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A stochastic method to compute the L
2 localisation landscape

Masataka Kakoi*, and Keith Slevin†

Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

The L2 localisation landscape of L. Herviou and J. H. Bardarson is a generalisation of the localisation landscape of M.

Filoche and S. Mayboroda. We propose a stochastic method to compute the L2 localisation landscape that enables the

calculation of landscapes using sparse matrix methods. We also propose an energy filtering of the L2 landscape which

can be used to focus on eigenstates with energies in any chosen range of the energy spectrum. We demonstrate the utility

of these suggestions by applying the L2 landscape to Anderson’s model of localisation in one and two dimensions, and

also to localisation in a model of the quantum Hall effect.

1. Introduction

To gain greater insight into the properties of the eigenstates

of electrons in random potentials and the phenomenon of

Anderson localisation,1) Filoche and Mayboroda2) proposed

solving a partial differential equation to find what they called

a localisation landscape. Suppose that the system is described

by a Hamiltonian of the form

H = −∆ + V(r), (1)

where V is typically a random potential. The eigenvalues En

and eigenstates ψn are the solutions of

Hψn(r) = Enψn(r). (2)

Instead of solving this eigenvalue problem, Filoche and May-

boroda suggest computing the localisation landscape which is

the solution of

Hu(r) = 1, (3)

with the same boundary conditions as Eq. (2). Filoche and

Mayboroda showed that, provided V ≥ 0 everywhere (but not

V = 0 everywhere), the eigenvalues and eigenstates satisfy

the inequality

|ψn(r)| ≤ Enu(r). (4)

Note that for the condition on V given above we have all

En > 0 and that here eigenstates are normalised so that the

maximum value of the modulus is unity

‖ψn‖∞ = 1. (5)

The landscape u provides an upper bound for the modulus

of eigenstates, particularly for lower energy eigenstates. By

looking at the landscape function we can discern where the

eigenstates are localised. In subsequent work it was shown

that a localisation landscape can also be computed for discrete

lattices.3, 4) In this case for the inequality (4) to hold, all the

elements of the inverse of the Hamiltonian matrix H must be

real and non-negative.

Ways of overcoming the restrictions on H have been pro-

posed. For example, the construction of a landscape using

comparison matrices.5) We focus here on the suggestion of

Herviou and Bardarson.6) In particular so that the localisation

*kakoi@presto.phys.sci.osaka-u.ac.jp
†slevin.keith.sci@osaka-u.ac.jp

of excited states can be studied using a landscape, Herviou

and Bardarson defined what they called the L2 landscape

ui =

√

(M−1)i,i, (6)

where

M = H†H. (7)

Here, i labels sites on a lattice. For this landscape, with the

aid of the Cauchy-Schwarz inequality, Herviou and Bardarson

showed that the eigenvalues and eigenstates of H satisfy the

following inequality
∣

∣

∣(ψn)i

∣

∣

∣ ≤ |En| ui. (8)

Unlike in the approach of Filoche and Mayboroda, here the

wave function is normalised so that the L2 norm is unity

‖ψn‖2 = 1. (9)

The only restriction on the Hamiltonian H is now the exis-

tence of an inverse for M.

In terms of the eigenvalues and eigenstates of H the square

of the L2 landscape can be expressed as

u2
i =

∑

n

1

|En|2
|(ψn)i|2. (10)

This expression makes clear that states near zero energy have

a heavier weight in the landscape. To study states near a par-

ticularly energy Herviou and Bardarson introduced an energy

shift Eshift, i.e., they replace H in Eq. (6) with

h = H − EshiftI, (11)

where I is the identity matrix. Moreover, since the inequality

Eq. (8) holds even if H is not Hermitian, Herviou and Bardar-

son also suggested introducing a small imaginary part in the

energy shift. This ensures that M is always invertible.

In this paper, we propose a stochastic method to compute

the L2 landscape that allows efficient sparse matrix methods

to be used. We also introduce a Butterworth-type energy fil-

ter7) to make it easier to focus on states in arbitrary parts of

the spectrum of the Hamiltonian. We apply these methods to

Anderson’s model of localisation in one and two dimensions.

