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Abstract. The Painlevé equations possess transcendental solutions y(t) with
special initial values that are symmetric under rotation or reflection in the

complex t-plane. They correspond to monodromy problems that are explicitly

solvable in terms of classical special functions. In this paper, we show the
existence of such solutions for a q-difference Painlevé equation. We focus on

symmetric solutions of a q-difference equation known as qPIV or qP(A
(1)
5 ) and

provide their symmetry properties and solve the corresponding monodromy
problem.
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1. Introduction

Among the highly transcendental solutions y(t) of a Painlevé equation, there
exist solutions with solvable monodromy [7–9,14], often called symmetric solutions.
For generic parameter values, they are neither classical special functions1 [16] nor
solutions characterized by distinctive asymptotic behaviours, such as the celebrated
tritronquée solutions [10]. In this paper, we show that symmetric solutions also exist
for q-difference Painlevé equations.

To be explicit, we focus on the q-difference fourth Painlevé equation

qPIV(a) :



f0

a0a1f1
=

1 + a2f2(1 + a0f0)

1 + a0f0(1 + a1f1)
,

f1

a1a2f2
=

1 + a0f0(1 + a1f1)

1 + a1f1(1 + a2f2)
,

f2

a2a0f0
=

1 + a1f1(1 + a2f2)

1 + a2f2(1 + a0f0)
,
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1These are defined by Umemura as solutions related to hypergeometric-type or rational func-

tions under classical transformations.
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where q ∈ C, 0 < |q| < 1, is given, f = (f0, f1, f2) is a function of t ∈ T ⊆ C and
a := (a0, a1, a2) are constant parameters, subject to

f0f1f2 = t2, a0a1a2 = q, (1.1)

T is invariant under multiplication by q, and f = f(qt). This equation is also

known as qP(A
(1)
5 ) in Sakai’s diagram [15].

We will focus on solutions of qPIV(a) that are invariant under the following
transformations.

Definition 1.1. The following transformations are called discrete symmetries of
qPIV(a):

T± : t 7→ ±1

t
, (f0, f1, f2) 7→ (F0, F1, F2) = (f−1

0 , f−1
1 , f−1

2 ), (1.2)

i.e.,

Fk(t) =
1

fk(±1/t)
(0 ≤ k ≤ 2),

We call T a symmetric domain if it is invariant under t 7→ ±1
t . Furthermore, a

solution f of qPIV(a) is called a symmetric solution if it is invariant under one of
the above two symmetries.

We show that qPIV(a) is invariant under transformation (1.2) in Section 2. It is
important to note that the above symmetries do not arise as elements of the affine
Weyl symmetry group (A2 +A1)(1) usually associated with qPIV(a), but they turn
out to correspond to one and the same automorphism of the corresponding Dynkin
diagram. In particular, the symmetries are indistinguishable on the level of qPIV(a),
but they do act distinctively on the corresponding Lax pair, which we introduce
next.

The difference equation qPIV(a) is associated to a linear problem (called a Lax
pair) [4]

Y (qz, t) = A(z; t, f, u)Y (z, t), (1.3a)

Y (z, qt) = B(z; t, f, u)Y (z, t), (1.3b)

where A and B are matrix-valued functions given in Equations (3.2). The compat-
ibility condition

A(z, qt)B(z, t) = B(qz, t)A(z, t), (1.4)

is equivalent to the qPIV(a) equation, along with a condition on the auxiliary vari-
able u given by

u

u
= b2, (1.5)

where b is given by equation (3.3).
The linear problem (1.3a) gives rise to a Riemann-Hilbert problem (RHP). In a

previous paper, we showed that this Riemann-Hilbert problem is uniquely solvable
(under certain conditions) and proved the invertibility of the map between the linear
problem and an algebraic surface, which is a q-version of a monodromy surface [3].
Necessary notation is outlined in Appendix A.

The main result of this paper, Theorem 4.1, shows that solutions that are sym-
metric with respect to T− lead to an explicitly solvable monodromy problem at the
point of reflection, with solutions built out of Jackson’s q-Bessel functions of the
second kind, Jν(x; p), with p = q2 and exponents ν = ± 1

2 . The construction of the
monodromy surface breaks down at reflection points for the case of T+, because it
violates the non-resonance conditions of the Riemann-Hilbert problem.
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For the special choice of the parameters, a0 = a1 = a2 = q
1
3 , qPIV has a

particularly simple solution, given by

f0 = f1 = f2 = t
2
3 ,

which is symmetric with respect to both T+ and T−. We show that the monodromy
problem of this solution is solvable everywhere in the complex plane. This solution
forms a seed solution for the family of q-Okamoto rational solutions, introduced in
Kajiwara et al. [6]. In this paper, we provide the points on the monodromy surface
corresponding to each member of this family.

1.1. Outline. The symmetric solutions and their derivations are described in de-
tail in Section 2. The corresponding linear problem, connection matrix, and mon-
odromy surface are considered in Section 3. In Section 4, we show that the mon-
odromy problem for symmetric solutions is solvable at points of reflection. We
consider symmetric solutions on open domains in Section 5, particularly focussing
on the q-Okamoto rational solutions, before providing a conclusion in Section 6.

2. Symmetric Solutions

In this section, we first show that qPIV remains invariant under the transforma-
tions given in Definition 1.1. Then, in Section 2.1, we show that the transformations
formally converge to a transformation of the fourth Painlevé equation under the
continuum limit. Finally, in Section 2.2, we classify solutions, symmetric with
respect to T−.

To show that T± leave qPIV invariant, note that these transformations map

fk 7→ 1/Fk, fk 7→ 1/F k, f
k
7→ 1/F k, (k = 0, 1, 2). (2.1)

Taking t 7→ 1/t in qPIV(a) we obtain

f
0

= a−1
0 a−1

2 f2
1 + a−1

1 f1(1 + a−1
0 f0)

1 + a−1
0 f0(1 + a−1

2 f2)
,

f
1

= a−1
0 a−1

1 f0
1 + a−1

2 f2(1 + a−1
1 f1)

1 + a−1
1 f1(1 + a−1

0 f0)
,

f
2

= a−1
1 a−1

2 f1
1 + a−1

0 f0(1 + a−1
2 f2)

1 + a−1
2 f2(1 + a−1

1 f1)
.

Using Equations (2.1) to replace lower-case variables by upper-case variables, we
find another instance of qPIV(a), with the same parameters.

Recall that qPIV has a symmetry group given by (A2 + A1)(1) (see [5, §4]). We
note here that the transformations T± are not given by the generators of the reflec-
tion group (A2 +A1)(1), but are related to an automorphism of the corresponding
Dynkin diagram. To be precise, they are equivalent to r in [5, §4.2].

2.1. T± and the continuum limit. In Kajiwara et al. [6], it was shown that,
upon setting

fk(t, ε) = − exp
(
−εgk(s) +O(ε2)

)
(k = 0, 1, 2),

t2 = exp (−εs) ,
ak = exp

(
− 1

2ε
2αk
)

(k = 0, 1, 2),

q = exp
(
− 1

2ε
2
)
,
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and taking the limit ε → 0, qPIV formally converges to the symmetric fourth
Painlevé equation

SPIV(α) :


g′0 = α0 + g0(g1 − g2),

g′1 = α1 + g1(g2 − g0),

g′2 = α2 + g2(g0 − g1),

where

g0 + g1 + g2 = s, α0 + α1 + α2 = 1,

and g′ = g′(s) denotes differentiation with respect to s.
Note that the independent t variable is given by

t = t(s; ε) = ±i exp (−εs) ,

and satisfies

t(−s; ε) = c/t(s; ε), c = ±1.

Thus, for k = 0, 1, 2,

Fk(t, ε) = 1/fk(c/t, ε)

= − exp
(
+ε gk(−s) +O(ε2)

)
= − exp

(
−εGk(s) +O(ε2)

)
,

where

Gk(s) = −gk(−s) (k = 0, 1, 2).

Therefore, in the continuum limit as ε→ 0, the symmetries of qPIV in Definition
1.1, formally converge to the following symmetry of SPIV,

s→ −s, gk → Gk = −gk (k = 0, 1, 2).

