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Abstract

The paper is devoted to the algebraic and geometric aspects of the full symmetric Toda
system. We construct a solution to the complete Deift-Li-Nanda-Tomei flows system using
the QR decomposition method. For this purpose we introduce specialized invariant tensor
operations on the Lax operator of the model. These operations have a direct interpretation
in terms of the representation theory of Lie algebras. We expect that this approach can
be effective in studying the geometry of flag varieties.
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1 Introduction

Ever since its discovery in mid 1960-ies (although reportedly before that it showed up as a
curious non-chaotic behaviour in the Ulam-Fermi numerical experiment in 1950-ies), the Toda
system (open or periodic Toda chain and its generalisations) has almost always remained in
the spotlight of attention of the specialists in Mathematical Physics. Seemingly simple way
to formulate it, on one hand, and the fact that it shows up in one or another manner in
virtually any study of integrable systems, from Matrix models to Painlevé equations, makes it
an indispensable tool and a central object of interest in many works. The fact that it can be
easily generalised to embrace different phase spaces, its relation with algebra and geometry of
the Lie groups and Lie algebras, give further incentives for the research of its properties.

In this paper we are dealing with one of the popular generalizations of the usual Toda chain,
that is with the full symmetric Toda system; putting it simply one can say that the symmetric
Toda system differs from the usual Toda chain by the form of the Lax matrix (see section 2.2):
whereas in the usual Toda chain, this matrix is symmetric and has three non-zero diagonals,
the full symmetric system works with generic symmetric matrices, see equation (5).

This system is known to be Hamiltonian and integrable in an appropriately generalised
sense of Liouville integrability criterion: the phase space of this system is not symplectic, so
one needs to speak either about some sort of the noncommutative integrability (see [12]) or
about the integrability on symplectic leaves. The latter fact is far from being trivial, since
the dimensions of symplectic leaves are rather large, in fact they are proportional to n2; the
constructions of additional integrals are scarce and rather complicated (see [2], [8]). Not all
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these families are commutative; in effect one can show that the symmetric Toda system is
super-integrable. In our paper we try to shed some light on the genesis and the structure of the
best known commutative family of additional Toda integrals, the chopping integrals of Deift,
Nando, Li and Tomei (see [2]). One knows that they can be obtained by means of the AKS
reduction method from a family of B−-invariant rational functions on sl∗n. On the other hand,
the fact that these functions actually commute on sl∗n is not easy to show: one either does it by
direct computations (as in [2]), or one can derive it from the properties of a Gaudin system, see
[7]. In our paper we derive this property from the application of a differential operator to the
invariant functions. We think, that this mechanism of obtaining commutative families, similar
to the “argument shift method” is an interesting and a rather easy way of reasoning, which
deserves a special attention.

Another subject, which we address in this paper is the way, one can obtain the solutions to
the additional flows, i.e. to the Hamilton equations associated with the additional (chopping)
integrals. It has been known in the literature, that the symmetric Toda flow can be solved
by the method of “QR-decomposition”: i.e. if L0 is the initial position of the flow, and we
decompose the exponent of L0 in the product of an orthogonal and a lower-triangular matrix

exp(tL0) = Q(t)R(t)

then the curve Q(t)L0Q(t)−1 is the integral curve of the Toda system that goes through L0. In
our paper we show that similar constructions are applicable to the chopping integrals. To this
end we use a special property of the Lax matrix, associated with these integrals, see sections
4.3 and 4.5. We think, the fact that the DLNT integral flows can be solved by this method
can be helpful if one wants to understand the geometry of this flows and the corresponding
coordinates on the phase spaces.

1.1 Composition and main results of the paper

The body of paper is divided into four major parts: first, in section 2, we speak about the
known results concerned with the symmetric Toda system, beginning with the description of
the center of the Kitillov-Kostant Poisson structure on sl∗n. Then we give a brief definition of
the Toda system in terms of the Lax matrix, and speak a little about the known systems of
first integrals: the chopping procedure. We also outline the major steps of the AKS reduction
method, that gives commutative families of functions on Lie subalgebras from some invariant
functions on the big algebra.

Then in section 3, we prove the commutativity of the chopping integrals by a method,
based on the application of a differential operators Dk, see the lemmas 2 and 3. We think, that
the role of these operators in the general theory is rather large and we hope to find further
applications of these constructions in the future. We also give a description of another family
of additional integrals (this family is noncommutative in general).

Section 4 is the main part of the text. In this section we show that the QR decomposition
method can be extended to the additional integrals, such as the chopping integrals. To this
end we show that the Hamilton fields of these integrals are generated by the M-operators, that
verify certain important additional condition, see the equation (36). This is done by finding
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a suitable matrix representation of the M-operator: first we do it in a particular case of the
chopping integrals Hk,n−1(L) (see sections 4.3 and 4.4), and then in the general case, where the
operators Dk come up very handy in the reasoning, see section 4.5.

The last section is dedicated to a list of open questions, concerned with the Toda system.
In the end we add the appendix, where some of the computations, referred to in the paper are
collected.

Acknowledgements The work on sections 1,2 and 3 was carried out within the framework of
a development programme for the Regional Scientific and Educational Mathematical Center of
the Yaroslavl State University with financial support from the Ministry of Science and Higher
Education of the Russian Federation (Agreement on provision of subsidy from the federal budget
No. 075-02-2022-886) and was partially supported by the RFBR grant 20-01-00157. The work
on sections 4,5,and 6 was partially supported by the RSCF grant 22-11-00272.

2 Preliminaries

In this section we describe the known results and constructions, related with the full symmetric
Toda system and its integrals.

2.1 Poisson algebra S(sln)

Let g be a Lie algebra, g∗ its dual space. The algebra of polynomial functions on the affine space
g∗ is naturally identified with S(g). Recall that the Lie bracket on a Lie algebra g induces a
Poisson structure in S(g); it is well known that the Poisson center of the algebra S(g) consists of
the G-invariant elements in S(g), that is the polynomial functions preserved by the (co)adjoint
action on g∗ of the simply connected group G, generated by g.

For instance when g = sln, the Poisson structure is defined by the formula

{eij , ekl} = δjkeil − δliekj . (1)

Here eij ∈ S(sln),
∑

i eii = 0 are the generators of the Lie algebra sln. It is convenient to
consider the matrix (the Lax operator) made up of eij

L =
∑

ij

Eij ⊗ eij,

then L ∈ Matn(S(sln) and one can write down the Poisson structure in an R-matrix form.
Another advantage of using the matrix L is that it gives a simple way to describe the Poisson

center of S(sln): as we mentioned above Z(S(sln)) is equal to the space of all SLn-invariant
functions in S(sln). Then the generators of this subalgebra can be easily identified with the
traces of the powers of the matrix L:

Z(S(sln)) = 〈Im(L), m = 2, . . . , n〉,
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where 〈·〉 denotes the subalgebra, generated by · and

Im =
1

m
Tr(Lm).

In fact, the elements Im are independent, and the Poisson center of S(sln) is just free polynomial
algebra with generators Ik. Another way to get the generators of the Poisson center of S(sln)
is to consider the coefficients of the characteristic polynomial of L:

det(L− λ1) =
n∑

i=0

(−1)n−iλn−iEi(L), (2)

then E1 = Tr(L) = 0 in sln and

Z(S(sln)) = 〈Ei(L), i = 2, . . . , n〉.

The elements Ei(L) are again free generators of the center of S(sln).

