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Abstract

We find integrals of motion for the recently introduced deformed Ruijsenaars-

Schneider many-body system which is the dynamical system for poles of elliptic

solutions to the Toda lattice with constraint of type B. Our method is based on

the fact that equations of motion for this system coincide with those for pairs

of Ruijsenaars-Schneider particles which stick together preserving a special fixed

distance between the particles.
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1 Introduction

Integrable many-body systems of classical mechanics play a significant role in modern
mathematical physics. They are interesting and meaningful from both mathematical
and physical points of view and have important applications and deep connections with
different problems in mathematics and physics. The history of integrable many-body
systems starts from the famous Calogero-Moser (CM) model [1]-[4] which exists in ratio-
nal, trigonometric or hyperbolic and elliptic versions. In the most general elliptic case
the equations of motion for the N -body CM system are

ẍi = 4
N
∑

j 6=i

℘′(xij), xij = xi − xj , (1.1)

where dot means the time derivative. Throughout the paper, we use the standard Weier-
strass σ-, ζ- and ℘-functions σ(x), ζ(x) = σ′(x)/σ(x) and ℘(x) = −ζ ′(x) (see Appendix
A for their definition and properties). Degenerating the elliptic functions to trigono-
metric and rational ones, one obtains the trigonometric and rational versions of the CM
model. The elliptic CM model is Hamiltonian and completely integrable, i.e., it has N
independent integrals of motion in involution. Integrability of the model was proved by
different methods in [5] and [6], see also the book [7].

Later it was discovered [8, 9] that there exists a one-parametric deformation of the CM
system preserving integrability, often referred to as relativistic extension. The parameter
of the deformation, η, in this interpretation is the inverse velocity of light. This model is
now called the Ruijsenaars-Schneider (RS) system. Again, in its most general version the
interaction between particles is described by elliptic functions. The equations of motion
are

ẍi +
N
∑

j 6=i

ẋiẋj

(

ζ(xij + η) + ζ(xij − η)− 2ζ(xij)
)

= 0. (1.2)

A properly taken limit η → 0 leads to equations (1.1). The RS system is Hamiltonian
with the Hamiltonian

H1 =
N
∑

i=1

epi
N
∏

j 6=i

σ(xij + η)

σ(xij)
. (1.3)

Integrability of the RS system was proved in [9]. It has conserved quantities Hk, H̄k

k ∈ N, which are higher Hamiltonians in involution (for the N -particle system the first
N of them are independent).

Since the seminal works [10]-[13] it became a common knowledge that the integrable
many-body systems of Calogero-Moser type describe dynamics of poles of singular so-
lutions (in general, elliptic solutions) to nonlinear integrable differential equations such
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as Korteveg-de Vries (KdV) and Kadomtsev-Petviashvili (KP) equations. In [14] it was
shown that the RS system plays the same role for singular solutions to the Toda lat-
tice equation which can be thought of as an integrable difference deformation of the KP
equation. (On the Toda lattice side, the parameter η can be identified with the lattice
spacing.) Namely, the time evolution of poles in the time t = t1 of the Toda hierar-
chy coincides with the RS dynamics according to the equations of motion (1.2). Later
this correspondence was extended [15] to the level of hierarchies: the evolution of poles
in the higher times tk and t̄k of the Toda hierarchy was shown to be given by the RS
Hamiltonian flows with the higher Hamiltonians Hk and H̄k.

Recently, a deformation of the RS model was introduced [16] as a dynamical sys-
tem describing time evolution of poles of elliptic solutions to the Toda lattice with the
constraint of type B [17]. Equations of motion of the deformed RS system are

ẍi +
N
∑

j 6=i

ẋiẋj

(

ζ(xij + η) + ζ(xij − η)− 2ζ(xij)
)

+ g(U−
i − U+

i ) = 0, (1.4)

where

U±
i =

N
∏

j 6=i

U±(xij), U±(xij) =
σ(xij ± 2η)σ(xij ∓ η)

σ(xij ± η)σ(xij)
(1.5)

and g is the deformation parameter. At g = 0 we have the RS system. It is evident that
g 6= 0 can be eliminated from the formulas by re-scaling of the time variable t → g−1/2t.
In what follows we fix g to be g = σ(2η) without loss of generality. With this choice of g,
equations (1.4) are exactly the same as they appear as the dynamical equations for poles
with the convention on the choice of the time variable adopted in the Toda lattice with
the constraint of type B. In [16] it was shown that the η → 0 limit of equations (1.4)
reproduces the equations of motion

ẍi + 6
N
∑

j 6=i

(ẋi + ẋj)℘
′(xij)− 72

∑

j,k 6=i,j 6=k

℘(xij)℘
′(xik) = 0 (1.6)

obtained in [18] for dynamics of poles of elliptic solutions to the B-version of the KP
equation (BKP).