We also simulate Anderson’s model of localisation in two di-

mensions subject to a strong uniform perpendicular magnetic

field that puts the system in the regime of the quantum Hall
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effect. In this later case we apply the method to localisation in

the lowest Landau band.

2. Theory and Method

2.1 Stochastic method for the L2 localisation landscape

We replace the right-hand side of Eq. (3) with a random

vector ξ

hw = ξ. (12)

Here, the distribution of the elements of the vector ξi should

satisfy the following conditions

〈ξi〉 = 0, (13)
〈

ξiξ
∗
j

〉

= δi, j, (14)

Inverting Eq. (12) we have

wi =

∑

j

(

h−1
)

i, j
ξ j, (15)

so that

|wi|2 =
∑

j,k

(h−1)i, jξ j(h
−1)∗i,kξ

∗
k . (16)

Now, using Eqs. (13) and (14) to calculate the expectation

value of the square of the modulus of the solution wi, we find

that it is equal to the square of the L2 localisation landscape

Eq. (6)
〈

|wi|2
〉

=

∑

j

(h−1)i, j(h
−1)∗i, j

=

∑

j

(h−1)i, j((h
−1)†) j,i

= (M−1)i,i

= u2
i . (17)

We use two distributions of random vectors satisfying Eqs.

(13) and (14). For the first distribution the elements ξi of the

random vectors are independently and identically distributed

with a normal distribution with mean zero and variance one.

Since these are real vectors, this is an appropriate choice, if h

is a real matrix.

For the second distribution the elements ξi of the random

vectors have absolute value unity and random phase θi inde-

pendently and identically distributed with a uniform distribu-

tion on the interval [0, 2π], i.e.,

ξi = exp (iθi) . (18)

When h is a complex matrix we use random vectors dis-

tributed in this way.

We approximate the expectation value Eq. (17) using the

average over N independently sampled vectors ξ(α), i.e.,

hw
(α)
= ξ(α), (19)

where α = 1, . . . ,N and then

u2
i ≈ |wi|2 =

1

N

N
∑

α=1

∣

∣

∣w
(α)

i

∣

∣

∣

2
. (20)

We choose the number of samples N so as to obtain the land-

scape within a desired precision. The standard deviation of

the statistical error in this estimate decreases as 1/
√

N. Note

 Eshift− ε Eshift Eshift+ ε  

E
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)
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Fig. 1. (Colour online) Form of the Butterworth-type filter f (E) in Eq.

(21). For sufficiently large p, the function approaches 0 for |E| > ε and 1

for |E| < ε.

that the statistical fluctuations in the estimate of the landscape

at different sites are correlated. The calculation of the full co-

variance matrix is given in Appendix A.

We have implemented the calculations using the Python

programming language. When h is Hermitian and sparse,

a method such as the conjugate gradient method is ap-

propriate when solving Eq. (19). We first precondition the

matrix using incomplete LU factorisation (ILU) with the

scipy.sparse.linalg.ilu routine and then solve the linear equa-

tions using scipy.sparse.linalg.cg of the SciPy library.

2.2 Energy filtering

To focus more precisely on states near a chosen energy we

propose the use of a Butterworth-type filter7) when calculating

the landscape. In particular, consider the function

f (E) =

[

(

E − Eshift

ε

)2p

+ 1

]−1

. (21)

Here ε > 0 and p is a positive integer. This function is plotted

in Fig. 1 for various values of p. In place of Eq. (11) we set

h = f −1(H) = h
2p

0
+ I, (22)

where

h0 =
H − EshiftI

ε
. (23)

This matrix h has the same eigenstates as H and has eigenval-

ues 1/ f (En). The theory of Herviou and Bardarson is equally

applicable to h as H, so we arrive at the following inequality

for the eigenstates and eigenvalues of H

f (En) |(ψn)i| ≤ ui, (24)

and the following expression for the filtered landscape in

terms of the eigenvalues and eigenstates of H

u2
i =

∑

n

( f (En))2 |(ψn)i|2. (25)

From this equation, and referring to Fig. 1, we see that the

contribution to the landscape of eigenstates with energies out-

side the filter window, which has width approximately 2ǫ

and is centred at energy Eshift, are strongly suppressed. From

Eq. (24), we see that the filter provides constraints on the

2
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eigenstates inside the filter window, and no constraints on the

eigenstates outside the window. The sharpness of the filter is

set by the parameter p. In what follows, we set p = 8.

