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The problem of classification into symmetry integrable classes is solved for a family
of second order nonlinear evolution equations labeled by arbitrary functions. Four
nonequivalent symmetry integrable classes are thus obtained and the results are
transformed into known integrable equations from the literature. Recursion opera-
tors are also given for all the symmetry integrable classes found, some of which are
the only ones known for some of the canonical classes.

I. INTRODUCTION

There are several concepts of integrability, but they all have fairly different meanings. A
Hamiltonian system is called integrable if it has as many pairwise commuting integrals of
motion as there are degrees of freedom in the system. On the other hand a given system
of differential equations is said to be symmetry integrable if it has an infinite sequence
of generalized symmetries of increasing orders. Another concept related to integrability
is the painlevé Property. This refers to a system of differential equations whose solutions
have poles as the only movable singularities. Although by their very nature all these con-
cepts of integrability have different meanings, they all express the strong potential that the
underlying equation has for possessing a certain set of desirable properties which include
linearizability. Indeed, linear equations are integrable in the sense of all the three concepts
mentioned above, and they have all other usually desired properties for integrable systems.
Such properties include the existence of a sufficiently large number of integrals of motion
or conservation laws, generalized symmetries of increasing orders, Lax pairs or Darboux
polynomials, the linearizability by point or contact transformations, or the exact solvability
by inverse scattering or differential substitution.
Despite the tremendously vast amount of research work accomplished within the frame-

work of each of the various types of integrability, there are still however only a few logical
connectives relating these various types, and in particular most often one cannot tell if an
equation integrable according to one type will necessarily also be integrable according to
one of the other types.
Following the work of Shabat and co-workers, an algorithmic method has been found

for identifying certain types of symmetry integrable equations1–4, based on the concept
of so-called formal symmetry. This method yields in particular a classification of symme-
try integrable equations from a given family of partial differential equations. Moreover,
symmetry integrability has been found by many other authors as one of the most suitable
definition for integrability5–10. Although the original method of Shabat and co-workers in
the symmetry approach is more efficient for evolution equations in two independent vari-
ables, similar methods have been found for non-evolutionary equations11–13, as well as for
ODEs and more generally for equations on associative or non-associative algebras14–17.
Moreover, in parallel to these methods based on classical analysis, a purely algebraic ap-
proach often referred to as the symbolic method has also been developed for certain types of
equations including polynomial homogeneous equations, and applies to equations on both
commutative and non-commutative algebras18–21.
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We consider in this paper the family of evolution equations of the form

∂ u

∂ t
= Φ(u)

∂2 u

∂ x2
+Ψ

(

u,
∂ u

∂ x

)

, (1)

where u = u(t, x), and Φ and Ψ are arbitrary smooth functions of their arguments, with
Φ 6= 0. We then perform a complete classification of this family of equations into symme-
try integrable classes, under the most general point transformations mapping (1) into an
equation of the same form.
Although the classification into symmetry integrable equations of the most general family

of second order evolution equations has been performed in Ref. 22, such a classification does
not provide all desirable information on the subclass (1). Moreover, the classification per-
formed in Ref. 22 were done under contact transformations, and not point transformations
as carried out in this paper. It turns out also that some the most commonly studied second-
order evolution equations are contained in the class (1). In particular, this class contains
many of the most important equations occurring in physical and engineering applications,
including reaction-diffusion and Burgers equations and some of their variants (see Ref. 23).
In addition, not only we confirm the integrability of the nonequivalent classes we find by

proving their equivalence to well-known integrable equations from the literature8,22,24, but
we also determine, for the first time to the best of our knowledge, a recursion operator for
some of the integrable classes found. As a result, recursion operators are now known for all
integrable classes of (1).

