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In Weyl semimetals, Weyl points act as monopoles and antimonopoles of the Berry curvature, with a
monopole-antimonopole pair producing a net zero Berry flux. When inversion symmetry is preserved, the
two-dimensional (2D) planes that separate a monopole-antimonopole pair of Weyl points carry quantized
Berry flux. In this work, we introduce a class of symmetry-protected Weyl semimetals which host monopole-
antimonopole pairs of Weyl points that generate a dipolar Berry flux. Thus, both monopolar and dipolar
Berry fluxes coexist in the Brillouin zone, which results in two distinct types of topologically non-trivial
planes separating the Weyl points, carrying either a quantized monopolar or a quantized dipolar flux. We
construct a topological invariant – the staggered Chern number – to measure the latter, and employ it to
topologically distinguish between various Weyl points. Finally, through a minimal two-band model, we
investigate physical signatures of bulk topology, including surface Fermi arcs, zero-energy hinge states, and
response to insertion of a π-flux vortex.

I. INTRODUCTION

Weyl semimetals (WSMs) constitute the most well-known
class of topological semimetals which has guided the ex-
ploration of other topological semimetallic phases1–21. The
fact that band-crossing points or Weyl points (WPs) are
monopoles of the Berry curvature is one of the most
remarkable features of WSMs1,22. Arguably, inversion-
symmetric WSMs offer the simplest realization of three-
dimensional topological semimetals. In these systems, the
two-dimensional planes separating a pair of WPs, carrying
opposite Berry-monopole charges, are classified as Chern
insulators. The Weyl points, respectively, act as source
and sink of the quantized Berry flux passing through the
Chern planes. Furthermore, the edge states supported by
each Chern insulating layer stack up to give rise to the chi-
ral Fermi-arc states on the surface of WSMs. These no-
tions have been generalized by the discovery of higher-
order WSMs, where all topologically non-trivial planes are
not Chern insulators, and both Fermi arc surface states and
hinge-localized zero modes are present at crystal termina-
tions23–26.

Recently, Nelson et al.27 have shown that the topologi-
cal critical point separating Hopf and ordinary insulators
realizes a Berry dipole, which asymptotically act as both
a source and a sink of Berry curvature. In contrast to an
WP, the net Berry flux penetrating a Gaussian surface (GS)
enclosing a Berry dipole vanishes. Instead, the flux is stag-
gered on the GS, with its sign determined by the orientation
of the dipole relative to local normals on the GS. There-
fore, in a hypothetical semimetal, hosting at least a pair of
Berry dipoles, one may expect that the planes separating the
dipoles would be threaded by a staggered or dipolar Berry
flux. Are these “dipolar planes” topologically non-trivial,
and, importantly, does the notion of Berry dipoles lead to
hitherto unexplored classes of WSMs?

In this Letter, we introduce a class of symmetry-protected
WSMs, coined “dipolar Weyl semimetals”, where Chern,
dipolar, and ordinary insulating planes coexist, as summa-
rized in Fig. 1a. The WPs in such WSMs result from split-
ting Berry dipoles, which distinguishes dipolar WSMs from
both conventional and higher-order WSMs (see Fig. 1b). We
construct two band models for describing dipolar WSMs,
and show that dipolar planes support a quantized, but stag-
gered, Berry flux, as exemplified by Fig. 1c. Therefore,
the WPs occuring at the boundary between dipolar and
Chern insulators are distinguished from that at the bound-
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FIG. 1. Properties of the dipolar Weyl semimetal (WSM) phase.
(a) Four Weyl points (WPs) (black spheres) occur on the rotation-
axis, with alternating monopole charges. The sign is deduced
by visualizing the Berry curvature, B , in the vicinity of the WPs
[right]. Depending on their location relative to the WPs, the 2D
planes layered along k̂z are either dipolar (red), Chern (green),
or ordinary (unmarked) insulators. The red [blue] curves indi-
cate points in the Brillouin zone that map to n̂ = n⃗/|n⃗| = (0,0, 1)
[(0, 0,−1)], where n̂ is defined in Eq. (1). The intersection of
these curves along the rotation axis marks the locations of band-
inversion (black spheres). (b) In dipolar- (higher-order23) WSMs,
there exist pairs of WPs with monopole-charge ±1 whose collision
leads to a Berry dipole (Dirac point). In conventional WSMs, any
monopole-antimonopole pair of WPs annihilate upon collision. (c)
On the dipolar insulating planes the distribution ofBz (color pro-
file) is such that two Chern insulators, with opposite Chern num-
bers, are embedded within the same plane. In Eq. (4), we define
the notion of “staggered Chern number” to succinctly capture this
pattern.

ary between Chern and ordinary insulators. Remarkably,
on surface-terminations perpendicular to the separation be-
tween WPs, both chiral Fermi arc states and hinge-localized
zero-modes are realized. In order to characterize the bulk
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topology, we determine the response of the bulk states to
π-flux vortex insertions, and applied magnetic fields. In
spite of its similarity to higher-order WSMs23,24, we note
that dipolar WSMs require only two bands, such that its bulk
topology is completely determined by the bands that cross
at the WPs.

