar-mass BBH mergers of 𝜆𝜇 ≈ −3.50
in the mass range [3, 90] 𝑀⊙ (Abbott et al. 2023), assuming that
the progenitors of these mergers are representative of the universal
stellar-mass BH population. The selection effects that translate this
into the EMRI CO mass function are poorly understood and would
require a dedicated set of 𝑁-body simulations of stellar cusps to
properly quantify (Broggi et al. 2022; Babak et al. 2017), so we
do not consider them in this study. Despite this caveat, the slope
observed via BBH mergers is the strongest constraint placed on the
mass function for black holes in this mass range available and is a
reasonable starting point for estimating LISA’s ability to resolve the
CO mass function with EMRI observations.

• The MBH spin magnitude distribution is also poorly constrained
by observational data. Current measurements are limited to MBHs
in active galactic nuclei (Daly 2011), which may not be representa-
tive of the full MBH spin magnitude population as different forma-
tion channels will yield different MBH spin magnitude distributions
(Amaro-Seoane et al. 2023). Self-consistent simulations of MBH
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Figure 1. Cumulative distribution functions for the (left) absolute and (right) fractional differences between the SNR predictions of (linear, nearest neighbour,
cubic spline, and neural network) interpolation methods and the true values. The former three grid-based interpolation methods perform poorly, with at least
47% of SNRs inaccurate by at least 10, and at least 75% predicted to less than 10% accuracy. Conversely, the latter method precisely estimates SNRs: 95.3% of
SNRs are determined to within 1, and 89.6% within 10% of the true values.

growth with cosmic evolution predict that most MBHs have spins
greater than 0.9 in the MBH mass range quoted above, with a fairly
narrow spread below 107 𝑀⊙ (Sesana et al. 2014). We include this
characteristic shape of a narrow spin distribution above 𝑎 = 0.9 in
our population by choosing [𝜇𝑎 , 𝜎𝑎] = [0.93, 0.06].

• The time that each EMRI plunges with respect to the start of
the observational data 𝑡plunge is randomly distributed in the range
[0, 10] yr. In line with the planned LISA mission duration, we as-
sume a 4-year observational window (Amaro-Seoane et al. 2017):
some EMRIs will not plunge until after the end of our observa-
tional data, but may still be detectable if they are bright enough). We
assume that EMRIs occur at a rate of R = 700 yr−1, which is con-
servative (considering our redshift cut-off of 𝑧 = 6) when compared
with EMRI rate estimates from astrophysical modelling (Babak et al.
2017; Broggi et al. 2022; Vázquez-Aceves et al. 2022).

After discarding the signals too faint to be detected, we obtain a
catalogue of 116 EMRIs.

To demonstrate the selection biases present, we perform two sam-
pling runs: one in which selection biases are corrected for with our
interpolation scheme, and another in which selection effects are not
accounted for, i.e., replacing 𝛼(𝝀) with 1 in Eq. (3) and Eq. (4). We
sample the hyperposterior Eq. (2) with the nessai nested sampler
(Williams et al. 2021; Williams 2021), using default settings. The
convergence of all sampling runs with these settings was verified
by examining the results of internal consistency checks built into
nessai. The hyperposteriors obtained from these sampling runs for
a subset of hyperparameters are shown in Figure 2. The full hyperpos-
terior is shown in Appendix C, which demonstrates minor discrepan-
cies between the two hyperposteriors for the other hyperparameters,
with marginal posteriors that are too narrow (over-constrained) but
otherwise fairly consistent with the set hyperparameter values.

The bias that results from ignoring selection effects on the obser-
vations is visible here as a discrepancy between the credible interval
contours of the two hyperposteriors at the 99% level. For 𝜆𝑀 , the
uncorrected posterior is inconsistent with the true value at the 99%
credible level; the marginal posteriors for 𝜆𝜇 that include or exclude
selection bias correction disagree to an even greater extent. There is
also a clear difference between the marginal posteriors on R: this is

symptomatic of the presence of selection effects, as it indicates that
predicting the overall event rate solely from the size of the detection
catalogue will result in a significant underestimate of the actual event
rate.