2.2. Symmetric Solutions. In this section, we restrict our attention to solutions
with a domain given by a discrete q-spiral, T = qZt0. For the symmetric transfor-
mations given in Definition 1.1, we require that t→ c/t, c = ±1, leaves this spiral
invariant. This gives us four possible values for t0, modulo qZ, determined by

t0 = c/t0, c = ±1,

namely t0 = 1, i,−1,−i.
The formulation of the q-monodromy surface described in Section 3 requires the

non-resonance conditions

t20,±a0,±a1,±a2 /∈ qZ. (2.2)

This leads to two possible values, t0 = ±i. As qPIV(a) is invariant under t 7→ −t,
we restrict ourselves to considering t0 = i.

For any solution f = f(qmi), m ∈ Z, of qPIV(a)|t0=i, the symmetry (1.2) shows
that

Fk(qmi) =
1

fk(q−mi)
, (m ∈ Z, k = 0, 1, 2), (2.3)

defines another solution of qPIV(a)|t0=i.

Definition 2.1. We call a solution f = f(qmi), m ∈ Z, of qPIV(a)|t0=i symmetric
if it is invariant under the transformation (2.3), i.e. if

fk(qmi) =
1

fk(q−mi)
, (m ∈ Z, k = 0, 1, 2). (2.4)
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Figure 1. Numerical display of the symmetric solution in Lemma
2.2 with initial conditions (f0(i), f1(i), f2(i)) = (−1,−1,−1). The

values of q−
2
3mfk(qmi), k = 0, 1, 2, are displayed in respectively

blue, orange and green, with m ranging from -70 to 70 on the
horizontal axis. The values of the parameters are a0 = q

9
23 , a1 =

q
8
23 and a2 = q

6
23 , with q = 0.802.

Consider a symmetric solution f = f(qmi), m ∈ Z. Specialising equation (2.4)
to m = 0, shows that vk := fk(i) ∈ CP1 satisfies vk = 1/vk, for k = 0, 1, 2. The
only solutions to this equation are given by vk = ±1. Thus f is regular at t = i
and

fk(i)2 = 1, (k = 0, 1, 2). (2.5)

Combining this observation with

f0(i)f1(i)f2(i) = −1,

we are led to four possible initial conditions at m = 0,

(f0(i), f1(i), f2(i)) ∈ {(−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1)}. (2.6)

Conversely, any of these initial conditions yields a symmetric solution of qPIV(a)|t0=i.
To see this, recall that equation (2.3) yields, in general, another solution F of
qPIV(a)|t0=i. Due to (2.5), f and F satisfy the same initial conditions at m = 0.
Therefore, they are the same solution and thus f is a symmetric solution. This
proves the following lemma.

Lemma 2.2. qPIV(a)|t0=i has precisely four symmetric solutions, which are all
regular at t = i, each specified by its initial values at m = 0, with the four possible
initial conditions given by

(f0(i), f1(i), f2(i)) =


(−1, 1, 1),

(1,−1, 1),

(1, 1,−1),

(−1,−1,−1).

See Figure 1 for a plot of one the symmetric solutions.
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Remark 2.3. It is instructive to compare this with the symmetric solutions of
SPIV(α). In accordance with the definition of symmetric solutions of PIV, see
Kaneko [7], these are solutions g of SPIV(α) that satisfy

gk(s) = −gk(−s) (k = 0, 1, 2).

SPIV(α) has precisely four symmetric solutions. Three non-analytic at s = 0, with
Laurent series in a domain around s = 0 given by

Case I :


g0(s) = −α0s+O

(
s3
)
,

g1(s) = +s−1 +O (s) ,

g2(s) = −s−1 +O (s) ,

Case II :


g0(s) = −s−1 +O (s) ,

g1(s) = −α1s+O
(
s3
)
,

g2(s) = +s−1 +O (s) ,

Case III :


g0(s) = +s−1 +O (s) ,

g1(s) = −s−1 +O (s) ,

g2(s) = −α2s+O
(
s3
)
,

and one analytic at s = 0, specified by

Case IV : gk(s) = αks+O
(
s3
)

(s→ 0),

for k = 0, 1, 2.

3. Symmetries and the linear problem

In this section, we recall some essential aspects of the linear problem associated
with qPIV and study their interplay with the symmetries T±.

In Section 3.1 we recall the Lax pair associated with qPIV and lift the action of
T± to it. Then, in Section 3.15, we introduce the connection matrix associated with
the linear problem and derive how the symmetries act on it. Finally, in Section
3.3, we compute how T± transform certain monodromy coordinates and provide an
alternative way to classify symmetric solutions.

3.1. The Lax pair. We recall the following Lax pair of qPIV, derived in [4],

Y (qz, t) = A(z, t)Y (z, t), (3.1a)

Y (z, qt) = B(z, t)Y (z, t), (3.1b)

where

A :=

(
u 0
0 1

)(
−i q t

f2
z 1

−1 − i q f2t z

)(
− i a0a2

t
f0
z 1

−1 − i a0a2
f0
t z

)
×

×
(
− i a0

t
f1
z 1

−1 − i a0
f1
t z

)(
u−1 0

0 1

)
, (3.2a)

B :=

(
0 −bu

b−1u−1 0

)
+

(
z 0
0 0

)
, (3.2b)

with

b =
t(1 + a1f1(1 + a2f2))

i (qt2 − 1)f2
. (3.3)

We refer to the first equation of the Lax pair, equation (3.1a), as the spectral
equation.

Compatibility of the Lax pair,

A(z, qt)B(z, t) = B(qz, t)A(z, t), (3.4)
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is equivalent to (f0, f1, f2) satisfying qPIV(a) and u satisfying the auxiliary equation

u

u
= b2. (3.5)

We proceed to lift the symmetries T± to this Lax pair. To this end, the following
notation will be helpful. For any 2 × 2 matrix U , we let U� denotes the co-factor
matrix, or adjugate transpose, of U . In other words,(

a b
c d

)�
=

(
d −c
−b a

)
.

We further remind the reader that some of the notation used in this paper, is
outlined in Appendix A.

Lemma 3.1. The symmetry T+ extends to the following symmetry of the Lax pair,

Y (z, t) 7→ Ỹ (z, t) = Y �(z, 1/t),

A(z, t) 7→ Ã(z, t) = A�(z, 1/t),

B(z, t) 7→ B̃(z, t) = BT (z, 1/(qt)),

and, consequently,

u(t) 7→ ũ(t) =
1

u(1/t)
, b(t) 7→ b̃(t) = −b(1/(qt)).

Similarly, the symmetry T− extends to the following symmetry of the Lax pair,

Y (z, t) 7→ Ỹ (z, t) = r(z)σ3Y
�(z,−1/t),

A(z, t) 7→ Ã(z, t) = −σ3A
�(z,−1/t)σ3,

B(z, t) 7→ B̃(z, t) = σ3B
T (z,−1/(qt))σ3,

where r(z) any function that satisfies r(qz) = −r(z), and, consequently,

u 7→ ũ(t) =
1

u(−1/t)
, b(t) 7→ b̃(t) = b(−1/(qt)).

Proof. We only prove the extension of the first symmetry. The other one follows
analogously.

Let us denote A(z, t) = A(z, t, f0, f1, f2, u) andB(z, t) = B(z, t, b, u) and consider
the transformation

T : Y (z, t) 7→ Ỹ (z, t) = Y �(z, 1/t).

This transformation induces the following action on the Lax matrices,

A(z, t) 7→ Ã(z, t) = A�(z, 1/t),

B(z, t) 7→ B̃(z, t) = BT (z, 1/(qt)).

As (UV )� = U�V �, it follows that

A�(z, 1/t) = A�(z, 1/t, f0(1/t), f1(1/t), f2(1/t), u(1/t))

= A(z, t, F0(t), F1(t), F2(t), ũ(t)),

with

ũ(t) =
1

u(1/t)
, Fk(t) =

1

fk(1/t)
(k = 0, 1, 2).

Note that this is consistent with the symmetry T+, so that T indeed defines an
extension of T+.

It remains to be checked that the action of T of B(z, t) is consistent with its
action on A(z, t). That is, we need to ensure that

BT (z, 1/(qt), b(1/(qt)), u(1/(qt))) = B(z, t, b̃(t), ũ(t)), (3.6)
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where, in acccordance with equation (3.3),

b̃(t) =
t(1 + a1F1(t)(1 + a2F2(t))

i (qt2 − 1)F2(t)
.

