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DATA DRIVEN SOLUTIONS AND PARAMETER DISCOVERY OF THE NONLOCAL MKDV

EQUATION VIA DEEP LEARNING METHOD

JINYAN ZHU AND YONG CHEN∗

Abstract. In this paper, we systematically study the integrability and data-driven solutions of the nonlocal mKdV
equation. The infinite conservation laws of the nonlocal mKdV equation and the corresponding infinite conservation
quantities are given through Riccti equation. The data driven solutions of the zero boundary for the nonlocal mKdV
equation are studied by using the multi-layer physical information neural network algorithm, which including kink
soliton, complex soliton, bright-bright soliton and the interaction between soliton and kink-type. For the data-driven
solutions with non-zero boundary, we study kink, dark, anti-dark and rational solution. By means of image simulation,
the relevant dynamic behavior and error analysis of these solutions are given. In addition, we discuss the inverse problem
of the integrable nonlocal mKdV equation by applying the physics-informed neural network algorithm to discover the
parameters of the nonlinear terms of the equation.

1. Introduction

In recent years, due to the wide application of nonlocal equations in various aspects, it has attracted the attention
of many scholars [1–3]. The most classical nonlocal equation was the nonlocal nonlinear Schrödinger(NNLS) equation
proposed by Ablowitz and Musslimani in 2013 [2]. And the most important parity-time(PT) symmetry in nonlocal
equations was introduced into AKNS system for the first time. Later, many scholars have studied this equation at
various levels [4–8]. Then many nonlocal equations are proposed and studied, such as nonlocal Davey-Stewartson
equation [9], nonlocal derivative nonlinear Schrödinger equation [10], nonlocal Hirota [11, 12], nonlocal KdV [13] and
so on. Recently, a nonlocal modified KdV(mKdV) was proposed

uxxx + ut + 6uu(−x,−t)ux = 0, (1.1)

which also called reverse-space-time mKdV equation. In physical applications, the nonlocal mKdV has shifted parity
and delayed time reversal symmetry, which is related to Alice Bob system [14]. In fact, the nonlocal mKdV equation has
been widely discussed by scholars. For example, the inverse scattering transform of the nonlocal mKdV equation was
given in [15,16]. The soliton solution of the nonlocal mKdV equation was solved through Darboux transformation [17].
The Dbar dressing method for the nonlocal mKdV equation was shown in Ref. [18]. The long-time asymptotic behavior
of the nonlocal mKdV equation with decaying initial data was studied by using Deift-Zhou steepest descent method [19].

Conservation law is universal in applied mathematics [20]. It reflects a phenomenon that some physical quantities
do not change with time. In soliton theory, conservation law plays an important role in discussing the integrability
of soliton equations. The existence of infinitely many conservation laws is closely related to the existence of soliton
equations. In fact, most nonlinear development equations with soliton solutions have infinitely many conservation laws.
Therefore, for a soliton system, finding its infinite conservation law is of great practical and theoretical significance for
proving the integrability of the system. Since Miura, Gardner and Kruskal discovered that the KdV equation has an
infinite conservation law [21], a series of methods have been developed to construct the (1 + 1)-dimensional integrable
system, some of which are no longer in use due to their limitations. For instance, through the scattering problem
and the gradual expansion of the scattering quantity a(λ) can yield an endless number of conserved quantities [22],
but it cannot be used to build the conservation rule, hence this method is currently of little use in application areas.
In the study of infinite conservation law, Wadati et al. have made considerable contributions. Generally speaking,
the infinite conservation law of a continuous system can be obtained through the following ways: Lax pair, Bäcklund
transform, formal solution of eigenfunction and trace identity, etc [23–26]. Although there are many ways to obtain
infinite conservation law, the conservation law is the same. This variety of methods and the consistency of results can
be seen as an external manifestation of integrability.

Machine learning is the mainstream method to solve many AI problems at this stage. As an independent direction,
it is developing at a high speed. As a form of machine learning, deep learning trains models with multiple hidden layers
between input and output. In general, deep learning means using deep neural networks. Deep neural network has
the advantages of fast computing speed and high accuracy, and has been widely used in natural language processing
[31], face recognition [27], speech recognition [30] and other fields [28, 29]. Recently, A new physical information
neural network (PINN) is proposed by the mathematical physics system based on the multi-layer network of deep
learning mode, which is proved to be suitable for dealing with forward problems and highly ill inverse problems.
The approximate solution of the control equation and the parameters of the control equation are found from the
training data [32]. And the numerical findings demonstrate that high-dimensional network tasks can be successfully
completed using the PINN approach with fewer data sets. This training neural network is a supervised learning task
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to solve some nonlinear partial differential equations that follow the laws of physics. Then, the PINN method is
used to generate data-driven solutions to reveal the dynamic behavior of nonlinear partial differential equations under
physical constraints, which has attracted wide attention from many scholars. Chen’s team has built many data-driven
solutions of nonlinear partial differential equations using the PINN approach during the last two years, including
soliton solutions [33, 34], breather solutions [35], rational solution [36], rogue wave [35, 37], higher-order breather
waves [38]and rogue periodic wave [39]. In particular, Lin and Chen add the properties of integrable systems such as
conserved quantities and Miura transform to the training network and proposes a two-stage PINN method and finds
new local wave solutions [40, 41]. In addition, other scholars have also used PINN method to obtain some important
results of data-driven solutions concerning the defocusing NLS equation with potential energy and the coupled NLS
equation [42–44]. As far as we know, the application of PINN to nonlocal equations has been rarely studied.