2.3 Avoiding underflow or overflow

We solve Eq. (12) in steps to avoid underflow or overflow.

To do so we make use of the identity

q2p
+ 1 =

2p
∏

k=1

(q + qk) , (26)

where q1, · · · , q2p are the 2pth roots of −1, i.e.,

qk = exp

(

i
2k − 1

2p
π

)

. (27)

Setting

hk = h0 + qkI, (28)

we then have

h
2p

0
+ I =

2p
∏

k=1

hk. (29)

We can now solve Eq. (12) in 2p steps as follows

v0 = ξ, (30)

hkvk = vk−1 for k = 1, 2, . . . , 2p, (31)

w = v2p, (32)

Unfortunately, this procedure increases the computational

load in two ways. First, for each vector ξ we need to solve 2p

sets of linear equations. Second, since the hk in Eq. (31) are

not Hermitian, the conjugate gradient method is not appropri-

ate and we use the stabilised bi-conjugate gradient method in-

stead as implemented in routine scipy.sparse.linalg.bicgstab.

This increase in computational load can be mitigated to a cer-

tain extent by modifying the algorithm to render the matrices

Hermitian. This is described in Appendix B.

3. Results

3.1 Anderson’s model of localisation in one dimension

We apply the stochastic method first to Anderson’s model

of localisation1) in one dimension,

H =
∑

i

Wic
†
i
ci − t

∑

〈i, j〉
c
†
i
c j. (33)

Here, i labels sites with position xi on a one-dimensional lat-

tice with lattice constant a, c
†
i

(c
i
) is the creation (annihilation)

operator on site i, and the Wi are independently and identically

distributed random variables with uniform distribution on the

interval [−W/2,W/2]. The second term is summed over pairs

of nearest-neighbour sites. We take the distance a between

sites as a unit of length and the hopping t as a unit of energy.

In this paper we always use periodic boundary conditions.

Figure 2 shows the results of calculating the L2 localisa-

tion landscape for a system with L = 216
= 65, 536 sites and

disorder strength W = 0.2. In Fig. 2(a), we show the L2 land-

scape computed using the stochastic method with Eshift = 0

and without filtering. We used random vectors with normally

distributed elements and the sampling of random vectors was

stopped when the maximum statistical error reached 5%. This

required N = 1160 vectors. From Eq. (25), we expect the

largest contribution to the unfiltered L2 landscape to come

from eigenstates near E = Eshift, i.e., E = 0. We also expect

that the inequality Eq. (8) to be closest to being saturated for

eigenstates at the same energy. This is consistent with what

we see in Fig. 2(c) where the four eigenstates with energies

closest to E = 0 are superimposed on the landscape.

In Fig. 2(b), we show a filtered L2 landscape with ε =

1.2 × 10−4 and p = 8. In a separate calculation using the Ker-

nel Polynomial Method8) (KPM) we estimated the density of

states (DOS) at E = 0 to be ρ ≈ 0.159 per site. Thus, the value

of ε used in the filter corresponds to approximately 1.25 times

the mean energy level spacing. We used random vectors with

elements with uniformly distributed random phases and the

sampling of random vectors was stopped when the maximum

statistical error reached 5%. This required N = 470 vectors.

In Fig. 2(d), we show the three eigenstates with energies in-

side the filter window superimposed on the filtered L2 land-

scape shown in Fig. (2b). We see that the contribution to the

landscape from eigenstates outside the filter window has been

successfully filtered out and that the landscape inequality for

the filtered landscape Eq. (24) is almost saturated.