II. SYMMETRY INTEGRABILITY

We summarize in this section some basic facts on symmetry integrability that will be
needed in the sequel. Consider a scalar differential equation

∆ ≡ ∆(t, x, u(n)) = 0 (2)

where u = u(t, x) and u(n) denotes u and all its partial derivatives with respect to t and x
up to the order n. Recall that ∆ may be viewed as a differential function of u in the sense
of Ref. 25. More generally, we denote by K a differential field which will be assumed to be
large enough to contain all the differential functions we wish to consider. It is well known25

that a generalized vector field v is a symmetry of (2) if and only if the same holds for its
evolutionary form vQ, where Q is the characteristic. Thus the characteristic Q is also called
a symmetry of (2).
Let Dt and Dx denote the total t-derivative and x-derivative operators respectively, and

J = (n1, n2) the ordered multi-index given by DJ = Dn2
x Dn1

t , where n1, n2 ∈ Z
+. We set

#J = n1 + n2. Let uJ = DJu, and for any differential function Q of u let PQ denote the
differential operator given by

PQ =
∑

# J ≥0

DJ(Q)
∂

∂ uJ
. (3)

In other words, PQ is the prolongation of infinite order of the corresponding evolutionary
vector field vQ.

Definition 1.

(a) A function Q ∈ K will be called a generalized symmetry of (2) if

PQ(∆)|∆=0
.

(b) Equation (2) is called symmetry integrable if it possesses an infinite sequence of gen-
eralized symmetries of increasing orders.
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Recall that the Fréchet derivative of a function H ∈ K is the differential operator DH

given by

DH =
∑

#J≥0

∂ H

∂ uJ
DJ .

Thus for any functions Q,∆ ∈ K one has PQ(∆) = D∆(Q). We now restrict our attention
to a special case of (2) given by an evolution equation of the form

ut = F (x, u, u1, u2, . . . , un) (4)

where we have set ui = ∂i u/ ∂ xi for i ≥ 0 and u0 = u. We will often use the shorthand
notation F for the function F (x, u, u1, u2, . . . , un). Restricting K to the space of functions
f = f(x, u, u1, u2, . . . , um), m ∈ Z

+, the total differential operator Dx with respect to x
takes the form

Dx =
∂

∂ x
+

∞
∑

i=0

ui+1
∂

∂ ui
. (5)

Thus, in particular on the space of functions defined on the solution set of (4), the
operator Dt is reduced to

Dt =
∂

∂ t
+

∞
∑

i=0

Di
x(F )

∂

∂ ui
. (6)

The notation Dx and Dt will refer from now on to those given by (5) and (6), unless
otherwise stated. In particular, any symmetry Q of (4) satisfies (Dt −DF )Q = 0.
Denote by K(Dx) the space of formal series S of the form

S =

m
∑

j=−∞

rjD
j
x, rj ∈ K, rm 6= 0, m ∈ Z. (7)

The integer m in (7) is called the order of S and denoted ord(S). It is well known that
K(Dx) is a skewed field and in particular a non-commutative ring in which every non-zero
element is invertible. Moreover, if (rm)1/m ∈ K, then the mth root S1/m of S exists in
K(Dx). The associative ring K(Dx) is equipped with a Lie algebra structure for which the
bracket is given by [A,B] = A ◦ B − B ◦ A, where A ◦ B ≡ AB is the multiplication in
K(Dx).

Definition 2.

(a) A formal recursion operator of (4) is a formal series S ∈ K(Dx) satisfying

PF (S)− [DF , S] = 0. (8)

The set of all formal recursion operators of (4) is denoted R(F ).

(b) An approximate formal recursion operator of order k of (4) is an element of the set

Ak =
{

S ∈ K(Dx) : ord(PF (S)− [DF , S]) ≤ ord(DF ) + ordS − k
}

.

One readily sees that R(Dx) = A∞ ⊂ · · · ⊂ A3 ⊂ A2 ⊂ A1 = K(Dx).

Definition 3. Let S be a formal series as in (7).