In this paper, we will derive the Ricatti equation from the x part of the Lax pair of the nonlocal mKdV equation
and construct the conservation law using the compatibility condition. The infinite conservation laws and infinite
conserved quantities are obtained from the solution of Ricatti equation. Besides, we add the nonlocal term to the
classical PINN to simulate the data-driven solutions of the nonlocal mKdV equation under zero boundary and nonzero
boundary conditions and give the error analysis. At the same time, we use the PINN of the nonlocal term to discover
the parameters of the nonlocal mKdV.

The structure of this paper is as follows. In Sec. 2, we mainly study the integrability of the nonlocal mKdV
equation and obtain its infinite conservation laws by using the Riccti equation. In Sec. 3, the composition of PINN is
introduced. Then we use PINN to study the data-driven solution under zero boundary conditions and give its dynamic
behavior in Sec. 4. In Sec. 5, we learn the data-driven solutions of the nonzero boundary of the nonlocal mKdV
equation and its dynamic behavior. In Sec. 6, the inverse problem is learned based on PINN, which mainly studies the
nonlinear coefficients of the nonlocal mKdV equation, while adding different noises to the network. The conclusion is
given in Sec.7.

2. Conservation laws for the nonlocal mKdV equation

The nonlocal mKdV equation (1.1) has the following Lax pair

Φx = MΦ, M = M(x, t;λ) := iλσ3 + U,

Φt = NΦ, N = N(x, t;λ) :=
[

4λ2 − 2u(x, t)u(−x,−t)
]

M − 2iλσ3Ux + [Ux, U ]− Uxx,
(2.1)

where Φ is the matrix eigenfunction, λ is the spectral parameter and

σ3 =

[

1 0
0 −1

]

, U(x, t) =

[

0 u(x, t)
−u(−x,−t) 0

]

.

For the solution of Lax pair equation (2.1) written in the form of vector Φ = (φ1, φ2)
T , the following function is

introduced

Γ =
φ2

φ1
,

we can put it into equation (2.1) and get

(lnφ1)x = iλ+ uΓ,

(lnφ1)t = 4iλ3 − 2iuu(−x,−t)λ− uxu(−x,−t)− ux(−x,−t)u+ (4λ2u− 2u2u(−x,−t)− 2iλux − uxx)Γ.

The derivatives of x and t of the above two equations are as follows

(uΓ)t = (−2iuu(−x,−t)λ− uxu(−x,−t)− ux(−x,−t)u+ (4λ2u− 2u2u(−x,−t)− 2iλux − uxx)Γ)x. (2.2)

In addition, combining the Lax pair equation, we can get the Riccti equation and conservation law equation about Γ

Γx = −u(−x,−t)− 2iλΓ− uΓ2,

Γt = −4λ2u(−x,−t) + 2uu2(−x,−t) + 2iλux(−x,−t) + uxx(−x,−t) +AΓ−BΓ2,

where

A = −8iλ3 + 4iλuu(−x,−t) + 2uxu(−x,−t) + 2uux(−x,−t), B = 4λ2u− 2u2u(−x,−t)− 2iλux − uxx.

The function Γ is expanded in the following series

Γ(x, t, λ) =

∞
∑

n=1

Γ(n)(x, t, λ)

(2iλ)n
,
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and collect the coefficient of the same power of λ to obtain the following formula

Γ(1) = −u(−x,−t), Γ(2) = −ux(−x,−t),

Γ(3) = −uxx(−x,−t)− uu2(−x,−t),

Γ(4) = uxu
2(−x,−t)− 4uu(−x,−t)ux(−x,−t)− uxxx(−x,−t),

Γ(2n) = −Γ(2n−1)
x − 2u

∑

l+k=2n−1

Γ(l)Γ(k),

Γ(2n+1) = −Γ(2n)
x − u

(

Γ(n)2 + 2
∑

l+k=2n

Γ(l)Γ(k)

)

.