II. MODEL AND PHASE DIAGRAM

We consider two-band models of WSMs protected by
a combination of n-fold improper rotational (or roto-
reflection) symmetry S z

m =Mz ◦ C z
m, and two anti-unitary

mirror symmetries (M1 andM2). Here, Mz is the mirror
operator that sends z → −z, and C z

m generates m-fold ro-
tations about the ẑ-axis. We begin with the single-particle
Hamiltonian

H(k) =
3
∑

j=1

n j(k)σ j , (1)

where σ j is the j-th Pauli matrix, n1 = 2(u4u1 + u3u2),
n2 = 2(u4u2 − u3u1), and n3 = u2

4 + u2
3 − u2

1 − u2
2. We re-

quire (u1, u2) [u3 and u4] to transform under an E [B and A,
respectively] representation of C z

m, and {u1, u2, u4} [u3] to
be even [odd] underMz . Consequently, (n1, n2) [n3] trans-
form under an E [A] representation of S z

m . Since n j ’s do
not yet have the most general symmetry-allowed form, we
modify them as n j → n j + ν j , where ν j ’s will be considered
as symmetry-allowed perturbations. Under S z

m , the Hamil-
tonian transforms covariantly,

S z
m H(k)(S z

m)
−1 = H(k ′) = U†H(k)U , (2)

where k ′ = (Rmk⊥,−kz) with k⊥ = (kx , ky), Rm imple-
ments m-fold rotation about k̂z , and U = exp

�

− iπ
mσ3

	

.
Therefore, [H(k),S z

m] = 0 at high-symmetry points (HSPs)
that satisfy k ′ ≡ k. Because of the constraints placed on
u j ’s and ν j ’s by S z

m , n j=1,2 must vanish both at the HSPs
and along the rotation-axis. The remaining component, n3,
is finite in general, and it may change sign between a pair of
HSPs only if u2

4 + ν3 does not have a fixed sign throughout
the Brillouin zone (BZ)28. While the roto-reflection symme-
try guarantees a parameter window where the bands cross
along the rotation axis, the anti-unitary mirror symmetries
protect quantized 1D polarizations along orthogonal high-
symmetry axes.

For concreteness, we focus on m= 4, and choose

u1

tp
= sin kx ;

u2

tp
= sin ky ;

u3

td
= sin kz(cos ky − cos kx)

u4 = ts{∆− (cos kx + cos ky + γ cos kz)};

v1 = 2ts tpδ⊥ sin kx ; v2 = 2ts tpδ⊥ sin ky ; v3 = −t2
s δ

2
3. (3)

Here, {tp, td , ts,∆,δ⊥,δz ,γ} are model parameters. We
note that, at the critical points obtained by setting all ν j = 0,
the Hamiltonian reduces to a form that may be obtained
from a model of Dirac semimetal (DSM) with a Z2-chiral
symmetry, h(k) = u⃗ · Γ⃗ with Γ j ’s being a set of four mutually
anti-commuting matrices, by following the “Hopf mapping”
procedure in Ref.29. The anti-unitary mirror symmetries
act asM1H(k)M−1

1 ≡ H∗(−k+, k−, kz) = e−i π4 σ3 H(k)ei π4 σ3

and M2H(k)M−1
2 ≡ H∗(k+,−k−, kz) = ei π4 σ3 H(k)e−i π4 σ3 ,

where k± =
1p
2
(kx ± ky). For simplicity, henceforth, we set
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FIG. 2. Characterization of the phases supported by H(k). (a)
Phase diagram. A dipolar Weyl semimetal (‘DWSM’) phase exists
in the range (1 + δ3) < ∆ < (3 − δ3), while conventional WSM
phases (‘WSM-I’ and ‘WSM-II’) are found when δ3 > |∆− 1| and
δ3 > |∆− 3|. Here, ‘TI’ (‘OI’) indicate topological (ordinary) insu-
lating phases. At δ3 = 0 and 1 < ∆ < 3 the Weyl points in the
DWSM merge on either side of the kz axis, thereby forming Berry
dipoles [c.f. Fig. 1(b)]. These critical points are marked in cyan.
(b) Band structure in the DWSM phase along high-symmetry paths
in a tetragonal Brillouin zone. Four Weyl points occur along the
Γ − Z axis. These are classified into two categories (‘A’ and ‘B’)
based on the type of 2D insulating planes they separate [see (c)].
(c) Distribution of the Chern and staggered Chern numbers carried
by (kx , ky)-planes, as a function of kz .

(γ,δ⊥) = (1,0) and ∆,δ3 ≥ 0, and note that relaxing these
constraints does not qualitatively alter our conclusions.

In the BZ of a tetragonal lattice, [H,S z
4 ] = 0 at Γ ≡

(0,0, 0), Z ≡ (0,0,π), M ≡ (π,π, 0), and A ≡ (π,π,π)
points. Bands invert with respect to S z

4 around the Γ (Z)
point for δ3 > |∆ − 3| (δ3 > |∆ − 1|). As shown in
Fig. 2a, in these regions conventional Weyl semimetallic
phases are realized. Since n3 obtains the same sign at all
HSPs for (1+δ3)<∆< (3−δ3), no band-inversion would
be detected by comparing the eigenvalues of S z

4 at these
points. Thus, it may appear that in this parameter regime
the system is topologically trivial. This is false, however,
because along the Γ − Z line we identify two locations of
band-inversion with respect to S z

4 at non-HSPs, as shown
in Fig 1a. We refer to these points as “hidden" band inver-
sions, since their existence cannot be deduced by consulting
the HSPs alone. What are the ramifications of such “hidden”
band inversions?

