
DEFORMATIONS OF DISPERSIONLESS LAX SYSTEMS

WOJCIECH KRYŃSKI

Abstract. We consider dispersionless Lax systems and present a new systematic method
of deriving new integrable systems from a given one. We provide examples that include:
the dispersionless Hirota equation, the general heavenly equation and the web equations.

1. Introduction

In this paper we consider dispersionless integrable systems arising as the integrability
condition for a foliation F on a bundle B with 1-dimensional fibers over a manifoldM. This
framework can be adapted to the heavenly equations [29, 30], the Manakov–Santini system
[24] (see also [7]), the Dunajski–Tod equation [9] (see also [3]), the hyper-CR equation
[6], the dispersionless Hirota equation [8] (known also as the abc-equation [31]), equations
related to the GL(2)-structures and web geometry [11, 17, 18, 20, 21, 22] and many others
[5, 10, 15, 23, 13, 25]. The quotient space T = B/F is usually referred to as the (real)
twistor space and the following double fibration picture arises

M← B → T .

Our goal is to develop a method of deriving new integrable system onM by equipping the
twistor space T with additional geometric data.

The twistor methods originate from works of Penorese [28] and Hitchin [12]. All afore-
mentioned systems describe very natural classes of geometric structures on M. Specifi-
cally, these could be anti-self-dual metrics (e.g [3, 9, 7, 29]), Einstein-Weyl structures (e.g.
[7, 8, 10, 21, 24]), or higher dimensional counterparts like GL(2)-structures or Veronese and
Kronecker webs (see [11, 17, 18, 20, 22]). However, it is often a subtle and not trivial task
to prove generality of the solutions. Moreover, as [17, 26] shows it is even more difficult
to prove whether two equations describe the same set of structures, because the corre-
sponding equations are often non equivalent from the viewpoint of equivalence of PDEs.
On the other hand, our method exploits the twistorial picture and automatically gives a
correspondence between solutions of different equations. The idea was initially developed
in [21] and applied in the specific case of the dispersionless Hirota equation. In the present
paper we aim to generalize it and, as an example, provide new applications to the heavenly
equations (we refer also to [1, 2, 15, 16] and [27], where another approaches are presented)
and the hierarchy of [19] (note that in dimension 4 the structures arise in the context of
exotic holonomy groups [4, 22]).
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2 WOJCIECH KRYŃSKI

Different types of deformations of Lax systems were considered before, for instance in [16]
and [17, 27]. In particular [16] uses algebraic approach to symmetry algebras, while [17, 27]
exploit normal forms of Nijenhuis operators. A priori the two methods are unrelated, but
in the present paper we generalize both of them at the same time. Our main goal, however,
is to present an unified framework that can be later used in other context.

Acknowledgments. I am grateful to Boris Kruglikov for helpful conversations.

2. General construction

In this Section we introduce a framework for our studies. Our aim is to define a notion
of a deformation of a Lax system. At the end of the Section we formulate Theorem 2.2 that
states that the solution space of a deformed equation is in a one to one correspondence with
the solution space of the original equation. Once the definitions are introduced, the result
is straightforward. However, for applications it would be crucial to determine whether two
equations are mutual deformations, or to construct deformations of a given equation. That,
in general requires some work, but once the work is done Theorem 2.2 can be applied.

The present Section ends with additional remarks on the Bäcklund transformations and
on a generalization of the construction involving higher order jets.

2.1. Equations. Let

τ : U →M
be a vector bundle over a manifold M and let

πM : B →M
be a rank-1 fiber bundle over M. Denote by

τ̂ : Û → B
the pullback bundle of U . Then, for any section u of U , there is a corresponding pullback
section û of Û . Moreover, let L0, . . . , Ls be differential operators acting on sections of Û
with values in the tangent bundle TB,

Li ∈ Diff(Û , TB).

Hence, for a given a section u of U , L0(û), . . . , Ls(û) are vector fields on B depending on
u and its derivatives up to certain order.

Definition. We say that u is a solution to the Lax system defined by (Li)i=0,...,s if the
distribution

Du = span{L0(û), . . . , Ls(û)}
on B is integrable.

Later on, for simplicity, we shall write Li(u) instead of Li(û). The Lax systems are
usually defined by a pair (L0, L1) of vector fields. The foliation of integral leaves of Du

will be denoted Fu. For the rest of the paper we shall assume that U and B are trivial
bundles U =M× Rm and B =M× RP 1. Moreover, we shall study M locally around a
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given point and hence we will assume for simplicity thatM = Rn. The later identification
gives the initial coordinates on M, which will be deformed in the due course.