Thus, we can write several conservation laws for the nonlocal mKdV equation as

(−uu(−x,−t))t = (3u2u2(−x,−t) + uxxu(−x,−t) + uuxx(−x,−t) + uxux(−x,−t))x,

(uux(−x,−t))t = (−6u2ux(−x,−t)u(−x,−t)− uxuxx(−x,−t)− uxxux(−x,−t)− uuxxx(−x,−t))x,

(−uuxx(−x,−t)− u2u2(−x,−t))t = (−4u2u(−x,−t)uxx(−x,−t) + 4u3u3(−x,−t) + uxxuxx(−x,−t)− u2
xu

2(−x,−t)

− 2uuxu(−x,−t)ux(−x,−t) + uuxxu
2(−x,−t)− 2uuxu(−x,−t)ux(−x,−t) + uxuxxx(−x,−t)

+ 5u2u2
x(−x,−t) + uu4x(−x,−t))x,

. . . ,

(uΓ(n))t = ((−2u2u(−x,−t)− uxx)Γ
(n) − uxΓ

(n+1) − uΓ(n+2))x.

At the same time, the corresponding conserved quantity can also be obtained as

I1 =

∫ +∞

−∞

−uu(−x,−t)dx,

I2 =

∫ +∞

−∞

−uux(−x,−t)dx,

I3 =

∫ +∞

−∞

(uuxx(−x,−t)− u2u2(−x,−t))dx,

. . . ,

In =

∫ +∞

−∞

uΓ(n)dt.

(2.3)

The above proves the integrability of the nonlocal mKdV equation. Next, we will apply PINN to the integrable
nonlinear equation to obtain its data-driven solutions.

3. The PINN deep learning method

In this part, we will introduce the PINN deep learning method for partial differential equation. Generally, the
(1+1)-dimensional nonlinear partial differential equation has the following form

ut +N [u] = 0, x ∈ [x0, x1], t ∈ [t0, t1] (3.1)

where u is a function of x and t, N [·] is a nonlinear differential operator in space, which generally contains high-order
dispersion terms and nonlinear terms. Then, the following equation can be defined by the left part of Eq. (3.1)

f := ut +N [u]. (3.2)

and a deep neural network is used to approximate u. Here, without losing generality, we first consider a neural network
with depth H , which is composed of an input layer, H−1 hidden layers and an output layer. And the hth hidden layer
is composed of Nh neurons, and then the output xh−1 of the previous layer after the action of the activation function
σ is taken as the input of the next hidden layer. This process is formed through the following radiation transformation

xh = σ
(

Λh

(

xh−1
))

= σ
(

whxh−1 + bh
)

,

where wh ∈ R
Nh×Nh−1 and bh ∈ R

Nh are the weights and deviations of the hth layer. Usually, we initialize the bias
term to zero, the weight is initialized by Xavier initialization, and the activation function is selected as tanh function.
After layer upon layer operation, a neural network can be obtained as

u
(

x0,Θ
)

= (ΛH ◦ σ ◦ ΛH−1 ◦ · · · ◦ σ ◦ Λ1)
(

x0
)

where the operator ” ◦ ” is the composition operator, and Θ =
{

wh,bh
}H

h=1
represents the parameters that can be

learned in the network. The core of the neural network is to constantly update the weights and deviations so that
the solution u of the partial differential equation satisfies Eq. (3.2) and minimizes f . And the neural network f and
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the network representing u have the same parameters, and these shared parameters can be learned by minimizing the
mean square error loss

Loss1 = Lossu +Lossf , (3.3)

where

Lossu =
1

Nu

Nu
∑

i=1

|u(xi
u, t

i
u)− ui|2, (3.4)

Lossf =
1

Nf

Nf
∑

j=1

|f(xj
f , t

j
f )|

2, (3.5)

where {xi
u, t

i
u, u

i}Nu

i=1 is the sampled initial and boundary value training data of u(x, t). Similarly, the collocation

points for f(x, t) is marked by {xj
f , t

j
f}

Nf

j=1. The loss function (3.3) contains the losses of initial-boundary value data

and the losses of networks (3.1) at a finite set of collocation points.
Further, if the solution of the partial differential equation is complex, we can write the solution of the final form as

u = p+ iq. Thus, the Eq. (3.3) can be divided into two equations with real part and imaginary part, as follows

pt +N [p] = 0, (3.6)

qt +N [q] = 0. (3.7)

Then the physics-informed neural networks fp(x, t) and fq(x, t) can be defined as

fp := pt +N [p], (3.8)

fq := qt +N [q], (3.9)

where p(x, t;w, b), q(x, t;w, b) are the latent function of the deep neural network with the weight parameter w and
bias parameter b, which can be used to approximate the exact complex-valued solution u(x, t) of objective equations.
This form is reasonable, and in Ref. [45] the network fp(x, t), fq(x, t) can be found under the automatic differentiation
mechanism.