3.2 Anderson’s model of localisation in two dimensions

We now turn to Anderson’s model of localisation in two di-

mensions. The Hamiltonian is formally the same as Eq. (33)

but the index i now labels sites with position (xi, yi) on a two-

dimensional square lattice with lattice constant a. We simu-

lated an L × L system with L = 28
= 256 (in units of a) and

disorder W = 6 (in units of t).

In Fig. 3(a), we show the filtered L2 landscape computed

using the stochastic method with Eshift = 0, ε = 1.25 × 10−4,

and p = 8. We used random vectors with elements with uni-

formly distributed random phases and the sampling of ran-

dom vectors was stopped when the maximum statistical error

reached 5%. This required N = 490 vectors. Using the KPM

method we estimated the DOS at E = 0 to be ρ ≈ 0.123 per

site. Thus, the value of ε used in the filter corresponds to ap-

proximately the mean energy level spacing. Hence, we expect

to find on average approximately two eigenstates within the

filter window. In Fig. 3(b)-(d), we show eigenstates with en-

ergies E = 9.7×10−5, −1.12×10−4, and −2.6×10−4, respec-

tively. Comparison of the landscape and eigenstates shows

that the amplitude of the L2 landscape accurately indicates the

spatial location of the eigenstates that have energies within the

filter window and also that eigenstates with energies outside

the filter window are successfully filtered out. Estimates of

37a and 48a for the localisation length at the band centre for

this model and parameters have been reported in Refs. 9 and

10, respectively. The results shown are consistent with these

estimates.

3.3 Two dimensional system in a uniform perpendicular

magnetic field

We now apply the L2 landscape to Anderson’s model of

localisation in two dimensions subject to a uniform perpen-

dicular magnetic field. The Hamiltonian is

H =
∑

i

Wic
†
i
ci − t

∑

〈i, j〉
exp

(

iϕi j

)

c
†
i
c j. (34)

The index i labels sites with position (xi, yi) on a two-

dimensional square lattice with lattice constant a. We sup-

3
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Fig. 2. (Colour online) Comparison of eigenstates and landscapes with Eshift = 0, i.e., near the centre of the band. (a) L2 landscape without filtering obtained

by the stochastic method. (b) L2 landscape with filtering obtained by the stochastic method. The filter parameters are ε = 1.2×10−4 and p = 8. (c) and (d) The

four eigenstates (calculated using the Lanczos algorithm) with energies closest to Eshift are overlaid on the landscape from figures (a) and (b), respectively.

The eigenstates are labelled A, B, C, and D in order of energy closest to Eshift. The energies are −5× 10−5, 6× 10−5, −1.4× 10−4, and 1.7× 10−4, respectively.
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Fig. 3. (Colour online) L2 landscape and three eigenstates for Anderson’s model of localisation in two dimensions with linear system size L = 256 and

disorder W = 6: (a) L2 filtered landscape with Eshift = 0, ε = 1.25 × 10−4, and p = 8. (b) Modulus of an eigenstate near the band centre with energy

E = 9.7 × 10−5. (c) An eigenstate with energy E = −1.12 × 10−4. (d) An eigenstate with energy E = −2.6 × 10−4 , an energy that is outside the filter window.
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Fig. 4. The DOS per site of the model defined in Eq. (34) with parameters

φ = 1/8 and W = 1. (left) Full DOS. (right) Enlarged view of the DOS near

the lowest Landau sub-band.

pose that a uniform magnetic field is applied perpendicular to

the system. The vector potential A = (0, Bx, 0) corresponds

to a magnetic flux B in the +z direction. The application of

a magnetic field in a lattice model is described by introduc-

ing phases ϕi j (Peierls factors11)) in the hopping terms. These

phases are

ϕi j = 0, (35)

when site j is a nearest neighbour of site i in the ±x directions

and

ϕi j = ±2πφxi, (36)

when site j is a nearest neighbour of site i in the ±y directions.