Now, equation (3.6) holds if and only if

b̃(t)ũ(t) = − 1

b(1/(qt)), u(1/(qt))
.

By substituting the expression for ũ(t), it follows that this is equivalent to

b̃(t) = − u(1/t)

b(1/(qt)), u(1/(qt))
.

By the auxiliary equation (3.5), we have b2 = u/u, which simplifies the right-hand
side, so that the identify to prove simply reads

b̃(t) = −b(1/(qt)).

The last equality follows by direct computation, using the qPIV time-evolution
equations.

Finally, we note that the transformation T preserves the compatibility condition
of the Lax pair (3.4), which reaffirms the fact that (F0, F1, F2) is another solution
of qPIV, and further shows that ũ solves the corresponding auxiliary equation. �

Now, consider any symmetric solution of qPIV with respect to T−, then we can
choose a corresponding solution u of the auxiliary equation such that the Lax
matrices have the symmetries

A(z, t) = −σ3A
�(z,−1/t)σ3,

B(z, t) = σ3B
T (z,−1/(qt))σ3.

By specialising the first equation to t = i, we then find

A(z, i) = −σ3A
�(z, i)σ3. (3.7)

This provides another way to classify the symmetric solutions of qPIV(a)|t0=i, by
computing all the coefficient matrices A(z, i) that possess the symmetry (3.7).

3.2. The connection matrix. In this section, we introduce the connection matrix
associated with the Lax pair and deduce how the symmetries T± act on it.

Firstly, we introduce a canonical solution at z =∞ in the following lemma.

Lemma 3.2. [Lemma 3.3 in [3]] For any fixed t, there exists a unique 2×2 matrix
Φ∞(z, t), meromorphic in z on C∗, such that

Φ∞(qz, t) =
1

qa2
0a2i

z−3A(z, t)Φ∞(z, t)

(
t−1 0
0 t

)
, (3.8)

Φ∞(z, t) = I +O
(
z−1
)

(z →∞). (3.9)

In particular,

Y∞(z, t) = Φ∞(z, t)

(
r+(z, t) 0

0 r−(z, t)

)
defines a solution of the spectral equation (3.1a), for any choice of functions r±(z, t)
satisfying

r±(qz, t)

r±(z, t)
= qa2

0a2iz
−3t±1.
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Lemma 3.3. [Lemma 3.2 in [3]] For any fixed t and d ∈ C∗, we have

A(0) = M0

(
i 0
0 −i

)
M−1

0 , where M0 := d

(
u 0
0 1

)
·
(
i −i
1 1

)
, (3.10)

and, there exists a unique 2×2 matrix Φ0(z, t), meromorphic in z on C∗, such that

Φ0(qz, t) = A(z, t)Φ0(z, t)

(
−i 0
0 i

)
, (3.11)

Φ0(z, t) = M0 +O (z) , as z → 0.

In particular, it follows that

Y0(z, t) = Φ0(z, t)r0(z)σ3 ,

defines a solution of the spectral equation (3.1a), for any choice of meromorphic
function r0(z) satisfying r0(qz) = i r0(z).

We define the corresponding connection matrix by

C(z, t) = Φ0(z, t)−1Φ∞(z, t), (3.12)

which satisfies, see [3], for fixed t,

(c.1) C(z, t) is analytic in z on C∗;
(c.2) C(qz, t) = 1

qa20a2
z−3σ3C(z, t)t−σ3 ;

(c.3) |C(z, t)| = c θq(a0z,−a0z, a0a2z,−a0a2z, qz,−qz), for some c 6= 0;
(c.4) C(−z, t) = −σ1C(z, t)σ3.

It follows from the compatibility condition (3.4), see [3] for more details, that

Φ∞(z, qt) = B(z, t)Φ∞(z, t)z−σ3 ,

Φ0(z, qt) = B(z, t)Φ0(z, t)σ3,

which yields the almost trivial time-evolution of the connection matrix,

C(z, qt) = σ3C(z, t)z−σ3 , (3.13)

as well as the time-evolution of d in Lemma 3.3,

d

d
=
i

b
. (3.14)

The connection matrix encompasses the monodromy of the Lax pair. In partic-
ular, one can in principle uniquely reconstruct the linear system (3.1a) from the
connection matrix by solving an associated Riemann-Hilbert problem.

We will now extend the action of the symmetries to the connection matrix.

Lemma 3.4. The transformation T+ extends to the following symmetry of the
canonical solutions and connection matrix,

Φ∞(z, t) 7→ Φ̃∞(z, t) = Φ�∞(z, 1/t),

Φ0(z, t) 7→ Φ̃0(z, t) = −iΦ�0(z, 1/t)σ1,

C(z, t) 7→ C̃(z, t) = i σ1C
�(z, 1/t).

The transformation T− extends to the following symmetry of the canonical solutions
and connection matrix,

Φ∞(z, t) 7→ Φ̃∞(z, t) = σ3Φ�∞(z,−1/t)σ3,

Φ0(z, t) 7→ Φ̃0(z, t) = i σ3Φ�0(z,−1/t),

C(z, t) 7→ C̃(z, t) = −i C�(z, 1/t)σ3.

Furthermore, T± act on d, defined in Lemma 3.3, by

d(t) 7→ d̃(t) = d(±1/t)u(±1/t).
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Proof. We only prove the extension for T−. The extension of T+ is proven analo-
gously.

We first consider the canonical solution at z = ∞. In fact, by Lemma 3.2, the
matrix function Φ∞(z, t) is defined uniquely as the solution to (3.8) and (3.9). This
means that the action of T− on Φ∞(z, t) is already fixed by its action on the Lax
matrix A(z, t).

To determine it explicitly, we first apply t 7→ −1/t to equation (3.8), which yields

Φ∞(qz,−1/t) = − 1

qa2
0a2i

z−3A(z,−1/t)Φ∞(z,−1/t)

(
t 0
0 t−1

)
.

Next, applying U 7→ U� to both sides, we obtain

Φ�∞(qz,−1/t) = − 1

qa2
0a2i

z−3A�(z,−1/t)Φ�∞(z, t)

(
t−1 0
0 t

)
.

Finally, multiplying both sides from the left and right by σ3, we obtain

Φ̃∞(qz, t) =
1

qa2
0a2i

z−3Ã(z, t)Φ̃∞(z, t)

(
t−1 0
0 t

)
,

with
Ã(z, t) = −σ3A

�(z,−1/t)σ3, Φ̃∞(z, t) = σ3Φ�∞(z,−1/t)σ3.

Note that, furthermore, the normalisation at z =∞ is correct, namely Φ̃∞(z, t) =
I + O(z−1) as z → ∞. We conclude, from Lemma 3.2, that T− indeed sends

Φ∞(z, t) to Φ̃∞(z, t).
We next consider the canonical solution at z = 0. The matrix function Φ0(z), see

Lemma 3.3, is only rigidly defined up to the choice of a scalar d = d(t) which satisfies
d/d = i/b, see equation (3.14). So, in order to fix the action of the symmetry T−
on Φ0(z), we first need to fix its action on d in such a way that d/d = i/b remains

to hold true. Namely, it is required that, if we let d 7→ d̃ under T−, then

d̃(qt)

d̃(t)
=

i

b̃(t)
= − i

b(−1/(qt))
.

We therefore set d̃(t) = d(−1/t)u(−1/t), so that indeed

d̃(qt)

d̃(t)
=
d(−1/(qt))

d(−1/t)

u(−1/(qt))

u(−1/t)
=
b(−1/(qt))

i

1

b(−1/(qt))2
= − i

b(−1/(qt))
.

By essentially repeating the computation for Φ∞(z) above, for Φ0(z), one finds
that

Φ̃0(z, t) = i σ3Φ�0(z,−1/t),

defines a solution to, see equation (3.11),

Φ̃0(qz, t) = Ã(z, t)Φ̃0(z, t)

(
−i 0
0 i

)
.

Furthermore, direct evaluation of Φ̃0(z, t) at z = 0 gives

Φ̃0(0, t) = i σ3Φ�0(0,−1/t),

= i d(−1/t)σ3

(
1 0
0 u(−1/t)

)
·
(

1 −1
i i

)
,

= d(−1/t)

(
1 0
0 u(−1/t)

)
·
(
i −i
1 1

)
= d̃(t)

(
ũ(t) 0

0 1

)
·
(
i −i
1 1

)
.