Similarly, there is also a loss function in this network, and its form is more complex. We can set it to the following
form

Loss
′

1 = Lossp + Lossq + Lossfp + Lossfq , (3.10)

where

Lossp =
1

Np

Np
∑

i=1

|p(xi
p, t

i
p)− pi|2, Lossq =

1

Nq

Nq
∑

i=1

|q(xi
q, t

i
q)− qi|2, (3.11)

and

Lossfp =
1

Nf

Nf
∑

j=1

|fp(x
j
f , t

j
f )|

2, Lossfq =
1

Nf

Nf
∑

j=1

|fq(x
j
f , t

j
f )|

2, (3.12)

where {xi
p, t

i
p, p

i}
Np

i=1 and {xi
q, t

i
q, q

i}
Nq

i=1 are the sampled initial and boundary value training data of u(x, t). Similarly,

the collocation points for fu(x, t) and fv(x, t) are marked by {xj
f , t

j
f}

Nf

j=1 and {xj
f , t

j
f}

Nf

j=1.

For the loss function (3.10), the first two terms try to make the learned solution close to the exact solution when
approaching the initial value and boundary value data, and the last two terms make the hidden functions p and q

meet Eqs. (3.8) and (3.9).

4. Soliton solutions of nonlocal mKdV equation under the condition of zero boundary

In this part, we mainly use the neural network method to obtain the simulation solution of the nonlocal mKdV
equation under the zero boundary condition, as well as its dynamic behavior and error analysis. We consider the
nonlocal mKdV equation with Dirichlet boundary conditions, which is given by the following formula:







uxxx + ut + 6uu(−x,−t)ux = 0, x ∈ [x0, x1], t ∈ [t0, t1],
u(x, t0) = u0(x),
u(x0, t) = u1(t), u(x1, t) = u2(t),

(4.1)

where x0, x1 represent the boundary of x, and t0, t1 represent the start and end times of time t. The u0(x) defines the
initial condition.

In order to better understand the PINN method, we give the flow diagram of the nonlocal mKdV equation according
to section 3. It can be seen from Fig.1 that compared with the classical network diagram of the local equation, the
nonlocal term is added to the NN part, which makes more functions output and more complex training. Then the
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relevant physical information is supplemented, and the loss function is evaluated by NN and the residual of the control
equation given in combination with the relevant physical information. Then, the weight w and the deviation b are
continuously updated to minimize the loss function to less than a certain tolerance ε until the specified maximum
number of iterations is reached.

Figure 1. (Color online) The PINN scheme solving the nonlocal mKdV equation, where ũ =
u(−x,−t), p̃ = p(−x,−t) and q̃ = q(−x,−t).

Next, we will use physical neural networks to simulate the 1-soliton and 2-soliton solutions of the nonlocal mkdV
equation, including kink solution, complex solution and their interactions. At the same time, the simulated solution
is compared with the accurate solution.

4.1. 1-soliton solution. In Ref. [17], the method of Darboux transformation is used to obtain the kink solution form
of the nonlocal mKdV:

u(x, t) =
−2ν

1 + e−2ν(x−4ν2t)

when ν = −1, a kink solution is generated,

u(x, t) =
2

1 + e2x−8t
, (4.2)

which is a real solution. Therefore, according to Eq. (3.2), the PINN f(x, t) can be constructed as

f := uxxx + ut + 6uu(−x,−t)ux, (4.3)

here we choose [-4,4] as the boundary of x and t, so we can give the initial and boundary information as follows:






















u0(x) = u(x,−4) = 2
1+e2x+32 ,

u1(t) = u(−4, t) = 2
1+e−8−8t ,

u2(t) = u(4, t) = 2
1+e8−8t .

(4.4)

To get a better simulation effect, we divide x into 512 points in the interval and 200 points in the time interval.
That is to say, the interval is divided into 512 × 200 points. Nu = 100 points are randomly selected in the initial
boundary data set, and the internal Nf = 10000 points are sampled by the Latin hypercube sampling method [46].
Here we construct a feedforward neural network with 6 layers and 40 neurons in each hidden layer. By adjusting all the
learnable parameters of the neural network and the loss function, we successfully learn the 1-soliton solution u(x, t).
The relative L2 error of the final PINN model is 2.583821e−04 in about 84.7319s, and the number of iterations is 346.