Here, φ is the magnetic flux threading a unit cell of the square

lattice in units of the flux quantum h/e, i.e.,

φ =
Ba2

h/e
. (37)

When φ is a rational number, i.e., φ = p/q, q Landau bands

appear.12) These have an intrinsic broadening. In the presence

of disorder W > 0 the Landau bands are further broadened.

Also states in the Landau bands are Anderson localised except

for a single critical energy Ec close to the centre of the sub-

band. Provided that the disorder W is not too large the Landau

bands remain resolved and the system is then in the regime of

the quantum Hall effect (QHE). We have simulated a square

system with L × L sites with linear size L = 256, disorder

W = 1, and magnetic flux φ = 1/8 flux quantum per unit cell.

To confirm that the system is in the QHE regime we show in

Fig. 4 the DOS calculated using the KPM.8) In what follows

we focus on the sub-band with lowest energy.

We report two calculations of the landscape with a mag-

netic field. In the first we set Eshift = −3.3, close to the centre

of the Landau band, and ε = 4 × 10−5 ≈ mean level spac-

ing. The filter window is expected to contain approximately

two eigenstates. We used random vectors with elements with

uniformly distributed random phases and the sampling of ran-

dom vectors was stopped when the maximum statistical error

reached 5%. This required N = 510 vectors. In Fig. 5(b)-(d),

we show eigenstates with energies E = Eshift + 1.4 × 10−5,

E = Eshift − 2.2 × 10−5, and E = Eshift + 5.1 × 10−5, respec-

tively. The eigenstates in (b) and (c) have energies inside the

filter window, while the eigenstate in (d) has an energy out-

side the window and does not contribute to the landscape. As

is well known, the localisation length diverges at the centre

of the Landau bands, and this is clearly reflected in the land-

scape.

In the second calculation we set Eshift = −3.2, away from

the centre of the Landau band, and ε = 5× 10−5 ≈ mean level

spacing. We used random phase distributed random vectors

and the sampling of random vectors was stopped when the

maximum statistical error reached 5%. This required N = 520

vectors. In Fig. 6(b)-(d), we show eigenstates with energies

E = Eshift + 1.4 × 10−5, E = Eshift − 2.8 × 10−5, and E =

Eshift − 4.7 × 10−5, respectively. Since all these energies are

inside the filter window, the peaks in the landscape correspond

with the three eigenstates.

3.4 Comparison between the stochastic method and the

Lanczos algorithm

Since the stochastic method involves repeatedly solving

linear equations, its computational complexity is similar to

that of a sparse matrix eigenvalue solver like the Lanczos al-

gorithm.13) In fact, to obtain a small number of eigenstates,

the Lanczos algorithm is faster and provides a value for the

energy of each eigenstate. The stochastic method becomes

more efficient when there are many eigenstates in the filter. In

the stochastic method, increasing the width of the filter win-

dow does not significantly increase the computation time.

We compare the stochastic method with the Lanczos al-

gorithm for the centre of the band of Anderson’s model of

localisation in one-dimension with L = 218
= 262144 sites

and W = 2. We use Eshift = 0, ε = 0.02, and p = 8 as pa-

rameters for the stochastic method. We estimate the DOS at

E = 0 to be ρ ≈ 0.161 per site. Therefore, we expect ap-

proximately 2ερL ≈ 1680 eigenstates inside the filter. We

carried out calculations for 10 different realisations of the

random potential. We solved the eigenvalue problem using

the scipy.sparse.linalg.eigsh function from the SciPy library,

which is a wrapper for the ARPACK14) SSEUPD and DSE-

UPD functions. The CPU used was an Intel Xeon Silver 4208

with a processor base frequency of 2.10 GHz. The average

time required for the 10 calculations was 315 seconds and

2076 seconds for the stochastic method and Lanczos algo-

rithm, respectively, with standard deviations of 12 seconds

and 47 seconds, respectively.