It follows that T− sends Φ0(z, t) to Φ̃0(z, t).
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Finally, we compute the action of T− on the connection matrix. Since U 7→ U�

commutes with inversion, U 7→ U−1, we have

C̃(z, t) = Φ̃0(z, t)−1Φ̃∞(z, t)

= [i σ3Φ�0(z,−1/t)]
−1
σ3Φ�∞(z,−1/t)σ3

= −i [Φ�0(z,−1/t)]
−1

Φ�∞(z,−1/t)σ3

= −i C�(z,−1/t)σ3.

This finishes the proof of the lemma. �

Now, let us take any symmetric solution of qPIV with respect to T−, then we can
choose a corresponding solution u of the auxiliary equation, as well as d satisfying
(3.14), such that the connection matrix has the symmetry

C(z, t) = −i C�(z,−1/t)σ3.

By specialising this equation to t = i, we then find

C(z, i) = −i C�(z, i)σ3. (3.15)

This provides yet a third way to classify symmetric solutions of qPIV(a)|t0=i, by
classifying all connection matrices C(z, i) with the symmetry (3.15).

3.3. Monodromy coordinates. In [3], we introduced a set of coordinates on the
connection matrix, which are invariant under right-multiplication of the connection
matrix by diagonal matrices. They are given by

ρk(t) = π(C(xk, t)), (1 ≤ k ≤ 3), (x1, x2, x3) = (a−1
0 , a1/q, q

−1),

where, for any rank one 2 × 2 matrix R, letting r1 and r2 be respectively its first
and second row, π(R) ∈ CP1 is defined by

r1 = π(R)r2.

This yields three coordinates, ρ = (ρ1, ρ2, ρ3) ∈ (CP1)3, which satisfy the cubic
equation,

0 = + β0 [θq(t)ρ1ρ2ρ3 − θq(−t)] (3.16)

− β1 [θq(t)ρ1 − θq(−t)ρ2ρ3]

+ β2 [θq(t)ρ2 − θq(−t)ρ1ρ3]

− β3 [θq(t)ρ3 − θq(−t)ρ1ρ2] .

with coefficients given by

β0 = θq(+a0,+a1,+a2),

β1 = θq(−a0,+a1,−a2),

β2 = θq(+a0,−a1,−a2),

β3 = θq(−a0,−a1,+a2).

When considering solutions defined on a discrete q-spiral, i.e. t ∈ qZt0, the value
of p := ρ(t0) uniquely determines the corresponding solution (f0, f1, f2) of qPIV(a)
[3].

In the following proposition, the action of the symmetries on the monodromy
coordinates is determined.

Proposition 3.5. The symmetry T+ acts on the monodromy coordinates by

ρk(t) 7→ ρ̃k(t) = −ρk(1/t) (k = 1, 2, 3).
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The symmetry T− acts on the monodromy coordinates by

ρk(t) 7→ ρ̃k(t) = − 1

ρk(−1/t)
(k = 1, 2, 3).

Proof. To compute the action of the symmetries on the monodromy coordinates,
we need some basic facts about the operator π(·). Firstly, given any rank one 2× 2
matrix R, and invertible 2× 2 matrix N = (nij), we have

π(RN) = π(R), π(NR) = χN (π(R)), (3.17)

where χN denotes the möbius transformation

χN (z) =
n11z + n12

n21z + n22
.

In particular,

π(σ1R) = χσ1(π(R)) = 1/π(R).

Secondly, it is elementary to check that

π(R�) = −1/π(R).

We now compute, for transformation T+,

ρ̃k(t) = π[C̃(xk, t)] = π[i σ1C
�(xk, 1/t)] = π[σ1C

�(xk, 1/t)]

= 1/π[C�(xk, 1/t)] = −π[C(xk, 1/t)] = −ρk(1/t).

Similarly, for transformation T−, we have

ρ̃k(t) = π[C̃(xk, t)] = π[−i C�(xk,−1/t)σ3] = π[C�(xk,−1/t)]

= − 1

π[C(xk,−1/t)]
= − 1

ρk(−1/t)
,

and the proposition follows. �

In the sequel, the following technical lemma will be of importance. Its proof is
given in Appendix B.

Lemma 3.6. Let t0, with t20 /∈ qZ, be inside the domain of a solution f = (f0, f1, f2)
of qPIV. If f(t) takes at least one non-singular value, i.e. a value in (C∗)3, at a
point t ∈ qZt0, then the coordinates p = ρ(t0) cannot lie on the curve defined by the
intersection of the following equations in (CP1)3,

0 = + β0p1p2p3 − β1p1 + β2p2 − β3p3, (3.18)

0 = + β0 − β1p2p3 + β2p1p3 − β3p1p2,

with the same coefficients as the cubic (3.16). We note that points on this curve
solve the cubic equation (3.16) irrespective of the value of t.

Let us now take any solution f of qPIV(a)|t0=i on the q-spiral qZi. To it, corre-
sponds a unique triplet p = (p1, p2, p3), defined by pk := ρk(i), k = 1, 2, 3, which
satisfies the cubic equation

0 = + θq(+a0,+a1,+a2) (p1p2p3 − i)
− θq(−a0,+a1,−a2) (p1 − i p2p3)

+ θq(+a0,−a1,−a2) (p2 − i p1p3)

− θq(−a0,−a1,+a2) (p3 − i p1p2) ,

as follows from the identity θq(−i) = i θq(i), and does not lie on the curve defined
by by equations (3.18).
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Note that f̃ = T−(f) defines another solution on the same domain qZi, and its
monodromy coordinates, p̃k := ρ̃k(i), k = 1, 2, 3, are related to those of f by

p̃k = −1/pk (k = 1, 2, 3).

In particular, f is a symmetric solution if and only if f̃ = f , which in turn is
equivalent to

pk = −1/pk (k = 1, 2, 3). (3.19)

In other words, symmetric solutions of qPIV(a)|t0=i correspond to monodromy co-
ordinates p which satisfy the cubic equation above as well as (3.19).

We proceed to compute four triples p that satisfy these conditions. Firstly,
equation (3.19) has only two solutions in CP1, given by ±i, and we may thus set
pk = εki, εk = ±1, k = 1, 2, 3. Substitution of these into the cubic shows that the
latter is identically zero if the epsilons satisfy

ε1ε2ε3 = −1,

as in such a case

p1p2p3 − i = pj − i pkpl = 0 ({j, k, l} = {1, 2, 3}).
In particular, this gives us four solutions,

(p1, p2, p3) ∈ {(−i,−i,−i), (−i, i, i), (i,−i, i), (i, i,−i)}, (3.20)

corresponding to the four symmetric solutions in Lemma 2.2.
Whilst for generic values of the parameters, these are the only solutions to the

cubic, it may so happen for special values of the parameters, that there is a choice
of epsilons, with

ε1ε2ε3 = +1,

that also solves the cubic. But in such a case, a direct computation yields

−β0 − β1ε1 + β2ε2 − β3ε3 = 0,

and thus the point (p1, p2, p3) lies on the curve (3.18) and hence does not correspond
to a solution of qPIV.

In the next section, Section 4, we derive which values of the coordinates in
equation (3.20) correspond to which initial conditions

(f0(i), f1(i), f2(i)) ∈ {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}.
We answer this question by explicitly solving the linear problem at the reflection
point t = i for each case; see Theorem 4.1.

4. Explicit solvability of the linear problem at a reflection point

In this section we show that the linear problem is explicitly solvable at the
reflection point t0 = i, for symmetric solutions. In particular, we will prove the
following theorem in the end of Section 4.2.