Fig.2 (a) and (b) show the density plots of the exact solution and the learning solution, the error density plots
and three wave propagation plots at different times respectively. We can find that the error between the learning
solution and the accurate solution is very small. Fig. 2 (c) and (d) display the three-dimensional motion and loss
curves respectively. As shown in Fig.2 (d), the loss curve is relatively smooth, which implies that the integrable deep
learning method is very effective and stable.
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Figure 2. (Color online) The 1-soliton solution u(x, t) for the nonlocal mKdV equation:(a) The
density plot and the error density diagram; (b) The wave propagation plot at three different times;
(c) The three-dimensional plot; (d) The loss curve figure.

In addition, the complex soliton solution of the nonlocal mKdV equation was given by the Hirota direct method in
Ref. [47], which can be expressed as

u(x, t) =
(1 + 3

2 i)e
ix+it

1 + e(1+
3
2
i)x−( 1

4
+ 3

8
i)t

. (4.5)

In this case, we set u = p+ iq, then the construction of PINN needs to divide the real part and the imaginary part of
the equation reference Eqs.(3.8) and (3.9),

fp := pxxx + pt + 6pp(−x,−t)px − 6q(−x,−t)qxp− 6p(−x,−t)qqx − 6qq(−x,−t)px, (4.6)

fq := qxxx + qt − 6qq(−x,−t)qx + 6pp(−x,−t)qx + 6ppxq(−x,−t) + 6p(−x,−t)qpx. (4.7)

Let [x0, x1] and [t0, t1] in Eq.(4.1) as [−5, 5] and [− 1
100 ,

1
100 ] respectively. We select the complex soliton solution at

t = − 1
100 as the initial condition

u0(x) = u(x,−
1

100
) =

(1 + 3
2 i)e

ix− 1
100

i

1 + e(1+
3
2
i)x+ 1

400
+ 3

800
i
. (4.8)

With the help of LHS, Nu = 100 collocation points and Nf = 5000 collocation points are randomly selected at the
boundary and inside, respectively, to obtain training data, and put them into a network with 6 hidden layers and 40
neurons. Finally, we successfully learned the complex soliton solution, and the training solution and accurate solution
achieved a L2 error of 5.639394e-04. The whole training process take 743.5638 seconds, with 10414 iterations. In
Fig. 3, we not only give the density and error diagrams of the exact solution and the training solution, but also show
the differences between the two solutions at different time stages. It can be seen from Fig.3 (b) that they are very
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consistent. In addition, we also give the 3-dimensional graph of the training solution and the loss function graph in
the iteration process in graphs (c) and (d).
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Figure 3. (Color online) The complex soliton solution u(x, t) for the nonlocal mKdV equation:(a)
The density plot and the error density diagram; (b) The wave propagation plot at three different
times; (c) The three-dimensional plot; (d) The loss curve figure.

4.2. 2-soliton solution. In this subsection, we mainly simulate two soliton solutions, including bright-bright soliton
and soliton kink interaction solutions. As shown in Ref. [47], the general formula of the 2-soliton solution is

u(x, t) =
F

G
, (4.9)

where

F =
a1a2

(

3
2 (k + 1

2 )b1e
(1+k+l)x−(k3+l3+1)t + (1 + l)(k + l)b2e

( 3
2
+k)x−(k3+ 9

8 )t
)

l − 1
2

+
3
2a1(1 + l)e−t+x + a2(k + 1

2 )(k + l)e−k3t+kx

1− k
,

G =1 +
1

(1− k)
(

l − 1
2

)

(

3

2
a1b1(k + l)e(1+l)x−(l3+1)t + a1b2(1 + l)(k +

1

2
)e

3
2
x− 9

8
t + a2b1(k +

1

2
)(1 + l)e(k+l)x−(k3+l3)t

+
3

2
a2b2(k + l)e(k+

1
2 )x−(k

3+ 1
8 )t
)

+ a1a2b1b2e
( 3
2
+k+l)x−(k3+l3+ 9

8 )t.

When k = 1
2 , l = 1, a1 = a2 = b1 = b2 = 1, Eq.(4.9) can be reduced to

u(x, t) =
6ex−t + 3e

1
2
x− 1

8
t + 3e

5
2
x− 17

8
t + 6e2x−

5
4
t

1 + 9e2x−2t + 16e
3
2
x− 9

8
t + 9ex−

1
4
t + e3x−

9
4
t
, (4.10)
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which is a non-singular 2-soliton solution. Let [x0, x1] and [t0, t1] in Eq.(4.1) as [−15, 15], the corresponding initial
condition is given by

u0(x) = u(x,−15) =
6ex+15 + 3e

1
2
x+ 15

8 + 3e
5
2
x+ 255

8 + 6e2x+
75
4

1 + 9e2x+30 + 16e
3
2
x+ 135

8 + 9ex+
15
4 + e3x+

135
4

. (4.11)