2.2 Full symmetric Toda system and Borel subalgebras

Consider the Cartan decomposition of a real semisimple Lie algebra g:

g = k⊕ p, (3)

where k is a maximal compact subalgebra in g and p is the subspace, orthogonal complement
of k with respect to the Killing form. The decomposition in (3) is determined with the help of
Cartan involution θ : g → g, θ2 = 1, so that θ|k = 1, θ|p = −1. For instance for g = sln (all the
algebras in this section are assumed to be real) we have

sln = son ⊕ Symmn(R)

and θ(a) = −at. Here Symmn(R) denotes the space of symmetric n×n matrices, and at is the
transpose matrix. Then the Killing form on g induces an isomorphism:

k ∼= k∗, p = (k)⊥ ∼= b∗ (4)

Here b denotes the (lower) Borel subalgebra in g and b∗ is its dual space. For instance in the
case g = sln, b = bn, the algebra of lower triangular matrices in sln.

The identification (4) induces the Poisson structure on p, it is this structure, which is used in
the definition of the full symmetric Toda system. In particular, if g = sln, we have the Poisson
structure pulled from the space b∗n. From now on we shall concentrate on this particular case,
although the most part of our results are easy to generalise to arbitrary Cartan decompositions.

So let us consider the Toda system on sln. By definition this is the flow, induced by the
Poisson structure pulled from bn for the Hamiltonian H = 1

2
Tr(L2) (here we use the notation

from the previous section). One can show that the corresponding Hamilton equation has the
following Lax form

L̇ = [M(L), L], (5)
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where M : Symmn → son is the natural projection: if the symmetric matrix L is equal to the
sum of a diagonal matrix and the upper and lower triangular matrices L+, L− (where L− = LT

+,
of course) then

M(L) = L+ − L−. (6)

Remark 1. The projection M is in effect equal to the restriction onto Symmn of the natural
projection M : sln → son, induced by the direct sum decomposition:

sln = son ⊕ bn.

2.3 Chopping procedure in the Full Symmetric Toda system

The identifications that we made above mean that the integrability of Toda system now will
follow if we find a sufficient number of integrals in involution commuting with the Hamiltonian
H = 1

2
Tr(L2), regarded as a function on b∗n. One such family is easy to obtain: it is not difficult

to show that the center of the Poisson algebra S(sln) gives such a family, when restricted to
Symmn. In effect it is almost evident that all these functions will commute with the Hamilton
function H : this is just the corollary of the Lax equation (5). The fact that these functions
commute with each other follows from the next formula for the Hamilton field of a smooth
function f : Symmn → R with respect to the Poisson structure, induced from bn:

Xf = [M(∇f), L] (7)

where M is the projector to son that we have used earlier, see (6). Here for any smooth function
on sln, we use ∇f to denote the matrix of partial derivatives of f : let xij , i, j = 1, . . . , n denote
the matrix elements of L; also let ∂ij =

∂
∂xij

, then

∇f =



∂11f . . . ∂1nf
...

. . .
...

∂n1f . . . ∂nnf


 . (8)

Thus, the generators Em(L), m = 1, . . . , n (coefficients of the characteristic polynomial of L) or
Im(L) =

1
m
Tr(Lm), m = 1, . . . , n of the center, of S(sln) give a family of the first integrals of the

Toda system. However they are not sufficient in the great majority of cases, since the dimension
of the space Symmn is n(n− 1)/2− 1 much greater than the number of these functions.

This means that one needs additional integrals to prove the integrability of the symmetric
Toda system. The main construction, used in the literature to find such additional integrals is
the so-called chopping construction, or chopping procedure suggested in the paper [2]. Let us
recall it briefly.

Consider the matrix of the Lax operator L of the Full Symmetric Toda system; it is a real
symmetric matrix of order n. For future references we will fix the notation here:

L =




a11 a12 ... a1n
a12 a22 ... a2n
... ... ... ...
a1n a2n ... ann


 . (9)

6



Observe that in accordance with traditions we use letters aij and not xij to denote the matrix
elements of L as symmetric matrix i.e.

aij = (xij)|Symmn
.

One can now define the following set of characteristic polynomials:

χk(L, λ) = det
(
(L− λ1)(k)

)
,

χk(L, λ) =
∑n−2k

m=0 Ek,m(L)λ
n−2k−m, 0 ≤ k ≤

[
n
2

]
,

(10)

where (L − λ1)(k) is the matrix of order n − k, which we obtain by deleting (“chopping out”)
the k upper rows and k right columns of matrix (L − λ1), and [ ] means the floor integer
part; below we will usually abbreviate χk(L, λ) to just χk(λ). This procedure was introduced
in paper [2], where it’s called the chopping procedure. It was shown in the cited paper that the
functions

Ik,m(L) =
Ek,m(L)

Ek,0(L)
, 0 ≤ m ≤

[
1

2
(n− 1)

]
, 1 ≤ k ≤ n− 2m (11)

define
[
1
4
n2
]
integrals in involution for the Full Symmetric Toda system on the generic orbit

of order 2
[
1
4
n2
]
. These integrals are functionally independent, we will call them the DLNT-

integrals or the chopping integrals.
The notation for Ek,m(L) is consistent with the previously introduced one: recall that we

denoted by denote by Em(L) the coefficients of characteristic polynomials of the “unchopped”
matrix. Then Em(L) = E0,m (in fact E0,0(L) = 1), so the previously introduced integrals, that
appear from the center of S(sln) are part of the family. Of course we can replace Em(L) with
a more standard set of functions Im(L) =

1
m
TrLm, m = 1, . . . , n.

The original proof of commutativity of the family Ik,m(L) as functions on Symmn with
respect to the Poisson structure, induced from bn, given in [2], was by a brute-force calculation.
Below (see lemma 2) we shall give an independent prove of the commutativity of Ik,m(L); our
approach is rather invariant and with its help we will be able to prove that the flow induced
by the “chopping integrals” Ik,m(L) admits the solution by QR-decomposition method.

2.4 AKS lemma

In order to obtain Poisson commutative families of rational functions in Symmn, or (equiva-
lently) in Q(bn), the algebra of rational functions on b∗n we will use a universal construction,
known as the Adler-Kostant-Symes (AKS) method (see [3], [4] and [5]). Let us recall the basic
steps of this method. To this end consider a Lie algebra g, decomposed into the direct sum

g = g0 ⊕ g1. (12)

Let p : g → g0 be the natural projection, induced by the decomposition (12). We will denote
by S(p) the natural homomorphism of the symmetric algebras

S(p) : S(g) → S(g0),

7



induced by p. In effect, S(p) is just the projection with respect to the natural decomposition

S(g) = S(g0)⊕ g1S(g). (13)

Observe that both terms in this decomposition are in fact Poisson subalgebras in S(g). If
i : g0 → g is the inclusion of the subalgebra, then S(i) will denote the induced map on
symmetric algebras. Clearly, S(i) unlike S(p) commutes with the Poisson brackets on S(g) and
S(g0); in fact the first term in the decomposition (13) is the image of the map S(i); below we
will usually identify S(g0) with the image of the inclusion map S(i).

For an element f ∈ S(g) let us denote its decomposition with respect to (13) as

f = f0 + f1

where f0 = S(p)(f). The following lemma gives a way to construct a commutative subalgebras
in S(g0).

Lemma 1. Let f, g ∈ S(g)G0 = S(g)g0 (here G0 is the simply connected Lie group associated
with g0) and let {f, g} = 0 in S(g), then

{f0, g0} = 0 = {f1, g1}.

Proof. Indeed, for f, g ∈ S(g)G0 we compute

{f1, g1} = {f − f0, g − g0} = {f, g} − {f0, g} − {f, g0}+ {f0, g0} = {f0, g0}. (14)

Here {f, g} = 0 by assumption and {f0, g} = 0 = {f, g0} due to the condition that both f and
g are g0-invariant. But the opposite sides of (14) lie in different non-intersecting subalgebras
of S(g) (in S(g0) on the right and in g1S(g) on the left), hence both are zeroes.

Clearly, this reasoning does not depend on the kind of functions that we use; below we shall
apply this schema to the rational functions on g, i.e. to the ratios of two polynomials, rather
than to the polynomial ones.