Theorem 4.1. Let (f0, f1, f2) be a symmetric solution of qPIV(a)|t0=i, invariant
under T−, satisfying initial conditions

(f0(i), f1(i), f2(i)) = (v0, v1, v2),

so that (by Lemma 2.2),

(v0, v1, v2) ∈ {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}.
Fix the auxiliary functions u and d by the initial conditions u(i) = 1 and d(i) = i.
Then, the connection matrix at t = i is explicitly given by

C(z, i) = 2c30

(
h(i z) i h(−i z)
−h(−i z) i h(i z)

)
, (4.1)
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where the scalar c0 equals

c0 =

√
i θq(i)√

2 θq(−1)
=

1

2

∞∏
k=1

(1 + qki)(1− qki)
(1 + qk)2

,

and the function h(z) is defined by

h(z) = + θq

(
+
v1

x1
z,− v0

x2
z,+

v2

x3
z

)
− θq

(
+
v1

x1
z,+

v0

x2
z,− v2

x3
z

)
− θq

(
− v1

x1
z,− v0

x2
z,− v2

x3
z

)
− θq

(
− v1

x1
z,+

v0

x2
z,+

v2

x3
z

)
,

with

(x1, x2, x3) = (a−1
0 , a1/q, q

−1).

In particular, the corresponding values of the monodromy coordinates, pk = ρk(i),
k = 1, 2, 3, are given by

(p1, p2, p3) = (−v1i, v0i,−v2i). (4.2)

Remark 4.2. In the proof of Theorem 4.1, we also obtain the following alternative
expression for the connection matrix,

C(z) = σ1C0

(
v1

x1
z

)
MC0

(
− v0

x2
z

)
MC0

(
v2

x3
z

)
,

where C0(z), given in Proposition 4.5, is the connection matrix of a degree one
Fuchsian system and the matrix M is defined in equation (4.6).

The spectral equation of the Lax pair (1.3) naturally comes in a factorised form.
The fundamental reason that allows us to solve the linear problem at the reflection
point t = i, for a symmetric solution as in Theorem 4.1, is that the factors in this
form ‘almost’ commute. Namely, by fixing u(i) = 1, we have

A(z, i) = A0

(
v2z

x3

)
A0

(
v0z

x2

)
A0

(
v1z

x1

)
,

where

A0(z) = i σ2 + z σ3,

and these factors satisfy the commutation relation,

A0(x)A0(y) = A0(−y)A0(−x). (4.3)

This observation allows us to construct global solutions of the linear system

Y (qz) = A(z, i)Y (z),

from solutions of the simpler system

U(qz) = A0(z)U(z),

which we will refer to as the model problem.
In Section 4.1, we solve this model problem, and in Section 4.2 we use this to

construct global solutions of the spectral equation at t = i and prove Theorem 4.1.
The model problem is solved in terms of basic hypergeometric functions, denoted
for given parameter a, 0 < p < 1 and z ∈ C by

0φ1

[
-
a
; p, z

]
,

whose mathematical properties can be found in [2].
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4.1. The model problem. In this section, we study the model problem,

U(qz) = A0(z)U(z), A0(z) = i σ2 + zσ3.

Firstly, we find an explicit expression for the canonical solution at z =∞.

Lemma 4.3. There exists a unique matrix function U∞(z), analytic on C∗, which
solves

U∞(qz) = z−1A0(z)U∞(z)σ3, U∞(z) = I +O(z−1) (z →∞), (4.4)

explicitly given by

U∞(z) = g∞(z)I + h∞(z)σ1,

where g∞(z) and h∞(z) are the basic hypergeometric functions,

g∞(z) = 0φ1

[
-
−q; q

2,−q
3

z2

]
,

h∞(z) = − q

(q + 1)z
0φ1

[
-
−q3; q2,−q

5

z2

]
.

Proof. It is an elementary computation to show that (4.4) has a unique formal
power series solution around z =∞. Furthermore, by using the defining formula,

0φ1

[
-
b
; p, x

]
=

∞∑
n=0

pn(n−1)

(b; p)n(p; p)n
xn, (4.5)

it is checked directly that this formal power series solution is indeed given by U∞(z).
Since, furthermore, the series (4.5) has infinite radius of convergence, U∞(z) is an
analytic function on CP1 \ {0}, which thus uniquely solves equation (4.4), and the
lemma follows. �

We have a similar result near z = 0.

Lemma 4.4. Define

M =

(
1 −1
i i

)
, (4.6)

so that M−1(i σ2)M = i σ3. Then, there exists a unique matrix function U0(z),
meromorphic on C, which satisfies

U0(qz) = A0(z)U0(z)(i σ3)−1, U0(z) = M +O(z) (z → 0),

explicitly given by

U0(z) =
1

(+z; q)∞(−z; q)∞
M · (g0(z)I + h0(z)σ2),

where

g0(z) = 0φ1

[
-
−q; q

2,−qz2

]
,

h0(z) =
z

q + 1
0φ1

[
-
−q3; q2,−q3z2

]
.

Proof. This is proven analogously to Lemma 4.3. �

In the following proposition, we explicitly determine the connection matrix of
the model problem.
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Proposition 4.5. The connection matrix

C0(z) = U0(z)−1U∞(z), (4.7)

is given by

C0(z) = c0

(
θq(+iz)

(
1 0
0 −i

)
+ θq(−iz)

(
0 −i
−1 0

))
,

where the scalar c0 is given by

c0 :=

√
i θq(i)√

2 θq(−1)
=

1

2

∞∏
k=1

(1 + qki)(1− qki)
(1 + qk)2

.

Proof. From the defining properties of U∞(z) and U0(z), it follows that

|U∞(z)| = (+z, q)∞(−z, q)∞, |U0(z)| = 2i(+q/z, q)−1
∞ (−q/z, q)−1

∞ . (4.8)

In particular, C0(z) is an analytic function on C∗. Furthermore, it satisfies

C0(qz) = i z−1σ3C0(z)σ3,

and its entries are thus degree one q-theta functions, i.e.

C0(z) = θq(+iz)

(
c11 0
0 c22

)
+ θq(−iz)

(
0 c12

c21 0

)
,

for some cij ∈ C, 1 ≤ i, j ≤ 2.
Now, observe that

U∞(z)� = σ3U∞(z)σ3, U0(z)� = i σ3U0(z),

and therefore

C0(z)� = −i C0(z)σ3.

We thus find the following conditions on the coefficients,

c11 = i c22, c12 = i c21.

Due to equations (4.8), we have

|C0(z)| = 1

2i
θq(+z)θq(−z).

Evaluating this identity at z = i, gives

−iθq(−1)2c211 =
1

2i
θq(+i)θq(−i) =

1

2
θq(i)

2,

and therefore c211 = c20. Similarly, we obtain c221 = c20, so that

c11 = ε1c0, c21 = ε2c0,

for some ε1,2 ∈ {±1}.
Note that ε1,2 must be continuous functions of q in the punctured unit disc

{0 < |q| < 1} and they are thus global constants. We now choose 0 < q < 1, so
that

U∞(z) = U∞(z), U0(z) = −U0(z)σ1.

In particular, this means that

C0(z) = −σ1C0(z),

and, by noting that c0 = c0, we thus obtain ε1 = ε2.
It only remains to be checked that ε1 = 1. To this end, note that equation (4.7)

implies the following connection result,

g∞(z) =
ε1c0

(z2, q2)∞
[(θq(i z) + θq(−i z))g0(z)− i(θq(i z)− θq(−i z))h0(z)] .



ON SYMMETRIC SOLUTIONS OF THE FOURTH q-PAINLEVÉ EQUATION 17

Setting z = i x, with 0 < x <∞, we thus have

g∞(i x) =
ε1c0

(−x2, q2)∞
[(θq(−x) + θq(x))g0(z) + (θq(−x)− θq(x))(−i h0(i x))] .

(4.9)
We claim that each of the terms

g∞(i x), g0(i x), −i h0(i x), (−x2, q)∞, θq(−x)± θq(x),

is a real and positive function of x on (0,+∞). For example, the inequality
(−x; q)∞ > (+x; q)∞, on the positive real line, follows almost directly from the
definition of the q-Pochammer symbol, and thus

b(x) := θq(−x)− θq(+x) > 0,

on the positive real line. Therefore, also

θq(−x) + θq(+x) = x b(q x) > 0,

on the positive real line. Each of the hypergeometric series, g∞(i x), g0(i x),−i h0(i x) >
0, on the positive real line, since all the coefficients in the different series are positive.