III. DIPOLAR WEYL SEMIMETAL

In d-dimensions, non-trivial topology can be deduced
from the texture of n̂(k). In particular, n̂(k) maps the d-
dimensional BZ (T d) to the 2-sphere (S2) as a function of
k. Valuable insights are obtained by consulting the set of
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FIG. 3. Spectra of surface and hinge localized states. (a) Spec-
tral density on the (100) surface as a function of kz . Zero energy
Fermi arcs are present between projections of the Weyl-points on
the same side of the kz axis. The central region supports a dis-
persive, non-degenerate, Dirac cone-like feature centered at the
Γ̄ -point of the surface Brillouin zone. (b) Spectra on (001) surface
as a function of kx fixing ky = 0, displaying a Dirac cone without
a band-crossing point. (c) Spectrum from exact diagonalization
with periodic boundary condition only along ẑ. The dispersionless
mid-gap states (marked in red) are localized at the corners of the
(x , y)-planes, shown in (d), thereby forming dispersionless hinge
modes.

points in the BZ which get mapped to a single point on S2

by n̂(k) [i.e. the preimages n̂(k)]. In analogy to Hopf in-
sulators29, the preimages of individual points on S2 are 1D
curves in the three-dimensional BZ for the dipolar WSMs. In
contrast to Hopf insulators, however, the preimages of two
distinct points on S2 are not necessarily linked in dipolar
WSMs. Thus, the linking number or Hopf invariant van-
ishes. In the ‘DWSM’ phase, the preimages of the “north”
(red) and “south” (blue) poles of S2 – defined by the simul-
taneous vanishing of n1 and n2 with n̂3 = ±1, respectively
– intersect at kz = ± cos−1 (∆− 2±δ3) along the Γ − Z line,
as shown in Fig. 1a. Since H(k) commutes with S z

4 on the
polar-preimages, these intersections are locations of band-
inversions with respect toS z

4 . The existence of the intersec-
tions is symmetry protected, and remains robust against δ⊥
as long as |δ⊥|< δ3. Because n⃗(k) = 0⃗ at the intersection of
the preimages of the north and south poles, these locations
correspond to the Weyl points (see Fig. 2b).

A. Topology of bulk states

By enclosing the band-crossing points by GSs, we deter-
mine the net Berry flux emanating from these band sin-
gularities to be 2π up to an overall sign, as illustrated
in Fig. 1a. Therefore, the band-crossing points are unit-
strength monopoles of the Berry curvature, and we iden-
tify them as WPs. When a GS encloses both WPs on a fixed
side of the kz-axis, the net Berry flux passing through this
surface vanishes. The region within the GS is topologi-
cally non-trivial, however, as a non-zero net Berry dipole-

flux pierces the surface. The existence of the dipole-flux
can be understood by appealing to the topological critical
point at (δ3,δ⊥) = (0,0): as δ3 → 0, the pair of WPs at
|kz | = cos−1 (∆− 2±δ3) collide to yield a pair of band sin-
gularities at |kz |= cos−1 (∆− 2), which act as sources of the
dipole-flux (i.e. Berry dipoles; see Fig. 1b). On an infinites-
imal GS enclosing the latter band-crossing points, the Berry
flux obtains a staggered form with the northern (south-
ern) hemisphere supporting a 2π (-2π) net flux. Thus, for
δ3 > 0, when a Gaussian surface encloses the monopole-
antimonopole pair at |kz |= cos−1 (∆− 2±δ3), a net dipole-
flux survives. This unusual behavior of the WPs in dipolar
WSMs is summarized with further details in section II.D. of
the ‘Supplemental Materials’/appendices (SM)30. The pres-
ence of both monopole and dipole fluxes indicates that topo-
logically non-trivial kz planes in the BZ are not limited to
being 2D Chern insulators.

Indeed, the kz-planes between kz = ± cos−1 (∆− 2+δ3)
(red planes in Fig. 1a) support a dipolar version of the Berry
flux which reflects the presence of a skyrmionium texture31

for n⃗(k). Skyrmioniums are composed of two oppositely
charged but non-overlapping skyrmions; consequently, they
do not support a finite Chern number. It is possible to de-
fine a quantized topological invariant, however, that distin-
guishes a skyrmionium-carrying plane from an ordinary 2D
insulator. In order to emphasize its origin in a staggered
distribution of Berry curvature on the k⊥ plane, we call this
topological invariant “staggered Chern number”, and define
it as

Cstagg(kz) =
1

2π

∫

dk⊥Bz(k⊥, kz) fstagg(k⊥), (4)

where Bz(k⊥, kz) is the k̂z component of the Berry curva-
ture, and fstagg(k⊥) is a weight function that is determined
by H(k) such that

∫

dk⊥ fstagg(k⊥) = 0. Since Cstagg is effec-
tively the difference of Chern numbers of the same magni-
tude but opposite signs, it equals the Chern number when
the staggering is absent. If a quantized staggering of flux is
present, then Cstagg will be an even integer, in analogy to fa-
miliar mirror32 or spin33 Chern numbers. While on mirror-
or spin-Chern number carrying planes the Chern number is
staggered in an internal sub-space, here, it is staggered in
the momentum space. An alternative formulation of Cstagg
that does not require an explicit knowledge of fstagg, but uti-
lizes effective Su-Schrieffer-Heeger34 forms of the Hamilto-
nian on the mirror axes, is provided in section II.B of the
SM30.