2.2. Twistor correspondence. Let Tu = B/Fu be the space of leaves of foliation Fu
with the quotient mapping

πTu : B → Tu.
We shall assume that fibers of πM intersect fibers of πTu transversally, i.e. fibers of πM

are nowhere tangent to the fibers of πTu . It follows that one can establish a correspondence
between points in M and certain curves in Tu, and conversely a correspondence between
points in Tu and submanifolds in M. Indeed, let x ∈ M and denote by γ̂x a curve in B
being a counterimage of x with respect to πM. Let γx,u = πTu(γ̂x). Then γx,u is a curve

in Tu. Conversely, let p ∈ Tu and denote by F̂p a submanifold in B being a counterimage

of p with respect to πTu . Let Fp = πM(F̂p). Then Fp is a submanifold of M. For a given
solution u we shall denote

Γu = {γx,u | x ∈M}.
Our aim now is to introduce a class of distinguished coordinates on M parameterized

by solutions u of a Lax system. It is sufficient to find a map from Γu to Rn for any solution
u, because there is a correspondence between points inM and Γu. Later on, the codomain
Rn will be assumed to be a fixed space M̃ = Rn.

Definition. A sequence of corank-1 submanifolds (T1, T2, . . . , Tm) of Tu is called a transver-
sal system for a family Γu if any γ ∈ Γu and Ti, i = 1, . . . ,m, intersect transversally exactly
at one point.

Definition. Let Tu = (T1, . . . , Tm) be a transversal system of submanifolds of Tu for a
family Γu and assume that any Tl possess a fixed local coordinate system (x1

l , . . . , x
k
l ) : Tl →

Rk. Any function xjl defines a function on Γu by a formula

xjl (γ) = xjl (γ ∩ Tl)

where the right hand side is the value of xjl at the intersection point of γ and Tl (unique by

definition). We say that maps (xjl ) induce coordinates on Γu if there is subset (x1, . . . , xn) ⊂
{xjl | l = 1, . . . ,m, j = 1, . . . , k} defining local coordinates on Γu. If this is the case then
φu = (x1, . . . , xn) : Γu → Rn are called induced coordinates on M.

The coordinate functions one gets from the construction are very special. Indeed, we
have the following.

Proposition 2.1. If functions xi, i = 1, . . . , n, are coordinates on M induced by a
transversal system on Tu, then any foliation xi = const on M is tangent to the projec-
tion of certain integral leaves of distribution Du via πM.

Proof. Indeed, a condition xi = c for some c ∈ R fixes a submanifold S ⊂ Ts, where Ts
is one of the submanifolds from the transversal system Tu. Points p ∈ S correspond to
submanifolds Fp ⊂ M that consist of points represented by curves from Γu intersecting
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.

Figure 1. Transversal system Tu = (T1, T2, T3, T4) and induced coordi-
nates (xi) of point x represented by a curve γx in the twistor space Tu.

S. On the other hand this submanifolds are, by definition, projections to M of integral
submanifolds of Du. �

2.3. Deformations of Lax systems. Let u be a solution to a Lax system (Li)i=0,...,s on
M. Let Tu be a transversal system in the corresponding twistor space Tu and φu : M→ Rn
be an induced system of coordinates. From now on we assume that all maps φu take
values in one fixed copy of Rn denoted by M̃. To be more precise, we assume that for
any solution u, and any transversal system Tu = (T1, . . . , Tm) the coordinate functions

(xjl )j=1,...,k : Tl → Rk take values in a fixed copy of Rk, denoted M̃l, and M̃ is defined as

an image of certain projection from M̃1× · · · × M̃k to a subspace defined by the choice of

(xi) among (xjl ).

Having M̃ fixed, we may consider Lax systems (L̃i,u)i=0,...,s on M̃ defined as pullbacks
of the original system through φu, for different u. These Lax systems are clearly equivalent
to the original system and are only written in different coordinate charts. In order to get a
significantly new system we shall combine all the systems together. For this we introduce
the following definition.

Definition. A Lax system (L̃i)i=0,...,s on M̃ is a week deformation defined by a family of
transversal systems Tu and induced coordinates φu of a Lax system (Li)i=0,...,s if for any
solution u of (Li)i=0,...,s its pullback

u∗ := u ◦ φ−1
u

to M̃ via the corresponding φu is a solutions to (L̃i)i=0,...,s.
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.

Figure 2. Two transversal systems on the twistor space Tu, giving two
different coordinate systems on M.

Definition. A Lax system (L̃i)i=0,...,s on M̃ is a deformation of a Lax system (Li)i=0,...,s

on M if the two systems are mutual week deformations of each other and

(u∗)∗ = u

holds.