After accounting for selection effects, our results serve to probe
how well LISA can resolve the form of this EMRI population. We
estimate (quoting the median and the 90% credible interval) that
𝜆𝑀 = −1.39+0.12

−0.12 and 𝜆𝜇 = −3.58+0.16
−0.17, corresponding to preci-

sions of 8.8% and 4.6% respectively. The MBH spin distribution
is well recovered, with 𝜇𝑎 = 0.924+0.008

−0.007 and 𝜎𝑎 = 0.054+0.006
−0.005;

these hyperparameters are recovered to within 0.87% and 10% re-
spectively. The EMRI rate is estimated with 12% precision to be
R = 678+88

−75 yr−1. The precision achievable by LISA will roughly
scale with the square root of the true event rate, which we have as-
sumed a conservative value for in this study: for the most optimistic
scenarios, this could improve by as much as an order of magnitude
(Babak et al. 2017).

The number of detected events depends on the underlying popula-
tion. For example, if the number of events is skewed to high redshift
with respect to our assumed distribution of uniform in comoving
volume and comoving time, then the number of detected events will
decrease accordingly. Our choice of redshift distribution is equiv-
alent to assuming that the probability of an EMRI occurring for a
given MBH is constant across cosmic time. In reality, we expect that
the physics of EMRI formation, such as cusp erosion (Babak et al.
2017), will lead to deviations away from this. Similarly, we expect
that the distributions of MBH and CO masses will differ in reality
from our assumptions. Hence, the results presented here should only
be considered illustrative. A comprehensive study of how population
inference results vary with the underlying population (which would
require a computationally efficient method, such as ours) is neces-
sary to fully map out how well LISA could measure the EMRI source
population.

5 VERIFYING THE ACCURACY OF RESULTS

In the previous section, we demonstrated the capability of our ap-
proach for a single example. However, this is not sufficient to ensure
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Table 2. Hyperprior distributions chosen for all sampling runs. As the range
of plunge times is reduced by a factor of 5 for our probability–probability
plot analysis (Section 5), our prior bounds on the EMRI rate are adjusted
accordingly: this is indicated by (∗ ) .

Parameter Distribution Limits

𝜆𝑀 Uniform [−4, −1]
𝑀min Uniform [5, 50] × 104 𝑀⊙
𝑀max Uniform [5, 50] × 106 𝑀⊙
𝜆𝜇 Uniform [−4, 1]
𝜇min Uniform [1, 5] 𝑀⊙
𝜇max Uniform [80, 100] 𝑀⊙
𝜇𝑎 Uniform [0.05, 0.95]
𝜎𝑎 Uniform [10−3, 2]
R Log-uniform [350, 1050] ( [75, 150]∗) yr−1
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Figure 2. Recovered hyperposteriors for our example scenario with selection
effects corrected for (solid) or ignored (dashed). The true values of each
hyperparameter are indicated by the cross-hairs. Significant bias is present in
the recovery of 𝜆𝜇 , with minor bias also visible in the recovery of 𝜆𝑀 . The
rate R is accurately recovered with the inclusion of selection effect correction.

that the selection function estimates output by our MLP are suffi-
ciently accurate and unbiased that population inference will return
hyperposteriors that are consistent with the truth across the hyperpa-
rameter space.

To assess whether this is the case, we opt for the probability–
probability (P–P) plot test (Cook et al. 2006). First, we draw 𝑁 sets
of hyperparameters from the hyperpriors described in Table 2, and
generate the corresponding population catalogues. We then perform
hyperposterior sampling runs to produce estimates of the hyperpa-
rameters in each case, and determine the confidence interval 𝑞𝜆 of the
true hyperparameters with respect to the posterior obtained. Last, we
plot the CDF of 𝑞𝜆. When the trial sets of hyperparameters are drawn
from the hyperprior, we expect that the true value of a hyperparame-
ter will fall within the 𝑥% credible interval in 𝑥% of realizations (i.e.,
a plot of 𝑞𝜆 against its CDF will be diagonal) if our hyperposteriors
are consistent with the true values in all cases. We test the accuracy

of our inference framework by comparing the calculated CDF with
the expected diagonal trend.