We plot Cstagg as a function of kz in Fig. 2c, and rele-
gate the details of the calculation to the SM30, along with
the explicit form of fstagg(k⊥). We obtain Cstagg = 2 for
all planes with |kz | < cos−1 (∆− 2+δ3), indicating inter-
twining of two regions with opposite Chern numbers. We
note that the kz = 0 and π planes of the dipolar WSM are
identical to respective planes in the Moore-Ran-Wen class
of models of Hopf insulators29. Consequently, these special
planes in Hopf insulators are also characterized by a quantized
staggered-Chern number. The staggering of the Chern num-
ber in dipolar WSMs, as well as Hopf insulators, originates
from non-trivial 2D winding numbers supported by corre-
sponding k⊥ planes of the system governed by h(k) = u⃗ · Γ⃗ .
In the present case, h(k) describes a Z2-chiral DSM with a
pair of band-crossings along the kz-axis. The kz-planes lying
between the Dirac points are characterized by the relative-
Chern number35, which is an Z-valued 2D bulk invariant
and a variant of the spin-Chern number, and it is protected
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by both bulk- and spin-gaps36,37. The non-trivial Cstagg is
thus a manifestation of the non-trivial relative- or spin-
Chern number supported by the kz-planes of chiral DSMs35.
Thus, under the Hopf map, the staggering of the Chern num-
ber in a Kramers degenerate subspace maps to its staggering
in momentum space.

The kz-planes separating WPs on the same side of the
kz-axis, i.e. cos−1 (∆− 2+δ3) < |kz | < cos−1 (∆− 2−δ3)
(green planes in Fig. 1a), carry a Chern number C = −1,
as shown in Fig. 2c. By contrast, all planes with |kz | >
cos−1 (∆− 2−δ3) are topologically trivial with Cstagg = 0=
C. Thus, the kz-plane hosting a type-A [-B] WP (see inset
in Fig. 2b) may be interpreted as the topological critical
point separating a staggered-Chern and a Chern insulator
[a Chern and an ordinary insulator]. Here, while the kz-
plane hosting a type-B WP supports a half-integer Chern and
staggered-Chern number of equal magnitude, the kz-plane
hosting type-A WP supports a half integer Chern number
and a distinct half-integer staggered Chern number30.

B. Surface and hinge states

The states on the (100) and (010) surfaces are sensitive
to the texture of n̂(k) in the bulk. As a representative ex-
ample, we portray the topologically protected states on the
(100) surface in Fig. 3a. Fermi arcs are found to connect the
projections of WPs on the same side of the kz axis, indicating
their origin in the non-trivial Chern insulating planes. The
staggered-Chern or dipolar planes have a distinct topolog-
ical response to surface terminations, which is reminiscent
of sp-Dirac semimetals35,38. In particular, generic dipolar
planes support a pair of gapped edge states. On the kz = 0
(and π) plane S z

4 reduces to C z
4 , which allows it to sup-

port gapless edge states. This leads to the single copy of
Dirac cone centered at the Γ̄ point of the surface-BZ. The
pair of degenerate surface states at the Γ̄ point is protected
by a quantized 1D winding number in the bulk along the
kx -axis30. The states on the (001) surface exist as long as
the S z

4 symmetry is preserved. As shown in Fig. 3b, these
states form a Dirac cone-like feature about the zone-center
of the (001) surface BZ, with the band-crossing point ab-
sent. The center of the (001) surface BZ corresponds to the
projection of the rotation axis, which accounts for the lack
of normalizibilty at this point35.

While generic kz-planes in the region |kz | <
cos−1 (∆− 2+δ3) support gapped edge states, they
also support corner-localized zero modes, which are
protected by the anti-unitary mirror symmetries. These
corner localized modes stack along the ẑ-direction to give
rise to hinge localized zero-modes. In Fig. 3c and 3d we
identify these hinge-states by exactly diagonalizing the
Hamiltonian with periodic boundary condition only along
ẑ. In Section III of the SM30 (also see Ref.39) we detail the
presence of a quantized, one-dimensional winding number
along the diagonal axes, which protect the corner localized
zero-modes in accordance with Ref.40. Thus, surface-
and hinge-localized Fermi arcs are simultaneously present
in dipolar WSMs, which is reminiscent of higher-order
topological semimetals23,24,35,41.

C. Vortex-bound states

In the position-space, field-theoretical calculations have
proven that the bulk topological invariant in the ground
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FIG. 4. Vortex-bound states as a diagnostic of bulk topology. (a)
Probability density (PD) at the location of vortex for 120 states
closest to zero energy. Left: PD for vortex-flux φ = φ0/2 as a
function of energy and kz . Here, φ0 is the quantum of flux. Zero
modes exist for all topologically non-trivial planes. Right: PD as
a function of φ and energy, fixing kz . Both Chern (top right) and
staggered-Chern planes (bottom right) support charge pumping.
(b) Number of vortex-bound zero modes upon insertion of mag-
netic flux tube with φ = φ0/2. The distinct number of zero-modes
establishes the different topological character of k⊥ planes as a
function of kz .

state can be computed through insertion of an electromag-
netic π-flux vortex. In particular, the number of states
bound to the vortex corresponds to the magnitude of the
quantized flux in the ground state of a 2D topological
insulator35,42–46. Moreover, as the magnitude of flux carried
by the vortex is tuned between zero and the flux quanta,
φ0 = h/e, the vortex-bound modes are pumped across the
bulk band-gap.