In Fig. 7, we compare eigenstates calculated using the

Lanczos algorithm and the landscape in an enlarged view near

the centre of the system. Only 800 eigenstates have been cal-

culated with the Lanczos algorithm, compared with the 1680

expected inside the filter, so the landscape exhibits approx-

imately twice as many peaks. Thus, although the stochastic

method does not provide as much information about each

eigenstate as the Lanczos algorithm, it allows us to extract

information about a larger number of eigenstates in much less

time.

4. Discussion

We have suggested a stochastic method for estimating the

L2 landscape. This method avoids a direct computation of the

inverse of the Hamiltonian matrix. The stochastic method per-

mits the application of sparse matrix methods and is ideally

suited to parallel calculations since Eq. (12) can be solved in

parallel for statistically independent streams of random vec-

tors. The way in which random vectors are employed here is

very similar to their use in the KPM.8)

We have also introduced an extension of the L2 landscape

with energy filtering. This method filters out the contribution

of eigenstates with energies outside the filter window and per-

5
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Fig. 5. (Colour online) L2 landscape and three eigenstates for a square system in a perpendicular magnetic field. The system has L × L sites with linear size

L = 256, disorder W = 1, and magnetic flux φ = 1/8 flux quantum per unit cell: (a) Filtered L2 landscape with Eshift = −3.3, ε = 4 × 10−5, and p = 8. This

value of Eshift is at the centre of the first Landau band. (b)-(d) Modulus of eigenstates with energies E = Eshift + 1.4 × 10−5, E = Eshift − 2.2 × 10−5, and

E = Eshift + 5.1 × 10−5, respectively.
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Fig. 6. (Colour online) As for Figure 5 but with Eshift = −3.2, ε = 10−5, and p = 8. (a) Filtered L2 landscape, (b)-(d) Modulus of eigenstates with energies

E = Eshift − 1.4 × 10−5, E = Eshift − 2.8 × 10−5, and E = Eshift − 4.7 × 10−5 , respectively.

6



J. Phys. Soc. Jpn. Full Paper

−L/100 −L/200 0 L/200 L/100
x

0.0

0.1

0.2

0.3

0.4

0.5
u f

ilt
er
,
f(E

n)
|ψ

n|
Landscape
Eigenstates

Fig. 7. (Colour online) Comparison of eigenstates and landscape in an en-

larged view near the centre of the system. The filter parameters are Eshift = 0,

ε = 0.02, and p = 8.

mits a focus on eigenstates with energies near an arbitrary en-

ergy of interest. This makes the landscape useful for the study

of localisation not only near the edges of the band where the

DOS is small but to the centre of the band also where the DOS

is large.

From the original landscape of Filoche and Mayboroda,2)

an effective potential has been defined.15) The integrated DOS

for semiconductors has been investigated using this effective

potential.16–18) The Wigner function has also been investi-

gated.19, 20) It is not yet clear if an appropriate effective po-

tential can be defined for the L2 landscape and this may be an

interesting question for future research.

Another direction is the application of localisation land-

scapes to many-body problems. For the original landscape,

such an application has been proposed.21, 22) Unlike the orig-

inal landscape the L2 landscape is applicable to wider range

of Hamiltonians. This, combined with the energy filtering we

suggest here, may be advantageous in the study of localisation

in a many-body context.
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Appendix A
To determine the precision of the estimation of the L2 landscape using the stochastic method we calculate the covariance

matrix of the landscape estimate, i.e., we calculate

〈

|wi|2 · |w j|2
〉

=
1

N2

∑

α,β

∑

k,l,m,n

(h−1)∗i,k(h−1)i,l(h
−1)∗j,m(h−1) j,n

〈

ξ
(α)∗
k

ξ
(α)

l
ξ

(β)∗
m ξ

(β)
n

〉

=
1

N2

















∑

α,β

∑

k,l,m,n

(h−1)∗i,k(h−1)i,l(h
−1)∗j,m(h−1) j,n

〈

ξ
(α)∗
k

ξ
(α)

l

〉 〈

ξ
(β)∗
m ξ

(β)
n

〉

+

∑

α

∑

k,l,m,n

(h−1)∗i,k(h−1)i,l(h
−1)∗j,m(h−1) j,n

〈

ξ
(α)∗
k

ξ
(α)

l
ξ(α)∗

m ξ(α)
n

〉

















=
N − 1

N

∑

k,m

(h−1)∗i,k(h−1)i,k(h−1)∗j,m(h−1) j,m

+
1

N

∑

k,m

(h−1)∗i,k(h−1)i,k(h−1)∗j,m(h−1) j,m(1 − δk,m)