3 First integrals of the Toda system

3.1 Full symmetric Toda and AKS method

The full symmetric Toda system naturally fits into the context of AKS scheme for the decom-
position

sln = bn ⊕ son. (15)

It turns out that in this case the map

S(p)(S(sln)
b) → S(bn)

from the AKS scheme induces a maximal commutative subalgebra of integrals of the Toda
system. By dimension counts, to prove this it is enough to show that the chopping integrals
belong to its image, which we will now do.
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So now we are going to construct a commutative family of bn-invariant rational functions
on sl∗n. To this end consider the family of subalgebras pkn ⊆ sln, where

pkn = {X = (xij) ∈ sln | xij = 0, if i = 1, 2, . . . , k, or j = n− k + 1, n− k + 2, . . . , n} .

In other words, pkn consists of the matrices X ∈ sln of the form

X =




0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0
xk+1,1 xk+1,2 . . . xk+1,n−k 0 . . . 0
xk+2,1 xk+1,2 . . . xk+1,n−k 0 . . . 0

...
...

. . .
...

...
. . .

...
xn1 xn2 . . . xn,n−k 0 . . . 0




(16)

Clearly, pkn ⊂ pqn if k ≥ q. Also remark that the algebra pkn is commutative as long as k ≥
[
n
2

]
.

In effect, sequence of subalgebras {pkn}, k = 1, . . . , n is nested:

sln = p0n ⊃ p1n ⊃ p2n ⊃ · · · ⊃ pnn,

so the subalgebra A generated by the Poisson centres of all pkn, k = 1, . . . , n is a Poisson
commutative subalgebra in S(sln). Here is a construction, that relates this subalgebra with the
AKS method and the solutions of full symmetric Toda system on sln. Let P

k : sln → pkn ⊆ sln
be the natural projection to pkn; in somewhat informal terms P k consists of “deleting” the first
k rows and the last k columns in the matrix.

Lemma 2. Let E2, . . . , En be the second set of generators of the Poisson center in S(sln), see
(2). Let Dk be the differential operator

∂

∂x1n

∂

∂x2,n−1
. . .

∂

∂xk,n−k+1
: S(sln) → S(sln).

Then for all k and i the elements Ek,i = Dk(Ei) commute with each other. In effect, they are
in the subalgebra A.

The commutativity of the chopping functions Ek,i (see the remark 2 below for their original
definition) was originally proved by Deift, Nando, Li and Tomei by a straightforward computa-
tion; the role of parabolic subalgebras of sln was further observed by different authors, first of
all for the full Kostant-Toda system (see [6]). Alternatively, this property can be derived as a
special case of the Gaudin system integrals, see [7]. Here we give a proof of the commutativity
both for the sake of completeness of our text and also because later we shall use some of the
properties of this construction. Besides this, we believe that the approach based on the use of
differential operators is not only simple and elegant, but can be of much help if one wants to
further generalise this construction.

9



Proof. Observe that Dk = ∂
∂xk,n−k+1

◦ Dk−1. Also it’s clear that Dk(Ei) ∈ S(pkn) ⊆ S(sln)

for all i and k: indeed Ek depends linearly on every variable xpq and every monomial in Ek

contains only one element from each row and column of this matrix, see equation (2). Hence
by induction it is sufficient to show that ∂

∂xk,n−k+1
(f) Poisson-commutes with all elements in

S(pkn) for f ∈ Z(S(pk−1
n )).

So we take any g ∈ S(pkn), f ∈ Z(S(pk−1
n )) and compute:

0 =
∂

∂xk,n−k+1

{f, g} =

{
∂f

∂xk,n−k+1

, g

}
+

{
f,

∂g

∂xk,n−k+1

}
+ {f, g}k,n−k+1. (17)

Here {, }k,n−k+1 denotes the Poisson bracket with respect to the bivector ∂
∂xk,n−k+1

π, where π is

the Poisson bivector, that determines the structure (1); a direct computation shows

{f, g}i,j =

n∑

p=1

{
∂f

∂xi,p

∂g

∂xp,j
−

∂f

∂xp,j

∂g

∂xi,p

}

for all i, j = 1, . . . , n. Now taking i = k, j = n − k + 1 we see that {f, g}k,n−k+1 = 0 since
∂g

∂xp,n−k+1
= 0 = ∂g

∂xk,p
for all p, since g ∈ S(pkn) so it doesn’t depend on these variables, hence the

second and the third terms in the equation (17) vanish and we have:
{

∂f
∂xk,n−k+1

, g
}
= 0.

Remark 2. It turns out that the elements Dk(Ei) do up to a sign coincide with the numerators
and denominators of the “chopping integrals” due to Deift and others, [2], see section 2.3: the
matrix (L− λ1)(k) is in fact equal to the nonzero part of the projection P k(L− λ1). Then

χk(λ) = det
(
(L− λ1)(k)

)
= (−1)(n−1)kDk(det(L− λ1)) = (−1)(n−1)k

n∑

i=0

(−1)n−iλn−iDk(Ei).

(18)
The fact that the degree in λ of the polynomial drops by 2k and not by k under the action of
Dk, as one may expect, follows from the condition that when one differentiate by xℓ,n−ℓ+1 only
the monomials that contain this variable will survive.

Lemma 3. The elements Ek,i are semi-invariants of the natural bn-action, i.e. there exists a
character ck : bn → C for which Eb

k,i = ck(b)Ek,i for all b ∈ bn; moreover the character ck does
not depend on i.

Proof. To show this, we observe that since Em, m = 1, . . . , n is in the Poisson center of S(sln)
so it is an SLn-invariant polynomial. Hence it is in particular bn-invariant.We have

Eb
k,i = (Dk(Ei))

b = Db
k(E

b
i ) = Db

k(Ei),

where Dk = ∂
∂x1n

∂
∂x2,n−1

. . . ∂
∂xk−1,n−k+1

is the operator that we defined above. Now, the action

of bn on the partial differential operators with constant coefficients on sln, can be identified
with the minus the action of bTn (the conjugate Borel subalgebra of bn in sln, i.e. the algebra
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of upper triangular matrices) on sln so that ∂
∂xpq

corresponds to the generator epq; this follows

from the identification of the partial derivation operation ∂
∂xpq

with the derivation of the free

commutative algebra S(sln), induced by the pairing of sln with the element of the dual basis
epq, so the action of any matrix b ∈ sln on partial derivations on S(sln) now coincides with the
dual action of b on sl∗n. So for any b ∈ bn we can compute:

(
∂

∂xk,n−k+1

)b

= −(bkk − bn−k+1,n−k+1)
∂

∂xk,n−k+1
+

k−1∑

i=1

λi
∂

∂xi,n−k+1
+

k−1∑

j=1

µj
∂

∂xk,n−k+j+1

for certain coefficients λi, µj . However, since for any p, q, r, s, t, u and i

∂2Ei

∂xpr∂xps
= 0 =

∂2Ei

∂xuq∂xtq
,

we have

Eb
k,i = −

(
k∑

r=1

(bkk − bn−k+1,n−k+1)

)
Ek,i. (19)

Here the expression −
∑k

r=1(bkk−bn−k+1,n−k+1) = ck(b) is the character on bn. It is evident, that
this character is common for all Ek,1, Ek,2, . . . , Ek,n; in effect, it is induced from the operator
Dk, common for all these functions.

Since the character ck does not depend on the second index, we can obtain invariants of the
action simply by taking the ratios Ek,ℓ/Ek,m for different ℓ and m. Then applying the Lemma 1
gives the Deift chopping integrals of the Toda system (the signs that appear in the formula (18)
cancel out): these are rational functions on b∗n

∼= Symmn(R), they commute with each other
and with the Toda flow, since the latter corresponds to the function 1

2
Tr(L2) on sl∗n, which is

in the Poisson center of S(sln). Applying the AKS construction now gives the commutative
family of the rational first integrals of the Toda system.