Some variation of each CDF from the diagonal due to small-
number statistics is expected. For the P–P plot to be meaningful 𝑁
needs to be large, so we modify our population to reduce the com-
putational cost of waveform generation by reducing the length of
the observational window from 4 yr to 2 yr and the range of EMRI
plunge times from [0, 10] yr to [0, 2] yr. To further reduce the cost
of generating each population, we lower the overall event rate by
limiting our population to a maximum redshift of 𝑧 = 1. Adjusting
the event rate to account for these reductions in both duration and
sensitive volume, the number of expected EMRIs for each population
decreases by a factor of 35. The simulation and analysis configura-
tion remains otherwise unchanged from the analysis described in
Section 4. We perform three analyses to compare their results: first,
we exclude selection effect correction; second, we include selection
effect correction by means of a linear interpolation scheme, and last,
we include selection effect correction with our neural network in-
terpolation scheme. The P–P plots obtained from these analyses are
shown in Figure 3, broken down by hyperparameter and compared
to the expected 68%, 90% and 99% deviations for the 𝑁 = 208 sets
of drawn hyperparameters (Ibe 2013).

We first examine the P–P plot for the hyperposteriors obtained
when selection effects are excluded, setting 𝛼(𝝀) = 1, as shown in the
top panel of Figure 3. The resulting posteriors exhibit strong biases
with respect to the true values, and the P–P test fails; the majority
of the hyperparameter CDFs deviate beyond the 99% confidence
interval.

The P–P plot is a useful diagnostic for how the posterior deviates
from what is expected on a dimension-by-dimension basis. We can
identify that 𝜆𝜇 , 𝑚min, 𝜇min and 𝜇𝑎 are typically overestimated when
selection effects are ignored, and conversely that 𝜇max and 𝜆𝑀 are
underestimated. This can be understood by considering how the SNR
of an EMRI waveform is correlated with the parameters associated
with these hyperparameters. The SNR is positively correlated with
𝜇, so the power-law slope is flattened off by the suppression of low
CO mass events; similarly, SNR is higher for larger MBH spins, so
the mean of the truncated Gaussian shifts to the right due to the
suppression of the lower spin events. For 𝜆𝑀 , the opposite is true:
the number of detectable higher MBH mass EMRIs (which are at
lower frequencies) is suppressed due to the shape of the LISA sensi-
tivity curve and so the observed power-law steepens. The parameters
that pass the P–P test, 𝑀max and 𝜎𝑎 are not strongly influenced by
selection bias. The mean of the MBH spin truncated Gaussian may
shift, but the change in the width of the distribution will be pro-
portionally smaller, and is therefore less sensitive to this selection
effect. Likewise, as the high MBH mass EMRIs are typically unob-
served and occupy a small fraction of the overall EMRI population,
small changes to the maximum MBH mass do not strongly affect
the detectable fraction of the population. This is not the case for the
CO mass distribution: the high mass events in the upper end of the
power law are also the brightest events in the population, so adjusting
the upper limit of the power law leads to larger changes in the frac-
tion of events expected to be detectable. As the observed deviations
from consistent hyperposteriors align with our expectations, we are
confident they are the result of selection effects.

To demonstrate the impact of the low interpolation accuracy seen
in Figure 1 on the resulting selection function estimates, we repeat
this analysis with an MLP selection function trained on SNR esti-
mates produced by the linear interpolator described in Section 3. The
resulting P–P plot, shown in the middle panel of Figure 3, demon-
strates that although modest correction is achieved in this case, it
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Figure 3. Probability–probability plots showing the fraction of hyperparam-
eters within a given credible interval (CI) for 𝑁 = 208 hyperprior draws.
Leaving selection biases uncorrected, setting 𝛼(𝝀 ) = 1, demonstrates the
presence of significant selection biases in the population inference (top).
These biases are successfully rectified with our approach (bottom), whereas
standard interpolation techniques fail to produce unbiased results (middle).
The expected 68%, 90% and 99% confidence intervals are shown in grey.

is still far too biased and inaccurate to result in consistent hyper-
posteriors. In the case of 𝜆𝜇 , this even results in an over-correction
of the selection bias when compared to the uncorrected case. The
danger of over-correction implies that it is not sufficient to include
a selection function term in the population likelihood: the selection
function must also be accurately calculated to obtain good results.