We get the following tautological result.

Theorem 2.2. If a Lax system (L̃i)i=0,...,s on M̃ is a deformation of a Lax system on
(Li)i=0,...,s then there is a one to one correspondence between the two solution spaces.

In the next Section we shall provide a number of examples, but we shall make two general
remarks first: concerning the Bäcklund transformations and higher order generalizations.

2.4. Bäcklund transformations. The correspondence of Theorem 2.2 does not come
in general from contact, or point, transformations of coordinates. Also, in general, it is
not a Bäcklund transformation. However, if one assumes that M = M̃ then a Bäcklund
transformation can be (in principle) found by the following condition

(1) Du = D̃ũ

whereDu and D̃ũ are distirbutions spanned by the Lax systems (Li(u))i=0,...,s and (L̃i(ũ))i=0,...,s

for solutions u and ũ respectively.

2.5. Higher order deformations. The higher order deformation can be defined by re-
placing some of Ti in a transversal system by their tangent bundles (or higher order tan-
gent bundles). This can be visualized as a limit, when two (or more) submanifolds Ti in
a transversal system are getting arbitrary close. Then, one can introduce coordinates of
a curve γx as a first jet (or higher) at the intersection point of γx and Ti. This approach
was applied in the case of the Hirota equation in [21]. We shall not explain details here,
but postpone it to separate studies (equations that can be treated in this way include
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the hyper-CR equation, the Manakov–Santini system and the system that governs the
half-integrable Cayley structures introduced in [23]).

3. Examples

This section contains a number of examples illustrating general constructions of the
previous section. A common feature of all of them is that the twistor space is fibered over
a projective space. On the level of Lax pairs it manifests with the lack of a term in the
direction of ∂λ. In other words, the fiber coordinate λ on the bundle B descends to a well
defined function on Tu.

3.1. Dispersionless Hirota equation. It is proved in [8] that the solutions to the dis-
persionless Hirota equation are in a one to one correspondence with the 3-dimensional
hyper-CR Einstein–Weyl structures. The equation, written on manifold M = R3 with
coordinates x1, x2, x3, reads

(2) au1u23 + bu2u13 + cu3u12 = 0,

where a, b, c ∈ R are non-zero constants such that a + b + c = 0, and ui = ∂iu. The
corresponding Lax pair is of the following form (see [8])

(3) L0 = ∂3 −
u3

u1
∂1 − λb∂3, L1 = ∂2 −

u2

u1
∂1 + λc∂2,

where λ is an additional affine coordinate on the rank-1 bundle B =M×RP 1. Note that
for any value λ, the two vector fields L0 and L1 span an integrable distribution on M.
Indeed, the Hirota equation is the integrability condition. The corresponding conformal
metric [g] and the Weyl connection can be found in [8] (formula (4)).

Let λ1, λ2, λ3 be such that a = λ2 − λ3, b = λ3 − λ1 and c = λ1 − λ2. Performing a
Möbius transformation λ 7→ 1

λ1−λ one puts the Lax pair (3) in the form

(4) L0 = (λ− λ1)
u3

u1
∂1 − (λ− λ3)∂3, L1 = (λ− λ1)

u2

u1
∂1 − (λ− λ2)∂2,

which clearly gives the same Lax equation for u. One checks that for λ = λi the distribution
spanned by L0 and L1 is tangent to the foliation xi = const.

It follows that coordinates (x1, x2, x3) can be interpret as induced coordinates from
a transversal system. Indeed, Tu = B/Du is the space of all integral manifolds of Du =
span{L0, L1}. Moreover, Tu is two-dimensional and, as mentioned before, λ is a well defined
function on T because it is constant on leaves of Du. The transversal system is defined by
submanifolds

Ti = {p ∈ Tu | λ(p) = λi}.
Function xi is a diffeomorphism from Ti to R, i.e. it parameterizes leaves of the aforemen-
tioned foliation xi = const on M.

Let us replace now Ti by general submanifolds of Tu of the form

T̃i = {p ∈ Tu | fi(p) = 0},
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for some functions fi : Tu → R on the twistor space (with 0 being a regular value). It is

proved in [21] that any choice of coordinates xi on T̃i transforms (2) into

(5) (λ2(x2)− λ3(x3))u1u23 + (λ3(x3)− λ1(x1))u2u13 + (λ1(x1)− λ2(x2))u3u12 = 0,

where now each λi(x
i), i = 1, 2, 3, is a function of one variable. Precisely, λi is defined as

the restriction of function λ from Tu to submanifold T̃i, and xi is a coordinate function on
T̃i, which consequently becomes an induced coordinate on M. In the previous case this
restriction of λ to Ti is just a constant function.