+
1

N

∑

k,l

(h−1)∗i,k(h−1)i,l(h
−1)∗j,l(h

−1) j,k(1 − δk,l)

+

∣

∣

∣

∣

〈

ξ2
〉

∣

∣

∣

∣

2

N

∑

k,l

(h−1)∗i,k(h−1)i,l(h
−1)∗j,k(h

−1) j,l(1 − δk,l)

+

〈

|ξ|4
〉

N

∑

k

(h−1)∗i,k(h−1)i,k(h−1)∗j,k(h
−1) j,k

=

∑

k,l

(h−1)∗i,k(h−1)i,k(h−1)∗j,l(h
−1) j,l

+
1

N

∑

k,l

(h−1)∗i,k(h−1)i,l(h
−1)∗j,l(h

−1) j,k +

∣

∣

∣

∣

〈

ξ2
〉

∣

∣

∣

∣

2

N

∑

k,l

(h−1)∗i,k(h−1)i,l(h
−1)∗j,k(h

−1) j,l

+
1

N

(

〈

|ξ|4
〉

− 2 −
∣

∣

∣

∣

〈

ξ2
〉

∣

∣

∣

∣

2
)

∑

k

(h−1)∗i,k(h−1)i,k(h−1)∗j,k(h−1) j,k. (A·1)

The first term of Eq. (A·1) is equal to
〈

|wi|2
〉 〈

|w j|2
〉

. The subsequent terms are the covariance. The standard deviation of the

statistical error in the estimate of the landscape at any particular site decrease as 1/
√

N as the number N of vectors sampled

increases.

If the elements of the random vectors are independently and identically distributed with a normal distribution with mean

zero and variance one, then
〈

|ξ|4
〉

= 3, (A·2)

〈

ξ2
〉

= 1, (A·3)

and the covariance is

Cov
[

|wi|2, |w j|2
]

=

〈

|wi|2 · |w j|2
〉

−
〈

|wi|2
〉 〈

|w j|2
〉

=
1

N

∑

k,l

[

(h−1)∗i,k(h−1)i,l(h
−1)∗j,l(h

−1) j,k + (h−1)∗i,k(h−1)i,l(h
−1)∗j,k(h−1) j,l

]

. (A·4)

If the elements of the random vectors have absolute value unity and random phases as in Eq. (18) with the phase θi indepen-

dently and identically distributed with a uniform distribution on [0, 2π], then
〈

|ξ|4
〉

= 1, (A·5)

〈

ξ2
〉

= 0, (A·6)
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and the covariance is

Cov
[

|wi|2, |w j|2
]

=
1

N

∑

k,l

(h−1)∗i,k(h−1)i,l(h
−1)∗j,l(h

−1) j,k. (A·7)

Appendix B
The qk appearing in Eq. (27) occur in complex conjugate pairs. Moreover, since the hk commute an arbitrary reordering of

the product in Eq. (29) is permissible. We first note that

(q + qk)
(

q + q∗k

)

= q2
+ rkq + 1, (B·1)

where

rk = qk + q∗k = 2 cos

(

2k − 1

p
π

)

, (B·2)

The product of 2p factors in Eq. (29) can then be expressed using p factors as

h2p
+ 1 =

p
∏

k=1

h′k. (B·3)

where

h′k = h0 (h0 + rkI) + I. (B·4)

Now, if H is Hermitian, then so are the h′
k
. The conjugate gradient method is now applicable.
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