Finally, we present the P–P plot obtained for this analysis with our
MLP selection function estimator in the bottom panel of Figure 3.
In stark contrast to the previous two plots, the hyperparameter CDFs
are fully consistent with the expected confidence intervals. This con-
clusion is supported by the results of Kolmogorov–Smirnov (Dodge
2008) tests for each hyperparameter. Combining the p-values from
each test with Fisher’s method (Mosteller & Fisher 1948) returned
a combined p-value of 0.3. This indicates that all hyperparameters
(including the EMRI rate R) are consistently recovered: the MLP is
capable of producing selection function estimates that are sufficiently
accurate for consistent posteriors to be obtained. This result verifies
the application of our method in the treatment of selection biases in
population inference.

6 CONCLUSIONS

Population inference with EMRIs has the potential to probe the evo-
lution of both MBHs and their galactic neighbourhoods to unprece-
dented precision. However, the computational cost of components
of this analysis is prohibitively high. Estimating selection biases in
EMRI populations is computationally expensive due to a combi-
nation of the need for costly waveform models and the resources
required to perform SNR calculations for long-duration data. As the
SNR calculation is the computational bottleneck, we substitute it for
an interpolation over pre-computed SNRs. We find that commonly
employed interpolation schemes are not sufficiently fast or accurate
for this problem, so we instead use machine-learning techniques.
Using a neural network trained on a data set of SNRs distributed
uniformly in the EMRI parameter space, we achieve a speedup of
six orders of magnitude over direct SNR evaluation. We then re-
place the stochastic estimation of the selection function obtained via
Monte Carlo integration with a second neural network that is trained
on these stochastic estimates distributed uniformly in the hyperpa-
rameter space. This further improves the speed of hyperlikelihood
evaluation by an order of magnitude, and enables vectorised estima-
tion of the selection function for further reductions in computational
cost. To verify the robustness of our approach against systematic
biases, we globally evaluate hyperposterior consistency by simu-
lating 208 EMRI populations and checking the results of selection
bias-corrected hyperparameter estimation with a P–P test. This test
confirmed that (i) the presence of selection effects significantly bi-
ased inferences that did not correct for them appropriately, and (ii)
our approach successfully corrected for selection effects to produce
unbiased results.

We apply our method to the inference of an astrophysically-
motivated EMRI population (assuming sources distributed uniformly
in comoving volume and time) to study LISA’s ability to probe the
structure of such populations. We estimate that 𝜆𝑀 = −1.39+0.12

−0.12
(a precision of 8.8%) and that 𝜆𝜇 = −3.58+0.16

−0.17 (a precision of
4.6%). For the MBH spin magnitude distribution, we find that
𝜇𝑎 = 0.924+0.008

−0.007 and that 𝜎𝑎 = 0.054+0.006
−0.005, resolving the width of

the MBH spin magnitude distribution to within 10%. The event rate
is estimated to be R = 678+88

−75 yr−1 (a precision of 12.0%).
The capability of our approach for treating selection effects in the

case of a simple population model, which excludes substructure or
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correlations due to astrophysical effects, paves the way for future work
to investigate more complex EMRI population models. The EMRI
population we expect to be present in reality is multi-faceted (Babak
et al. 2017), and by introducing these features systematically to the
population inference problem we can begin to characterise their mea-
surability with space-based detectors such as LISA. As population
inference is intimately tied to other hierarchical inference problems,
including cosmological inference (MacLeod & Hogan 2008; Laghi
et al. 2021) and tests of general relativity (Chua et al. 2018), proper
treatment of selection effects for EMRIs has direct implications for
these analyses as well. Ultimately, a joint hierarchical inference over
this problem space may be required, of which our approach can be
an integral part.

