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We develop a full microscopic theory for a nonlinear phase space filling (NPSF) in strongly cou-
pled two-dimensional polaritonic lattices. Ubiquitous in polaritonic experiments, the theoretical
description of NPSF, also known as nonlinear optical saturation, remains limited to perturbative
treatment and homogeneous samples. In this study, we go beyond the existing theoretical descrip-
tion and discover the broad scope of regimes where NPSF crucially modifies the optical response.
Studying the quantum effects of non-bosonicity, cooperative light-matter coupling, and Coulomb
blockade, we reveal several regimes for observing the nonlinear Rabi splitting quench due to the
phase space filling. Unlike prior studies, we derive nonlinear Rabi frequency scaling all the way to
the saturation limit and show that the presence of a lattice potential leads to qualitatively distinct
nonlinearity. We concentrate on the three regimes of NPSF: 1) planar; 2) fractured; and 3) ul-
tralocalized. For the planar saturation, the Rabi frequency decreases exponentially as a function of
exciton density. For the fractured case, where excitons form a lattice with sites exceeding the exciton
size, we discover fast NPSF at low occupations. This is followed by slower NPSF as the medium
becomes fully saturated. This behavior is particularly pronounced in the presence of Coulomb (or
Rydberg) blockade, where regions of fast and slow NPSF depend on the strength of repulsion. For
the ultralocalized NPSF, we observe the square-root saturation typical to the collection of two-level
systems. Our findings shed light on recent observations of strong nonlinearity in heterobilayers
of transition metal dichalcogenides where moiré lattices emerge naturally [Nature 591, 61 (2021)].
Finally, the developed theory opens the prospects for engineering strongly nonlinear responses of
polaritonic lattices with patterned samples, driving polaritonics into the quantum regime.

I. INTRODUCTION

Strong light-matter coupling (SC) hybridizes photons
and matter excitations, leading to an emergence of po-
laritons [1–4]. Systems where SC can be achieved in-
cludes atomic vapors and lattices [5, 6], collection of
color centers [7–9], quantum dots [10, 11], microwave cir-
cuits [12], molecular complexes [13–15], semiconductor
quantum wells [16, 17], and two-dimensional (2D) ma-
terials [18–27] (see Ref. [1] for the full panorama). In
semiconductor nanostructures, the prominent example is
strong coupling to excitonic modes, leading to exciton-
polaritons [2]. The very essence of polaritonic response
is in acquiring a nonlinearity for light [28], ultimately
being visible even at the few-photon occupation [29–
32]. The utility of nonlinearity ranges from generating
solitons [33–35] to quantum information processing and
gates at the single-photon level [36–39]. In semiconduct-
ing microcavities, nonlinearity leads to emergent fluids of
light in planar geometries [40–43] and highly nontrivial
dynamics in lattice-based polaritonic systems [44–54].

Polaritonic nonlinearity can originate from several
sources, which lead to different types of nonlinear pro-
cesses. First, quasiparticles in an underlying medium
can interact via Coulomb repulsion or attraction [55–
63], leading to energy shifts from hybridized polaritonic
modes, and thus power-dependent response [64]. This
type of nonlinearity prevails for Wannier-type excitons,
manifested in exchange-dominated scattering for 2D sys-
tems [55, 56], and dipole-dipole interaction for dipolar ex-
citons [65–69]. Similar interactions are observed for Ry-
dberg states [70], enabling a plethora of highly nonlinear

effects for Rydberg atom gas [71–73], atomic arrays [74–
76], and recently Rydberg excitons [77–80]. The ulti-
mate limit of Coulomb-driven nonlinearity comes from
a Coulomb blockade [81] — inability of creating more
excitation at specific sites due to large energy penalties,
and subsequent nonlinear impact on coupled photonic
modes [82, 83].

The second type of nonlinearity comes from statisti-
cal properties of matter excitations and corresponds to
the nonlinear phase space filling (NPSF), which can be
referred to interchangeably as a nonlinear optical sat-
uration [56, 59, 84]. Namely, creating two excitons in
exactly the same state of electrons (e) and holes (h) is
forbidden by their fermionic statistics. Similarly, a col-
lection of two-level systems (TLS) can only be excited
until further excitations are prevented by Pauli statis-
tics [5]. Thus, increased number of excitations leads
to filling the available phase space (no room for creat-
ing new quasiparticles) [85, 86], and effectively reduced
light-matter coupling in remaining sites or area. At high
powers NPSF can lead to the power-dependent quench
(or collapse) of the associated Rabi splitting [24]. For
Wannier excitons (delocalized e-h pairs) this nonlinear
mechanism was discussed already in the seminal paper
of Tassone & Yamamoto [56], where first-order power-
dependent contribution to the reduction of Rabi split-
ting was described. However, in III-V semiconductors
this nonlinearity was not considered to be dominant [59].
For Frenkel-type excitons (quasiparticles based on local-
ized e-h pairs in molecular lattices) NPSF plays a ma-
jor role [87, 88], and is ubiquitous in various experi-
ments [87, 89–91]. Finally, recent results in transition
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FIG. 1. Sketch of an optical microcavity with polaritonic
lattice as an active medium. The cavity is formed by a con-
cave top mirror (e.g. fiber-based) and a bottom mirror as a
distributed Bragg reflector (DBR) of high reflectivity. Polari-
tonic lattice is arranged as a patterned semiconductor with
excitonic potential, as typically realized in heterobilayers of
transition metal dichalcogenides (TMDC) with moiré poten-
tial.

metal dichalcogenides (TMDC) show the importance of
both contributions from Coulomb and nonlinear phase
space filling [24, 92–101].

In this work, we develop a unified treatment of non-
linear quantum optical effects based on phase space fill-
ing. Our theory is applicable to a wide range of exciton-
polariton lattices, also in the presence of both Pauli and
Coulomb blockade. We describe three distinct NPSF
regimes being the planar, fractured, and ultralocalized
regimes. For each case, we present an analysis and show
that in the fractured case a sharp decrease of Rabi fre-
quency in the low-density regime can be facilitated by
the Coulomb blockade. Our theory can shed light onto
recent experiments in moiré heterobilayers, and open a
way for enhancing the nonlinear response.

II. THEORY OF EXCITONS COUPLED TO A
CAVITY MODE

To develop the microscopic model of nonlinear phase
space filling, we start by considering excitons (electron-
hole pairs) strongly coupled to a cavity mode. This is
typically formed by distributed Bragg reflectors or fiber-
based mirrors (see sketch in Fig. 1). Specifically, we
consider bound excitons being confined to minima of po-
tential, thus forming a polaritonic lattice (Fig. 2). A
system Hamiltonian with Ns lattice sites reads

Ĥ = ω0ĉ†ĉ +
Ns∑
i=1

ĤX
i +

Ns∑
i=1

Ω0

(
X̂†

i ĉ + ĉ†X̂i

)
, (1)

where ĉ† (ĉ) is a field operator creating (annihilating) a
cavity photon with energy ω0 (we set ℏ = 1). The first
term in Eq. (1) thus describes the energy of the cavity
mode at normal incidence (small photon momenta). The
second term

∑Ns
i=1 ĤX

i describes the available quantum

states on each lattice sites, labeled by index i. This term
may also be viewed as a lattice of identical quantum emit-
ters which can host up to ℓ excitons, depending on the
confinement potential and interaction between excitons.
Therefore, the Hamiltonian of each separate sites can be
written as

ĤX
i = 1i−1 ⊗

(
ℓ∑

n=0
εn|n⟩⟨n|

)
⊗ 1Ns−i, (2)

where 1 is the identity operator in the Hilbert space of a
single site, and 1n =

⊗n
i=0 1. In the above, |n⟩ denotes

the n-exciton eigenstate with energies εn in an emitter.
The ground state of a emitter is |0⟩ (no exciton) with
energy ε0 = 0, see Fig. 3.

Intuitively, this model is analogous to a lattice of de-
coupled harmonic oscillators. However, we note that we
assume a general form of the energy-level structure of ĤX

i

to account for exciton-exciton interaction and arbitrary
confinement potential, introducing some degree of unhar-
monicity. With this, we make sure that the microscopic
model can describe excitons of different types (Wannier
and Frenkel), as well as remaining valid for generic quan-
tum emitters with ℓ + 1 levels.

Finally, the third term in the system Hamiltonian (1)
describes the strong light-matter coupling, where Ω0 is
the bare exciton-photon coupling strength. This term
defined the transition between the emitter’s energies lev-
els by absorbing or emitting a photon. These transitions
at site i is described by the excitonic ladder operator as

X̂†
i = 1i−1 ⊗

(
ℓ−1∑
n=0

√
rn|n + 1⟩⟨n|

)
⊗ 1Ns−i, (3)

where rn ≡ |⟨n + 1|x†|n⟩|2 with x† being the field opera-
tor for creating an exciton. This exciton transition ma-
trix element rn describes the effective rate for creating an
additional exciton in a n-exciton state, |n⟩. It is deter-
mined by the microscopic details of a n-exciton state. We
note that, although our polaritonic lattice model Eq. (1)
is similar to an atomic system, the optical transition of
each emitter [Eq. (3)] only takes place between the ad-
jacent energy levels, |n⟩ and |n + 1⟩. Namely, the opti-
cal multiexciton processes are forbidden. In contrast to
atoms, the transitions between levels do not have such a
constraint and they are determined by optical selection
rules. Importantly, excitons are composite bosons with a
nontrivial n-dependence of rn. In contrast to atomic level
transition, each atomic level cannot host more than one
electron. This corresponds to rn = δn,0 in Eq. (3), where
the only allowable transition is between states |0⟩ and |1⟩.
This is the key difference between the two systems which
leads to distinct optical saturation effects qualitatively.
The transition matrix element rn depends on the un-
derlying physics of the quantum emitter (exciton). The
quantitative description for rn is presented in Section III.