We select the same configuration points as the 1-soliton solution and use the LHS method to obtain training data
sets, then we input these training data sets into the depth network of 9 hidden layers, each of which has 40 neurons.
We have successfully learned the 2-soliton solution. Compared with the exact solution, its L2-norm error is 5.937731e-
02. The whole training time is 162.7119s, and the number of iterations is 1715. What needs to be noted here is
not that more configuration points or more training network layers will lead to better results. Through experiments,
we choose deeper network layers, and the results will be worse. The L2-norm error will become 2.027299e-01. The
training time is 155.5235s, and the number of iterations is 1402. The training results are shown in Fig.4, including
the density diagram, error dynamics diagram, propagation diagram at different times, three-dimensional diagram and
loss curve diagram of learning 2-soliton solution and accurate 2-soliton solution. It can be seen that the results are
quite satisfactory.
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Figure 4. (Color online) The 2-soliton solution u(x, t) for the nonlocal mKdV equation:(a) The
density plot and the error density diagram; (b) The wave propagation plot at three different times;
(c) The three-dimensional plot; (d) The loss curve figure.

When k = 0, l = 2, a1 = a2 = b1 = b2 = −1, Eq.(4.9) can be reduced to

u(x, t) == −
1 + 9

2e
x−t + 1

2e
3x−9t + 4e

3
2
x− 9

8
t

1 + 2e3x−9t + e
3
2
x− 9

8
t + e−8t+2x + 2e

1
2
x− 1

8
t + e

7
2
x− 73

8
t
, (4.12)
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which represents interaction of soliton and kink-type wave. The Dirichlet boundary x and t of Eq. (4.12) are [-10,10]
and [-15,15] respectively. The initial training condition is

u(x, t) = −
1 + 9

2e
x+15 + 1

2e
3x+135 + 4e

3
2
x+ 135

8

1 + 2e3x+135 + e
3
2
x+ 135

8 + e2x+120 + 2e
1
2
x+ 15

8 + e
7
2
x+ 1095

8

. (4.13)

Select the same configuration points as above to obtain training data, and put them into a 6-layer neural network with
each 40 neurons. The solution of soliton kink interaction is well learned. Under the condition of training duration
of 373.2689 seconds and iteration number of 7028, We get that the error of L2-norm between the exact solution and
the training solution is 1.452126e-02. In Fig. 5(a),(b), the density graph, error graph and time evolution graph of the
training and exact solution at t=-10.05, t=0, t=10.05 are specifically given. In Fig. 5(c), (d), we use the training data
to give the three-dimensional graph and the iterative degree graph.
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Figure 5. (Color online) Solution of the interaction between soliton and kink-type waves u(x, t)
for the nonlocal mKdV equation:(a) The density plot and the error density diagram; (b) The wave
propagation plot at three different times; (c) The three-dimensional plot; (d) The loss curve figure.

5. Data-driven solutions of nonlocal mKdV equation with nonzero boundary

This part mainly studies the solutions of nonlocal mKdV equations under nonzero boundary, including kink solution,
dark solution, anti-dark solution and rational solution.

5.1. Data-driven solitary wave solution. The kink solution of nonlocal mKdV with non-zero boundary has been
obtained by inverse scattering method in Ref. [16], which is expressed as

u(x, t) = −ũ0 tanh

[

ũ0

(

x+ 2ũ2
0t
)

+
θ1 + θ2

2
i

]

eiθ2 .
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In order to distinguish between the training initial boundary and the non-zero boundary conditions satisfied by the
equation, we use ũ0 to represent the non-zero boundary conditions satisfied by the equation. The neural network is
constructed by Eq. (3.2), and its training initial condition is

u0(x) = u(x,−10) = −ũ0 tanh

[

ũ0

(

x− 20ũ2
0

)

+
θ1 + θ2

2
i

]

eiθ2 .

At this time, we select the region of x and t as [−10, 10], and divide 512 points and 200 points in the region of x and
t respectively. Nu = 1000 and Nf = 10000 points are randomly selected as training data at the boundary and inside
respectively. We numerically predict the kink soliton solution with proper parameters ũ0 = 1, θ1 = θ2 = 0 under a
6-hidden-layer deep PINN with the 40 neurons per layer. The training results show that its L2 error is 5.162946e-04
compared with the exact solution, the training time is merely 23.7374s, and the number of iterations is only 350, the
final result is shown in Fig. 6. Once again, it shows the power of the deep integrable system.
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Figure 6. (Color online) The kink soliton solution u(x, t) for the nonlocal mKdV equation under
nonzero boundary:(a) The density plot and the error density diagram; (b) The wave propagation plot
at three different times; (c) The three-dimensional plot; (d) The loss curve figure.