(a) The residue res(S) and the logarithmic residue reslog(S) of S are the functions given
by

res(S) = r−1, reslog(S) = rm−1/rm.
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(b) If ord(S) = m 6= 0, then the canonical densities ρj, j = −1, 0, 1, 2 . . . of (4) associated
with S are the residues given by

ρ−1 = resS−1/m = r−1/m
m , ρ0 = reslog(S) = rm−1/rm

ρj = resSj/m, j ∈ N.

Definition 4. (a) Two functions f1, f2 ∈ K are said to be equivalent, denoted f1 ∼ f2,
if f1 − f2 = Dx(h) for some h ∈ K.

(b) An element of the resulting quotient space K̄ = K/∼ is called a density.

(c) A non-zero element ρ ∈ K̄ is called a density of a local conservation law or a conserved
density if Dt(ρ) = Dx(σ) for some σ ∈ K. In this case σ is called the flux and the pair
(ρ, σ) a local conservation law.

Theorem 1 ([6]). For each formal recursion operator S ∈ R(F ) with ord(S) 6= 0 the
associated canonical densities are densities of local conservation laws for ut = F, that is

Dt(ρj) ∈ Dx(K), for all j = −1, 0, 1, 2, . . . .

One of the immediate applications of this theorem is to readily check if an evolution
equation has a formal recursion operator, and in particular a recursion operator in the
ordinary sense of Ref. 8 and 25. Recall that the order of a differential function f of
u = u(t, x) is the highest order of the derivatives of u appearing in the expression of f.

Theorem 2 ([6]). If ut = F has a symmetry H ∈ K of order k, then DH ∈ Ak.

In particular, since the function F as given by (4) does not depend explicitly on t, it is a
symmetry for (4) and hence DF ∈ An.

Corollary 1 ([6]).

(a) If ut = F has an infinite sequence of symmetries of increasing orders, then for any

ν ∈ Z there exists a formal recursion operator S ∈ K(Dx) of order ν satisfying the
formal recursion operator equation (8).

(b) If ut = F has order n ≥ 2, then ut = F has an approximate formal recursion operator

S ∈ An.

(c) If ut = F has order n, then it has an approximate formal recursion operator of order

q > n if and only if the canonical densities satisfy

PF (ρj) = Dx(σj), for j = −1, 0, . . . , q − n− 2, (9)

and for some fluxes σj ∈ K.

Given that every formal recursion operator is in particular an approximate recursion
operator, it follows from the above corollary that if ut = F is symmetry integrable, then
the canonical densities should satisfy (9) for all q ∈ Z.

A recourse is usually made to approximate formal recursion operators in place of the
formal recursion operators because in practice they are easier to construct, and they include
formal recursion operators as a special case. Moreover, Part (c) of Corollary 1 asserts that
the existence of an approximate formal recursion operator of order q > n is equivalent to
the existence of q − n local conservation laws given by (9).
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III. CLASSIFICATION OF SYMMETRY INTEGRABLE EQUATIONS

In order to perform a classification into symmetry integrable classes of the family of
evolution equations of the form (4), one applies Conditions (9) and this yields the necessary
conditions on the corresponding function F for the equation to be symmetry integrable.
However, Conditions (9) are so restrictive that the application of the first few of them usually
yields all possible symmetry integrable equations6,8. In the particular case of second order
evolution equations, and according to a result stated in Ref. 6, the first three canonical
densities for the general second order evolution equation

ut = F (x, u, u1, u2) (10a)

are given by

ρ−1 =

(

∂ F

∂ u2

)−1/2

(10b)

ρ0 = ρ−1 σ−1 −
(

∂ F

∂ u2

)−1 (
∂ F

∂ u1

)

(10c)

ρ1 = ρ−1

(

∂ F

∂ u

)

+
ρ20

4ρ−1
+
ρ0 σ−1

2
− ρ−1 σ0

2
. (10d)

We shall therefore apply (9) to the specific family of equations (1) using the expressions for
the canonical densities provided in (10), to find conditions on the functions Φ and Ψ for (1)
to be symmetry integrable.
It follows from (10) that for equation (1), one has

Dtρ−1 = −Φu(Ψ + Φu2)

2Φ3/2
.