In the lattice of identical emitters, the exciton created
by a uniform cavity mode must preserve the translational



3

planar fractured ultralocalized

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

Moiré pattern
in TMDC

heterostructure

Three regimes of nonlinear phase space filling:

FIG. 2. Regimes of NPSF. Here we sketch different regimes of nonlinear phase space filling (saturation) in polaritonic lattices.
As a prominent example, we present moiré heterostructures with different twist angles, demonstrating the planar, fractured,
and ultralocalized NPSF at progressively increased twist angle.
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FIG. 3. Quantum emitter. Each moiré cell of a bilayer can
be viewed as a quantum emitter that hosts excitons in its
excited state. The quantum states of the emitter with energy
ε0, . . . , εn are denoted by |0⟩, . . . , |n⟩ in the diagram.

symmetry in the lattice. This implies that the photon can
only couple to the lattice collective mode (bright state)
in the form [5, 86]

B̂† = 1√
Ns

Ns∑
i=1

X̂†
i . (4)

This operator creates a coherent lattice excitation where
the probability of finding an exciton is uniformly dis-
tributed across the lattice instead of sitting on a particu-
lar site. It corresponds to a collective exciton mode that
participates in SC. This allows us to rewrite the coupling
Hamiltonian,

Ns∑
i=1

Ω0(X̂†
i ĉ + X̂iĉ

†) =
√

NsΩ0(B̂†ĉ + B̂ĉ†), (5)

meaning the coupling only acts in the subspace of bright
states. The collective excitonic quasiparticle B̂† is ex-
actly the mode that couples to light in optically active
materials, with the corresponding

√
Ns enhancement for

Frenkel excitons [1, 87] and exciton area-based enhance-
ment of light-matter coupling for Wannier excitons [3].
Importantly, the collective exciton mode B̂† also acts like
a quasiparticle with well-defined particle numbers, but it
has a peculiar statistical property. In the low ratio of
total number of excitons N to Ns in the lattice (N/Ns,
exciton number per site), the B† quasiparticle excita-
tions obey statistics similar to the bosonic one. How-
ever, in a large N/Ns regime, this quasiparticle excita-
tion may strongly deviate from the Bose statistics due
to the composite nature of exciton and blockade effects
arising from the Coulomb interaction between excitons.
This non-bosonicity determines how the phase space is
depleted by B†-excitations. This will eventually appear
as a nonlinear correction to the light-matter coupling of
the lattice.

To see the relation between the phase space-
filling effect and nonlinear light-matter coupling, we
consider in the SC regime that the two states
{(B̂†)N+1|∅⟩, ĉ†(B̂†)N |∅⟩} hybridize and form a quasi-
particle — polariton. Here, we defined the global ground
state |∅⟩ = |0⟩c

⊗Ns
i=1 |0⟩ as the product of emitter

ground state (|0⟩) and cavity (|0⟩c) ground states. To
investigate the nonlinearity of the polariton in the lattice
of emitters, we construct the polaritonic Hamiltonian as
block diagonal matrices

HN =
[
EN+1 ΩN

ΩN EN + ω0

]
, (6)

that couple states with N + 1 excitons, con-
taining B†-excitations in total. Here EN =
⟨∅|B̂N Ĥ(B̂†)N |∅⟩/F (Ns)

N is the total energy of N collec-
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tive excitons and we have introduced the normalization
factor of the N -exciton states [85, 102]

F (Ns)
N = ⟨∅|B̂N (B̂†)N |∅⟩. (7)

This ensures the states are properly normalized such that
the matrix elements in Eq. (6) retain the correct physical
meaning at increasing densities (as phase space filling
increases). The off-diagonal elements then can be written
as [103]

ΩN = Ω0

√
F (Ns)

N+1/F (Ns)
N , (8)

meaning that the light-matter coupling ΩN (effective
Rabi frequency) depends on the number of excitons. This
introduces the nonlinearity in the system in the form of
nonlinear phase space filling.

To study the effect of NPSF in full generality, we de-
velop a strategy for calculating the normalization factor
Eq. (7) for a generic structure of onsite excitations and
arbitrary Ns. We do this by using a multinomial expan-
sion. The compact expression of the normalization factor
reads

F (Ns)
N =

∑
n1+···+nNs =N

(
N !/N

N/2
s

n1! . . . nNs !

)2 Ns∏
i=1

P (ni), (9)

where P (ni) = r0 . . . rni−1 with P (0) ≡ 1 (see Ap-
pendix A for the derivation). The renormalization fac-
tor in Eq. (7) completely determines the NPSF of the
Hamiltonian (1). We note that while F (Ns)

N was evalu-
ated before in some limiting cases, such as Wannier exci-
ton [85, 102] and Frenkel exciton (two-level emitter) [86],
here we present the generic non-perturbative treatment.
This is imperative for accessing the NPSF in the deep
saturation regime, as demonstrated in the next sections.

To summarize, we have developed a general theoretical
framework for the exciton-polariton on a lattice which is
described by Eqs.(6)-(9). This reduces the study of the
NPSF problem to specifying rn and |n⟩, which are ul-
timately determined by the properties of the n-excitons
state of an emitter. As we will discuss later, rn is the
key parameter that gives rise to a different F (Ns)

N , N -
dependence of the Rabi frequency, and thus enable vari-
ous qualitative modes of NPSF. Before carrying out the
full analysis, it is instructive to consider two special cases
and recover known results. First, let us consider |n⟩ being
the state of purely bosonic excitations. In this case, the
transition matrix element is rn = n+1 (bosonic enhance-
ment factor) and the number of available states is ℓ → ∞.
Using this assumptions in Eq. (9), we recover the usual
bosonic normalization factor F (Ns)

N = N ! for N -boson
state. Next, let us then consider the opposite limit cor-
responding to two-level systems (fermionic limit). This
is modeled by a quantum emitter with r0 = 1, rn≥1 = 0.
With this, Eq. (9) reduces to the quantum limit [86] with
F (Ns)

N = N !Ns!/(Ns − N)!N−N
s . In the rest of the pa-

per, we demonstrate that the polariton Hamiltonian in

Eqs. (6)-(9) allows us to go beyond these two limits.
We consider transition matrix elements that are neither
purely bosonic nor purely fermionic. This is controlled
by the confinement, composite particle properties, and
interactions. Our theory reveals the behavior of F (Ns)

N
for a polaritonic lattice with strong NPSF (deep satura-
tion regime). This regime of SC has not been explored
before. In the following, we investigate this regime and
discuss the relevant system in moiré structure of 2D ma-
terials.

III. INTRODUCING LOCALIZATION OF
EXCITONS AND POLARITONIC LATTICES

In the previous section, we presented the general the-
ory of excitons in a cavity and introduced the transition
matrix elements rn that characterize the polaritonic sys-
tem [Eq. (3)]. As we mentioned previously, the form of
rn has important implications for the nonlinear phase
space filling of the lattice. As described in Eq. (3), the
transition matrix element rn is a measure of the rate for
creating an additional exciton-like quasiparticle in a n-
excitons system. This quantity depends on the specific
correlation effects between excitons. Calculating it for
general cases is a highly non-trivial many-body problem.
Therefore, in this section, we consider two microscopic
mechanisms that induce NPSF. One is due to the correla-
tion of the fermionic statistics (Pauli blockade) where the
electron and hole from excitons cannot occupy the same
state in phase space. The other mechanism is due to the
strong exciton-exciton interactions (Coulomb blockade)
where the high-energy states are effectively projected out
in the phase space. In the Pauli blockade, we can eval-
uate rn exactly, and for the Coulomb blockade we use
the phenomenological approach that allows to keep the
system tractable in the presence of nonlinearity.

A. Pauli blockade

To investigate the Pauli blockade of a polaritonic lat-
tice, we begin with the simplest case of Ns = 1 and ex-
tend the consideration to excitons with a spatial shape.
For a single site (or emitter), we construct the n-exciton
ground state as

|n⟩ = 1√
F (1)

n

(x†
0)n|0⟩, F (1)

n = ⟨0|xn
0 (x†

0)n|0⟩, (10)

where the exciton creation field operator is

x†
ν =

∫
dredrhΨν(re, rh)a†

re
brh

. (11)

Here, Ψν(re, rh) is the exciton wavefunction, with ν be-
ing the state index (quantum number), re and rh are the
electron and hole position vectors in real space, and a†

re
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and brh
are the electron and hole field operators, respec-

tively.
Due to the finite sample size, there is a limited amount

of quantum numbers to assign to each electron and hole
composing the exciton. Moreover, two different fermions
cannot be labeled by the same quantum numbers (Pauli
exclusion principle), meaning that the single site can-
not host an unlimited number of excitons. The site will
saturate and exhibit a nonlinear optical response as the
exciton density becomes higher and higher. In Eq. (10)
the effect of Pauli blockade appears in the normalization
factor F (1)

n . We write the latter in the recursive form,

F (1)
n =

n∑
m=1

(−1)m−1

n

[ n!
(n − m)!