Since c0 > 0, equation (4.9) can thus only hold if ε1 = +1, and the proposition
follows. �

Corollary 4.6. The explicit expression for the connection matrix in Proposition
4.5, yields the following connection formulas,

0φ1

[
-
−q; q

2,−q
3

z2

]
= +

c0(θq(−i z) + θq(i z))

(z2; q2)∞
0φ1

[
-
−q; q

2,−qz2

]
+
c0 i z(θq(−i z)− θq(i z))

(1 + q)(z2; q2)∞
0φ1

[
-
−q3; q2,−q3z2

]
,

0φ1

[
-
−q3; q2,−q

5

z2

]
= +

(1 + q)c0 i z(θq(−i z)− θq(i z))
q(z2; q2)∞

0φ1

[
-
−q; q

2,−qz2

]
+
c0 z

2(θq(−i z) + θq(i z))

q(z2; q2)∞
0φ1

[
-
−q3; q2,−q3z2

]
,

where the value of c0 is given in Proposition 4.5.

Remark 4.7. Note that the solutions to the model problem are essentially built out
of Jackson’s q-Bessel functions of the second kind,

J (2)
ν (x; p) =

(pν+1; p)∞
(p; p)∞

(x
2

)ν
0φ1

[
-

pν+1; p,−x
2pν+1

4

]
,

with p = q2 and ν = ± 1
2 . In particular, we could have alternatively used the known

connection results for these functions [13, 18], in conjunction with transformation
formulas for 0φ1 hypergeometric functions [2], to obtain the connection formulas
in Corollary 4.6 and, consequently, Proposition 4.5.

4.2. Constructing global solutions. In this section, we construct solutions of
the spectral equation at t = i given by

Y (qz) = A(z, i)Y (z), A(z, i) = A0

(
v2z

x3

)
A0

(
v0z

x2

)
A0

(
v1z

x1

)
.

Motivated by the commutation relation (4.3), we consider the ansatz

Φ∞(z) = U∞(r1z)U∞(r2z)U∞(r3z), (4.10)

for the matrix function Φ∞(z) defined in Lemma 3.2, for some r1, r2, r3 to be
determined. Using the commutation relation

U∞(xz)σ3A0(yz) = σ3A0(yz)U∞(xz),
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we find

Φ∞(qz) = U∞(qr1z)U∞(qr2z)U∞(qr3z),

=
1

r1r2r3z3
A0(r1z)U∞(r1z)σ3A0(r2z)U∞(r2z)σ3A0(r3z)U∞(r3z)σ3

=
1

r1r2r3z3
A0(r1z)σ3A0(r2z)U∞(r1z)σ3A0(r3z)U∞(r2z)U∞(r3z)σ3

=
1

r1r2r3z3
A0(r1z)σ3A0(r2z)σ3A0(r3z)U∞(r1z)U∞(r2z)U∞(r3z)σ3

=
1

r1r2r3iz3
A0(r1z)A0(−r2z)A0(r3z)U∞(r1z)U∞(r2z)U∞(r3z)(iσ3)−1.

Therefore, if we set

(r1, r2, r3) =

(
v2

x3
,− v0

x2
,
v1

x1

)
, (4.11)

then Φ∞(z) solves

Φ∞(qz) =
1

qa2
0a2i

z−3A(z, i)Φ∞(z)(iσ3)−1.

Furthermore, note that Φ∞(z) = I+O(z−1) as z →∞, so that our ansatz is indeed
correct for the choice of (r1, r2, r3) above.

Similarly, using the commutation relation

U0(xz)M−1(i σ2)A0(yz) = (i σ2)A0(yz)U0(xz)M−1,

it follows that

Φ0(z) = U0(r1z)M
−1U0(r2z)M

−1U0(r3z)σ1, (4.12)

satisfies

Φ0(qz) = A(z, i)Φ0(z)(iσ3)−1,

Φ0(z) = Mσ1 +O(z) (z → 0),

for the same choice of (r1, r2, r3). Furthermore, note that

Mσ1 = M0,

if we choose d(i) = i in equation (3.10). Therefore, the formula for Φ0(z) above is
an explicit expression for the canonical matrix function at z = 0 defined in Lemma
3.3.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By definition, the connection matrix at t = i is given by

C(z, i) = Φ0(z)−1Φ∞(z),

where Φ∞(z) and Φ0(z) are given by the explicit formulas (4.10) and (4.12). This
yields,

C(z) = σ1C0(r3z)U∞(r3z)
−1MC0(r2z)U∞(r2z)

−1MC0(r1z)U∞(r2z)U∞(r3z),

where the constants (r1, r2, r3) are defined in equation (4.11) and M is defined in
equation (4.6).

In order to simplify this expression, we use the following commutation relations,

Mσ2 = −σ1M, C0(z)σ1 = −σ2C0(z),
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so that,

MC0(r1z)U∞(r2z) = MC0(r1z)(g(r2z)I + h(r2z)σ1)

= M(g(r2z)I − h(r2z)σ2)C0(r1z)

= (g(r2z)I + h(r2z)σ1)MC0(r1z)

= U∞(r2z)MC0(r1z).

In other words, MC0(r1z) and U∞(r2z) commute and we thus obtain the following
simpler expression for C(z),

C(z) = σ1C0(r3z)U∞(r3z)
−1MC0(r2z)MC0(r1z)U∞(r3z).

It follows from the computation before, thatMC0(r1,2z) also commutes with U∞(r3z),
and we thus obtain

C(z) = σ1C0(r3z)MC0(r2z)MC0(r1z). (4.13)

It is now a direct computation that yields the explicit expression (4.1) for C(z).
The same holds true for the expressions for the monodromy coordinates (4.2),

using equation (4.1). Rather than going through these computations, we finish the
proof of the theorem with an alternative method to compute e.g. p1. Using the
factorisation (4.13), we find

p1 = π [C(x1)]

= π [σ1C0(r3x1)MC0(r2x1)MC0(r1x1)]

= π [σ1C0(v1)MC0(−v0x1/x2)MC0(v2x1/x3)] .

Due to the non-resonance conditions (2.2), neither |C0(−v0x1/x2)| nor |C0(v2x1/x3)|
vanishes, so by identities (3.17) for the π(·) operator, we obtain

p1 = π [σ1C0(v1)] = 1/π [C0(v1)] = −θq(−i v1)

θq(+i v1)
= − θq(q i v1)

θq(+i v1)
= −i v1.

Similar computations can be carried out of p2,3 and the theorem follows. �

5. The monodromy problem of the q-Okamoto rational solutions

In this section we consider symmetric solutions of qPIV defined on (connected)
open subsets of the complex plane. A particular class of such solutions is given by
the q-Okamoto rational solutions. We study them in detail and show that their
monodromy problems are solvable for all values of the independent variable.

Let T be a non-empty, open and connected subset of the universal covering of C∗,
with qT = T . We call a triplet f = (f0, f1, f2) of meromorphic functions on T that
satisfies qPIV identically, a meromorphic solution of qPIV. We call it symmetric,
when the solution (and its domain) are invariant under T+ or T−.

Each meromorphic solution corresponds to a unique triplet ρ = (ρ1, ρ2, ρ3) of
complex functions on T that solve the cubic equation (3.16) identically in t and the
q-difference equations

ρk(qt) = −ρk(t), (k = 1, 2, 3), (5.1)

which follow from the time-evolution of the connection matrix C(z, t) (see equation
(3.13)).

Now, it might happen that, for special values of t0 ∈ T , the value of f(t) does not
lie in (C∗)3, for every t ∈ qZt0. At such times t = t0, the monodromy coordinates
ρ(t) either have an essential singularity, or they lie on the curve defined by equations
(3.18). On the other hand, if f(t) is regular for at least one value of t ∈ qZt0, then
the value of the monodromy coordinates ρ(t) at t = t0 is well-defined and does not
lie on the curve given by equations (3.18).
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In the following, we restrict our discussion to considering meromorphic solutions
which do not have q-spirals of poles. If such a solution is symmetric with respect
to T−, that is,

fk(t) = 1/fk(−1/t) (k = 0, 1, 2),

then, by Proposition 3.5, the ρ-coordinates have the same symmetry,

ρk(t) = − 1

ρk(−1/t)
(k = 1, 2, 3). (5.2)

This means that we can classify symmetric meromorphic solutions, in terms of
meromorphic triplets ρ = ρ(t) which solve the cubic (3.16), as well as equations
(5.1) and (5.2), and do not hit the curve defined by equations (3.18). Similar
statements follow for solutions symmetric with respect to T+, in which case we
have

ρk(t) = −ρk(−1/t) (k = 1, 2, 3). (5.3)

In the remainder of this section, we focus on a particular collection of symmetric
meromorphic solutions for which we compute the monodromy. These solutions are
the q-Okamoto rational solutions, which are rational in t

1
3 , derived by Kajiwara et

al. [6].