3.2 Chernyakov-Sorin family

There exist many other approaches to the construction of the integrals of the full symmet-
ric Toda system. They give the integrals, slightly different from the ones defined by Deift’s
chopping procedure, which commute with the Toda flow, but are in general not in involution.

For example, see [8], instead of the matrix L−λ1, one can consider the matrices Li, so that
Ki(L) = det(Li) = (detL)i. ThenDk(Ki(L)) does not belong to the subalgebras S(p

k
n) ⊂ S(sln)

if i > 1, so it is not true that Dk(Ki) Poisson commute with each other or with the Toda flow.
However, we can do the following trick: put

Kk,i(L) = det((Li)(k)),

where as before for A ∈ Matn(R) we denote by A(k) = P k(A) its submatrix, spanned by the
last k rows and the first k columns. Then the functions Kk,i(L) also are semiinvariants of the
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Toda flow, and their ratios Icsk,i(L) =
Kk,i(L)

Kk1(L)
are genuine integrals for the principal Toda flow.

The proof of this statement can be obtained by consideration of Plücker coordinates, see [8].

In effect the functions
Kk,i(L)

Kk,1(L)
are invariant not just of the Toda flow, but they are invariant

with respect to the adjoint action by bn; this can be proved analogously to the above reasonings
or also c.f. the arguments of section 2.4 of [7]. We provide here another demonstration based
on representation theory methods, similar to the construction of [10].

Lemma 4. Let K denotes the subalgebra in Q(sln), generated by the ratios
Kk,i(L)

Kk1(L)
; then

K ⊂ Q(sln)
b.

Proof. Let us consider a finite-dimensional irreducible representation ρ : SLn(R) → End(V )
with v+ - the highest weight vector and v− - the lowest weight vector. These vectors are
characterised by the conditions:

ρ(n+)v+ = 0; ρ(n−)v− = 0 (20)

where n± are the corresponding upper and lower nilpotent triangular subalgebras and we denote
by the same symbol ρ the representation of the Lie algebra sln, induced by ρ. Let us now
choose the SOn(R)-invariant inner product on V , denoted 〈, 〉. Then the following conditions
are satisfied:

〈ρ(X)v, w〉 = 〈v, ρ(XT )w〉.

We now consider a special subset of matrix elements in the representation

F ρ(X) = 〈ρ(X)v+, v−〉. (21)

These functions are invariant with respect to the adjoint action of the unipotent subgroup N+

of upper triangular matrices with 1 on diagonal of SLn(R); here we define the adjoint action
as

AdgX = g−1Xg.

Indeed, since the conditions on the action of n± on v± (see (20)) integrate to the equality
ρ(g)(v±) = v± for g ∈ N±, we have

Ad∗g(F
ρ)(X) = 〈ρ(g−1Xg)v+, v−〉 = 〈ρ(X)ρ(g)v+, ρ((g

−1)T )v−〉 = 〈ρ(X)v+, v−〉.

We can now reinterpret the Chernyakov-Sorin integrals in this framework: it turns out that
the semiinvariants Kk,i(L) are related to the functions F ρ with ρ being the highest weight
irreducible subrepresentation in ∧k(SjV0) where V0 is the fundamental representation with the
highest weight (1, 0, . . . , 0). First of all let us consider the exterior power of the fundamental
representation ∧k(V0); we denote it by ρk. This representation has the weight basis given by
ei1 ∧ . . . ∧ eik , 1 ≤ i1 < i2 < · · · < ik ≤ n where ei are vectors from the weight basis in V0 with
v+ = v1 and v− = vn. Then the highest weight vector in ∧k(V0) is e1 ∧ . . . ∧ ek and the lowest
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one is en−k+1∧ . . .∧en. The left lowest minor ∆k(X) is the matrix element of X∧k corresponing
to F ρk . Then as it is easy to see that ∆k(X

i) is equal to F ρk(X i).
Let us demonstrate that for all i and fixed k the functions Kk,i(L) are semi-invariants

with the same character ck with respect to the adjoint action of the Cartan subgroup Tn (the
subgroup of diagonal matrices in SLn(R). Indeed, the action of Tn on Kk,i(L) is induced from
its action on v± which is the highest and the lowest weights in ∧k(V0); on the other hand for
all t ∈ Tn we have

ρk(t)v± = ck±(t)v±,

where ck± are the weights of the vectors v± in the representation V0. Hence

Ad∗t (F
ρk)(X) = 〈ρk(X)ρk(t)v+, ρk(t

−1)v−〉 =
ck+
ck−

〈ρk(X)v+, v−〉 =
ck+
ck−

F ρk(X).

As one readily sees, we get the same character ck =
ck+

ck−
for the functions ∆k(X

i) for all i:

Ad∗t (F
ρk)(X i) = 〈(ρk(t

−1)ρk(X)ρk(t))
iv+, v−〉 = 〈ρk(t

−1)ρk(X
i)ρk(t)v+, v−〉

=
ck+
ck−

〈ρk(X
i)v+, v−〉 =

ck+
ck−

F ρk(X i).

Remark 3. The Toda system is superintegrable in the sense of Nekhoroshev (see for instance
[8]). It is closely related to the classical question of describing the ring of rational functions
on G/AdB, see for example [1]. Such functions are ratios of semi-invariants with the same
weights. On the other hand, the semi-invariants are given by the highest vectors in the regular
representation in the group algebra C[G] =

⊕
λ Vλ ⊗ Vλ∗ (due to the Peter-Weyl theorem [9]).

The latter can be obtained by using the Littlewood-Richardson rule for representations Vλ⊗Vλ∗ .

4 Lax representations and solutions

One of the important constructions that allow one find solutions of the integrable systems is
the Lax representation of the equation; earlier we have described the canonical Lax represen-
tation of the Toda system, see equation (5). In this section we are going to describe the Lax
representations for the DLNT (chopping) integrals. We begin with considering the examples of
such Lax representations and describe the way they lead to the solution of the corresponding
flows in terms of the QR-decomposition.

4.1 Example: the Lax representation of a DLNT flow for the Toda

system on sl6

Let us consider the n = 6 case. We are going to give the Lax representation of the flow
corresponding to the Chernyakov-Sorin hamiltonian

Ics1,2(L) =
(L3)16
a16

,
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where (L3)ij are the matrix elements of L3 = L ·L ·L. Recall that the Lax matrix L ∈ Symm6

is the symmetric matrix with entries aij , so that aij = aji.
The integral Ics1,2(L) and the integral

I1,2(L) =
E1,2(L)

E1,0(L)

obtained by chopping procedure are functionally dependent as the integrals of the Toda flow (see
Appendix A). The direct computations show (see Appendix B) that the dynamics associated
with this function has the following Lax representation

TIcs
1,2
(L) = T 1

2
TrL2(L) + TI1,2(L), (22)

As one readily sees the first term in this equality is just the Toda vector field. In coordinate
form, we have the following equality

dL

dtIcs
1,2

= [M(L), L] + [MI1,2(L), L],

where we use the notation from formula (6), M(L) = L+ − L− and MI1,2(L) being the matrix
of the form

MI1,2(L) =
1

a16




0 0 0 0 0 0
0 0 L36

12 L46
12 L56

12 0
0 −L36

12 0 L46
13 L56

13 0
0 −L46

12 −L46
13 0 L56

14 0
0 −L56

12 −L56
13 −L56

14 0 0
0 0 0 0 0 0




=
1

a16
Mh. (23)

Here and further in this paper for a matrix A we denote by Aq1...qk
p1...pk

the determinant of the
submatrix in A, spanned by the intersections the rows q1, . . . , qk and the columns p1, . . . , pk.
The denominator matrix Mh in the formula for MI1,2(L) has the following representation-
theoretic interpretation. Let V = R6 be the fundamental representation of SL6(R). We denote
by ρ the representation map ρ : SL6(R) → End(V ). Then denote by ∧2ρ the map

∧2ρ : SL6(R) → End(∧2V )

which acts as

∧2ρ(X) : v1 ∧ v2 7→ ρ(X)v1 ∧ ρ(X)v2.