On the order hand, one has Dtρ−1 ∈ Dx(K) if and only if E(Dtρ−1) = 0, where

E =
δ

δu
=

∞
∑

j=0

(−Dx)
j ∂

∂ uj

is the Euler operator acting on the space of functions K. In order to determine when
E(Dtρ−1) = 0, we are led to consider two cases.

Case 1: Φu 6= 0

In this case, It turns out that Dtρ−1 is a null Lagrangian, that is, E(Dtρ−1) = 0, if and
only if

Ψ(u, u1) = u1B +
2k1Φ

3/2 − u21Φ
′2 + 2u21Φ

′′

2Φ′
,

where B = B(u) is an arbitrary function. In order to evaluate E(Dtρj) for j = 0, 1 we
would need to first evaluate the fluxes σi, −1 ≤ i < j appearing in (10) in the expression
of ρj . Each σi will be found by solving an equation of the form

Dtρi −Dxσi(x, u, u1, . . . , um) = 0 (11)

for the unknown function σi = σi(x, u, u1, . . . , um), where m− 1 is the order of Dtρi. This
will usually be achieved by expanding (11) as a polynomial in the derivatives uk of u with
k > m. Thus solving (11) for i = −1, yields

σ−1 = −k1x
2

− u1f
′

2
√
f
+

∫ u

1

−B(z)f ′(z)

2f(z)3/2
dz,
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where k1 is an arbitrary constant of integration. With this value for σ−1, the requirement
that Dtρ0 must be a null Lagrangian gives rise to the condition

0 = −Bk1Φ3
u + 8u2Φ

3/2Φu (−ΦuBuu +BuΦuu)

+ 4Φ3/2
(
√
Φ (−k1ΦuBuu + k1BuΦuu)

+ u21
(

−BuΦ
2
uu − Φ2

uBuuu +Φu (BuuΦuu +BuΦuuu)
) )

.

(12)

The requirement that the coefficient of u2 in the above expression must identically vanish
yields an expression for B in terms of Φ, given by

B = k2Φ+ k3, for some arbitrary constants k2 and k3. (13)

In terms of this new expression for B, (12) reduces to

− k1Φ
3
uB = 0, (14)

and this leads to the consideration of two other cases.

Case 1.1: Φu 6= 0, and k1 = 0.

Solving (11) for i = 0 and with the value k1 = 0 yields

σ0 = r1 −
(f1k2 − k3)(−k3 + k2Φ)√

f1
√
Φ

+ u2

(

Φu

2
− 2ΦΦuu

Φu

)

+ u1





(√
f1k3 + (−f1k2 + k3)

√
Φ+

√
f1k2Φ

)

Φu

2
√
f1Φ

− 2(k3 + k2Φ)Φuu

Φu





+ u21

(

−Φ2
u

4Φ
+

3Φuu

2
− 2ΦΦ2

uu

Φ2
u

)

,

where r1 and f1 are some constants of integration. Now that σ0 is known, we can evaluate
ρ1 and then E(Dtρ1). The identical vanishing of the coefficient of u4 in the expression of
E(Dtρ1) shows that E(Dtρ1) = 0 if and only if

Φ = p2(3u− 8p1)
8/3,

where p1 and p2 are some arbitrary constants. For the expressions thus obtained for Ψ and
Φ, the corresponding reduced equation (1) takes the form

ut = p2(−8p1 + 3u)8/3u2 + p2(−8p1 + 3u)5/3u21 − u1

(

−k3 − k2p2(−8p1 + 3u)8/3
)

. (15)

In the sequel, unless otherwise stated the renaming of new variables to former ones under
point transformations will be assumed in the transformed equation. Performing the change
of dependent variable u =

[

8p1 + (w/p2)
3/8

]

/3 transforms (15) into

ut = (k3 + k2u)u1 −
u21
2

+ uu2. (16)

However, the later transformation is equivalent under point transformation

ut = u2u2. (17)

Indeed, for k2 6= 0 the corresponding transformation is given by

x = −k3t+
1

k2
log(k2 z), u =

w(t, z)2

k22 z
2
,

while for k2 = 0 it is given by

x = −k3t+ z, u = w(t, z)2.
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Case 1.2: Φu 6= 0, and k1 6= 0.