Theorem 5.1 (Kajiwara et al. [6]). For m,n ∈ Z, the formulas

f0 = x2r2n−mQm+1,n(r+1x2)Qm+1,n+1(r−1x2)

Qm+1,n(r−1x2)Qm+1,n+1(r+1x2)
,

f1 = x2r−m−n
Qm+1,n+1(r+1x2)Qm,n(r−1x2)

Qm+1,n+1(r−1x2)Qm,n(r+1x2)
,

f2 = x2r2m−nQm,n(r+1x2)Qm+1,n(r−1x2)

Qm,n(r−1x2)Qm+1,n(r+1x2)
,

give a solution of qPIV rational in x = t
1
3 , with parameters

a0 = rqm, a1 = rqn−m, a2 = rq−n, r := q
1
3 ,

in terms of the q-Okamoto polynomials Qm,n(x) defined through the recurrence
relations

Qm−1,n(x/r)Qm+1,n+1(r x) =Qm,n(x/r)Qm,n+1(r x)+

xQm,n+1(x/r)Qm,n(r x)r2m+2n−1,

Qm+1,n(x/r)Qm,n+1(r x) =Qm+1,n+1(x/r)Qm,n(r x)+ (5.4)

xQm,n(x/r)Qm+1,n+1(r x)r2n−4m+1,

Qm+1,n+1(x/r)Qm,n−1(r x) =Qm,n(x/r)Qm+1,n(r x)+

xQm+1,n(x/r)Qm,n(r x)r2m−4n+1,

with Q0,0(x) = Q1,0(x) = Q1,1(x) = 1.

From the recurrence relations for the q-Okamoto polynomials, it follows that
Qm,n(x) is a monic polynomial of degree dm,n := m2 +n2−m(n+1). Furthermore,
it can be shown by induction that the polynomials are palindromic, i.e.

xdm,nQm,n(1/x) = Qm,n(x), (5.5)

for m,n ∈ Z. It follows that, upon writing fk = fk(x), the corresponding rational
solutions defined in Theorem 5.1, satisfy

fk(x) = 1/fk(±1/x),

for 0 ≤ k ≤ 2 and any choice of sign. In other words, they are invariant under both
T+ and T−.
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Now consider the branch of x = x(t) which evaluates to x = −i at t = i.
There, the q-Okamoto rationals specialise to the symmetric solutions on discrete
time domains classified in Lemma 2.2. To see this, it is helpful to note that equation
(5.5) implies

(−r)dm,nQm,n(−1/r) = Qm,n(−r).

Thus, at x = −i, so that t = i,

f0(i) = −r2n−mQm+1,n(−r+1)Qm+1,n+1(−r−1)

Qm+1,n(−r−1)Qm+1,n+1(−r+1)
,

= −r2n−m(−r)dm+1,n−dm+1,n+1 ,

= (−1)1+m.

By similar computations for f1(i) and f2(i), we obtain

f0(i) = (−1)1+m, f1(i) = (−1)1+m+n, f2(i) = (−1)1+n. (5.6)

So depend on the values of m,n ∈ Z, the q-Okamoto rational solutions specialise
to the different symmetric solutions in Lemma 2.2, on the q-spiral qZi.

5.1. Solvable monodromy for the seed solution. In this section, we consider
the simplest member of the family of rational solutions defined in Theorem 5.1,
corresponding to m = n = 0. The parameters of qPIV then read

a0 = a1 = a2 = r,

and

f0 = f1 = f2 = x2.

We call this solution the seed solution. The corresponding value of b in (3.3) is
given by

b =
i x

1− rx2
,

and explicit solutions to the auxiliary equations (3.5) and (3.14) are given by

u(x) =
(r x2; r2)2

∞
θr(x)2

, d(x) =
θr(−x)

(r x2; r2)∞
.

In this special case, the matrix polynomial in the spectral equation (1.3a) fac-
torises as

A(z, x) =

(
u 0
0 1

)
A1(r2z, x)A1(r z, x)A1(z, x)

(
u−1 0

0 1

)
,

with

A1(z, x) =

(
−i r x z 1
−1 −i r/x z

)
.

This means that any solution of

Y (rz) =

(
u 0
0 1

)
A1(z, x)

(
u−1 0

0 1

)
Y (z), (5.7)

also defines a solution of the spectral equation. A classical result [11] shows that
equation (5.7) can be solved in terms of Heine’s q-hypergeometric functions. We
can thus leverage the connection results by Watson [17], see also [2, Section 4.3],
to compute the connection matrix of the spectral equation.
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We find that the matrix function Φ∞, defined in Lemma 3.2, is given explicitly
by

Φ∞(z, t) = (z−1; r)∞

(
u 0
0 1

)
Φ̂∞(z, x)

(
u−1 0

0 1

)
,

Φ̂∞(z, x) =

 2φ1

[
1/x,−1/x

1/x2 ; r, 1
z

]
i x

(1−rx2)z 2φ1

[
r x,−r x
r2x2 ; r, 1

z

]
i x

(r−x2)z 2φ1

[
r/x,−r/x
r2/x2 ; r, 1

z

]
2φ1

[
x,−x
x2 ; r, 1

z

]
 .

The matrix function Φ0, defined in Lemma 3.3, is given by

Φ0(z, t) =
d

(rz; r)∞

(
u 0
0 1

)
Φ̂0(z, x),

Φ̂0(z, x) =

 i 2φ1

[
−1/x,−r x
−r ; r,−r z

]
−i 2φ1

[
1/x, r x
−r ; r,−r z

]
2φ1

[
−x,−r/x
−r ; r,−r z

]
2φ1

[
x,−r/x
−r ; r,−r z

]
 .

The corresponding connection matrix is then

C(z, t) = C̃(z, x)

(
d−1u−1 0

0 d−1

)
,

C̃(z, x) =

(
−i θr(−r x z) θr(−r/x z)
+i θr(+r x z) θr(+r/x z)

)( (1/x,−1/x:r)∞
(−1,1/x2;r)∞

0

0 (x,−x:r)∞
(−1,x2;r)∞

)
.

The monodromy coordinates can now by computed directly. To this end, we
note that (x1, x2, x3) = (r−1, r−2, r−3), so that

ρk = ρk(x) = π
[
C(r−k, t)

]
= (−1)k

θr(−x)

θr(+x)
, x = t

1
3 ,

for k = 0, 1, 2. In particular, we have

ρk(r x) = −ρk(x) = ρk(1/x), ρk(−1/x) = −1/ρk(x),

which confirms that the coordinates satisfy the q-difference equation (5.1) as well as
symmetries (5.2) and (5.3). Furthermore, we note that the monodromy coordinates
have three branches in the complex t-plane, each corresponding to a particular
branch of the solution f .

Remark 5.2. Note that in light of Lemma 3.6, the only values of x for which the
coordinates lie on the curve (3.18), are given by

x = (− 1
2 ±

1
2

√
3)rn (n ∈ Z),

which correspond to values of t lying in qZ and thus violate the non-resonance
conditions (2.2).

5.2. Solvable monodromy of the q-Okamoto rational solutions. In this sec-
tion, we consider how to generate the monodromy coordinates of the whole family
of rational solutions in Theorem 5.1. We do so by applying translation elements
T1,2,3 in the affine Weyl symmetry group (A2 + A1)(1), see [6], which act on the
parameters as

T1 : (a0, a1, a2) 7→ (q a0, a1/q, a2),

T2 : (a0, a1, a2) 7→ (a0, q a1, a2/q),

T3 : (a0, a1, a2) 7→ (a0/q, a1, q a2).
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It was shown in [4] that these translations act as Schlesinger transformations on
the spectral equation (1.3a).

By methods similar to the derivation of equation (5.1), it can be shown that
these translations act on the monodromy coordinates as follows

T1 : (ρ1, ρ2, ρ3) 7→ (−ρ1,−ρ2,+ρ3),

T2 : (ρ1, ρ2, ρ3) 7→ (−ρ1,+ρ2,−ρ3),

T3 : (ρ1, ρ2, ρ3) 7→ (+ρ1,−ρ2,−ρ3).