Let us recall that the matrix element a16 has the natural representation-theoretic interpretation

a16(L) = 〈ρ(L)v−, v+〉

Now the Lax matrix Mh as a whole has a similar interpretation. Consider the operator ∧2ρ(L)
as an element of

End(V ∧ V ) = (V ∧ V )∗ ⊗ (V ∧ V ) ⊂ (V ∗ ⊗ V ∗)⊗ (V ⊗ V ).
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Now there is a natural operation

j : (V ∗ ⊗ V ∗)⊗ (V ⊗ V ) → V ∗ ⊗ V = End(V ),

given by

j((f ⊗ g)⊗ (x⊗ y)) = g(v+)〈x, v−〉f ⊗ y ∈ V ⊗ V ∗.

Then one readily sees that

Mh = M(j(ρ2(L))), (24)

where M is the projector (6), see remark 1.

4.2 Equivariant tensor powers

Building on the observations we just made, we get the following construction. Let {ei} be the
standard basis and let 〈, 〉 be the standard scalar product in Rn. Consider the homogenous
polynomial function of the Lax matrix L = (aij) of degree k − 1, given by the following
determinant:

Ck(L) =

∣∣∣∣∣∣∣

〈Len−k+2, e1〉 . . . 〈Len, e1〉
...

. . .
...

〈Len−k+2, ek−1〉 . . . 〈Len, ek−1〉

∣∣∣∣∣∣∣
.

Here we assume that n− k + 2 ≤ n, so that C1(L) = 1; in effect, this function can be defined
for any matrix L ∈ sln, not necessarily for the symmetric matrix. In a similar way we define a
rational matrix-valued function τk : sln → Matn(R) ∼= gln: for any v ∈ Rn we put

τk(L)(v) =
1

Ck(L)

∣∣∣∣∣∣∣∣∣

Lv Len−k+2 . . . Len
〈Lv, e1〉 〈Len−k+2, e1〉 . . . 〈Len, e1〉

...
...

〈Lv, ek−1〉 〈Len−k+2, ek−1〉 . . . 〈Len, ek−1〉

∣∣∣∣∣∣∣∣∣
(25)

for any v ∈ Rn. Observe that by definition

τ1(L) = L.

As an example, let us compute the matrix τ2(L): first, we have by definition

C2(L) = 〈Len, e1〉 = a1n.

Also
τ2(L)(v) = 〈L(en), e1〉Lv − 〈Lv, e1〉Len = a1nLv − 〈Lv, e1〉ajnej ,

so that
τ2(L)(ei) = (a1naji − a1iajn)ej.
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In other words: τ2(L)ji = −L1j
in, in particular τ2(L)ji = 0 if j = 1 or i = n. Similarly

τk(L)ji = (−1)k−1L1,2,...,k−1,j
i,n−k+2,...,n, (26)

where the corresponding determinant vanishes, if the indices are repeating.
The following lemma describes one of the important properties of τk(L):

Lemma 5. The function τk(L) is covariant with respect to the adjoint action of the lower
triangular group B−

n , i.e.

τk(bLb
−1) = bτk(L)b

−1.

Proof. Let us consider separately the Cartan and unipotent parts of the group B−. First we
consider a unipotent lower-triangular element n. It is characterised by the property:

n−1(en) = en;

n−1(en−1) = en−1 + αn
n−1en;

. . .

n−1(ej) = ej + αj+1
j ej+1 + . . .+ αn

j en (27)

for all j. Similarly,

nT (e1) = e1;

nT (e2) = e2 + β2
1e1;

. . .

nT (ej) = ej + βj
j−1ej−1 + . . .+ βj

1e1 (28)

for all j. This is sufficient to demonstrate that Ck(L) is invariant:

Ck(nLn
−1) =

∣∣∣∣∣∣∣

〈nLn−1en−k+2, e1〉 . . . 〈nLn−1en−1, e1〉 〈nLn−1en, e1〉
...

...
〈nLn−1en−k+2, ek−1〉 . . . 〈nLn−1en−1, ek−1〉 〈nLn−1en, ek−1〉

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

〈nL(en−k+2 + . . .+ αn
n−k+2en), e1〉 . . . 〈nL(en−1 + αn

n−1en), e1〉 〈nLen, e1〉
...

...
〈nL(en−k+2 + . . .+ αn

n−k+2en), ek−1〉 . . . 〈nL(en−1 + αn
n−1en), ek−1〉 〈nLen, ek−1〉

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

〈nLen−k+2, e1〉 . . . 〈nLen−1, e1〉 〈nLen, e1〉
...

...
〈nLen−k+2, ek−1〉 . . . 〈nLen−1, ek−1〉 〈nLen, ek−1〉

∣∣∣∣∣∣∣
.

The first equality is due to (27), the second one is the consequence of the basic determinant
property: determinant of a matrix is invariant under the linear transformations with columns.
Using the same arguments with the rows of this matrix and relations (28) we get

Ck(nLn
−1) =

∣∣∣∣∣∣∣

〈Len−k+2, e1〉 . . . 〈Len−1, e1〉 〈Len, e1〉
...

...
〈Len−k+2, ek−1〉 . . . 〈Len−1, ek−1〉 〈Len, ek−1〉

∣∣∣∣∣∣∣
= Ck(L).
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The same argument is valid for the numerator of the formula (25). Now we consider the
action of the diagonal matrices on τk(L): it is easy to see that both the numerator and the
denominator of this expression change in the same manner under the action of a diagonal matrix
d = diag(d1, . . . , dn); in effect they are multiplied by the expression

Ck(dLd
−1) =

d1 . . . dk
dn−k+1 . . . dn

.

Remark 4. In effect, the similar covariance condition holds not only for the group B−
n , but

for any group inside the parabolic subgroup Pk ⊆ SLn(R), where PK is the group of invertible
matrices inside the union of the groups B−

⋃
P k
n (here P k

n is the Lie group with Lie algebra
pkn); in other words, this is the group of invertible matrices that have the form

X=




x11 0 . . . 0 0 . . . 0 0 0 . . . 0

x21 x22 . . . 0 0 . . . 0 0 0 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

xk1 xk2 . . . xkk 0 . . . 0 0 0 . . . 0

xk+1,1 xk+1,2 . . . xk+1,k xk+1,k+1 . . . xk+1,n−k 0 0 . . . 0

xk+2,1 xk+2,2 . . . xk+2,k xk+2,k+1 . . . xk+2,n−k 0 0 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

xn−k,1 xn−k,2 . . . xn−k,k xn−k,k+1 . . . xn−k,n−k 0 0 . . . 0

xn−k+1,1 xn−k+1,2 . . . xn−k+1,k xn−k+1,k+1 . . . xn−k+1,n−k xn−k+1,n−k+1 0 . . . 0

xn−k+2,1 xn−k+2,2 . . . xn−k+2,k xn−k+2,k+1 . . . xn−k+2,n−k xn−k+2,n−k+1 xn−k+2,n−k+2 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

xn1 xn2 . . . xnk xn,k+1 . . . xn,n−k xn,n−k+1 xn,n−k+2 . . . xnn




For instance this is true for the matrices O of orthogonal transformations of Rn, for which

O(e1) = e1, . . . , O(ek) = ek, and O(en−k+1) = en−k+1, . . . , O(en) = en.

Similar properties hold for the adjoint action of the corresponding Lie algebras, in particular,
for any element X from pkn + b−n : we have

[X, τk(L)] =
d

dt |t=0

τk(e
tXLe−tX). (29)

We shall denote the right hand side of this formula by τk([X, L̇]).