In this case, B = 0 must hold. Without any further condition on Φ, it turns out that
Dtρ0 is a null Lagrangian, and the corresponding flux takes the form

σ0 = b1 +
k21x

2

8
+
k1xΦuu1

4
√
Φ

− 2k1Φ
3/2Φuu

Φ2
u

+ u21

(

−Φ2
u

4Φ
+

3Φuu

2
− 2ΦΦ2

uu

Φ2
u

)

+ u2

(

Φu

2
− 2ΦΦuu

Φu

)

,

(18)

where b1 is an arbitrary constant. With this expression for σ0 and other relevant parameters
computed thus far, we can compute ρ1 in (10) and then E(Dtρ1). The identical vanishing
of the coefficient of u4 in the equation E(Dtρ1) = 0 shows that Dtρ1 is a null Lagrangian
if and only if

Φ = p2(3u− 8p1)
8/3,

as in the preceding case, where p1 and p2 are some arbitrary constants. The corresponding
equation (1) is reduced to

ut =
k1
8
p
1/2
2 (−8p1 + 3u)7/3 + p2(−8p1 + 3u)5/3u21 + p2(−8p1 + 3u)8/3u2. (19)

Performing the change of dependent variables t = 2y/k1, x = (2z/k1)
1/2 and u =

[

8p1 + (w/p
1/2
2 )3/4

]

/3 transforms (19) to

ut = u2(1 + u2). (20)

Case 2: Φu = 0.

Given that, Φ is a nonzero constant, by the scaling transformation t → t/Φ we may
assume without loss of generality that Φ = 1. In this case, ρ−1 = 1, and hence σ−1 is
a function of t. In the specific case of (1), since the densities and fluxes cannot depend
explicitly on t and the fluxes are determined only up to an arbitrary constant, we may
assume σ−1 = 0. This yields ρ0 = −Ψu1. In the expansion of E(Dtρ0) as a polynomial in
the derivatives of u, the vanishing of the coefficient of u4 shows that Ψ must be quadratic
in u1, that is,

Ψ = α+ βu1 + γu21, (21)

for some functions α, β, and γ of u. From this point we have to consider the following
subcases.

Case 2.1: Φu = 0 and βu 6= 0.

Substituting the expression of Ψ from (21) in the expression for Dt ρ0 shows that
E(Dt ρ0) = 0 if and only if

Ψ =
d1
βu

+ βu1 +
βuu
βu

u21 (22)

for some arbitrary constant d1. The corresponding expression for σ0 takes the form

σ0 = −
(

β2 + 2d1x
)

β2
u + 2β3

uu1 + 4βuu
(

d1 + u21βuu
)

+ 4βuβuu (βu1 + u2)

2β2
u

.
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With this expression for σ0, we can then compute ρ1, and it turns out that without any
further restrictions on Ψ, Dt ρ1 is a null Lagrangian. The corresponding reduced equation
in this case takes the form

ut = u2 + u21
βuu
βu

+ u1β +
d1
βu
. (23)

Moreover, the change of dependent variablew = β(u) maps the reduced polynomial equation

ut = u2 + uu1 + d1 (24)

precisely to (23). In addition, the transformation

t = 1 + 1/y, x = − d1
2y2

+
z

y
i, u = −i

(

d1
y
i+ z + yw(y, z)

)

,

where i is the imaginary number, maps (24) to its homogeneous version

ut = u2 + uu1. (25)

Case 2.2: Φu = 0 and βu = 0.