To unambiguously examine the topological response of
the two-dimensional planes stacked along k̂z , we consider
them as independent layers of 2D insulators, labeled by
kz . In the position-space for each layer, we insert a vor-
tex tube at the origin, carrying a flux φ. We exactly diago-
nalize the resultant Hamiltonian on a 20×20 lattice, which
yields a kz-dependent energy spectrum, as shown in Fig. 4a.
The unit strength Chern planes at cos−1 (∆− 2+δ3) <
|kz | < cos−1 (∆− 2−δ3) support a single vortex-bound
state, which is pumped across the bulk band-gap as a func-
tion of φ. The dipolar or staggered-Chern planes at |kz | <
cos−1 (∆− 2+δ3) support two states at the vortex, each
corresponding to a Chern sector. Since the Chern sectors
carry opposite Chern numbers, these vortex-bound states
are pumped in opposite directions as a function of φ, rem-
iniscent of spin-Hall insulators42,43,47,48. Importantly, as
demonstrated in Fig. 4b, when the strength of flux is held
fixed at φ = φ0/2, the number of vortex-bound modes can
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be used as a quantized diagnostic of the topology of the 2D
layers. Since both Cstagg and the number of vortex-bound
zero modes effectively count the number of Chern sectors
in each layer, they have an identical response (c.f. Figs. 2c
and 4b).

IV. CONCLUSION

We introduced a class of WSMs where both dipole- and
monopole-flux carrying planes are present. A topological in-
variant, the staggered Chern number, is formulated for diag-
nosing the presence of quantized dipolar-flux. Through flux
insertions, the dipolar planes are shown to have a topologi-
cal response that is analogous to generalized spin-Hall insu-
lators. With the help of a two-band model, we demonstrated
that surface and hinge states are reminiscent of higher or-
der topological semimetals. A detailed comparison among
dipolar, higher-order, and conventional WSMs is presented
in the SM30 (see Fig. S1), where we show that the clear-
est distinction between a dipolar and a higher-order WSM
arises in the Landau level spectra.

The two-band model discussed here follows a similar
principle of construction as Hopf-insulators. Therefore, we
expect it would be possible to simulate it within the same
platforms proposed for realizing the latter49–55. Further, it
is possible to construct variants of the same model, with
potentially more exotic topological singularities56–59. Both
considerations are left to future works.
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Appendix I: Comparison with other models of Weyl semimetals with 4 Weyl points

In this section we compare the dipolar Weyl semimetal (WSM) with a conventional WSM with four Weyl points and a
model of time-reversal symmetry (TRS) broken higher-order WSM.

A. Conventional WSM with 4 Weyl points

Here, we show that more conventional 2-band models of TRS-broken Weyl semimetals can support 2n band crossings
points with n > 1. Such models are obtained by introducing further neighbor hoppings into the term that controls band-
inversion,

H = tp sin kxσ1 + tp sin kyσ2 + ts(∆− cos kx − cos ky −
N
∑

n=1

αn cos nkz)σ3. (S1)

For convenience we set α1 = 1, and consider a physical range of parameters, |αn>1|< 1.
The condition for band-crossings along the kz-axis passing through (kx , ky) = (0, 0) is

N
∑

n=1

αn cos nkz =∆− 2. (S2)

The simplest case corresponds to N = 1, where band crossings occur at

kz = kz,± := ± cos−1(∆− 2) (S3)

Thus, a pair of Weyl points are present as long 1<∆< 3.
For N = 2, an additional pair of Weyl points appear in the region
�

2−
1
p

2

�

<∆<

�

2+
1
p

2

�

and sign(αc)α2 > |αc | with αc = Θ(∆− 2)(∆− 3) +Θ(2−∆)(∆− 1). (S4)

Note that four Weyl points also exist in the region 1p
2
< |∆− 2|< 3

4 , but the constraint on α2 is more complicated.
These WSM phases, however, support 1st-order Weyl points only. This is established by the 1D winding number along

kx and kx = ky axes vanishing on the kz planes that do not support finite Chern numbers. Therefore, the above model can
support only Fermi-arc surface states. Thus, both the bulk and boundary signatures are in sharp contrast to dipolar-WSMs.

B. Comparison of WSMs with four Weyl points

Here we provide a more explicit comparison among dipolar WSM, the model in section I A, and TRS-broken higher-order
WSM (HOWSM). For the HOWSM phase, we select a modified version of HOWSM proposed by Ghorashi et. al23. The
model is written as,

H = tp sin kxΓ1 + tp sin kyΓ2 + td sin kz(cos kx − cos ky)Γ3 + ts(∆+ cos kx + cos ky + cos kz)Γ5 + 0.4iΓ1Γ2, (S5)

where ts,p,d are constants with units of energy,∆ is a dimensionless parameter, and the lattice constant has been set to unity.
The Γ matrices are defined as, Γi=1,2,3 = τ1⊗σi , Γ4 = τ2⊗σ0, Γ5 = τ3σ0. The model used by Ghorashi et. al23, is recovered
by fixing td → td/ sin kz . For the current calculations we fix tp = ts = td and ∆ = −2. In addition, we employ a minimal
model of a conventional WSM given in eq. (S1), fixing N = 2, α1 = −α2 = 1, and ∆= 2.5.