Let us conclude this section by observing that due to the definition of τk(L) we have the
following obvious property

Lemma 6.

τk(L)en = τk(L)ek−1 = . . . = τk(L)en−k+1 = 0;

〈τk(L)v, e1〉 = 〈τk(L)v, e2〉 = . . . = 〈τk(L)v, ek−1〉 = 0.
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4.3 QR-decomposition

Let τk(L) be the matrix-valued function of L, as we explained above; we define the field Tk(L)
on Symmn by the formula

Tk : Symmn(R) → Symmn(R), Tk(L) = [M(τk(L)), L].

Below (see section 4.4) we will show that Tk(L) are in fact the Hamiltonian fields of certain
DLNT integrals, namely Tk(L) is the Hamilton field of Hk,n−1(L). This will automatically
mean that these fields commute with each other for all possible pairs of indices. For us one of
the main advantages that come from the working with these fields is the fact that their flows
have solutions, given by the QR-decomposition, just like the original Toda flow; namely, the
following is true:

Theorem 1. Let us consider the flow of the vector field Tk(L) on Symmn:

dL

dtk
= [M(τk(L)), L]. (30)

Then the solution L = L(tk) of this equation can be obtained by the following procedure: let L0 is
the initial point in the phase space of symmetric matrices. Let us consider the QR decomposition
of the exponential:

exp(tτk(L0)) = R(t)Q(t) (31)

where t = tk. Then

L(t) = Q(t)L0Q
−1(t)

is a solution for (30) with the initial value L(0) = L0.

Proof. The proof is done by a suitable modification of the arguments used for the isospectral
flows. Let us differentiate (31) by t:

RQτk(L0) = ṘQ+ RQ̇.

This is equivalent to the following expression

Qτk(L0)Q
−1 = R−1Ṙ + Q̇Q−1.

Here R−1Ṙ is a lower triangular, and Q̇Q−1 is orthogonal matrix; so

M(Qτk(L0)Q
−1) = Q̇Q−1.

On the other hand

dL

dt
= Q̇L0Q

−1 −QL0Q
−1Q̇Q−1 = [Q̇Q−1, QL0Q

−1].
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It remains to demonstrate that Q̇Q−1 is exactly M(τk(L(t))). First we remark that the orthog-
onal matrix from the QR-decomposition is of the very particular form. Indeed, the element
η(t) = exp(tτk(L0)) is such that

η(t)ei = ei i = 1, . . . , k − 1, n− k + 1, . . . , n.

Clearly the same property holds for the matrix Q(t). Hence, by the characteristic property of
the map τk, see remark 4

Qτk(L0)Q
−1 = τk(QL0Q

−1).

Summing up all these observations we obtain

Q̇Q−1 = M(Qτk(L0)Q
−1) = M(τk(QL0Q

−1)) = M(τk(L(t))). (32)

4.4 Hamiltonian description

Let us now show that Tk(L) is in fact equal to the Hamilton field of a Deift chopping Hamil-
tonian. To this end recall that if Ek,n−i(L) are the coefficients of the partial characteristic
polynomial χk(λ) = det((L − λ1)(k)) as defined in (10), (also c.f. (18)) i.e. Ek,n−i(L) is the
coefficient at λn−2k−i, then the chopping Hamiltonians are defined as the ratios

Ik,n−i(L) =
Ek,n−i(L)

Ek,0(L)
.

As we showed earlier, they constitute a Poisson-commutative family. Then the following is true

Theorem 2. The vector field Tk(L) = [M(τk(L)), L] is Hamiltonian with respect to the Poisson
structure on Symmn induced from the Kirillov-Kostant bracket on C∞(b−) and the Hamiltonian
Ik,n−1.

Proof. We begin with recalling (see section 2.3) that the Hamilton field of a smooth function
f : Symmn → R with respect to the Poisson structure, induced from bn is equal to:

Xf = [M(∇f), L]

where M is the projector to son that we have used earlier and for any smooth function on sln,
∇f denotes the matrix of partial derivatives of f : if ∂ij =

∂
∂xij

, then (see formula (8))

∇f =



∂11f . . . ∂1nf
...

. . .
...

∂n1f . . . ∂nnf


 .

Observe that on Symmn we have xij = xji and this matrix is in effect symmetric: ∂ij(f) = ∂jif .
Now in order to show that Tk coincides with the Hamilton field of Ik,n−1, we need to show that

19



M(τk(L)) coincides with M(∇Ik,n−1(L)) for all symmetric L. To this end let us consider the
upper-triangular part of the expression

d

(
χk(λ)

Ek,0(L)

)
.

That is the coefficients at d(aij) with i < j of the differential. Such a coefficient for the
numerator is a minor of (L−λ1)(k) with excluded i-th row and j-th column. This is a polynomial
of λ of degree n− 2k− 2. Its highest term is equal to the minor of (L− λ1)(k) with conversely
i-th column and j-th row removed, since the matrix L is symmetric; taking the coefficient at
λn−2k−1 of this expression we get just L1,...,k−1,j

i,n−k+2,...,n which is exactly the upper-tringular matrix
element for the matrix τk(L), see the formula (26). We finally recall again that the differential
of Ek,n−2k(L) does not enter the upper-triangular part of the differential. Hence we get

M(∇Ik,n−1(L)) = M(τk(L)). (33)

4.5 Higher chopping integrals and QR-decomposition method

In the previous sections we described the integration procedure of the Hamiltonian flow, induced
from the chopping integral Ik,n−1(L); it was based on an explicit formula for the corresponding
Hamiltonian vector field Tk(L). Now in this section we will show that the methods used to
integrate the fields Tk(L) can be applied to all the chopping integrals. Namely, using the explicit
formula for the functions Ek,i(L) based on the application of the differential operator Dk, we
can now describe the Hamiltonian fields, associated with the chopping integrals and show that
a variant of QR-decomposition method of solving the corresponding flow equations works in
this case too.

To this end we first of all observe that the matrix ∇ detL (for not necessarily symmetric L,
i.e. we do not assume xij = xji) is given by the following formula, similar to the definition of
τk(L):

∇ detL(v) =

∣∣∣∣∣∣∣∣∣

0 e1 . . . en
v1 x11 . . . x1n
...

...
. . .

...
vn xn1 . . . xnn

∣∣∣∣∣∣∣∣∣
(34)

where v = v1e1 + · · ·+ vnen is the representation of v ∈ Rn in basis e1, . . . , en. To see this, it is
enough to recall the formula ∂ji(detL) = L̂j

i and so

∇(detL)(ei) = L̂j
iej . (35)

Here L̂j
i denotes the algebraic complement of the matrix L at ij-th place, i.e., using the notation

from the section 4.1, we have

L̂j
i = (−1)i+jL1,...,ĵ,...,n

1,...,̂i,...,n
,
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where as usual the hats above indices signify their absence from the formula. Now the compar-
ison of (34) and (35) proves the result.

It follows that the matrices ∇Ek,i(L) can be obtained up to a sign by pointwise application
of the operator Dk to the matrix coefficients of the matrix standing at λn−i in the expression
∇ det(L− λ1),

∑

i

(−1)n−iλn−i(∇Ek,i(L))(v) = Dk

∣∣∣∣∣∣∣∣∣

0 e1 . . . en
v1 x11 − λ . . . x1n
...

...
. . .

...
vn xn1 . . . xnn − λ

∣∣∣∣∣∣∣∣∣
(36)

This follows from the fact that both ∇ and Dk are differential operators with constant coef-
ficients and hence they commute with each other. Also remark that since Ek,0(L) does not
depend on the coefficients xij with i > j, matrix ∇Ek,0(L) is strictly lower-triangular matrix,
and hence it is killed by the projection M . So we have

M

(
∇

(
Ek,i(L)

Ek,0(L)

))
=

1

Ek,0(L)
M(∇Ek,i(L)).