In this case denoting by β0 the constant function β, we have ρ0 = −β0 − 2u1γ, and this
yields

σ0 = p3 − 2αγ − 2γ2u21 − 2γ(β0u1 + u2). (26)

For this value of σ0, we can compute ρ1. It turns out that Dtρ1 is a null Lagrangian for
α = 0, and the corresponding equations takes the form

ut = u2 + β0u1 + γu21. (27)

The change of variables

t = z, x = β0 − β0z − y, u =

∫ w

1

e
∫ v1
1

γ(v2)dv2dv1,

after reverting back to the original variables, transforms the (linear) heat equation

ut = u2 (28)

precisely to (27), showing indeed that (27) is linearizable. On the other hand, if α 6= 0,
then Dtρ1 is a null Lagrangian if and only if γ = −αu/α, and the corresponding equation
takes the form

ut = u2 + β0u1 + α− αu

α
u21. (29)

On the other hand, the change of variables z = x + β0t and w =
∫ u 1

α(s)ds, with w =

w(y, z), maps the heat equation (28) precisely to (29), after a renaming of variables in the
transformed equation.

A. Integrable equations

We now proceed to the determination of integrable equations from among the four candi-
dates obtained in our preliminary classification of integrable equations, namely the equations
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(17), (20), (25), and (28). Indeed, these four equations result only from an application of
the necessary conditions of integrability.
By essence, and as a basic fact of integrability, linear equations are integrable and hence

this holds true in particular for the heat equation (28). Consider now the general second
order evolution equation (10a), namely

ut = F (x, u, u1, u2)

where F is an arbitrary smooth function of its arguments. This is indeed a more general
family of equations which contains the family of equation (1) whose symmetry classification
is discussed in this paper. According to a result reported in Ref. 24, the exhaustive list of
integrable equations of the form (10a) which are not linearizable by contact transformations
had been found in Ref. 22, and it is given by

ut = u2 + 2u u1 + h(x) (30a)

ut = Dx

(

u1 u
−2 + αxu + βu

)

(30b)

ut = Dx

(

u1 u
−2 − 2x

)

, (30c)

where h is an arbitrary smooth function of x while α and β are arbitrary constants. It
should be mentioned that for evolutions equations of the form (10a) in which the function
F does not depend explicitly on the variable t, the contact transformations just referred to
can be taken in the form

z = t, y = φ(x, u, u1), w = ψ(x, u, u1) (31a)

in which the functions φ and ψ are constrained by the contact condition

Dx(φ)
∂ ψ

∂ u1
= Dx(ψ)

∂ φ

∂ u1
. (31b)

It is much easier at this point to make use of (30) to conclude on the integrability of the
candidate equations, although we will also use other arguments to prove integrability.
First letting h = 0 in (30a) and then applying the change of dependent variable w = 2u

transforms the resulting equation with h = 0 into Burgers equation (25), and thus confirms
its well-known integrability. On the other hand, the point transformation

t = z, x = 2y, u = 2/w

maps equation (20) precisely to (30b), showing its integrability according to Ref. 22. Finally,
the mere change of dependent variable u = 1/wmaps (17) precisely to (30b) with α = β = 0.
This proves also the integrability of (17) according to Ref. 22. We have thus shown that
our three candidate nonlinear equations are all integrable.

Theorem 3.

(a) Any quasilinear evolution equation of the form (1) is symmetry integrable if and only

if it is equivalent under point transformations to one of the following equations

ut = u2 (32a)

ut = u2u2 (32b)

ut = u2(1 + u2) (32c)

ut = u2 + uu1. (32d)

(b) The four equations in (32) are pairwise nonequivalent under both point transforma-
tions and contact transformations.
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Proof. The proof that any symmetry integrable equation of the form (1) must be equivalent
under point transformations to one of the equations (32) is proved in the first part of Section
III, while the fact that all equations (32) are symmetry integrable has been proved above
in the present Subsection III A. The fact that all equations in (32) are nonequivalent under
point transformations can be easily verified by the fact that their symmetry algebras all
have distinct dimensions. We have also proved that all the equations in (32) are nonequiv-
alent under contact transformations, by mapping each of them to nonequivalent symmetry
integrable equations obtained in Ref. 22 under contact transformations.