]2
σmF (1)

n−m, (12)

where we introduced the Pauli scattering terms σm (see
Appendix B and Refs. [85, 103]). The Pauli scattering
is defined as an overlap between excitonic wavefunctions,

σm =
m−1∏
i=1

∫
dre1drh1Ψ∗

0(rei
, rhi

)Ψ0(rei
, rhi+1)∫

drem
drhm

Ψ∗
0(rem

, rhm
)Ψ0(rem

, rh1). (13)

Intuitively, this term may be understood as the degree
of bosonicity of the exciton. For the pure boson limit
we have σ1 = 1 and σm>1 = 0, leading to F (1)

n = n!
as a standard bosonic state normalization factor. In the
Frenkel limit, we have σm = 1 for all m, which yields
F (1)

1 = 1 and F (1)
n>1 = 0. In between these two limits σm

is a monotonically decreasing function of m with σm ≤ 1.
Away from the bosonic limit, the effect of nonlinear phase
space filling is always present, thus lowering the effective
probability for creating more excitons in confined regions.
That is, F (1)

n /n! is a monotonically decreasing function
of the integer index n. The effect of the Pauli blockade
can be seen as a modification of the transition matrix
element rn defined through

rn = |⟨n|x†
0|n − 1⟩|2 = F (1)

n /F (1)
n−1. (14)

Once rn is set for a single site, we can construct the Ns-
site of the polaritonic lattice by using Eq. (9) with rn

specified in Eq. (14). In this case, calculating matrix
elements in Eq. (6) by using Eqs. (9) and (14) is not con-
venient, since the number of available excited states (ℓ)
may be large. Instead of using multinomial expansion, we
derive the recursive formula for F (Ns)

N (see Appendix B
for full derivation):

F (Ns)
N =

N∑
m=1

(−1)m−1

N

[
N !

(N − m)!

]2
σm

Nm−1
s

F (Ns)
N−m. (15)

However, we note that when using Eq. (15) for numerical
calculation, one needs to ensure high accuracy for each
terms in the sum due to large cancellations (we achieve

this by developing a semi-symbolic treatment of expres-
sions when only the final evaluation is numerical). As
compared to the single site case in Eq. (12), the multi-
site result has a reduced Pauli scattering term σm/Nm−1

s
which takes into account two contributing effects. One
is the Pauli blockade that we have already described, re-
lating the effect to the statistical properties of the parti-
cles. Second, we have the real space enhancement factor,
meaning there are more sites to place our emitters.

B. Coulomb blockade

Next, we note that placing two excitons together may
be impossible due to the fact that their constituents in-
teract with each other via Coulomb potential. The en-
hancement of onsite exciton-exciton (X-X) Coulomb re-
pulsion due to weak screening in two-dimensional struc-
tures translates into a strong Kerr shift for the excitonic
mode. As the exciton energy is shifted out of resonance,
this effectively reduces the transition matrix element be-
tween excited states, resulting in similar implications as
the Pauli blockade. The main difference with the Pauli
blockade is that the number of available excitations per
site is sharply depleted at finite ℓ. The cut-off value ℓ de-
pends on the depth of localization potential and the cost
of Coulomb energy by creating additional excitons at the
same site. However, we note that the Coulomb block-
ade is a complex correlated problem since the onsite X-X
Coulomb repulsion and the maximum number of exci-
tons per site ℓ implicitly depend on the n-exciton rather
than one-exciton wave function as in the Pauli block-
ade problem. Calculating the transition matrix element
rn microscopically is beyond the scope of this paper, as
it reduces to exclusively numerical modeling, while here
we concentrate on predominantly analytical treatment.
Nevertheless, our general theory in Eq. (1) is still appli-
cable, and we introduce the Coulomb blockade effect as
the phenomenological reduction of the transition matrix
element at increasing n. This may be modeled by

rn ≈

{
n/(1 + δ2

n), n ≤ ℓ

0, ℓ > n
, (16)

corresponding to the rate for driving the transition be-
tween energy levels with detuning δn = (n − 1)U/Ω0
(dimensionless) due to the Kerr shift. Here, U is the
strength of X-X interaction and n is the number of exci-
tons. In this case the Pauli statistics plays no role, where
the exciton is considered as an elementary boson. How-
ever, we will see later that different blockade mechanisms
eventually lead to similar qualitative results.

Although the form of Coulomb blockade in Eq. (16)
is considered for this paper, we remark that the physics
of saturation effects due to X-X interaction is very rich.
Particularly, the interaction depends on both the exci-
ton’s wavefunction and the screened Coulomb potential
which have important consequences for forming the n-
exciton state |n⟩. The details of |n⟩ ultimately impact



6

the scaling of the saturation effect. For instance, as we
compare s-wave and p-wave exciton (Rydberg state), in
the case of dipole-dipole interactions, the long-range part
of the effective X-X interaction can set a blockade radius,
thus effectively enhancing the saturation (we have now
seen this in Cu2O polaritons [104]. For s-excitons, the ex-
change interaction is dominant and generally short-range.
However, it depends heavily on the details of wavefunc-
tions and this leads to a qualitatively different scaling
from Rydberg state.

IV. DIFFERENT REGIMES OF NONLINEAR
PHASE SPACE FILLING

Previously, we have derived a microscopic expression
for light-matter coupling and nonlinear phase space fill-
ing in the general form, accounting for multiple localized
excitonic sites, the spatial structure of excitons, and X-X
interactions. Now, let us analyze the behavior of NPSF
for some qualitatively distinct cases, in particular driven
by a sample geometry. The size of excitons is described
by the Bohr radius aX. This has to be compared with the
exciton localization length L, defined by the lattice po-
tential. Depending on the L/aX ratio as well the number
of sites Ns, the NPSF contribution has different scaling,
both in high and low occupation limits. We suggest the
three regimes corresponding to: 1) planar; 2) fractured;
and 3) ultralocalized NPSF.

We visualize the three sample geometries in Fig. 2.
The planar case corresponds to an exciton that is de-
localized over the entire sample (Ns = 1; Fig. 2, left).
The saturation effect in this regime was studied before
for Wannier excitons in III-V semiconductors [56, 59]
and TMDC monolayers [24, 105]. In this case, the prior
analysis was performed in the perturbative limit, where
only the first nonlinear correction to ΩN is derived as
ΩN ≈ Ω0

√
N(1 − β1N + O[N2]), where the beta-factor

β1 = −1/(Ω0
√

N)dΩN /dN |N=0 depends on the ratio of
exciton area to the total area [56, 59], and the second-
order correction was derived in Ref. [24].

Another regime corresponds to the opposite limit,
where excitons are ultralocalized on the lattice of many
sites, and the localization length is comparable to the size
of the exciton (Fig. 2, right). In this case, the exciton be-
haves like a Frenkel exciton [86], and we note that similar
behavior can be attributed to trion polaritons [24, 94].
The Rabi frequency of the ultralocalized case scales as a
square root of the deviation from single occupation case.

Finally, we reveal that for the intermediate localized
length, the fractured regime can be realized. In this
case the analytical form of Rabi frequency is not known,
and we will show that the NPSF scaling behavior of this
regime is rather nontrivial. Namely, it is not a sim-
ple interpolating result between planar and ultralocalized
cases. This may shed light on various polaritonic exper-
iments where lattice sites can host multiple but finite
number of excitons.

Let us now proceed with calculating the scaling of
NPSF for the three regimes. To account for the effect
of Pauli blockade we consider an excitonic wavefunction
in the Gaussian form

Ψ0(re, rh) ≈ 1
πLaX

e− 1
2 [(R/L)2−(r/aX)2], (17)

where R = mc
M re + mv

M rh is the center of mass, and
r = re − rh is the relative position of an electron-hole
pair. Here, M = mc + mv is the mass of exciton, and
mc and mv are the masses of electron and hole, respec-
tively. We note that the similar ansatz was chosen for
studying phase space filling of a quantum dot [103], and
that the Gaussian exciton shape is particularly suitable
for TMDC heterostructures [95, 101, 106] due to the
quadratic scaling of an interlayer potential. We remind
that L is the localization length of the lattice potential
and aX defines the size of the exciton. The exciton lo-
calization length can be characterized by the wavefunc-
tion spread in the exciton’s center-of-mass motion which
depends on the confinement potential. This can be dic-
tated by an excitonic disorder, or induced by twisting in
a TMDC bilayer forming the moiré potential [107, 108]
(visualized in Fig. 2). The exciton Bohr radius aX de-
pends on the electron-hole screened interacting potential
(defined as intralayer and interlayer potentials for TMDC
bilayers). While other choices of wavefunction are pos-
sible, Gaussian shape allows evaluating many scattering
terms efficiently, and we do not expect the shape modi-
fication to induce qualitative changes.