Key features of these models are then tabulated in Fig. (S1). The first row of this table displays the bulk band structure for
each model. The HOWSM is immediately distinguishable from the dipolar and conventional phases due to the requirement
of at least two occupied bands to realize this phase. By contrast, when observing the spectral density on the (010) surface,
the HOWSM and dipolar WSM phases appear nearly indistinguishable. Both support both gapped and gapless states, with
the kz planes supporting gapped surface states simultaneously admitting four, zero-energy corner-localized modes. The
(010) spectral density of the conventional WSM supports only the zero-energy Fermi arcs that are the classic signature of an
WSM. The (001) surface spectral density provides a clearer route to differentiate between each model. Conventional WSMs
do not support (001) surface bound modes. The HOWSM and dipolar WSM phases support Dirac cones, but the Dirac point
itself is absent as it is non-normalizable in the semi-infinite limit. Hinge-localized zero modes are present in both dipolar
and higher-order WSMs, while such states are absent in the conventional WSM.

As stated in the main body, insertion of an electromagnetic vortex serves as a non-perturbative probe of bulk topological
order. We insert a π-flux vortex into each of the x y planes, maintaining periodic boundary conditions. Examining the
number of zero-energy bound states in each of the planes perpendicular to the axis of nodal separation, the HOWSM and
dipolar WSM display an identical response. The planes in which the Vortex binds a single zero mode can be understood
through correspondence with the non-zero bulk Chern number. On the other hand, the planes supporting two zero-energy
vortex bound modes display identical response stemming from distinct bulk invariants, the relative Chern number and
staggered Chern number for the HOWSM and dipolar WSM respectively.
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FIG. S1. The main energetic and topological features of three distinct models of WSMs with 4 WPs at the Fermi energy are compared:
(1) the Dipolar-Weyl model using the same parameters used in the main-body, (2) a modified version of the HOWSM model proposed
by Ghorashi et. al23, and (3) the model detailed in eq. (S1). While the HOWSM model supports four bands, there is no clear way to
distinguish the Dipolar-Weyl model from that of eq. (S1) via the bulk band structure. By contrast the HOWSM and Dipolar-Weyl model
are indistinguishable when viewing common diagnostics of topological order.

Therefore, we find that common diagnostics of topological order in weakly interacting systems cannot distinguish between
the TRS-broken HOWSM and dipolar-WSM.

The TRS-broken HOWSM and dipolar-WSM states can be distinguished, however, by comparing the respective Landau
level spectra. We compute the LL spectrum in a magnetic field applied along the ẑ-axis. We consider the full lattice model
and employ units where the electric charge and the lattice constant are set to unity. In these units and with the gauge
choice, A = (0, Bx , 0), ky is dimensionless and B = 2mπ/Lx with m ∈ Z. LLs in the weak field limit (m = 2) is shown in
Fig. (S1). Since the minimal model for the dipolar WSM requires only two bands while the HOWSM requires four, the zero
modes generated upon application of a magnetic field parallel to the direction of nodal-separation give rise to one and two
bands, respectively.

Appendix II: Monopole and Dipole flux

Here we present the details for the computation of monopole and dipole flux, both in the vicinity of the Weyl points, as
well as the kz planes.
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FIG. S2. Change in the nature of flux as a function of radius of the Gaussian sphere centered at the Weyl point at kz = cos−1(∆−2−δ3).
(a) Expected crossover in the behavior of Berry flux as measured on the Gaussian surface in the dipolar Weyl semimetal phase. The
vertical axis represents an energy/momentum scale, and the green dot locates the critical point where the Weyl points merge to form a
Berry dipole. (b) Actual behavior of the Berry flux obtained by numerically computing the Berry fluxes, as detailed in section II.C. Here,
k0 =
�

cos−1(∆− 2−δ3)− cos−1(∆− 2+δ3)
�

is the distance between the two Weyl points on the same side of kz axis.

A. Generic kz planes

In order to compute the staggered Chern number for generic values of δ3 and kz , we must be able to identify the boundary
which separates the skyrmion and anti-skyrmion texture which are superimposed to produce the skyrmionium texture31

which is characteristic of an insulator supporting a staggered Chern number. The presence of a skyrmionium texture is
protected by the topology of the chiral Dirac semimetal, from which a Hopf map is implemented to construct the dipolar
Weyl Hamiltonian. However, the form of the skyrmionium texture is model dependent, thus the boundary between skyrmion
and anti-skyrmion is a non-local quantity in the momentum space that is complicated to identify in general. Nonetheless, the
pattern of flux-assisted charge pumping can be used as a universal probe to diagnose a dipolar insulating plane as discussed
in section III.C of the main text.