IV. RECURSION OPERATORS

An alternative and more direct way to establish integrability is to find a recursion op-
erator for the concerned equation. Let ∆[u] = 0 be a system of differential equations and
denote as usual by vQ a generalized symmetry with characteristic Q of this system. Recall
that a pseudo-differential operator R acting on a space of differential functions is called a
recursion operator for ∆[u] = 0 if vQ̃ is also a generalized symmetry for this system, where

Q̃ = RQ, for some initial characteristic function Q. Indeed, if R is a recursion operator,
vQ is any generalized symmetry for ∆ and Q̃ = RQ, then vQ̃ is not necessarily also a
generalized symmetry for ∆. However, for a given recursion operator there is a sequence of
generalized symmetries vQj

of ∆ given by Qj+1 = RQj for j ∈ N = {1, 2, 3, . . .} . The first
characteristic Q1 in this recursively defined sequence of characteristics is referred to as the
root of R.
The best known and most documented method for finding these operators is probably

the method given in Ref. 25. However, this method involves a lot of guess work regarding
in particular the highest and the lowest orders of derivatives of terms in the operator,
as well as the number and types of variables that it should depend on. All this makes
the determination of recursion operators a particularly tricky task. Another method for
finding recursion operators appears in Ref. 8, but as this second method is not sufficiently
documented we shall make use of the method of Ref. 25.
First of all, let us recall that recursion operators for the heat equation (32a) and for

Burgers equation (32d) are well known8,25. For instance Dx and tDx+
1
2x are two recursion

operators for (32a). More generally, criteria for identifying recursion operators for linear
equations are much more relaxed, and they are easier to find. A recursion operator for
(32d) has expression Dx+

1
2u− 1

2u1D
−1
x . In order to provide an exhaustive list of recursion

operators for the classes of integrable equations (32), we are only left to do this for equations
(17) and (20). To our knowledge recursion operators for these two equations are not available
in the current literature.
By a result of Olver25 (Theorem 5.30), for a pseudo-differential operator R to be a recur-

sion operator of an evolution equation ∆[u] = 0, it suffices that it commutes on solutions
with the Fréchet derivative D∆ of ∆, that is R ·∆ = ∆ · R for all solutions u to ∆.
After some calculations, it turns out that

R = uDx + u2u2D
−1
x ·

(

1

u2

)

(33)

is a recursion operator of root u2u2 for (17). Indeed, the Fréchet derivative

D∆ = −Dt + u2D2
x + 2 u u2

of (17) commutes with R. To verify this we set

R = R1 +R2, where R1 = uDx, and R2 = u2u2D
−1
x ·

(

1

u2

)

. (34)

A straightforward calculation shows that

D∆ · R1 −R1 ·D∆ = −2u(u1u2 + uu3). (35)
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On the other hand similar calculations show that

D∆ · R2 = u

(

4u2
(

u22 + u1u3
)

D−1
x ·

(

1

u2

)

+ 2u2

(

2u1 − u2u2D
−1
x ·

(

1

u2

))

+ u3
(

u2Dx ·
(

1

u2

)

+ u4D
−1
x ·

(

1

u2

))

− u

(

(

− 2u21u2 + u2
(

2u21 + 2uu2
)

+ 4uu1u3 + u2u4
)

D−1
x ·

(

1

u2

)

− 2u3 + u2DtD
−1
x ·

(

1

u2

)))

= 0

(36a)

and

R2 ·D∆ = u2u2

(

Dx +D−1
x ·

(

2u2
u

)

+D−1
x ·

(

− 1

u2
Dt

))

. (36b)

It thus follows from (36a) and (36b) that

D∆ · R2 −R2 ·D∆ = u

(

4u1u2 − uu2Dx + u3u2Dx ·
(

1

u2

)

− u
(

− 2u3 + u2DtD
−1
x ·

(

1

u2

)

+ u2D
−1
x ·

(

2u2
u

)

+ u2D
−1
x ·

(

− 1

u2
Dt

)

)

)

.