As our method is not predicated on a particular population model,
it is applicable to a wide variety of population inference problems.
Similarly, as any waveform model may be used, this approach is ca-
pable of accommodating future changes to EMRI waveform models
with little tuning required. While our approach specifically targets
the EMRI population inference problem, it may be generalised to
any problem with an SNR-threshold selection bias due to this model-
agnostic nature. The reduction in computational cost achieved by
employing our method will be most pronounced in cases where the
SNR function is expensive to compute and of high dimensionality,
but the ability to form a vectorised SNR approximant will still offer
a notable speedup for waveform models that are not easily parallelis-
able or vectorisable (e.g., due to memory constraints).

Our code package poplar, containing the tools used in this paper,
has been released as an open-source package (Chapman-Bird 2023)
for use in future population studies.
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APPENDIX A: EMRI PARAMETER ESTIMATION AND
CATALOGUE GENERATION

The generation of a catalogue of EMRI observations is multi-faceted.
We first describe the generation of EMRI waveforms, including our
treatment of initial conditions and our choices regarding waveform
model and detector response, in Section A1. In Section A2, we outline
our procedure for obtaining posterior samples for EMRIs that pass
the detection threshold, along with consistency checks we perform to
ensure the approximations made in this process are justifiable. These
two steps are performed for each set of EMRI parameters drawn from
the population to construct a catalogue of EMRI detections and their
corresponding posterior samples.

A1 Parametric conventions and waveform generation

The EMRI parameter space is complicated, consisting of 18 param-
eters:

• The intrinsic parameters of the EMRI describe the properties
of the two objects and their initial orbital configuration. The primary
MBH is described by its mass 𝑀 and spin vector 𝒂, and the sec-
ondary CO similarly by mass 𝜇 and spin vector 𝒂CO. As 𝒂CO is not
predicted to have a significant effect on EMRI detectability (Huerta
& Gair 2011), it is not currently included in state-of-the-art waveform
models, including the model used in this study (Katz et al. 2021).
The inspiral orbit is described by the initial eccentricity 𝑒0, semi-
latus rectum 𝑝0 and orbital inclination 𝜄0, along with three orbital
phases Φ𝑟 ,Φ𝜃 and Φ𝜙 (Fujita & Shibata 2020).

• The extrinsic parameters describe the orientation of the system
and its location with respect to the detector. The position of the system
is described by the luminosity distance vector 𝒅L, the magnitude of
which may be described by a redshift 𝑧 via the relation

𝑑L = (1 + 𝑧) 𝑐

𝐻0

∫ 𝑧

0

d𝑧′

𝐸 (𝑧′) , (A1)

where 𝐻0 is the Hubble constant (Hogg 1999). We separate out
vectors into their magnitudes and angular components, such that 𝒅L =

{𝑑L, 𝜃S, 𝜙S}. Similarly, we decompose the primary spin magnitude
vector 𝒂 = {𝑎, 𝜃K, 𝜙K}. The sets of angles describe the orientation of
the MBH spin-angular momentum vector and the sky position vector
respectively, with 𝜃 and 𝜙 referring to polar and azimuthal angles
respectively.

• The plunge time of the system with respect to the start of the ob-
servation is described by the parameter 𝑡plunge. However, the concept
of initial conditions on a population level is not well-defined unless a
common reference point in the waveform is set. Therefore, we adjust
𝑝0 such that the EMRI waveform will plunge after 10 yr (Stein &
Warburton 2020). For our fiducial example outlined in Section 4, we
assume a LISA observing window of 4 yr in line with the current
mission proposal (Amaro-Seoane et al. 2017). Our choice to allow
for EMRI plunges to occur up to 10 yr after the beginning of LISA
observation is made to accommodate the presence of EMRIs in the
data that plunge after the end of the observation window. Neglect-
ing these events as being undetectable is not typically a reasonable
approximation. In many cases, 𝜌opt > 𝜌t even for 𝑡plunge = 10 yr,
so some detectable events in the data are ignored despite this exten-
sion of EMRI plunge times to the post-window regime. By excluding
these events that plunge after 10 yr, the results of our population
inference will be conservative. We include this effect to demonstrate
that our approach is capable of accommodating a post-window cut
on 𝑡plunge, but acknowledge that the tuning of such a cut-off point
with respect to the detectability of the excluded signals is an issue
that warrants further investigation in future work.