We proceed by evaluating Pauli scatterings for defin-
ing rn. Substituting the wavefunction from Eq. (17) in
Eq. (13), we obtain the analytic expression of σn. The
compact expression reads (see details in Appendix C)

σn =
n−1∏
k=0

(aX/L)2

(1+γ2
c )(1+γ2

v) − (1−γcγv)2 cos2(kπ/n) , (18)

where γc,v = (mc,v/M)(aX/L) [103]. We report the ef-
fects of the Pauli blockade in Fig. 4. We run the numeri-
cal simulation with various L/aX ratios and mc = mv by
solving Eq. (8). In Fig. 4(a), we demonstrate the effects
of saturation in the single site limit. This case corre-
sponds to the single parabolic potential well with exci-
tons that couple strongly to the cavity mode. In the limit
of delocalized particles (light blue line), it approaches the
ideal bosonic limit (gray dashed line), where NPSF is not
present due to Bose statistics. The different curves and
bullet points are summarized in the legend in Fig. 4(b).
In the other limit of particles localized over the full sam-
ple size (dark blue curve with L = 0.5aX, closest to the
bottom), particles exhibit “close-to-fermionic” behavior,1

1 Herein, the term fermionic is used in a loose sense, as the quasi-
particles (excitons) do not exhibit anticommutation. Technically
correct definition, albeit unusual, is a spin-1/2 or paulino statis-
tics.
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Bosonic limit
(a)

(b)

Fractured

Planar

Ultralocalized

FIG. 4. Pauli blockade and the dependence. The dependence
of the (renormalized) Rabi frequency Ω̄N (Ns, aX) = ΩN /

√
N

on number of excitons N . (a) NPSF effect of a single localiza-
tion site (Ns = 1) for different ratios of L/aX. L is the exciton
localized length, and the values are shown in the legend in (b).
The black dashed line is the bosonic limit, where the exciton
is treated as an elementary boson. (b) NPSF for Ns = 20
sites. We can see the transition from Frenkel (L/aX = 0.5) to
bosonic limit by changing the localized length L. Three qual-
itative regimes of the NPSF are labeled. The planar regime
smoothly transitions over to the ultralocalized regime via the
fractured regime (blue-shaded region).

where the sample is saturated with more than one exci-
tation. In the intermediate region, 0.5 < L/aX < 10, one
can see a smooth transition from bosonic-to-fermionic be-
havior. Also, the renormalized Rabi frequency in this
intermediate region may be well approximated by the
exponential decay with the exciton packing fraction in
the sample η = N(aX/L)2,

ΩN ≈ Ω0 exp[− 1
2 (ηv + 1

2 η2v2) + O(η3)]. (19)

where we have used σn ≈ (ηv)n−1 with v = (1 + γ2
c )(1 +

γ2
v) in Eq. (18). Note that this result follows from the

definition (8) and the exponential form of the normaliza-
tion factors [85, 102], which is valid for very high orders
in η. The exponential scaling in Eq. (19) can be also
recovered as a continuation of the diagrammatic expan-
sion [24].

Next, we consider a lattice with many sites. As light
couples to the lattice with Ns = 20, the saturation effect
exhibits a rather nontrivial behavior shown in Fig. 4(b).
In this case, we observe similar behavior for large local-
ization length with L = 10aX and recover the expected
bosonic limit for point-like particles. As the exciton size
increases (L ≃ 0.6aX), we observe a kink in the proximity
of N ≈ Ns due to the transition from the low occupation

low-density

FIG. 5. Saturation rate. Here we plot a rate of the Rabi
splitting saturation, dΩN /dN , as a function of exciton filling
N/Ns. (Inset) Saturation rate in a low-density regime (β1 =
−(Ω0

√
N)−1dΩN /dN |N=0) with various ratios of localization

length-to-exciton length, L/aX .

regime with a fast saturation rate to the high occupation
regime with a slower rate. This behavior may be under-
stood as follows. As N < Ns, the blockade of available
phase-space is very effective which resembles Frenkel ex-
citon (see the blue curve with L = 0.5aX). At the point
where N = Ns, the N excitons almost occupies the entire
phase space with less available space. Therefore, the sat-
uration due to the newly created excitations in N > Ns
regime is less effective. We can intuitively describe it as
“fill all sites by at least one exciton first, and only then
fill the rest”.

To see the nontrivial changes in the saturation rate, in
Fig. 5 we plot a derivative of the Rabi frequency with
respect to the number of particles, dΩN /dN (assuming
ΩN is a continuous function in N). We observe that
in the planar regime (large L/aX) the saturation rate is
relatively small and constant in N . Once the exciton be-
comes localized with L ≤ aX , the saturation rate exhibits
strong N -dependent behavior. In particular, in the frac-
tured regime (L/aX ≈ 0.6, yellow curve in Fig. 5), we
can see clearly the transition of fast-to-slow saturation
rate from low-occupation (N < Ns) to high-occupation
(N > Ns) regime. In the dilute limit (N ≪ Ns), the
saturation rate can be characterized by a constant β1.
As demonstrated in the inset of Fig. 5, this β1 constant
grows exponentially as the exciton localization length de-
creases.

As the localization length becomes smaller (L =
0.5aX), the lattice localization eventually reaches the
Frenkel limit [86]. In this limit, the Rabi frequency can
be calculated as

ΩN = Ω0
√

NsN

√
1 − N − 1

Ns
, (20)
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FIG. 6. Coulomb blockade. The NPSF under the Coulomb
blockade shown as a function of exciton occupation, for vary-
ing number of exciton states ℓ and X-X interaction strength U .
We model the transition matrix element using Eq. (16) with
ℓ ≤ 7. Upper, middle and lower panels are plotted by using
the different onsite X-X repulsion as U/Ω0 = 0.5, U/Ω0 = 1,
and U/Ω0 = 2, respectively.

which exhibits the square root scaling in N . We note
that this expression follows from the normalization pref-
actor that is valid for all N and Ns, and includes
nonperturbative corrections. We stress that the expo-
nential and square root scalings are qualitatively dis-
tinct from the conjectured saturation dependence ΩN =
Ω0/

√
1 + N/Ns used in some studies [95, 100].

Now, let us add the Coulomb blockade. In this case,
the number of excitons at each site is limited due to the fi-
nite confinement potential and Coulomb repulsion. Also,
once many excitons occupy a single site, it becomes more
difficult to drive the transition from |n⟩ to |n + 1⟩ due to
the Kerr shift of the excitonic mode. Using the blockade
model in Eq. (16), we study the nonlinear phase space fill-
ing effect on the Rabi frequency. The results are shown in
Fig. 6. Similar to the case of Pauli blockade (Fig. 4), the
saturation curves exhibit similar behavior in each distinct
regime. In this case, the fractured saturation may be re-
alized as ℓ = 2, depending on the strength of Coulomb
repulsion. The kink-like feature may not appear near
N ≈ Ns if the Coulomb blockade is weak such that the
rn does not decrease fast enough in large n, see Fig. 6.
Moreover, the quench of Rabi frequency nearing the full
saturation (Rabi collapse) behaves closer to the ultralo-
calized regime.

Summarizing the discussion in this section, the non-
linear phase space filling due to excitons localization can
be divided qualitatively into three different regimes (Fig.
2). Particularly, as the excitons started to localize at a
different region of the lattice, NPSF enters the fractured

FIG. 7. Moiré exciton saturation. The Rabi frequency renor-
malization is modeled by Pauli’s blockade (gray dashed curve)
and Coulomb blockade (colored solid curves) in the TMDC
moiré lattice. We shown results as a function of exciton
density nX , and consider a varying number of excited lev-
els ℓ = 1, 2, ..., 5.

regime. In this regime, the Rabi frequency of the polari-
tonic lattice is strongly renormalized. The phase space is
saturated at a higher rate in the low (N < Ns) density
regime rather than in the high (N > Ns) density regime,
exhibiting an exponential tail.

V. SATURATION IN TMDC MOIRÉ LATTICE

In this section, we concentrate on drawing a connec-
tion between the proposed microscopic modeling of po-
lariton lattice saturation with the recent exciting results
for bilayers of TMDC. In the case of TMDC bilayers, the
lattice ordering appears naturally, and we consider sev-
eral possible contributing effects. Specifically, by twist-
ing a TMDC bilayer one can drastically modify its optical
properties [107–109]. One of the salient features of such a
bilayer is the formation of modulating optical absorption
with a moiré period. Additionally, the inhomogeneity
due to the moiré pattern can also generate a potential
landscape that results in the localization of excitons in a
moiré cell [108, 110]. Moreover, the variation of twisting
angles and domain relaxation can lead to the formation
of a lattice structure that is composed of smaller moiré
patches. Therefore, twisted TMDC bilayers form an ideal
system to realize near-perfect exciton-polaritonic lattices.

moiré excitons in a twisted heterobilayer TMDC is the
subject of current intense research [106, 108, 111–114]. In
particular, the recent experiment [95] for the TMDC het-
erobilayers has found strong nonlinear saturation effects
in moiré exciton-polariton. Experimental results suggest
that there are several regimes of saturation where the
saturation rate changes qualitatively. This was conjec-
tured to originate from the Coulomb blockade due to the
strong dipole-dipole interactions of moiré excitons, but a
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full explanation is missing.
We approach this system with the developed theory

of NPSF. To investigate the optical nonlinearity of this
twisted bilayer we use the lattice model in Eq. (1). As-
suming mc = mv and using M = 0.71 m0 from Ref. [95],
we plot the saturation curve for Rabi frequency due to
Pauli blockade and compare it to Coulomb blockade with
Ω0 = 10 meV and U = 30 meV. Using the estimation of
the moiré cells density in Ref. [95], being 6 × 104µm−2,
this gives the estimated exciton density in the horizon-
tal axis in Fig. 7. As we can see, the Pauli blockade
shows a rather smooth saturation in this bilayer system.
In contrast to the Coulomb blockade, we can see a clear
kink near N ≈ Ns. We see that this nontrivial Rabi fre-
quency renormalization qualitatively resembles the satu-
ration behavior observed in Ref. [95]. Namely, the satu-
ration rate is fast in the low-density exciton regime where
N < Ns, and the rate reduces in the N > Ns case.