We can finally show that the QR-decomposition method can be applied to the flows of the
functions

Ik,i(L) =
Ek,i(L)

Ek,0(L)
.

To this end we observe that the matrix

Ek,i(L) = ∇

(
Ek,i(L)

Ek,0(L)

)

verifies the same characteristic condition as τk(L):

Proposition 1.

gEk,i(L)g
−1 = Ek,i(gLg

−1) (37)

for all orthogonal matrices g in the union B−

⋃
P k
n .

Proof. Since Ei(L) = Ei(gLg
−1) for all invertible matrices, we have (compare with the proof

of the lemma 3)
(∇Ei)(gLg

−1) = ∇g(Ei(gLg
−1)) = ∇gEi(L).

Here g acts on the matrix-valued differential operator ∇ by the conjugate action, i.e.

∇g = ρ(g)∇ρ(g)−1, where ρ(g) = (gT )−1.

So we have
(∇Ei)(gLg

−1) = ρ(g) (∇Ei(L)) ρ(g)
−1
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for all invertible matrices g, and since ρ(g) = g for all orthogonal matrices, we have

(∇Ei)(gLg
−1) = g (∇Ei(L)) g

−1

for all orthogonal matrices g. On the other hand, since ∇ commutes with Dk we have, just like
in the equation (19):

g∇Ek,i(L)g
−1 = ck(g)(∇Ek,i)(gLg

−1)

for any orthogonal g ∈ B−

⋃
P k
n . Since the same character ck(b) pops out in the denominator

Ek,0(L) of the expression for Ek,i(L), the equality (37) holds.

Remark 5. The formula (34) and its corollary although quite handy is not in fact indispensable
for proving the characteristic equation (37): it is rather the fact that we can define Ek,i with
the help of the operator Dk, that plays the crucial role in the reasoning.

Now we can show that the QR-decomposition method gives solutions of the higher Deift
flows: for the initial condition L0 ∈ Symmn we consider the QR-decomposition of the following
exponent

exp(tEk,i(L0)) = R(t)Q(t),

then L(t) = Q(t)L0Q(t)T solves the equation

L̇ = [M(Ek,i(L)), L].

The reasoning is just like in the proof of the theorem 1 above.

5 Conclusions and remarks

I this section we gathered few results and observations that do not fit into the main body of
the text, but we believe are quite interesting on their own. One may say that these are curious
observations, that can lead to further investigations.

5.1 Commutation relation

It would be interesting to find a geometric mechanism underlying the commutativity of Deift
integrals: we know that the fields Tk(L) are the Hamiltonian fields of Ik,n−1(L), so they should
commute with each other by general theory; but one can ask if it is possible to prove the
commutation relations independently of the identification of Tk(L) with Hamiltonian fields.
This might help one to look for other commutative families and symmetries of the Toda system,
c.f. [10] for example.

It turns out that up to a certain degree this can be done by direct computation without
the AKS theory. To this end recall that M : sln → son is the natural projection along the
subalgebra b− associated with the direct sum decomposition (15) and Tk(L) are the vector
fields, given by equation

Tk(L) = [M(τk(L)), L]
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In particular
T1(L) = [M(L), L]

is the Toda flow field.Then the following is true: the fields Tk(L) commute with the Toda flow,
i.e. [T1, Tk] = 0 for all k.

To prove this we begin with the following equation, verified by M : for any X, Y ∈ sln we
have

M([X, Y ])−M([M(X), Y ] + [X,M(Y )]) + [M(X),M(Y )] = 0. (38)

This equation is an algebraic version of the vanishing Nijenhuis torsion equation, and follows
by a straightforward computation from the fact that both son and bn are subalgebras of sln.
Let now 1 < k and consider the commutator [T1, Tk]. We compute:

[T1, Tk] = [M(τk([M(L), L̇]), L] + [M(τk(L)), [M(L), L]]

− [M([M(τk((L)), L]), L]− [M(L), [M(τk(L)), L]],

where we used the notation from the formula (29). On the other hand, writing L as a sum
of two complementary projections induced by (15), L = M(L) + B(L) we have by the same
formula (29) (since [L, L] = 0)

τk([M(L), L̇]) = τk([−B(L), L̇]) = [−B(L), τk(L)] = [M(L), τk(L)]− [L, τk(L)].

Hence

[T1, Tk] = [M([M(L), τk(L)]), L]− [M([L, τk(L)]), L] + [M(τk(L)), [M(L), L]]

− [M([M(τk((L)), L]), L]− [M(L), [M(τk(L)), L]]

= [[M(τk(L)),M(L)], L] − [M([M(τk((L)), L]), L]

− [M([τk(L),M(L)]), L] + [M([τk(L), L]), L] = 0,

where we used the skew symmetry and Jacobi identity for the commutator and the Nijenhuis
equation (38).

One may try to show by this or a similar method that the fields Tk(L) and Tl(L) do in fact
commute with each other for all k and l, but so far our attempts to do this by hand did not
bring result. Doing this might shed the light on the role of Nijenhuis type relations in the theory
of Toda integrable systems: so far they appeared in the context of bihamiltonian structures
and Lenart-Magri induction. In particular, it has been shown (see [11]) that the integrability
of the full Kostant-Toda system can be derived from a bihamiltonian structure on it. On the
other hand in the case of the full symmetric Toda system no bihamiltonian structures have
been suggested so far.

5.2 Other vector fields

In the section 4.5 we described the formulas for the Hamiltonian fields, induced by the chopping
integrals Ik,i(L) (see equation (36)). This formula resembles the formula for the fields Tk(L), see
(26); however even in the simplest case k = 2, it is not easy to show that the Hamiltonian field,
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induced by Ik,n−1(L) does coincide with Tk(L) (we did it in section 4.4 by direct computation).
Now, similarly to Tk(L), induced by the matrix-valued functions τk(L), one may define another
family of operator-valued functions θk,m(L):

(θk,m(L))
i
j =

∑

s1,...,sm

Ls1,...,sm,j,n−k+1,...,n
1,...,k,i,s1,...,sm

/Ln−k+1,...,n
1,...,k (39)

In effect, these functions are straightforward generalisations of the operation τk(L). Indeed, it
follows from the formula (26) that

M(θk,1(L)) = M(τk(L)).

Now by a straightforward, but lengthy and tedious calculation, which we omit, one can obtain
the following proposition, similar to the Theorem 2

Proposition 2. The hamiltonian flows given by hamiltonians Ik,n−m(L) have Lax representa-
tion

L̇ = [M(θk,m(L)), L],

However, it is not easy showing by direct computation that θk,m(L) verify the same charac-
teristic property (37), that we need to prove the applicability of QR-decomposition method. It
is even less clear, if one can prove the commutativity of the fields Θk,m(L) = [M(θk,m(L)), L]
without resorting to their being Hamiltonian fields of a commutative family.

5.3 Vector fields due to non-chopping integrals

It is well known that the full symmetric sl(n) Toda system has additional integrals except for
the integrals obtained by the chopping procedure ( [6], [13], [14], [8]), so that the Toda system
is integrable in the non-commutative sense [12]. Let us consider the example n = 4 and

X =




x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44


 .

In this case the additional integral (via Chernyakov-Sorin method) has the following form

H =
(X2)3412
X34

12

.

After taken the gradient, the symmetrization, and the projection on so we get the matrix of
M-operator in the following form:

MJcs =
1

L34
12




0 −B1 0 0
B1 0 0 0
0 0 0 −B2

0 0 B2 0
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and

Jcs =
(L2)3412
L34
12

,

where
B1 = (L2)14a13 − (L2)13a14, B2 = (L2)14a24 − (L2)24a14

and L as usually is

L =




a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44


 .