Waveform generation also includes some additional considerations
to transform from the source frame to the detector frame. Prior to
waveform generation, we convert source-frame masses to detector-
frame masses with the mapping 𝑀det = (1 + 𝑧)𝑀 (Krolak & Schutz
1987). For convenience, we do not include a detector response in our
EMRI waveform modelling and instead work in terms of the wave-
form strain (as opposed to the TDI combinations that the LISA de-
tector outputs will be used to construct (Tinto & Dhurandhar 2021)).
This choice leads to a degeneracy between 𝜙K and 𝜙S, which we nav-
igate by defining a new parameter Δ𝜙 = 𝜙S − 𝜙K. Our approach can
incorporate a chosen LISA response by reverting back to the separate
angles and including the response function in waveform generation.
As the addition of a response function does not significantly alter
EMRI SNRs, we do not expect its exclusion to affect the validity of
our approach.

For our waveform model, we choose the fifth-order post-
Newtonian Augmented Analytic Kludge recently implemented in
the FEW package (Katz et al. 2021; Chua et al. 2017). The validity
of our population inference framework should not depend strongly on
this choice, as the EMRI SNR function should remain well-behaved
and smooth for any reasonable choice of waveform model, although
the specific numerical results may vary for different waveforms.

To accommodate our choice of initial conditions, we generate 10 yr
EMRI waveforms in the time domain with a sampling rate of 0.1 Hz,
and crop them according to their (randomly sampled) 𝑡plunge values.
We calculate the waveform’s 𝜌opt value via Eq. (16) and produce a
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noise-realized SNR estimate 𝜌n by drawing a sample from Eq. (15).
Detection is evaluated via Eq. (14).

A2 Parameter estimation

For waveforms that pass the detection threshold, we proceed to draw
samples from the posterior distribution on 𝜽 . Operating under the
LSA, we determine the FIM Γ from numerical waveform deriva-
tives computed using the five-point stencil method (Sauer 2012).
Appropriate step sizes that produce accurate (and stable) numerical
derivatives were determined empirically by computing ⟨𝜕ℓℎ|𝜕ℓℎ⟩
(the FIM diagonal terms) on a grid and identifying regions of step-
size space for which this converged. This stability was then verified
across the EMRI parameter space. With Γ computed, we then in-
vert it to obtain the covariance matrix of the LSA likelihood. FIMs
for EMRI waveforms typically have large condition numbers, which
can cause issues when performing matrix inversion; we mitigate this
by employing singular value decomposition (SVD) to compute the
pseudoinverse of Γ (Ben-Israel & Greville 2003). The numerical
stability of this inversion can also be problematic, even for double
precision; to alleviate this, we perform the SVD with 500-point dec-
imal precision using the mpmath package (Johansson et al. 2013).
We also perform some additional verification of the validity of the
LSA likelihood as a substitute for the full likelihood as recommended
in Vallisneri (2008). This check is performed by examining the ra-
tio between the LSA and full likelihood, which we denote 𝑟 . By
sampling the 1 standard deviation isoprobability contour in the LSA
likelihood and computing | log10 𝑟 | for each of these samples, we can
examine whether the high-probability regions of the LSA and the full
likelihood are consistent. Following Vallisneri (2008), we accept the
LSA likelihood as a suitable approximation if and only if 90% of the
samples satisfy | log10 𝑟 | < 0.1. We found that for waveforms with
𝜌opt > 10 that this condition was satisfied in all cases, which is well
below our chosen SNR threshold of 20.