The dark and anti-dark soliton solutions of the nonlocal mKdV are also given in Ref. [16], and the overall expression
is

u(x, t) =
eiθ−

w

wũ0

(

ũ2
0 + w2

) [

e2ϕ+i(θ1+θ2) − e2iθ−
]

+ 2
(

w4eiθ2 − ũ4
0e

iθ1
)

eϕ+iθ−

(ũ2
0 + w2)

[

e2ϕ+i(θ1+θ2) − e2iθ−
]

+ 2ũ0w (eiθ2 − eiθ1) eϕ+iθ−
, (5.1)

where

ϕ =

(

w2 − ũ2
0

) [

w2x−
(

w4 + 4w2ũ2
0 + ũ4

0

)

t
]

w3
.
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it is a dark soliton solution as ũ0 = 1, w = 3
2 , θ1 = π, θ2 = θ = 0, and it is an anti-dark soliton solution as

ũ0 = 1, w = 3
2 , θ1 = θ=0, θ2 = π. For the dark soliton solution, let the interval of x and t be [-1,1], and the

corresponding initial condition is

u0(x) = u(x,−1) =
39e

5
3
x+ 1205

108 + 39− 97e
5
6
x+ 1205

216

39e
5
3
x+ 1205

108 + 39− 72e
5
6
x+ 1205

216

.

For the anti-dark soliton solution, let the intervals of x and t as [-4,4] and [-2,2] respectively, and its initial condition
becomes

u0(x) = u(x,−2) =
39e

5
3
x+ 1205

54 + 39 + 97e
5
6
x+ 1205

108

39e
5
3
x+ 1205

54 + 39 + 72e
5
6
x+ 1205

108

.

By performing the same data collection and training procedures as kink soliton solution, through training, we can get
that the L2-norm error between the learning solution and the accurate solution is 2.459108e-02 for the dark soliton
solution, the whole learning process takes about 261.6747 seconds, and iterates 4618. For the anti-dark soliton solution,
the L2-norm error between the learning solution and the exact solution is 3.244125e-04, and the whole learning process
takes about 24.5986 seconds, with 345 iterations. The construction of this neural network is easier to learn the anti-
dark soliton solution, takes less time, and the training result is more ideal. The learning results are shown in Fig. 7
and Fig. 8 respectively.
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Figure 7. (Color online) The dark soliton solution u(x, t) for the nonlocal mKdV equation:(a) The
density plot and the error density diagram; (b) The wave propagation plot at three different times;
(c) The three-dimensional plot; (d) The loss curve figure.
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Figure 8. (Color online) The anti-dark soliton solution u(x, t) for nonlocal mKdV equation:(a) The
density plot and the error density diagram; (b) The wave propagation plot at three different times;
(c) The three-dimensional plot; (d) The loss curve figure.

5.2. Data-driven rational solution. In this section, we use the PINN method to construct the rational soliton
solution of Eq. (15). The form of its solution is given in Ref. [16]

u(x, t) = −1 +
4

1 + 4(x− 6t)2
. (5.2)

If the boundary regions of x and t are [-0.5,0.5] and [-0.3,0.3], then the corresponding initial condition is

u(x, t) = −1 +
4

1 + 4(x− 5
9 )

2
, (5.3)

in order to learn rational soliton solution better and more accurately, Nu = 100 configuration points are selected at the
boundary and Nf = 5000 configuration points are selected internally for training. The training results are compared
with the accurate solution achieve a relative L2 error of 1.164655e-02 in about 477.8897s, and the number of iterations
is 2848. In Fig. 9, we give the specific training results, including the density graph, error graph and time evolution
graph of the exact solution and the training solution. The 3D stereoscopic map is generated from the training results.
The training error map is not very stable, and there will be some burrs in the middle, but this will not affect the final
training results.

6. The PINN algorithm for the data-driven parameter discovery

In this section, we focus on data driven discovery of the nonlocal mKdV equation through PINN algorithm. It is
well known that linear equations have good properties, while most equations in real life are nonlinear. It is precisely
because of the existence of these nonlinear terms that more physical properties are stimulated and widely used in
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Figure 9. (Color online) The rational soliton solution u(x, t) for the nonlocal mKdV equation:(a)
The density plot and the error density diagram; (b) The wave propagation plot at three different
times; (c) The three-dimensional plot; (d) The loss curve figure.

various fields, such as physics, mechanics, life sciences, etc. Therefore, it is necessary to learn the specific forms of
nonlinear terms. For nonlocal nonlinear partial differential mkdv equation, we mainly study the coefficient a of the
following nonlinear terms

uxxx + ut + auu(−x,−t)ux = 0, (6.1)

Theoretically, parameter can be found by using any known nonlocal mKdV solution. Here, we choose to use the
complex solution to do parameter discovery, and choose Eq. (4.6) and Eq.(4.7) as the physical information neural
network of the nonlocal mKdV equation. The Latin hypercube is still used for sampling. With the help of the exact
soliton solutions of a=6 and (x, t) ∈ [−5, 5] × [− 1

100 ,
1

100 ], the training data set is generated by randomly selecting
Nu = 200 as the initial boundary data and Nf = 50000 as the configuration point. According to the training data set
obtained, the data-driven parameter a can be found by using the PINN.