Considering skew-symmetric square of L which has 2×2 minors of L as entries, after chopping procedure
the characteristic polynomial χ̃1(L, λ) will have the following form:

∣∣∣∣∣∣∣∣∣∣

a11a23 − a12a13 a11a33 − a213 − λ a11a34 − a13a14 a12a33 − a13a23 a12a34 − a14a23
a11a24 − a12a14 a11a34 − a13a14 a11a44 − a214 − λ a12a34 − a13a24 a12a44 − a14a24
a12a23 − a13a22 a12a33 − a13a23 a12a34 − a13a24 a22a33 − a223 − λ a22a34 − a23a24
a12a24 − a14a22 a12a34 − a14a23 a12a44 − a14a24 a22a34 − a23a24 a22a44 − a224 − λ
a13a24 − a14a23 a13a34 − a14a33 a13a44 − a14a34 a23a34 − a24a33 a23a44 − a24a34

∣∣∣∣∣∣∣∣∣∣

,

and we get the additional integral J1,2 =
Ẽ1,2(L)

Ẽ1,0(L)
. This integral and the integral Jcs are functionally

dependent.

Ẽ1,2 = (a14a23 − a13a24)
(
a11a33 + a22a33 + a11a44 + a22a44 − a213 − a223 − a214 − a224

)
+

+(a11a23 − a12a13) (a13a34 − a14a33) + (a12a23 − a13a22) (a23a34 − a24a33)+
+ (a11a24 − a12a14) (a13a44 − a14a34) + (a12a24 − a14a22) (a23a44 − a24a34) ,

Ẽ1,0 = a13a24 − a14a23.

(40)

J1,2 = Jcs −
1

2
(Tr(L2)− (Tr(L))2) = Jcs +E2,

where E2 is the coefficient of this characteristic polynomial χ0(L, λ), see Appendix A. The connection
between vector fields TH on symmetric matrix space generated by integrals J1,2, Jcs, (1/2)TrL2 has
the following form:

TJ21(L) = T(1/2)TrL2(L) + TJcs(L), (41)

and the dynamics associated with these integrals has the following Lax representation

dL

dtJ1,2
= [M(L), L] + [MJcs , L], M(L) = L+ − L−.

5.4 Further questions

Let us finally formulate few questions, which are closely related with the material covered in this paper
and which may become the subject of future investigations.

First of all, one can extend the constructions of Toda system and its integrals to other represen-
tations of the Lie group SLn(R). For instance, take the exterior square representation of SL4(R)
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in SL6(R); then one can use it to pull back the integrals of the Toda system on sl6 to sl4. Direct
computations show that these pull-backs will contain some of the integrals of the Toda system on
sl4. Another example of the way representations of the Lie algebra show up in the study of the Toda
system, can be found in [10] (c.f. the section 3.2). One can ask about the way different representations
can be used to obtain the integrals of the Toda system, in particular, about the relation between the
representation and the number of integrals that can be “pulled” from it; the way the integrals change
when some natural operations are applied to representations is also an open question.

Still more generally one can do the following trick: let ρ : SLn(R) → SLN (R) be a representation,
which when restricted to the Lie algebra preserves the symmetricity of the matrices, see previous
example; restricting it to Symmn we can use it to induce a dynamical system on Symmn from the
Toda system on SymmN . The properties of these systems, their integrability and relation with Toda
system on Symmn seem to be an interesting subject for future work. This question is closely related
with the problem of describing all possible Lax representations of the full symmetric system: is it
possible that in addition to the equation (5), one can write similar equations

dL̃

dt
= [M̃, L̃]

for some other matrices L̃ and M̃ , depending on the point in our phase space Symmn, such that the
resulting system will coincide with the Toda system. In this case one can obtain the first integrals of
the system as the invariant functions of L̃ matrix. It is interesting, if the chopping integrals have this
nature.

Another question, that one can ask, is whether the constructions used in this paper and the
corresponding results stay valid when we pass from the classical to quantum Toda system: one can
suggest at least two such noncommutative (quantum) generalisations. One consists with replacing the
functions on sl∗n with the universal enveloping algebra of sln. In that case certain progress has been
made (see for instance [7]): one can obtain analogs of the chopping integrals there as the elements in a
suitable localisation of the universal enveloping algebra Usln. Still, the question, if these elements can
be obtained by a procedure, similar to the one we used in lemma 2 remains widely open. The other
question is still more intriguing: it is known, that the usual Toda system (open Toda chain), can be
generalised to the situation, where the “dynamics” takes place at an arbitrary ring with differential d;
in this case one can find the “solutions” of such system in terms of quasi-determinants and use them
to describe solutions of the noncommutative Painlevé equation, see [15] for example. In our case, one
can consider the “system” on matrices with noncommutative entries of arbitrary nature; the question,
if this construction preserves any resemblance with the one we studied here, is open.

A Example of the ”chopping” construction using Dk,

case n = 4

Here we demonstrate the construction in the case n = 4. First of all let us consider characteristic
polynomial without chopping procedure. It has the following form:

χ0(L, λ) = λ4E0 − λ3E1 + λ2E2 − λE3 + E4,

E0 = 1, E1 = TrL, E2 =
1
2(TrL)

2 − 1
2TrL

2,

E3 =
1
3(TrL)

3 − 1
3TrL

3 − TrL(12(TrL)
2 − 1

2TrL
2), E4 = detL,

(42)
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where TrL is Casimir and

L =




a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44


 .

Now we consider the characteristic polynomial χ1(L, λ)

χ1(L, λ) = λ2E1,0 + λE1,1 + E1,2,

E1,0 = a14, E1,1 = A 34

13

+A 24

12

, E1,2 = A 234

123

, ,
(43)

Then we have to put k = 1 and the formula (18) will give:

D1(E0) = 0, D1(E1) = 0, E1,0 = D1(E2), E1,1 = D1(E3), E1,2 = D1(E4),

Ek,m = Dk(E2k+m),

where we put D1 =
∂

∂x4
1

before the symmetrization.

Note, that each one of the DNLT-integrals which constructs by Ek,m can be expressed by the inte-
grals obtained by Chernyakov-Sorin method (the reverse is not true) so these integrals are functionally
dependant, for example

Ics1,2 = I1,2 − E2 + E1(E1 + I1,1), (44)

where

I1,1(L) =
E1,1(L)

E1,0(L)
,

E2 =
1
2(TrL)

2 − 1
2TrL

2. Note that Ics1,1 and E1 = TrL are Casimir operators and Ics1,1 = E1 + I1,1.

B Calculation the matrix of M-operator, case n = 4

Considering AKS method for the full symmetric Toda system the dynamic follows from the Lie-Poisson
brackets on symmetric matrices in the following form:

dL
dtH

= [M(∇H), L], ∇H ∈ sln, (45)

where M-operator is projection on so. Here we assume the symmetrization after taking the gradient.
Let us consider

H = Ics1,2 − (1/2)TrX2 =
(X3)61
x61

− (1/2)TrX2, X ∈ sl∗n

and take the gradient:

F ab =
∂H

∂xab
=

∂

∂xab

(
x4ixijxji − (1/2)xklxlkx41

x41

)
.

We get

F a
b =

1

x41




∗ 0 0 0
∗ ∗ X34

12 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


 ,
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where ∗ are some expression of xij which canceled after projection on so along b−. After the sym-
metrization and the projection on so we get the matrix of M-operator in the following form:

MH =
1

a14




0 0 0 0
0 0 L34

12 0
0 −L34

12 0 0
0 0 0 0




which coincides with the matrix of M-operator of DLNT integral

I1,2 =
E1,2(L)

E1,0(L)

which can be obtained by the direct calculation too. And finally we have the formula:

dL

dtIcs
1,2

= [M(L), L] + [MI1,2 , L],

where M(L) = L+ − L− = M(1/2)TrL2 .
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