We note the kink-like feature in the saturation curve
appears in the higher density as compared to the density
estimated in the experimental study. One possible rea-
son may be that our calculation assumes a perfect corre-
lation of exciton density with the laser power. In reality,
the relation between them may be complicated due to the
presence of disorder such as residue strain and can be im-
pacted by the lattice reconstruction [108]. This results in
a smaller effective area of light-matter interaction. Fur-
thermore, these effects also lead to the light interacting
with the dark collective modes. Therefore, deducing the
actual excitonic density in the sample may not be an easy
task, since the number of excitons cannot be counted di-
rectly in the experiments. Nevertheless, keeping this as a
hypothesis, we suggest that the experimentally observed
nontrivial renormalization of Rabi frequency may be the
manifestation of fractured NPSF which is facilitated by
the Coulomb blockade.

VI. CONCLUSIONS

In summary, we developed a non-perturbative micro-
scopic theory for describing nonlinear optical effects aris-
ing from the phase space filling. While the developed
quantum theory can be applied for many systems at
strong coupling, we concentrate on the lattice geome-
tries in the limit of strong NPSF (deep saturation). We
unified different phase space filling mechanisms such as
Pauli and Coulomb blockade by writing them in term
of transition matrix elements between the excitations of
an emitter, rn. First, we described the effect of Pauli
blockade arising from the finite system size and account-
ing for the exciton shape. This allows describing the
change of NPSF from the planar quasi-bosonic case all
the way to the case of two-level system saturation. We
generalized the considerations to multiple sites, and stud-
ied the NPSF behavior between planar and ultralocalized
(Frenkel) limit. Intriguingly, we find a distinct regime of
fractured NPSF, where the Rabi frequency decrease has

a kink-like feature at the number of sites, while the full
saturation at high occupation reveals an exponential tail.
This behavior is particularly pronounced in the presence
of Coulomb blockade effects. Looking into specific exam-
ples, we analyzed the NPSF effects for moiré lattices of
TMDC heterobilayers, suggesting that fractured NPSF
may be relevant to the recent experimental observations
of strong nonlinearity [95].

Looking into the future, we note that the understand-
ing of nonlinear phase space filling can help engineering
moiré structures, or rather patterned samples, such that
the nonlinearity is maximized. This will allow to push
further the limits of quantum polaritonics [29, 38, 39, 94].
As for potential open questions, in our polaritonic lattice
model we considered only the NPSF of a uniform collec-
tive excitation (bright state) [Eq. (4)] coupled to cavity
photons. However, cavity photons can couple to other
non-uniform collective excitations (dark states) in the
presence of lattice inhomogeneity arising from disorder,
strain [115], lattice reconstruction [116], and non-uniform
cavity modes. This shall further enrich the NPSF behav-
ior leading to unique nonlinear effects. Also, in this paper
we did not take into account the tunneling between sites.
As indicated in Ref. [95], the moiré band dispersion of
the exciton center-of-mass motion is not very flat. This
implies that excitons tunneling between localized regions
in the moiré lattice may not be negligible and can be tun-
able. Another consideration in Ref. [64] is that the light
can induce changes in the exciton radius. This effect may
add an extra contribution to the nonlinear saturation,
and affect the Pauli and Coulomb blockade that we con-
sider in this paper. We believe it is an interesting topic
for future studies. It is also interesting to generalize our
theoretical approach to investigate the saturation effect
of moiré trions [117–119]. Studying the trion-polariton
NPSF in the lattice geometry and accounting for particle
attraction [120] is an important next step.
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Appendix A: Multinomial expansion of
normalization factor

In this section, we provide the details for the derivation
of Eq. (9). Using the commuting property of creation
and annihilation operators [X†

i , Xj ] = 0 for i ̸= j, we can
carry out the multinomial expansion of B̂† as

(B̂†)N =
∑

n1+···+nNs =N

N !NN/2
s

n1! . . . nNs !
(X†

1)n1 . . . (X†
Ns

)nNs

where ni = 0, 1, 2 . . . , and

(X†
i )ni =1i−1 ⊗

(
ℓ−ni−1∑

n=0

√
P (ni)|n + ni + 1⟩⟨n|

)
⊗1Ns−i

with P (n) = r0 . . . rn−1 [P (0) ≡ 1]. Also, we note that
(X†

i )n = 0 if n > ℓ. Therefore, substituting the above
into

F (Ns)
N = ⟨∅|B̂N (B̂†)N |∅⟩, (A1)

we obtain Eq. (9).

Appendix B: Microscopic derivation of many-body
Pauli blockade

To derive the Hamiltonian in Eq. (1) microscopically,
we may model the exciton wavefunction in a single site
(emitter) as [110][ Q̂2

2M
+ p̂2

2µ
+ VM (R) + V (r)

]
Ψ(re, rh) = EΨ(re, rh),

(B1)
where Ψ(re, rh) with re and rh being the positions of the
electron and hole. The electron and hole masses are me

and mh with total mass M = me +mh and reduced mass
µ = memh/M . The center-of-mass and relative position
are R = (mere+mhrh)/M and r = re−rh with their cor-
responding total momentum operator Q̂ and the relative
momentum operator p̂. The exciton localized potential is
VM (R) and the screened electron-hole interacting poten-
tial is V (re, rh). Solving Eq. (B1), this gives the exciton
creation operator of each site in Eq. (11).

Once the excitonic field operator in Eq. (11) is specified
by Eq. (B1), we use the n-exciton states in Eq. (10) as
the emitter’s excited states to construct Ns-site Hilbert
space with the (over) completeness relation [85]

1⊗Ns =
Ns⊗
i

∑
n=0

|n⟩⟨n|. (B2)

Assuming that the light-matter interacting Hamiltonian
of a single emitter as

Hint =
Ns∑
i

Ω0cx†
i0 + h.c, (B3)

where the exciton in i-emitter is labeled by the subscript,
we obtain Eq. (1) by sandwiching (B3) by the identity
operator in Eq. (B2). Namely,

X†
i = 1⊗Nsx†

i01⊗Ns . (B4)

This yields

√
rn = ⟨n|x†

0|n − 1⟩ =
√

F (1)
n /F (1)

n−1. (B5)

To derive the transition matrix element for the Pauli
blockade, we calculate

F (1)
n = ⟨0|xn

0 (x†
0)n|0⟩

= ⟨0|
[
n∆1xn−1

0 +
(

n

2

)
[x0, ∆1](x0)n−2(x†

0)n−1
]
|0⟩.

Here, ∆1 = [x0, x†
0] and we introduce the notation

∆n =
{

[[x0, ∆n−1], x†
0], n is even

[x0, [∆n−1, x†
0]], n is odd

(B6)

Using the fact that [[∆n, x†
0], x†

0] = 0 and [[∆n, x0], x0] =
0, and ∆n|0⟩ = (−2)n−1σn|0⟩, this leads to

F (1)
n = nσ1F (1)

n−1 +
(

n

2

)
⟨0|xn−2

0 [x0, ∆1](x†
0)n−1|0⟩ (B7)

We let

Π(n)
m = ⟨0|xn−m−2

0 [x0, ∆m+1](x†
0)n−m−1|0⟩

2m+1(n − m − 1)[(n − m − 2)!]2 , (B8)

and rewrite Eq.(B7) into

F (1)
n = n!2

n

{ σ1F (1)
n−1

[(n − 1)!]2 + Π(n)
0

}
. (B9)

To proceed further, we derive the iteration formula for
Π(n)

m , leading to

Π(n)
0 =

(
n−1

1
)
(2σ2)F (1)

n−2+
(

n−1
2
)
⟨0|xn−2

0 [∆2, x†
i ](x†

0)n−3|0⟩
2(n − 1)[(n − 2)!]2

=
−σ2F (1)

n−2
[(n − 2)!]2 + ⟨0|xn−2

0 [∆2, x†
i ](x†

0)n−3|0⟩
22(n − 2)[(n − 3)!]2

=
−σ2F (1)

n−2
[(n − 2)!]2 +

(
n−2

1
)
22σ3fn−3

22(n − 2)[(n − 3)!]2

+
(

n−2
2
)
⟨0|xn−4

0 [x0, ∆3](x†
0)n−3|0⟩

22(n − 2)[(n − 3)!]2

=
−σ2F (1)

n−2
[(n − 2)!]2 +

σ3F (1)
n−3

[(n − 3)!]2 + Π(n)
2 (B10)

Using this iterating formula and setting F (1)
N<0 = 0, we

obtain Eq. (12) in the main text.
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Similarly, we generalize the above calculation for the
Ns-site system. To calculate

F (Ns)
N = ⟨∅|BN (B̂†)N |∅⟩, (B11)

we follow the same procedure as in calculating F (1)
n , and

we define

∆̃n =
{

[[B, ∆̃n−1], B̂†], n is even
[B, [∆̃n−1, B†]], n is odd

, (B12)

where ∆̃1 = 1
Ns

∑Ns
i=1 ∆(i)

1 with ∆(i)
1 = [Xi, X†

i ] =
[xi0, x†

i0] where i = 1, . . . Ns is to label the exciton in
each different emitter (where we ignore the identity op-
erator 1⊗Ns in the commutators). It is not difficult to
show that

∆̃n = 1
Nn

s

Ns∑
i=1

∆(i)
n . (B13)

Using ∆̃n|∅⟩ = σn/Nn−1
s |∅⟩ and iterating Eq. (B11)

[same as Eq. (B7) and Eq. (B10)], we obtain Eq. (9).