For computing the staggered-Chern number at generic δ3 and kz we change basis, k± = (kx ± ky)/
p

2, and introduce
(n−, n+) =

1p
2
(n2 − n1, n2 + n1). Thus, up to a global unitary transformation, the Hamiltonian obtains the form

H(k+, k−, kz) = n+(k+, k−, kz)σ1 + n−(k+, k−, kz)σ2 + n3(k+, k−, kz)σ3. (S1)

It can be easily checked that H is invariant under k± → k± + 2
p

2π. By defining N⃗ = (n+, n−, n3) and N̂ = N⃗/|N⃗ |, we
compute the Berry curvature density on the kz planes,

Bz(k+, k−, kz) =
1
4

N̂ · (∂k+ N̂ × ∂k− N̂). (S2)

Since the area of the Brillouin zone (BZ) for k± is twice that of (kx , ky), we have introduced an extra multiplicative factor
to halve the net flux through the enlarged BZ, which yields the physical result. The weight function is determined with the
help of n+,

fstagg(k+, k−, kz) =sign

�

§

cos
�

k−p
2

�

�

1− td sin kz + cos
�p

2k+
�

(td sin kz + 1)
�

− cos
�

k+p
2

�

(δ+∆− cos kz)
ª

×
§

Θ

�

cos
k+p

2

�

Θ

�

cos
k−p

2

�

−
1
2

ª

�

(S3)

B. Formulation of Cstagg independent of fstagg

The existence of both skyrmion and skyrmionium textures in the presence of two distinct anti-unitary mirror symmetries
(M1 and M2) gives rise to quantized one-dimensional winding numbers along orthogonal high-symmetry lines. For the
model in eq. 6 of the main body, these are the kx = ±ky lines. Along these high-symmetry axes the Hamiltonian appears as
a non-trivial Su-Schrieffer-Heeger (SSH) model34 with winding number 1 (2) in planes supporting monopole(dipole) Berry
flux. For generality, we will refer to these high-symmetry lines as k1,2.

Let us define the Berry gauge connection along k1,2, as

Ai(ki , kz) = −iU(ki , kz)∂ki
U†(ki , kz), (S4)
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FIG. S3. Computation of Cstagg utilizing eq. (S6). This formulation does not require knowledge of fstagg, but returns identical results.

where U(k) is the diagonalizing matrix for the Hamiltonian, H(k) =
∑3

j=1 n jσ j , and it takes the form,

U(k) =
1
|n⃗|
[n3σ0 + i(n1σ1 + n2σ2)]. (S5)

If [A1, A2] ̸= 0, then n⃗= (n1, n2, n3) has a non-trivial texture, which can be succinctly captured by

Cstagg =
1

2π

∫∫

d2kTr (S12 · [A1, A2])
�

��

�

∫∫

d2kTr (S12 · [A1, A2])
�

�

�1/2
, (S6)

where S12 = S1 · S2, such that S j is the generator of chiral symmetry for the embedded SSH Hamiltonian corresponding to
the Berry gauge connection A j . We note that Cstagg reduces to the Chern number when the staggering is absent.

The results of applying Eq. (S6) to the model of a dipolar WSM presented in the main body are shown in Fig. (S3),
detailing identical results to those found upon identification of fstagg.

C. Weyl planes

In a typical Weyl semimetal the plane on which a Weyl point lie (henceforth, called a “Weyl-plane”) supports a half-integer
Chern number, which implies the presence of a meron rather than a skyrmion texture.

In dipolar Weyl semimetals, the Weyl-plane separating Chern and ordinary insulating planes support a similar meron
texture, which result in an half-integer Chern number. We note that, due of the manner in which the staggered Chern
number is defined, these planes will trivially support an identical-in-magnitude staggered Chern invariant.

Texture Invariant

skyrmion CN ∈ Z; SCN ∈ Z; CN = SCN

meron CN ∈ Z/2; SCN ∈ Z/2; CN = SCN

skyrmionium CN = 0; SCN ∈ Z
“meronium” CN ∈ Z/2; SCN ∈ Z/2; CN ̸= SCN

TABLE I. Characterization of different 2D textures by Chern (CN) and staggered-Chern(SCN) numbers. Here, we have introduced the
term “meronium” to refer to the texture formed out of a meron and a skyrmion with opposite winding numbers.

By contrast, the Weyl-planes that separate dipolar and Chern insulting planes, support a novel texture that is a superpo-
sition of a skyrmion and a meron with opposite chirality. This leads to a half-integer staggered Chern number, and a distinct
(in magnitude) half-integer Chern number. These features are summarized in Table I.

D. Flux through Gaussian surfaces

As a function of δ3 the oppositely charged Weyl points on the same side of the kz-axis merge to give rise to a Berry
dipole at δ3 = 0 [please see Fig. 1(b) of the main text]. This is a topological quantum critical point. Consequently,
it would be expected to control the behavior of the system over an extended energy/momentum-scale window called a
“critical fan” (please see Fig. S2(a)). The boundary of the critical fan tracks the separation between the Weyl points. We
construct a Gaussian surface centered at one of the Weyl points, and increase its radius to travel along the vertical dashed
line in Fig. S2(a). Therefore, at smaller radii we are probing the property of isolated Weyl points and obtain a quantized
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FIG. S4. Texture of |n| vector in a generic kx − ky plane supporting quantized dipolar flux (kz = kz∗ plane) as well as on a gaussian
sphere enclosing the Berry dipole. The skyrmionium texture visible in both situations demonstrates the presence of a quantized dipolar
flux through a gaussian sphere enclosing the Berry dipole.

monopolar Berry flux. At radii that exceed the separation between the Weyl points, we enter the critical fan, and our probe
detects a quantized dipolar flux which characterizes the topological obstruction in the critical fan. These behaviors are
summarized in Fig. S2(b). The existence of this dipolar flux can be attributed to the existence of a Berry dipole at the
topological critical point. Below we provide the details of the computation.