Equation (5) was derived for the first time in [17] where the authors analyzed the so-
called Nijenhuis operators associated to Veronese webs. The general assumption in their
approach is that the Nijenhuis operators have no singular points which is reflected in the
condition ∂xiλi(x

i) 6= 0. In this case a simple coordinate change (a point transformation)
gives λi(x

i) = xi. In our approach λi(x
i) can be arbitrary smooth function of one variable.

In particular we admit ∂xiλi(x
i) = 0 for certain values of xi.

In [17] it is also proved that equations with constant coefficients λi are contactly non-
equivalent to the one with non-constant λi (one can check that the corresponding symmetry
groups are different). Note that the corrdinate change between coordinate systems induced
by different transversal systems does not establish a contact equivalence of the Lax systems.
The reason is that the coordinate change depends on a given solution u.

On the other hand, formula (1) can be applied and it descents to a Bäcklund equivalence,
which in the present case was found in [17] as

λiλ̃juiũj = λj λ̃iuj ũi, i, j = 1, 2, 3.

where u and ũ are correspondingly solutions to (5) or to a variant of (5) with functions λi
replaced by λ̃i.

3.2. Higher dimensional Veronese webs. Veronese webs are higher dimensional coun-
terparts of the hyper-CR Einstein–Weyl structures described by equation (2). We refer
to [8] for the proof of the 3-dimensional correspondence between the Veronese webs and
the Einstein–Weyl structures. The general case was studied in [19] where it is addition-
ally proved that the webs underlie very particular integrable paraconformal structures (so
called totally geodesic GL(2)-geometries).

The Veronese webs on M = Rn are 1-parameter families of corank-one foliations [14,
18, 31] such that the annihilating 1-forms ωλ give rise to a rational normal curves λ 7→
Rωλ(x) ∈ P (T ∗xM) at each point x ∈M. The curves replace cones of null directions of [g]
in the 3-dimensional case. It is proved in [19] that the Veronese webs are in a one to one
correspondence with solutions to the following system

(6) (λi − λj)ukuij + (λk − λi)ujujk + (λj − λk)ukuij = 0,

where i, j, k = 1, . . . , n. Indeed, the equations are equivalent to the integrability condition

dωλ ∧ ωλ = 0
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where ωλ is given by

(7) ωλ =

n∑
i=1

∏
j 6=i

(λ− λj)uidxi.

System (6) appeared in [8] for the first time and turned out to be a Lax system with

(8) Li = (λ− λ1)
ui
u1
∂1 − (λ− λi)∂i, i = 1, . . . , n.

The corresponding twistor space is two dimensional and the most natural transversal system
can be defined as before

Ti = {p ∈ T | λ(p) = λi},
where now i = 1, . . . , n. Note that, as in the 3 dimensional case, λ is constant along vector
fields Li independently of u, and therefore can be treated as a function on the twistor space
Tu.

Deforming Ti as in the 3-dimensional case we get that the constants λi can be replaced
by arbitrary (smooth) functions of one variable λi = λi(xi). Indeed we have

(λi(x
i)− λj(xj))ukuij + (λk(x

k)− λi(xi))ujujk + (λj(x
j)− λk(xk))ukuij = 0,

i, j, k = 1, . . . , n, as an integrability condition for ωλ given by (7) with constants λi replaced
by functions. Note that, if ∂xiλi 6= 0 then coordinate change (a point transformation)
reduces λi(x

i) = xi.
Finally, applying (1) we find Bäcklund transformations given by

λiλ̃juiũj = λj λ̃iuj ũi, i, j = 1, . . . , n.

where λ and λ̃i are functions as before.

3.3. Heavenly equations. In a recent paper [15] an interesting approach to the heavenly
equations is presented. In this context M = R4 and one looks for split-signature self-
dual Ricci flat metrics. It is well known that metrics of this type are in a one to one
correspondence with solutions to the (first) Plebański equation

(9) u13u24 − u14u23 = 1

which has a Lax pair on B =M× RP 1 of the following form

L0 = −∂3 + λ(u13∂2 − u23∂1), L1 = −∂4 + λ(u14∂2 − u24∂1)

The authors of [15] utilize the eigenfunctions as coordinates, where eigenfunctions are
understood as solutions to linear system

(10) Li|λ=λ∗ψ = 0, i = 0, 1,

for unknown function ψ, where λ∗ is a fixed value of λ. It follows that any solution ψ is a
function on a submanifold of Tu defined as

Tλ∗ = {p ∈ Tu | λ(p) = λ∗},
where as in the previous examples λ is treated here as a function on Tu. Conversely, any
function on Tλ∗ is a solution to (10).
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In the present case Tu is 3-dimensional, and consequently Tλ∗ is a 2-dimensional surface
in T . It follows that there are two functionally independent functions on each Tλ∗ . [15]
uses the functions as coordinates onM. In our terminology these are induced coordinates
for a transversal system. For the Plebański equation it is enough to take two distinct values
of λ∗, say λ1 and λ2, and the corresponding transversal system Tu = (T1, T2). We get four
functions xil, i, l = 1, 2 in this way, as needed.

