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Abstract

Fuzzy cellular automaton is a dynamical system with a continuous
state value embedding a cellular automaton with a discrete state value.
We investigate a fuzzy cellular automaton obtained from an elementary
cellular automaton of rule number 38. Its asymptotic solutions are clas-
sified into two types. One is a solution where stable propagating waves
exist, and the other is a static uniform solution of constant value.

1 Introduction

Cellular automaton (CA) is a dynamical system with a finite set of state values
in discrete coordinates. Various theories and applications have been done about
CA’s due to their concise construction and rich expression capability[1]. One
of the simplest configurations is Elementary CA (ECA) of which binary state
value at next time is determined by three neighbors in one-dimensional space
sites at the current time as follows:

un+1
j = f(unj−1, u

n
j , u

n
j+1), (1)

where j denotes an integer space site, n an integer time step and u a binary
state value (u ∈ {0, 1}). Since f is binary-valued with three binary arguments,
it can be defined by the following rule table where bk ∈ {0, 1}.

x y z 111 110 101 100 011 010 001 000
f(x, y, z) b1 b2 b3 b4 b5 b6 b7 b8

(2)

Thus, there are 256 different rules defined by the above rule table and every
ECA is distinguished by the rule number (b1b2 . . . b8)2. They have been stud-
ied theoretically from various viewpoints; mathematical structure of solutions,
statistical mechanism on solution patterns, and so on.

The systems obtained by embedding CA in continuous real or rational back-
ground is generally called ‘fuzzy’ cellular automaton[2]. For example, fuzzy
ECA is defined in the form of (1) where j and n are integer and u ∈ [0, 1].
There are infinite variations on f since its necessary condition is [0, 1]3 → [0, 1]
together with {0, 1}3 → {0, 1}. This condition means fuzzification together with
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embedding of CA. One of popular forms of fuzzy CA is defined by using the
polynomial[3, 4]. For example, if we define

f(x, y, z) = xyz, (3)

then (1) becomes fuzzy ECA of rule number 128.
Since fuzzy CA is a continuity extension of CA, it has been used as applica-

tion models to express an intermediate state value among the original discrete
values[5, 6]. Moreover, there exist another important significance for fuzzy CA
from the theoretical viewpoint. Since it embeds CA in the continuous range,
continuous solutions to fuzzy CA propose a rich comprehension to discrete ones
to its original CA[7]. We discuss asymptotic solutions to a fuzzy CA obtained
from an ECA in this article. Its range is a continuous interval [0, 1] and it also
proposes solutions to the ECA as a special case of a discrete range {0, 1}.

Let us consider the following equation.

un+1
j = f(unj−1, u

n
j , u

n
j+1),

f(x, y, z) = y + z − xy − 2yz + xyz

= (1− x)y(1− z) + (1− y)z,

(4)

where j denotes integer space site and n integer time step. Space is finite and
the domain is 0 ≤ j < K with a periodic boundary condition unj+K = unj . We
can easily show the value of solutions to (4) can be closed in u ∈ {0, 1}, (0, 1),
or [0, 1]. If u ∈ {0, 1}, then (4) is equivalent to the following rule table.

x y z 111 110 101 100 011 010 001 000
f(x, y, z) 0 0 1 0 0 1 1 0

(5)

It is the evolution rule of ECA of rule number 38 and an example of time
evolution is shown in Figure 1.

Figure 1: Example of solution to ECA38 for K = 30. The space coordinate j
and n are rightward and downward respectively.

We can consider (4) is a fuzzy cellular automaton obtained by extending the
state value of ECA38 to be continuous in the range [0, 1]. Example of evolution
from random initial data in [0, 1] is shown in Figure 2. This figure suggests that
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Figure 2: Example of solution to fuzzy ECA defined by (4). State values are
shown in the grayscale from white (0) to black (1).

the random initial data converges to the uniform state for n→∞. If we assume
a uniform solution as unj = vn, then vn satisfies the following mapping,

vn+1 = f(vn, vn, vn) = vn(1− vn)(2− vn). (6)

This mapping can be closed in [0, 1] and there is only one stable fixed point

ω = (3 −
√

5)/2 satisfying ω = f(ω, ω, ω), that is, ω2 − 3ω + 1 = 0 and 0 ≤
ω ≤ 1. Numerical computations from random initial data as shown in Figure 2
imply that the asymptotic solution converges to the uniform state as unj → ω.
However, if we restrict the initial data to be binary, that is, 0 or 1, then the
uniform state u ≡ ω can not appear considering the rule table (5) and stable
triangular waves with value 1 propagate in −j direction as shown in Figure 1.