(37)

Combining (35) and (37) gives

D∆ · R − R ·D∆ = uu2

(

2u1 − uDx + u3Dx ·
(

1

u2

)

− uD−1
x ·

(

Dt ·
(

1

u2

)

+
2u2
u

− 1

u2
Dt

))

.

(38)

But the left hand side of (38) vanishes since

u3Dx ·
(

1

u2

)

= −2u1 + uDx, and Dt ·
(

1

u2

)

= −2u2
u

+
1

u2
Dt.

This completes the proof that the expressionR in (33) is a recursion operator for (17), and in
particular that (17) is integrable. Indeed, if we set Q1 = u2u2, then Q2 = u2(3u1u2 + uu3)
is of higher order than Q1 and more generally it is easy to verify that the sequence of
characteristics Qj+1 := RQj is of increasing orders.
In order to be guided in the search of recursion operators, it is always helpful to have

at hand the first few values of characteristics of the concerned equation. In the case of
Equation (20), characteristics Cj of order not exceeding the fourth are given by

C1 =
1

2
u2

(

2u2u4 + 2u(3 + 7u2 + 4u22 + 6u1u3 + 2u3x)

+ (1 + u2)(14u
2
1 + 12u1x+ 3x2)

) (39a)
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and

C2 = u1, C3 =
1

2
u2 (6u1(1 + u2) + 2uu3 + 3x(1 + u2))

C4 = u2(1 + u2), C5 = −2u− 2tu2(1 + u2) + u1x. (39b)

Partly guided in some ways by these first few low order characteristics of generalized
symmetries of (20), it is found after some calculations that (20) has a recursion operator P
with expression

P = uDx +
(x

2

)

+ u2(1 + u2)D
−1
x ·

(

1

u2

)

(40)

and root u2(1 + u2). This fact is also established by proving that P commutes with the
Fréchet derivative

D∆ = Dt − u2D2
x − 2u(1 + u2)

of (20). The proof of this commutativity is similar to the one given above to establish that
the expression R in (33) is a recursion operator for (17), and the details are omitted. Let
us mention also that the sequence of characteristics recursively defined by P is of increasing
order, giving another proof of the fact that (20) is symmetry integrable. For instance, while
the root C4 = u2(1 + u2) is of order 2, P C4 = C3 is of order 3.

V. CONCLUDING REMARKS

Our classification results show that the particular reduced class (1) contains all four
subclasses and essentially all symmetry integrable equations classified under contact trans-
formations in Ref. 22 for the most general class (10a). This suggests that the classification
of Ref. 22 would certainly have yielded the same results under the much simpler and much
common point transformation. On the other hand, our results also raise the problem of exis-
tence and determination of the smallest subclass of (10a) containing all integrable equations
from (10a), that is, all equations (30) and (32a).
This work has also revealed that despite the crucial importance of recursion operators

in the study of integrable systems, their determination remains a very tricky task and
considerable research work is still needed to understand some of their most basic properties.
Recursion operatorsR for a scalar evolution equation in two independent variable t and x as
in the present case are to be sought in the formR =

∑m2

k=m1
Fk[u]D

rk
x , wherem1, m2, and rk

are integers, some or all of which may assume negative values. However, the determination
of crucial profiling parameters of R such as m1, m2, and even the type and number of
arguments for each function Fk remains largely the result of guess work25, leaving the
determination of R to remain really challenging.
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