Appendix C: Calculation of σn

In this section, we explore the property of σn for a
single emitter (e.g. quantum dot [103]) in Eq. (B6). Here,
we only focus on one emitter. Therefore, we drop the
emitter index i for simplicity. To calculate σn Eq. (B6),
we use the commutation relation

[xµ, x†
ν ] = δµν + Dµν , (C1)

where ν is the quantum number of the exciton (ν = 0
being the ground state). The non-bosonicity is

Dµν = −
∫

r

[ ∫
re

∫
r′

e

Ψ∗
µ(re, r)Ψν(r′

e, r)a†
r′

e
are

+
∫

re

∫
r′

e

Ψ∗
µ(r, rh)Ψν(r, r′

h)b†
r′

h
brh

]
. (C2)

Here, we use the notation
∫

r1...rn
=
∫

dr1 . . . drn. Using
the completeness relation of the exciton wavefunction,∑

ν

Ψ∗
ν(re, rh)Ψν(r′

e, r′
h) = δre,r′

e
δrh,r′

h
, (C3)

this gives

[Dµν , x†
β ] = −

∑
α

2Λµα
νβ x†

α, (C4)

[xβ , Dµν ] = −
∑

α

2Λµα
νβ xα, (C5)

where

Λµα
νβ =

∫
rer′

erhr′
h

Ψ∗
µ(re, rh)Ψ∗

α(r′
e, r′

h)Ψν(r′
e, rh)Ψβ(re, r′

h).

Therefore, using a†
r|0⟩ = br|0⟩ = 0, we have

∆2|0⟩ = [−
∑

β

2Λ00
0βxβ , x†

0]|0⟩ = −2σ2|0⟩ (C6)

with σ2 = Λ00
00. Similarly, it is not difficult to show that

∆n|0⟩ = −2n−1σn|0⟩ (C7)

where σ1 = 1, σ2 = Λ00
00, and

σn =
∑
ν1

· · ·
∑
νn−2

Λ00
0ν1

Λν1,0
0,ν2

· · · Λνn−2,0
0,0 , n > 2. (C8)

To do the integration in σn analytically, we estimate
the exciton wavefunction by using a Gaussian function.
Then, the integration reduces to

σn =
∫ n∏

i=1

dreidrhi

πaX/L
exp

[
−xT Ax − yT Ay

]
, (C9)

where we have changed the variable rei
→ Lrei

, rhi
→

Lrhi
, and

xT =
[
xh1 , xe1 , . . . , xhN

, xeN

]
, (C10)

yT =
[
yh1 , ye1 , . . . , yhN

, yeN

]
, (C11)

and

A =



θv ξ 0 0 . . . ξ
ξ θc ξ 0 . . . 0

0 ξ θv ξ
. . . 0

...
...

. . . . . . . . .
...

0 0 · · · ξ θv ξ
ξ 0 · · · 0 ξ θc


. (C12)

The eigenvalues of A can be obtained exactly by using
a tight-binding approach (nearest-neighbor hopping with
two sublattices). The eigenvalues are

λ±
k = 1

2

[
(θv + θc) ±

√
(θv − θc)2 + 16ξ2 cos2[kπ/n]

]
with k = 0, . . . , n − 1,

θc,v =
m2

c,v

M2 + L2

a2
X

, ξ = mcmv

2M2 − L2

2a2
X

. (C13)

Finally, we integrate out rei and rhi . This gives

σn =
(

L

π2aX

)n
π2n

|A|
=

n−1∏
k=0

L/aX

λ+
k λ−

k

(C14)

as a closed expression for the Pauli scatterings in the
finite size system.



12

[1] D. N. Basov, A. Asenjo-Garcia, P. J. Schuck, X. Zhu,
and A. Rubio, Polariton panorama, Nanophotonics 10,
549 (2021).

[2] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev.
Mod. Phys. 85, 299 (2013).

[3] H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton
bose-einstein condensation, Rev. Mod. Phys. 82, 1489
(2010).

[4] T. Liew, I. Shelykh, and G. Malpuech, Polaritonic de-
vices, Physica E: Low-dimensional Systems and Nanos-
tructures 43, 1543 (2011).

[5] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quan-
tum interface between light and atomic ensembles, Rev.
Mod. Phys. 82, 1041 (2010).

[6] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L.
Hung, and H. J. Kimble, Colloquium: Quantum matter
built from nanoscopic lattices of atoms and photons,
Rev. Mod. Phys. 90, 031002 (2018).

[7] K. G. Fehler, A. P. Ovvyan, N. Gruhler, W. H. P. Per-
nice, and A. Kubanek, Efficient coupling of an ensemble
of nitrogen vacancy center to the mode of a high-q, si3n4
photonic crystal cavity, ACS Nano 13, 6891 (2019).

[8] M. Radulaski, J. L. Zhang, Y.-K. Tzeng, K. G.
Lagoudakis, H. Ishiwata, C. Dory, K. A. Fischer, Y. A.
Kelaita, S. Sun, P. C. Maurer, K. Alassaad, G. Ferro,
Z.-X. Shen, N. A. Melosh, S. Chu, and J. Vučković, Nan-
odiamond integration with photonic devices, Laser &
Photonics Reviews 13, 1800316 (2019).

[9] E. R. Eisenach, J. F. Barry, M. F. O’Keeffe, J. M.
Schloss, M. H. Steinecker, D. R. Englund, and D. A.
Braje, Cavity-enhanced microwave readout of a solid-
state spin sensor, Nature Communications 12, 1357
(2021).

[10] I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard,
P. Bertet, and A. Auffèves, Strongly coupling a cavity
to inhomogeneous ensembles of emitters: Potential for
long-lived solid-state quantum memories, Phys. Rev. A
84, 063810 (2011).

[11] R. Trivedi, M. Radulaski, K. A. Fischer, S. Fan, and
J. Vučković, Photon blockade in weakly driven cavity
quantum electrodynamics systems with many emitters,
Phys. Rev. Lett. 122, 243602 (2019).

[12] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Cavity quantum electrodynamics for
superconducting electrical circuits: An architecture for
quantum computation, Phys. Rev. A 69, 062320 (2004).

[13] M. Sánchez-Barquilla, A. I. Fernández-Domínguez,
J. Feist, and F. J. García-Vidal, A theoretical perspec-
tive on molecular polaritonics, ACS Photonics 9, 1830
(2022).

[14] D. S. Wang and S. F. Yelin, A roadmap toward the the-
ory of vibrational polariton chemistry, ACS Photonics
8, 2818 (2021).

[15] J. Yuen-Zhou, W. Xiong, and T. Shegai, Polariton
chemistry: Molecules in cavities and plasmonic media,
The Journal of Chemical Physics 156, 030401 (2022).

[16] S. Brodbeck, S. De Liberato, M. Amthor, M. Klaas,
M. Kamp, L. Worschech, C. Schneider, and S. Höfling,
Experimental verification of the very strong coupling
regime in a gaas quantum well microcavity, Phys. Rev.
Lett. 119, 027401 (2017).

[17] D. Ballarini and S. D. Liberato, Polaritonics: from mi-
crocavities to sub-wavelength confinement, Nanopho-
tonics 8, 641 (2019).

[18] X. Liu, T. Galfsky, Z. Sun, F. Xia, E. chen Lin, Y.-
H. Lee, S. Kéna-Cohen, and V. M. Menon, Strong
light–matter coupling in two-dimensional atomic crys-
tals, Nature Photonics 9, 30 (2014).

[19] N. Lundt, A. Maryński, E. Cherotchenko, A. Pant,
X. Fan, S. Tongay, G. Sek, A. V. Kavokin, S. Höfling,
and C. Schneider, Monolayered MoSe 2 : a candidate for
room temperature polaritonics, 2D Materials 4, 015006
(2016).

[20] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink,
M. Kroner, E. Demler, and A. Imamoglu, Fermi
polaron-polaritons in charge-tunable atomically thin
semiconductors, Nat. Phys. 13, 255 (2016).

[21] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P.
Trichet, F. Withers, S. Schwarz, G. Malpuech,
J. M. Smith, K. S. Novoselov, M. S. Skolnick,
D. N. Krizhanovskii, and A. I. Tartakovskii, Valley-
addressable polaritons in atomically thin semiconduc-
tors, Nat. Photon. 11, 497 (2017).

[22] C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and
B. Urbaszek, Two-dimensional semiconductors in the
regime of strong light-matter coupling, Nat. Commun.
9, 2695 (2018).

[23] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz,
X. Marie, T. Amand, and B. Urbaszek, Colloquium :
Excitons in atomically thin transition metal dichalco-
genides, Reviews of Modern Physics 90, 021001 (2018).