Asymptotic behaviors of both solutions are very different each other. One
is uniform and static and the other non-uniform and moving stably. In this
article, we discuss and classify the asymptotic solutions to (4) closed in [0, 1].
The contents of this article are as follows. In section 2, asymptotic solutions
including at least one 0 or 1 are discussed. We call this type of solution ‘type
A’. In section 3, those closed in (0, 1) including neither 0 nor 1 are discussed.
We call this type of solution ‘type B’. In section 4, we give concluding remarks.

There exist related works about the convergence of solutions to fuzzy CA.
Fukuda et. al. studied asymptotic uniform solutions for some fuzzy CA’s
numerically[8]. Mingarelli studied a fuzzy CA made from ECA of rule num-
ber 110 and showed that a solution from initial data with non-zero value on one
site in a zero background converges to a uniform solution[9].

2 Asymptotic solutions including 0 or 1

In this section, we discuss asymptotic solutions of type A, that is, those where
there exists at least one site such that u = 0 or 1 for n→∞. Once 0 < unj < 1
holds for any j at a certain n, the solution always satisfies 0 < u < 1 thereafter
since (4) can be considered to be an interpolation between y and 1 − y with
weights (1 − x)(1 − z) and z. Therefore, there exists at least one site with
value 0 or 1 at arbitrary n� 0 for asymptotic solutions of type A, and type B
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otherwise. Note that a special case of the uniform solution u ≡ 0 is also of type
A but we exclude this trivial case from the discussion below.

Assume the symbol ∗ denotes an arbitrary value x satisfying 0 < x < 1.
Then, the rule table for the different combination of values other than (5) is
given as follows.

11∗ 10∗ 01∗ 00∗ 1∗1 1∗0 0∗1 0∗0
0 ∗ ∗ ∗ ∗ 0 ∗ ∗

∗11 ∗10 ∗01 ∗00
0 ∗ 1 0

1∗∗ 0∗∗ ∗1∗ ∗0∗ ∗∗1 ∗∗0 ∗∗∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

(7)

Consider all local patterns ∗∗ with 0 or 1 attached to its left. Then, the pattern
evolves as follows.

n : 0∗∗ 01∗∗ 11∗∗ ∗1∗∗
n+ 1 : ∗∗∗ ∗∗∗ 0∗∗ ∗∗∗∗
n+ 2 : ∗∗∗

(8)

These results mean the following. The sequence of ∗ grows in the evolution if it
includes ∗∗, the asymptotic solution includes neither 0 nor 1 after enough time
steps and 0 < u < 1 holds for any u’s at n � 0. Since this type of asymptotic
solution is of type B, we will discuss it in the next section.

Thus, if ∗ is included in the solution of type A, it must be isolated as 0∗0,
0∗1, 1∗0 or 1∗1. Consider the local sequence unj . . . u

n
j+4 of any combination of 0,

1 and ∗ which determine the sequence un+1
j+1 u

n+1
j+2 u

n+1
j+3 and check what sequence

can produce an isolated ∗. Using the rule tables (5) and (7), we can show the
following only four patterns can produce it.

n : 001∗0 101∗0 ∗01∗0 11∗11
n+ 1 : 1∗0 1∗0 1∗0 0∗0 (9)

Therefore, if isolated ∗’s exist in the asymptotic solution, it must be 01∗0 moving
to −j direction at speed 1. Note that we use a symbolic calculation program
by Mathematica to derive (9) since the number of cases is large.

Next, we discuss about the sequence of 1’s. Similarly as above, considering
the local sequence unj . . . u

n
j+6 of any combination of values of 0, 1 and ∗ and

calculating un+2
j+2 u

n+2
j+3 u

n+2
j+4 by the program, we can show any combination at

n cannot produce 111 at n + 2. Therefore, if a sequence of 1’s is included in
the asymptotic solution, it must be x11y or x1y where x and y are 0 or ∗.
Moreover, considering the isolated ∗ is 01∗0 as shown above, the sequence of 1’s
must be either of 0110, 0100, 0101 or 01∗0. Calculating possible local sequences
unj . . . u

n
j+7 which produce un+2

j+2 u
n+2
j+3 u

n+2
j+4 u

n+2
j+5 = 0110, 0100 or 0101, we obtain

the following evolutions.

n : ....0110 ....0100
n+ 1 : ..0100 ..0110
n+ 2 : 0110 0100

(10)

Note that 0101 cannot be produced and the symbol ‘.’ denotes an appropriate
value with detailed information omitted.
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Summarizing the above results, we can conclude about asymptotic solutions
of type A as follows.

• If ∗’s exist, they are isolated and realized by the local pattern 01∗0 moving
to −j direction at speed 1.

• If 1’s exist other than 01∗0, they are 0110 or 0100. These two patterns
appear alternately as time proceeds and move to −j direction at speed 1.

• Among local patterns 1∗, 11 and 10, one or more 0’s exist.