The family of rational solutions in Theorem 5.1 are indexed by (m,n) ∈ Z2. The
translations act on the family of rational solutions through the following shifts of
indices,

T1 : (m,n) 7→ (m+ 1, n), T2 : (m,n) 7→ (m,n+ 1), T3 : (m,n) 7→ (m− 1, n− 1).

It follows that, for general m,n ∈ Z, the monodromy coordinates corresponding to
the rational solution in Theorem 5.1, with indices (m,n), are given by

ρ1(x) = (−1)1+m+ns(x),

ρ2(x) = (−1)ms(x), s(x) :=
θr(−x)

θr(+x)
. (5.8)

ρ3(x) = (−1)1+ns(x).

We proceed to check that these formulas are consistent with equation (4.2) in
Theorem 4.1. Recalling equations (5.6), which provide the rational solutions at
x = −i, we find the initial conditions at t = i:

(v0, v1, v2) = (f0(i), f1(i), f2(i)) = ((−1)1+m, (−1)1+m+n, (−1)1+n).

Similarly, evaluating the expressions for the ρ-coordinates in equations (5.8) at
x = −i, leads to

(ρ1(−i), ρ2(−i), ρ3(−i)) = ((−1)m+ni, (−1)m+1i, (−1)ni).

These two expressions are consistent with equation (4.2).
We conclude the section with some graphical representations of the pole distri-

butions of a q-Okamoto rational solution in Figure 2.

6. Conclusion

We have shown that two symmetries T± of qPIV can be lifted to the corresponding
Lax pair and monodromy manifold. We have derived four symmetric solutions of
qPIV on the discrete time domain qZi, which are invariant under T−. We have
further shown that they lead to solvable monodromy problems at the reflection
point t = i, which provided an explicit correspondence between the four symmetric
solutions and the four points on the monodromy manifold invariant under T− in
Theorem 4.1.

We also studied the family of q-Okamoto rational solutions and showed that they
are invariant under both T+ and T−. We further showed that their simplest mem-
ber leads to an explicitly solvable monodromy problem in its entire t-domain. We
used this to determine the values of the monodromy coordinates on the monodromy
manifold for all the q-Okamoto rational solutions. The computation of the mon-
odromy for the q-Okamoto rational solutions in Section 5 could serve as a starting
point for deducing similar results for other q-equations.

The pole distributions of the classical Okamoto rational solutions to PIV have
been analysed via Riemann-Hilbert methods [1] and the Nevanlinna theory of
branched coverings of the Riemann sphere [12]. The extension of such studies
to the q-difference Painlevé equations is an open problem.
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Figure 2. In these plots the roots of the polynomials occurring in
the definition of the q-Okamoto rational solution in Theorem 5.1,
with (m,n) = (4, 7), are displayed, where the value of q = r3 varies
between the plots by r = 1 − (1/2)k, with k = 3, 4, 5, 7, 10, 20. In
each figure, the blue, green and red dots represent zeros of Qm,n(x),
Qm+1,n(x) and Qm+1,n+1(x) respectively.
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The results of this paper yield Riemann-Hilbert representations for both the
symmetric solutions on discrete time domains and the q-Okamoto rational solutions,
through the theory set up in our previous paper [3]. These can in turn form the
basis of the rigorous asymptotic analysis of these solutions, as t grows small or large
or some of the parameters tend to infinity.

Appendix A. Notation

Define the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We define the q-Pochhammer symbol by means of the infinite product

(z; q)∞ =

∞∏
k=0

(1− qkz) (z ∈ C),

which converges locally uniformly in z on C. In particular (z; q)∞ is an entire
function, satisfying

(qz; q)∞ =
1

1− z
(z; q)∞,

with (0; q)∞ = 1 and simple zeros on the semi q-spiral q−N. The q-theta function
is defined as

θq(z) = (z; q)∞(q/z; q)∞ (z ∈ C∗), (A.1)

which is analytic on C∗, with essential singularities at z = 0 and z =∞ and simple
zeros on the q-spiral qZ. It satisfies

θq(qz) = −1

z
θq(z) = θq(1/z).

For n ∈ N∗ we denote

θq(z1, . . . , zn) = θq(z1) · . . . · θq(zn),

(z1, . . . , zn; q)∞ = (z1; q)∞ · . . . · (zn; q)∞.

For conciseness, we will use bars to denote iteration in t. That is, for f = f(t),
we denote f(q t) = f , and f(t/q) = f .

Appendix B. Proof of a technical lemma

Proof of Lemma 3.6. Let C(z, t) be the connection matrix corresponding to the
solution f . Let t∗ ∈ qZt0 be such that f(t∗) is regular. Then the Lax matrix
A(z, t∗) is well-defined at this point and consequently, we have a corresponding
connection matrix C(z, t∗) defined via equation (3.12). Furthermore, using the
time-evolution of the connection matrix in equation (3.13), we can thus infer that
C(z, t0) is also well-defined.

Now suppose, on the contrary, that the corresponding monodromy coordinates,

pk = π(C(xk, t0)),

lie on the curve defined by the cubic equations (3.18). We are going to obtain a
contradiction by showing that C(z, t0) does not satisfy property c.3. To this end,
we will first obtain a general parametrisation of this curve.

Consider the following matrix function,

C(z) =

(
C1(z) C2(z)
−C1(−z) C2(−z)

)
, (B.1)
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where

C1(z) = θq(+z/u,−z/u, z/w), u2w =
1

qa2
0a2

t−1,

C2(z) = zθq(+z/v,−z/v, z/w), qv2w =
1

qa2
0a2

t+1,

for any choice of t, w ∈ C∗. This matrix satisfies properties c.1, c.2, c.4, as well as
a degenerate version of c.3, namely

|C(z)| ≡ 0.

The monodromy coordinates, Pk = π(C(xk)), k = 1, 2, 3, of this pseudo-connection
matrix, read

(P1, P2, P3) =

(
− θq(+x1/w)

θq(−x1/w)
,−θq(+x2/w)

θq(−x2/w)
,−θq(+x3/w)

θq(−x3/w)

)
. (B.2)

These monodromy coordinates solve the cubic (3.16) and their expressions are com-
pletely independent of t. In other words, they lie on the intersection of cubics (3.16),
as t varies in C∗. In particular, these monodromy coordinates must lie on the curve
defined by (3.18).

We will show that (B.2) completely parametrises the curve defined by (3.18), as
w varies in C∗. Since we have not assumed anything on (p1, p2, p3), this is equivalent
to proving that there exists a w such that

(P1, P2, P3) = (p1, p2, p3). (B.3)

Now, the equation

p1 = −θq(+x1/w)

θq(−x1/w)
,

has two, counting multiplicity, solutions w1,2, on the elliptic curve C∗/q2, related
by w2 ≡ qx2

1/w1 modulo multiplication by q2.
For either choice, w = w1 or w = w2, we have p1 = P1 and the pairs (P2, P3) and

(p2, p3) satisfy the same two equations (3.18), which are quadratic in the remaining
variables. In fact, upon fixing the value of p1, (3.18) has two solutions (counting
multiplicity), and these two solutions coincide if and only if w1 and w2 coincide on
the elliptic curve C∗/q2. It follows that (B.3) holds for w = w1 or w = w2.

We now fix w such that (B.3) holds, set t = t0 in (B.1), and consider the quotient

D(z) = C(z, t0)−1C(z).

Since C(z, t0) and C(z) have the same monodromy-coordinate values, D(z) is an-
alytic at z = ±xk, k = 1, 2, 3 and thus forms an analytic matrix function on C∗.
Then, by property c.2,

D(qz) = tσ3
0 D(z)t−σ3

0 .

Since t20 /∈ qZ, the only analytic matrix functions satisfying this q-difference equa-
tion are constant diagonal matrices, and therefore D is simply a constant diagonal
matrix. But then

C(z, t0)D = C(z),
and neither diagonal entry of D can equal zero, as this contradicts equation (B.1),
so |D| 6= 0. Hence

|C(z, t0)| = |C(z)|/|D| ≡ 0,

which contradicts property c.3. The lemma follows. �
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