From the Hamiltonian we determine the Berry curvature

B =
1

4π
(n̂ · ∂ky

n̂× ∂kz
n̂, n̂ · ∂kz

n̂× ∂kx
n̂, n̂ · ∂kx

n̂× ∂ky
n̂). (S7)

Next, we introduce spherical polar coordinates, (kr ,θ ,φ) with respect to the Weyl point at kz = cos−1(∆ − 2 − δ3), and
obtain the radial component ofB ,

Br(kr ,θ ,φ) =B(kr sinθ cosφ, kr sinθ sinφ, cos−1(∆− 2−δ3) + kr cosθ ) · (sinθ cosφ, sinθ sinφ, cosθ ). (S8)

The monopolar and dipolar fluxes through the Gaussian sphere centered at the Weyl point are given by, respectively,

Φmono(kr) = k2
r

∮

dθ dφ sinθ Br(kr ,θ ,φ) (S9)

Φdi(kr) = k2
r

∮

dθ dφ sinθ Br(kr ,θ ,φ) sign(cosθ ). (S10)

We plot the two fluxes as a function of kr in Fig. S2(b).
At δ3 = 0 the pair of Weyl points on each side of the kz axis merge to form a quadratic band-crossing point. These band

singularities carry Berry-dipolar charge which can be made explicit by “linearing” the Hamiltonian close to the band crossing
points,

h±0 (q) = ±
�

2ts tpαqxqzσ1 + 2ts tpαqyqzσ2

�

+
�

t2
s α

2q2
z − t2

p(q
2
x + q2

y)
�

σ3, (S11)

where q is the deviation in momentum. Thus, the dipolar charge can be diagnosed by Φdi. Our thesis is that a Berry
dipole leads to a skyrmionium texture of n̂ on a Gaussian sphere enclosing it, in analogy to a Berry monopole generating
a skyrmion texture. In contrast to the Berry dipole that emerges at the topological critical point of Hopf insulators due
to an emergent mirror symmetry27, the Berry dipole obtained here continues to possess a dipolar structure beyond the
low-energy limit in Eq. (S11). In particular, while an emergent mirror symmetry simplifies the skyrmionium texture, with
mirror-related hemispheres of the Gaussian sphere supporting oppositely charged skyrmions, this symmetry is not necessary
for a skyrmionium to exist. The sufficient condition for a skyrmionium texture to exist is the n̂-vector interpolating as follows:
north-pole→ south-pole→ north-pole (or vice-versa) along each half-cycle of a compact manifold (eg. 1-torus, 2-sphere,
etc). We demonstrated this explicitly for generic kz planes where the skyrmionium texture exists on an 1-torus (i.e. the 2D
Brillouin zone). The skyrmionium texture on the Gaussian sphere can be related to those observed on generic kz-planes
by considering a stereographic projection of the sphere to a plane. In Fig. S4 we portray this connection by plotting a
comparison of the texture of n̂(k) on the Gaussian sphere vs. a kz-plane supporting a quantized Berry dipole flux. Thus, the
Berry dipole in our case is stable against lattice-allowed deformations of n̂, while that obtained at the topological critical
point of a Hopf insulator is “emergent”. While the existence of the polar-interpolation guarantees the existence of the dipolar
flux beyond the low-energy limit, its computation becomes difficult in the absence of an emergent mirror symmetry.
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FIG. S5. One-dimensional winding number along (a) kx = ±ky and (b) kx axis as a function of kz in dipolar WSM. Location of Weyl
points is marked by dashed blue lines. Planes supporting non-trivial Chern number are identified by unit winding number regardless of
axis choice. Planes supporting staggered Chern number support doubled winding number along kx = ±ky axis. Double winding number
is recovered along the principal axis in the kz = 0 plane. This is in correspondence with the existence of a gapless Dirac cone on the (100)
and (010) surfaces in this plane.

Appendix III: 1D winding numbers

In order to contrast the topological obstruction between the two types of topologically non-trivial planes, we determine
the 1D winding numbers, ν1D, along the kx = ±ky axes of respective planes39,40. The winding number along the k± = kx±ky

axis is computed as60,

ν1D =

∮

dk±
2π

∑

Eα(k)<0

(−i) 〈ψα|∂k± |ψα〉 . (S1)

The result is presented in Fig. S5a. The kx = ±ky axes on the Chern (non-Chern topological insulating) planes support
|ν1D| = 1 (2). The kz-planes in the vicinity of kz = π are topologically trivial, since they do not support finite Chern or 1D
winding numbers. The kz = 0 and π planes are special, since u3 vanishes on these planes. Consequently, kx and ky axes
may be classified by ν1D, in addition to kx = ±ky axes. This is seen in Fig. (S5b), and it is this special feature of the plane
which protects the gapless Dirac cone seen on the (100) and (010) surfaces in Fig. 3a of the main body.
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