An example of time evolution of type A is shown in Figure 3.

Figure 3: Example of time evolution which becomes an asymptotic solution of
type A.

3 Asymptotic solutions with neither 0 nor 1

In this section, we discuss asymptotic solutions of type B, that is, 0 < unj < 1

for any j for n → ∞. We can prove that any unj converges to ω = (3 −
√

5)/2
and the solution becomes uniform with a constant ω as follows.

Assume any pair of a and b satisfying,

0 < a ≤ ω, 1− a
2− a

≤ b ≤ 1− 2a

1− a
. (11)

Note that (1− a)/(2− a) ≤ (1− 2a)/(1− a) if 0 < a ≤ ω, and a ≤ b. Moreover,
the minimum and the maximum of f(x, y, z) in the range x, y, z ∈ [a, b] are

min
x,y,z∈[a,b]

f(x, y, z) = f(b, a, a) = a(1− a)(2− b),

max
x,y,z∈[a,b]

f(x, y, z) = f(a, a, b) = (1− a)(a+ b− ab).
(12)

Next, let us consider the following sequence for an and bn,

an+1 = f(bn, an, an), bn+1 = f(an, an, bn). (13)

If we assume

0 < an ≤ ω,
1− an
2− an

≤ bn ≤
1− 2an
1− an

, (14)
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we can derive an ≤ an+1 and bn ≥ bn+1 since we have

an+1 − an = an(1− an)
(1− 2an

1− an
− bn

)
≥ 0,

bn+1 − bn = an(2− an)
(1− an

2− an
− bn

)
≤ 0.

(15)

Moreover, the same form of inequalities as (14) hold for an+1 and bn+1 as

0 < an+1 ≤ ω,
1− an+1

2− an+1
≤ bn+1 ≤

1− 2an+1

1− an+1
. (16)

Since the proof of (16) is not difficult but tedious, we omit it. Summarizing the
above facts, we can conclude the following proposition.

Proposition 1 Consider the sequences on an and bn (n ≥ 0)

an+1 = f(bn, an, an), bn+1 = f(an, an, bn), (17)

with initial terms a0 and b0 satisfying

0 < a0 < ω,
1− a0
2− a0

≤ b0 ≤
1− 2a0
1− a0

. (18)

Then, an and bn for any n satisfy the same form of inequalities as of a0. More-
over, an ≤ an+1 and bn+1 ≤ bn hold and the interval [an, bn] is nested as
[an+1, bn+1] ⊂ [an, bn].

Since the sequence of interval [an, bn] is nested, it converges to [α, β] for
n→∞. Values α and β satisfy α = f(β, α, α) and β = f(α, α, β). The solution
of this couple of equations is uniquely determined as α = β = ω in the range of
0 < α ≤ β < 1.

Finally, let us consider the asymptotic solution of type B. Assume a certain
time step of the asymptotic solution is n = 0 without loss of generality. The
solution satisfies 0 < u0j < 1 for any j. The size of space sites is finite (0 ≤
j < K) and the periodic boundary condition is imposed. Since the space is
finite, there exist the maximum M and the minimum m for {unj }K−1j=0 . Then,

we can choose a0 satisfying 0 < a0 < min(m,ω). The upper bound
1− 2a0
1− a0

for b0 of Proposition 1 converges to 1 as a0 → 0 and the lower bound
1− a0
2− a0

to
1

2
. Therefore, we can always choose a0 and b0 satisfying their inequalities of

Proposition 1 for any initial data. Since an+1 and bn+1 is the maximum and
the minimum of f(x, y, z) in the range of x, y, z ∈ [an, bn], unj ∈ [an, bn] holds
for any n from Proposition 1. Thus we obtain lim

n→∞
unj = ω for any j. It means

that the asymptotic solution of type B is a uniform solution with the value ω.

4 Concluding remarks

We discussed the asymptotic solutions to (4). The solutions are always classified
into two types, type A and B. We show that the stable propagating wave with
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local pattern 0110, 0100 or 01∗0 exists in type A. Binary solutions constructed
only from {0, 1} are classified into this type. On the other hand, the asymptotic
solution of type B is unique as a uniform solution u ≡ ω.

Though the asymptotic solutions are completely classified, it is more difficult
to solve the initial value problem of (4) and it is a future problem. Moreover,
the similar results to type B are reported for other fuzzy CA’s[8, 9]. It is another
future problem to analyze these equations and to classify the solutions.

There are various forms of fuzzy CA produced from its original CA. We
have another example of fuzzy CA replacing the term xyz by xy2z in (4) and
confirmed by numerical calculations that the asymptotic solutions are classified
into two types similarly to (4). It is also a future problem to develop a general
method to classify fuzzy CA’s originated from the same CA according to their
behavior of solutions.
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