[24] R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shah-
nazaryan, F. Withers, A. Catanzaro, P. M. Walker,
F. A. Benimetskiy, M. S. Skolnick, A. I. Tartakovskii,
I. A. Shelykh, and D. N. Krizhanovskii, Highly nonlin-
ear trion-polaritons in a monolayer semiconductor, Nat.
Commun. 11, 10.1038/s41467-020-17340-z (2020).

[25] L. Lackner, M. Dusel, O. A. Egorov, B. Han, H. Knopf,
F. Eilenberger, S. Schröder, K. Watanabe, T. Taniguchi,
S. Tongay, C. Anton-Solanas, S. Höfling, and C. Schnei-
der, Tunable exciton-polaritons emerging from ws2
monolayer excitons in a photonic lattice at room tem-
perature, Nat. Comm. 12, 4933 (2021).

[26] C. Anton-Solanas, M. Waldherr, M. Klaas, H. Su-
chomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt,
A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi,
S. Höfling, and C. Schneider, Bosonic condensation of
exciton–polaritons in an atomically thin crystal, Nat.
Mater. 20, 1233 (2021).

[27] Y. V. Zhumagulov, S. Chiavazzo, D. R. Gulevich,
V. Perebeinos, I. A. Shelykh, and O. Kyriienko, Mi-
croscopic theory of exciton and trion polaritons in
doped monolayers of transition metal dichalcogenides,
npj Computational Materials 8, 1 (2022).

[28] D. E. Chang, V. Vuletić, and M. D. Lukin, Quantum
nonlinear optics — photon by photon, Nat. Photon. 8,
685 (2014).

[29] G. Muñoz-Matutano, A. Wood, M. Johnsson, X. Vidal,
B. Q. Baragiola, A. Reinhard, A. Lemaître, J. Bloch,
A. Amo, G. Nogues, B. Besga, M. Richard, and T. Volz,
Emergence of quantum correlations from interacting
fibre-cavity polaritons, Nature Materials 18, 213 (2019).

https://doi.org/doi:10.1515/nanoph-2020-0449
https://doi.org/doi:10.1515/nanoph-2020-0449
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1021/acsnano.9b01668
https://doi.org/https://doi.org/10.1002/lpor.201800316
https://doi.org/https://doi.org/10.1002/lpor.201800316
https://doi.org/10.1038/s41467-021-21256-7
https://doi.org/10.1038/s41467-021-21256-7
https://doi.org/10.1103/PhysRevA.84.063810
https://doi.org/10.1103/PhysRevA.84.063810
https://doi.org/10.1103/PhysRevLett.122.243602
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1021/acsphotonics.2c00048
https://doi.org/10.1021/acsphotonics.2c00048
https://doi.org/10.1021/acsphotonics.1c01028
https://doi.org/10.1021/acsphotonics.1c01028
https://doi.org/10.1063/5.0080134
https://doi.org/10.1103/PhysRevLett.119.027401
https://doi.org/10.1103/PhysRevLett.119.027401
https://doi.org/doi:10.1515/nanoph-2018-0188
https://doi.org/doi:10.1515/nanoph-2018-0188
https://doi.org/10.1038/nphoton.2014.304
https://doi.org/10.1088/2053-1583/4/1/015006
https://doi.org/10.1088/2053-1583/4/1/015006
https://doi.org/10.1038/nphys3949
https://doi.org/10.1038/nphoton.2017.125
https://doi.org/10.1038/s41467-018-04866-6
https://doi.org/10.1038/s41467-018-04866-6
https://doi.org/10.1103/revmodphys.90.021001
https://doi.org/10.1038/s41467-020-17340-z
https://doi.org/10.1038/s41467-021-24925-9
https://doi.org/10.1038/s41563-021-01000-8
https://doi.org/10.1038/s41563-021-01000-8
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/s41563-019-0281-z


13

[30] A. Delteil, T. Fink, A. Schade, S. Höfling, C. Schnei-
der, and A. İmamoğlu, Towards polariton blockade of
confined exciton–polaritons, Nature Materials 18, 219
(2019).

[31] A. V. Zasedatelev, A. V. Baranikov, D. Sannikov, D. Ur-
bonas, F. Scafirimuto, V. Y. Shishkov, E. S. Andrianov,
Y. E. Lozovik, U. Scherf, T. Stöferle, R. F. Mahrt, and
P. G. Lagoudakis, Single-photon nonlinearity at room
temperature, Nature 597, 493 (2021).

[32] T. Kuriakose, P. M. Walker, T. Dowling, O. Kyriienko,
I. A. Shelykh, P. St-Jean, N. C. Zambon, A. Lemaître,
I. Sagnes, L. Legratiet, A. Harouri, S. Ravets, M. S.
Skolnick, A. Amo, J. Bloch, and D. N. Krizhanovskii,
Few-photon all-optical phase rotation in a quantum-well
micropillar cavity, Nature Photonics 10.1038/s41566-
022-01019-6 (2022).

[33] M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gor-
bach, R. Hartley, D. V. Skryabin, E. A. Cerda-Méndez,
K. Biermann, R. Hey, and P. V. Santos, Observation of
bright polariton solitons in a semiconductor microcav-
ity, Nature Photonics 6, 50 (2012).

[34] P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin,
I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N.
Krizhanovskii, Dark solitons in high velocity waveguide
polariton fluids, Phys. Rev. Lett. 119, 097403 (2017).

[35] A. Maître, G. Lerario, A. Medeiros, F. Claude, Q. Glo-
rieux, E. Giacobino, S. Pigeon, and A. Bramati, Dark-
soliton molecules in an exciton-polariton superfluid,
Phys. Rev. X 10, 041028 (2020).

[36] D. Sanvitto and S. Kéna-Cohen, The road towards po-
laritonic devices, Nature Materials 15, 1061 (2016).

[37] O. Kyriienko and T. C. H. Liew, Exciton-polariton
quantum gates based on continuous variables, Phys.
Rev. B 93, 035301 (2016).

[38] S. Ghosh and T. C. H. Liew, Quantum computing with
exciton-polariton condensates, npj Quantum Informa-
tion 6, 16 (2020).

[39] A. Kavokin, T. C. H. Liew, C. Schneider, P. G.
Lagoudakis, S. Klembt, and S. Hoefling, Polariton con-
densates for classical and quantum computing, Nature
Reviews Physics 4, 435 (2022).

[40] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. d.
Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N.
Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña,
Collective fluid dynamics of a polariton condensate in a
semiconductor microcavity, Nature 457, 291 (2009).

[41] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet,
I. Carusotto, F. Pisanello, G. Leménager, R. Houdré,
E. Giacobino, C. Ciuti, and A. Bramati, Polariton su-
perfluids reveal quantum hydrodynamic solitons, Sci-
ence 332, 1167 (2011).

[42] T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, Optical
circuits based on polariton neurons in semiconductor
microcavities, Phys. Rev. Lett. 101, 016402 (2008).

[43] H. Yang and N. Y. Kim, Microcavity exciton-polariton
quantum spin fluids, Advanced Quantum Technologies
5, 2100137 (2022).

[44] N. Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel,
and Y. Yamamoto, Exciton–polariton condensates near
the dirac point in a triangular lattice, New Journal of
Physics 15, 035032 (2013).

[45] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.
Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître,
J. Bloch, and A. Amo, Direct observation of dirac cones

and a flatband in a honeycomb lattice for polaritons,
Phys. Rev. Lett. 112, 116402 (2014).

[46] H. Ohadi, A. J. Ramsay, H. Sigurdsson, Y. del Valle-
Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, T. C. H.
Liew, I. A. Shelykh, Y. G. Rubo, P. G. Savvidis, and
J. J. Baumberg, Spin order and phase transitions in
chains of polariton condensates, Phys. Rev. Lett. 119,
067401 (2017).

[47] C. E. Whittaker, E. Cancellieri, P. M. Walker, D. R.
Gulevich, H. Schomerus, D. Vaitiekus, B. Royall, D. M.
Whittaker, E. Clarke, I. V. Iorsh, I. A. Shelykh, M. S.
Skolnick, and D. N. Krizhanovskii, Exciton polaritons in
a two-dimensional lieb lattice with spin-orbit coupling,
Phys. Rev. Lett. 120, 097401 (2018).

[48] E. A. Cerda-Méndez, D. N. Krizhanovskii, M. S. Skol-
nick, and P. V. Santos, Quantum fluids of light in acous-
tic lattices, Journal of Physics D: Applied Physics 51,
033001 (2017).

[49] F. Scafirimuto, D. Urbonas, M. A. Becker, U. Scherf,
R. F. Mahrt, and T. Stöferle, Tunable exciton–polariton
condensation in a two-dimensional lieb lattice at room
temperature, Communications Physics 4, 39 (2021).

[50] S. Alyatkin, H. Sigurdsson, A. Askitopoulos, J. D.
Töpfer, and P. G. Lagoudakis, Quantum fluids of light
in all-optical scatterer lattices, Nature Communications
12, 5571 (2021).

[51] T. Cookson, K. Kalinin, H. Sigurdsson, J. D. Töpfer,
S. Alyatkin, M. Silva, W. Langbein, N. G. Berloff, and
P. G. Lagoudakis, Geometric frustration in polygons of
polariton condensates creating vortices of varying topo-
logical charge, Nature Communications 12, 2120 (2021).