Our goal is to obtain posterior samples via the LSA that are rep-
resentative of those that would be obtained from sampling the true
posterior. In the absence of noise, the likelihood will peak on the true
values provided there are no degeneracies in the parameter space. For
EMRIs, this is not generally true, but the degeneracies are non-local
and therefore do not affect the morphology of the posterior near the
true values (Chua & Cutler 2022). However, when noise is included,
the likelihood shifts in a random direction in parameter space such
that the true values are no longer at the maximum likelihood point.
To simulate this measurement effect, we draw one sample from the
posterior (which, assuming broad uniform priors, is equivalent to the
event likelihood) and recompute the FIM at this new point (Stevenson
et al. 2017). Finally, with our second FIM computed, we invert it and
draw 𝑆 = 104 samples from the corresponding multivariate normal
distribution. The posterior samples in 𝑑L are converted to samples in
𝑧 assuming a standard cosmology, and detector-frame masses then
converted back to the source frame by dividing through by (1 + 𝑧)
on a per-sample basis. This modified set of posterior samples is the
final product of the individual EMRI event simulation.

APPENDIX B: NEURAL NETWORK DESIGN AND
TRAINING

MLPs are tuneable mappings between input and output vectors
(of specified lengths) that consist of a layered structure of matrix
multiplications which are passed through non-linear functions. The
non-linearity between each layer, combined with a large number

Table B1. Architecture and training settings chosen for our two multilayer
perceptron (MLP) neural networks introduced in Section 3.

Setting SNR MLP 𝛼(𝜆) MLP

Number of (hidden) layers 10 8
Neurons per layer 128 128

Activation function SiLU SiLU
Rescaling Unit normal Unit normal

Optimiser Adam Adam
Learning rate 5 × 10−4 5 × 10−4

Batch size 104 105

Max epochs 105 103

Loss function L1 L1

of tuneable parameters in each matrix multiplication, enables the
resulting neural network to mimic complex mappings between high-
dimensional spaces (Goodfellow et al. 2016). This tuning is per-
formed in a process known as training, in which the performance of
the neural network is maximised with respect to a pre-computed data
set.

The number of required neurons and layers (which describe the
dimensions of each matrix multiplication) in an MLP depends on
the complexity of the function to be interpolated and the number
of interpolation dimensions. Due to the stochastic nature of training
neural networks, tuning of the learning rate, batch size and number of
iterations employed during training is required to maximise perfor-
mance. For complicated problems, optimization techniques may be
employed to explore the space of network settings and identify a sen-
sible configuration (Feurer & Hutter 2019). In our case, the problem
is sufficiently low-dimensional that we were able to obtain effective
MLPs through the manual tuning of network settings. Network com-
plexity was gradually increased through the addition of neurons or
layers until overfitting (Goodfellow et al. 2016) was observed. This is
characterised by the performance of the network on testing data de-
grading despite continued improvement in performance on training
data. At this point, training settings were adjusted to minimise this
overfitting. The choice to rescale training data to that of a unit normal
distribution, and to use the Adam optimisation algorithm (Kingma
& Ba 2014), was made following current best practices (Goodfellow
et al. 2016): use of other optimisation or rescaling functions was not
found to significantly affect network performance.

The resulting network settings chosen for the SNR and selection
function MLPs, summarised in Table B1, are almost identical. Two
extra hidden layers are added for the SNR MLP, which is to be
expected given the higher dimensionality of the EMRI parameter
space in comparison to the hyperparameter space.

APPENDIX C: FULL HYPERPOSTERIOR OBTAINED
FROM 4-YEAR SCENARIO

The full hyperposteriors from the population inference in Section 4
are shown in Figure C1. By including the mass range parameters, we
can observe a more subtle consequence of the presence of selection
biases: over-constrained hyperposteriors. Neglecting selection effects
leads to an underestimation of the error on parameters: this is reflected
in the P–P plot analysis of Section 5, where it is demonstrated that
these effects lead to globally inconsistent hyperposterior effects at a
statistically significant level.

MNRAS 000, 1–12 (2023)
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Figure C1. Full recovered hyperposteriors for our example scenario with selection effects corrected for (solid) or ignored (dashed). The true values of each
hyperparameter are indicated by the cross-hairs. Significant bias is present for 𝜆𝜇 , with more minor bias for 𝜆𝑀 . The rate R is accurately recovered with
the inclusion of selection effect correction. For other hyperparameters, the dashed hyperposteriors are over-constrained when compared to the corrected
hyperposteriors.
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