However, one can take Tu = (T1, T2, T3, T4) for four different values of λ∗ = λl, l =
1, 2, 3, 4. Then coordinates on Tl give 8 functions xil in total. We pick 4 of them, one for
each λl. It is proved in [15] (Theorem 4.1) that as a result one gets the general heavenly
equation (see also [30])

(11) (λ1− λ2)(λ3− λ4)u12u34 + (λ2− λ3)(λ1− λ4)u23u14 + (λ3− λ1)(λ2− λ4)u31u24 = 0.

The corresponding Lax pair has the following form

L0 = (λ− λ1)(λ2 − λ3)u23∂1 + (λ− λ2)(λ3 − λ1)u13∂2 + (λ− λ3)(λ1 − λ2)u12∂3,

L1 = (λ− λ1)(λ2 − λ4)u24∂1 + (λ− λ2)(λ4 − λ1)u14∂2 + (λ− λ4)(λ1 − λ2)u12∂4.

Now, the transversal system Tu can be deformed to a quadruple T̃u = (T̃1, T̃2, T̃3, T̃4) of
arbitrary surfaces (transversal with respect to the family Γu) in Tu. Similarly to the Hirota
equation such a deformation replaces each λi by a smooth function which in general can
be written in the form

(12) λi = λi(x
1
i , x

2
i )

where (x1
i , x

2
i ) are two coordinate functions on T̃i. One of them, say x1

i , becomes a coordi-
nate onM (denote it by xi). Denote by φi the pullback of the second coordinate function

(i.e. x2
i ) from T̃i to M. Then φi = φi(x1, x2, x3, x4) is a general function satisfying (10)

for λ∗ = λi(x
1
i , x

2
i ).

The Lax pair in the new coordinate system reads

L̃0 = (λ− λ1)(λ2 − λ3)ũ23∂1 + (λ− λ2)(λ3 − λ1)ũ13∂2 + (λ− λ3)(λ1 − λ2)ũ12∂3,

L̃1 = (λ− λ1)(λ2 − λ4)ũ24∂1 + (λ− λ2)(λ4 − λ1)ũ14∂2 + (λ− λ4)(λ1 − λ2)ũ12∂4.

where ũij are, a priori, certain expressions involving second order derivatives of the orig-
inal u and of the coordinate change. However, it turns out that ũij = ∂i∂j ũ are second
order derivatives (with respect to the new coordinates) of a function ũ provided that new

coordinates, as well as functions φi, are defined as functions on T̃i, or equivalently they are
solutions to

(13) L̃0|λ=λi(x1,φi)ψ = 0, L̃1|λ=λi(x1,φi)ψ = 0,

in new coordinates. The integrability condition for the new Lax pair gives (11) (with
λi upgraded to functions). Notice, that there is one obvious solution to (13) witch is
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φi = ∂iũ = ũi (written in new coordinates). Summarizing, we get the following equation

(λ1(x1, u1)− λ2(x2, u2))(λ3(x3, u3)− λ4(x4, u4))u12u34

+ (λ2(x2, u2)− λ3(x3, u3))(λ1(x1, u1)− λ4(x1
4, u4))u23u14

+ (λ3(x3, u3)− λ1(x1, u1))(λ2(x2, u2)− λ4(x4, u4))u31u24 = 0.

Specific cases of this particular deformation appeared independently in [16] and [27]. In
[16] authors consider deformations of the symmetry algebra and their algebraic procedure
give our deformed equation but only with respect to λ4 and coordinate x4 (it is case (I) of
[16]). Function Q in [16] is given by

Q(x4, u4) =
(λ1 − λ3)(λ2 − λ4(x4, u4))

(λ2 − λ3)(λ1 − λ4(x4, u4))
.

On the other hand authors of [27] apply approach of the Nijenhuis operators and get

λi = λi(x
i). This corresponds to the case when the foliation x1

i = const on T̃i coincide with

the foliation λ = const on Tu restricted to T̃i. As in the previous examples our method
is more general also in this case, since it covers singularities of the Nijenhuis operators -
corresponding to points where ∂xiλi(x

i) = 0.
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