When the hidden layer of PINN is determined, we give the data-driven parameter a under different neurons of each
layer, and show the results in Table 1. From the table, it can be found that, when no noise is added to the system, the
precision of PINN learning unknown parameters becomes higher and higher as the number of neurons increases. When
we add different noises, the results of parameter discovery will oscillate with the increase of the number of neurons.
When the number of hidden layers and neurons is fixed, the number of internal configuration points also affects the
discovery of parameters. In Table 2, we list the results of parameter learning under different internal configuration
points and different noises. It can be seen from the table that the more internal configuration points are given, the
better the learning results will be. However, when the internal configuration points are determined, different noises
are added to the neural network, and the results are also oscillatory. In general, the more configuration points, the
greater the noise added to the network, and the result of parameter discovery is the closest to the ideal result.
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In Figures 10 (a) and (b), we show the iterative changes of unknown parameters in the process of inverse problem
under different internal configuration points and different number of neurons. When other conditions are determined,
the more internal configuration points or the more neurons in each layer, the faster the convergence of unknown
parameters. In Fig. 10 (c) and (d), the changes of unknown parameters and loss functions with iteration are analyzed
when different noises are used in the inverse problem. The iteration of unknown parameters under different noises is
described in Fig. 10 (c). The convergence without noise is faster than that with noise, but the final learning result is
better when the noise is 0.5. Fig. 10 (d) describes the change of loss functions of different noises with the increase
of iteration times. The results show that the convergence effect is the best when 0.05% noise is added to the PINN.
When 0.01% noise is added to the network, the convergence effect is the worst. This shows that adding proper noise
into the network is beneficial to improving the training results.

Table 1. Parameter discovery through different neurons with different noises.

Hidden layers
-Neurons

Without noise With a 0.1% noise With a 0.5% noise
a error a error a error

9-40 5.385962 10.23397% 5.941454 0.97576% 5.86068 2.32201%
9-60 5.817094 3.04843% 5.822274 2.9621% 5.6708 5.48667%
9-80 5.991696 0.1384% 5.593484 6.77526% 6.001476 0.0246%

Table 2. Parameter discovery through different internal configuration points with different noises.

Internal points
Nf

Without noise With a 0.1% noise With a 0.5% noise
a error a error a error

10000 5.635974 6.0671% 5.866333 2.22778% 5.132474 14.45876%
30000 5.702411 4.95981% 5.5218 7.97% 5.752123 4.13129%
50000 5.991696 0.1384% 5.593484 6.77526% 6.001476 0.0246%
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Figure 10. (Color online) Parameter discovery of the nonlocal mKdV equation:(a) Iteration diagram
of different internal configuration points; (b) Iterative graph of different neurons in each layer with
the same neural network depth; (c) Iterative graph under different noise conditions; (d) The variation
of loss function with the different noise.
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7. Conclusion

In this paper, we first give the infinite conservation laws of the nonlocal mKdV equation by using Riccti-type
equation, which shows the integrability of the nonlocal mKdV equation. Then the nonlocal term is added to the PINN
deep learning to reconstruct the zero boundary solutions of the nonlocal mKdV equation, including kink solution,
complex soliton solution, bright-bright soliton and bright-kink interaction solutions; For non-zero boundary, we use
PINN to numerically simulate kink solution, dark soliton solution, anti-dark soliton solution and rational solution. At
the same time, the error of each learning solution under L2 norm is given. The results show that the error between
the exact solution and the exact solution generated by the PINN deep learning method is very small, which verifies
the effectiveness and stability of the integrable deep learning method. For a given region, PINN can quickly and
accurately learn the corresponding solution by using less data and network layers, which shows the power of integrable
deep learning. Finally, the problem of data-driven parameter discovery is solved. The coefficients of nonlinear terms
for the nonlinear mKdV equation are learned through PINN. In the process of inverse problem processing, we add noise
to the network. Using the control variable method, when the training data and network depth are determined, we
compare the parameter discovery of different neurons in each hidden layer under different noise conditions, and present
the results in the form of a table. Under the condition of determining the network depth and neurons, we compare
the learning results of parameters given different training data and noise. The results show that the more internal
configuration points are given, the more accurate the learning results are. In addition, the discovery of parameters
is also closely related to noise. The addition of different noises has a great influence on the learning results, which
indicates that noise has a strong sensitivity.
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