[52] J. D. Töpfer, I. Chatzopoulos, H. Sigurdsson, T. Cook-
son, Y. G. Rubo, and P. G. Lagoudakis, Engineering
spatial coherence in lattices of polariton condensates,
Optica 8, 106 (2021).

[53] T. H. Harder, O. A. Egorov, C. Krause, J. Beierlein,
P. Gagel, M. Emmerling, C. Schneider, U. Peschel,
S. Höfling, and S. Klembt, Kagome flatbands for co-
herent exciton-polariton lasing, ACS Photonics 8, 3193
(2021).

[54] D. Zvyagintseva, H. Sigurdsson, V. K. Kozin, I. Iorsh,
I. A. Shelykh, V. Ulyantsev, and O. Kyriienko, Machine
learning of phase transitions in nonlinear polariton lat-
tices, Communications Physics 5, 8 (2022).

[55] C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani,
and P. Schwendimann, Role of the exchange of carriers
in elastic exciton-exciton scattering in quantum wells,
Phys. Rev. B 58, 7926 (1998).

[56] F. Tassone and Y. Yamamoto, Exciton-exciton scatter-
ing dynamics in a semiconductor microcavity and stimu-
lated scattering into polaritons, Phys. Rev. B 59, 10830
(1999).

[57] M. Combescot, M. A. Dupertuis, and O. Betbeder-
Matibet, Polariton-polariton scattering: Exact results
through a novel approach, Europhysics Letters 79,
17001 (2007).

[58] M. M. Glazov, H. Ouerdane, L. Pilozzi, G. Malpuech,
A. V. Kavokin, and A. D’Andrea, Polariton-polariton
scattering in microcavities: A microscopic theory, Phys.
Rev. B 80, 155306 (2009).

[59] A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D.
Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling,
M. Kamp, and A. Forchel, Effect of coulomb interac-
tion on exciton-polariton condensates in gaas pillar mi-

https://doi.org/10.1038/s41563-019-0282-y
https://doi.org/10.1038/s41563-019-0282-y
https://doi.org/10.1038/s41586-021-03866-9
https://doi.org/10.1038/s41566-022-01019-6
https://doi.org/10.1038/s41566-022-01019-6
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1103/PhysRevLett.119.097403
https://doi.org/10.1103/PhysRevX.10.041028
https://doi.org/10.1038/nmat4668
https://doi.org/10.1103/PhysRevB.93.035301
https://doi.org/10.1103/PhysRevB.93.035301
https://doi.org/10.1038/s41534-020-0244-x
https://doi.org/10.1038/s41534-020-0244-x
https://doi.org/10.1038/s42254-022-00447-1
https://doi.org/10.1038/s42254-022-00447-1
https://doi.org/10.1038/nature07640
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/https://doi.org/10.1002/qute.202100137
https://doi.org/https://doi.org/10.1002/qute.202100137
https://doi.org/10.1088/1367-2630/15/3/035032
https://doi.org/10.1088/1367-2630/15/3/035032
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevLett.120.097401
https://doi.org/10.1088/1361-6463/aa9ec7
https://doi.org/10.1088/1361-6463/aa9ec7
https://doi.org/10.1038/s42005-021-00548-w
https://doi.org/10.1038/s41467-021-25845-4
https://doi.org/10.1038/s41467-021-25845-4
https://doi.org/10.1038/s41467-021-22121-3
https://doi.org/10.1364/OPTICA.409976
https://doi.org/10.1021/acsphotonics.1c00950
https://doi.org/10.1021/acsphotonics.1c00950
https://doi.org/10.1038/s42005-021-00755-5
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.59.10830
https://doi.org/10.1103/PhysRevB.59.10830
https://doi.org/10.1209/0295-5075/79/17001
https://doi.org/10.1209/0295-5075/79/17001
https://doi.org/10.1103/PhysRevB.80.155306
https://doi.org/10.1103/PhysRevB.80.155306


14

crocavities, Phys. Rev. B 84, 195301 (2011).
[60] V. Shahnazaryan, I. A. Shelykh, and O. Kyriienko, At-

tractive coulomb interaction of two-dimensional rydberg
excitons, Phys. Rev. B 93, 245302 (2016).

[61] V. Shahnazaryan, I. Iorsh, I. A. Shelykh, and O. Kyri-
ienko, Exciton-exciton interaction in transition-metal
dichalcogenide monolayers, Phys. Rev. B 96, 115409
(2017).

[62] F. Barachati, A. Fieramosca, S. Hafezian, J. Gu,
B. Chakraborty, D. Ballarini, L. Martinu, V. Menon,
D. Sanvitto, and S. Kéna-Cohen, Interacting polariton
fluids in a monolayer of tungsten disulfide, Nat. Nan-
otechnol. 13, 906 (2018).

[63] O. Bleu, G. Li, J. Levinsen, and M. M. Parish, Polariton
interactions in microcavities with atomically thin semi-
conductor layers, Phys. Rev. Research 2, 043185 (2020).

[64] E. Estrecho, T. Gao, N. Bobrovska, D. Comber-Todd,
M. D. Fraser, M. Steger, K. West, L. N. Pfeiffer,
J. Levinsen, M. M. Parish, T. C. H. Liew, M. Ma-
tuszewski, D. W. Snoke, A. G. Truscott, and E. A.
Ostrovskaya, Direct measurement of polariton-polariton
interaction strength in the thomas-fermi regime of
exciton-polariton condensation, Phys. Rev. B 100,
035306 (2019).

[65] L. V. Butov, A. L. Ivanov, A. Imamoglu, P. B. Little-
wood, A. A. Shashkin, V. T. Dolgopolov, K. L. Camp-
man, and A. C. Gossard, Stimulated scattering of in-
direct excitons in coupled quantum wells: Signature of
a degenerate bose-gas of excitons, Phys. Rev. Lett. 86,
5608 (2001).

[66] O. Kyriienko, E. B. Magnusson, and I. A. Shelykh, Spin
dynamics of cold exciton condensates, Phys. Rev. B 86,
115324 (2012).

[67] O. Kyriienko, I. A. Shelykh, and T. C. H. Liew, Tunable
single-photon emission from dipolaritons, Phys. Rev. A
90, 033807 (2014).

[68] E. Togan, H.-T. Lim, S. Faelt, W. Wegscheider, and
A. Imamoglu, Enhanced interactions between dipolar
polaritons, Phys. Rev. Lett. 121, 227402 (2018).

[69] C. Hubert, Y. Baruchi, Y. Mazuz-Harpaz, K. Cohen,
K. Biermann, M. Lemeshko, K. West, L. Pfeiffer, R. Ra-
paport, and P. Santos, Attractive dipolar coupling be-
tween stacked exciton fluids, Phys. Rev. X 9, 021026
(2019).

[70] A. Browaeys, D. Barredo, and T. Lahaye, Experimen-
tal investigations of dipole–dipole interactions between
a few rydberg atoms, Journal of Physics B: Atomic,
Molecular and Optical Physics 49, 152001 (2016).

[71] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,
D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and
quantum information processing in mesoscopic atomic
ensembles, Phys. Rev. Lett. 87, 037901 (2001).

[72] S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Nonlocal
nonlinear optics in cold rydberg gases, Phys. Rev. Lett.
107, 153001 (2011).

[73] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl,
and M. D. Lukin, Photon-photon interactions via ryd-
berg blockade, Phys. Rev. Lett. 107, 133602 (2011).

[74] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc,
T. Macrì, T. Lahaye, and A. Browaeys, Tunable two-
dimensional arrays of single rydberg atoms for realizing
quantum ising models, Nature 534, 667 (2016).

[75] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Om-
ran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres,

M. Greiner, V. Vuletić, and M. D. Lukin, Probing many-
body dynamics on a 51-atom quantum simulator, Na-
ture 551, 579 (2017).

[76] L. Henriet, L. Beguin, A. Signoles, T. Lahaye,
A. Browaeys, G.-O. Reymond, and C. Jurczak, Quan-
tum computing with neutral atoms, Quantum 4, 327
(2020).

[77] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and
M. Bayer, Giant rydberg excitons in the copper oxide
cu2o, Nature 514, 343 (2014).

[78] M. A. M. Versteegh, S. Steinhauer, J. Bajo, T. Let-
tner, A. Soro, A. Romanova, S. Gyger, L. Schweickert,
A. Mysyrowicz, and V. Zwiller, Giant rydberg excitons
in cu2O probed by photoluminescence excitation spec-
troscopy, Phys. Rev. B 104, 245206 (2021).

[79] L. A. P. Gallagher, J. P. Rogers, J. D. Pritchett, R. A.
Mistry, D. Pizzey, C. S. Adams, M. P. A. Jones, P. Grün-
wald, V. Walther, C. Hodges, W. Langbein, and S. A.
Lynch, Microwave-optical coupling via rydberg excitons
in cuprous oxide, Phys. Rev. Research 4, 013031 (2022).

[80] K. Orfanakis, S. K. Rajendran, V. Walther, T. Volz,
T. Pohl, and H. Ohadi, Rydberg exciton–polaritons in
a cu2o microcavity, Nature Materials 21, 767 (2022).

[81] Y. Alhassid, The statistical theory of quantum dots,
Rev. Mod. Phys. 72, 895 (2000).
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