In [16] it was also shown that that the system (1.4) can be obtained by restriction
of the Hamiltonian flow with the Hamiltonian H

−
1 = H1 − H̄1 of the N = 2N0-particle

RS system to the half-dimensional subspace P ⊂ F of the 4N0-dimensional phase space
F corresponding to the configurations in which the 2N0 particles stick together joining
in N0 pairs such that the distance between particles in each pair is equal to η. Such
configurations are immediately destroyed by the flow with the Hamiltonian H

+
1 = H1+H̄1

but are preserved by the flow with the Hamiltonian H
−
1 = H1− H̄1 and the corresponding

dynamics can be restricted to the subspace P. The restriction gives equations (1.4),
where N should be substituted by N0, with xi (i = 1, . . . , N0) being the coordinate of
the ith pair moving as a whole thing with the fixed distance between the two particles.

In this paper we provide evidence of integrability of the deformed RS system (1.4).
To wit, we obtain the complete set of independent integrals of motion in the explicit
form. Our method is based on the fact (which is proved in the paper) that the subspace
P is preserved not only by the flows with the Hamiltonian H

−
1 but also by all higher
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Hamiltonian flows with the Hamiltonians H−
k . (However, the flows with the Hamiltonians

H
+
k do not preserve the space P.) This gives the possibility to obtain the integrals of

motion of the N0-particle deformed RS system by restriction of the known integrals of
motion for the 2N0-particle RS system to the subspace P of pairs, and this is what we
do in the present paper.

The main result of this paper is the following explicit expressions for integrals of
motion of the system (1.4) (with g = σ(2η)):

Jn =
1

2

[n/2]
∑

m=0

σ(nη)σ2m−n(η)

m! (n−2m)!

N
∑

[i1...in−m]

ẋim+1 . . . ẋin−m

n−m
∏

α,β=m+1
α<β

V (xiαiβ)

×





m
∏

γ=1

N
∏

ℓ 6=i1,...,in−m

U+(xiγℓ) +
m
∏

γ=1

N
∏

ℓ 6=i1,...,in−m

U−(xiγℓ)



 ,

(1.7)

where

V (xij) =
σ2(xij)

σ(xij+η)σ(xij−η)

and U±(xij) is given in (1.5). In (1.7) n = 1, . . . , N and
N
∑

[i1...in−m]

means summation over

all distinct indexes i1, . . . , in−m from 1 to N ; [n/2] is the integer part of n/2. At m = 0,

the product
0
∏

γ=1

in the second line of (1.7) should be put equal to 1. Similarly, at 2m = n

the product ẋim+1 . . . ẋin−m
should also be put equal to 1. Here are some examples for

small values of n:

J1 =
∑

i=1

ẋi,

J2 =
σ(2η)

2σ2(η)





∑

i 6=j

ẋiẋjV (xij) + σ2(η)
∑

i

(

∏

ℓ 6=i

U+(xiℓ) +
∏

ℓ 6=i

U−(xiℓ)
)



 ,

J3 =
σ(3η)

6σ3(η)





∑

i 6=j,k, j 6=k

ẋiẋj ẋkV (xij)V (xik)V (xjk)

+ 3σ2(η)
∑

i 6=j

ẋj

(

∏

ℓ 6=i,j

U+(xiℓ) +
∏

ℓ 6=i,j

U−(xiℓ)
)



 .

(1.8)

Note that the m = 0 term in (1.7) is the nth integral of motion of the RS system (1.2).

We also find the generating function of the integrals of motion:

R(z, λ) = det
1≤i,j≤N

(

zδij − ẋiφ(xij−η, λ)− σ(2η)z−1U−
i φ(xij−2η, λ)

)

, (1.9)

where

φ(x, λ) :=
σ(x+ λ)

σ(λ)σ(x)
. (1.10)

The equation R(z, λ) = 0 defines the spectral curve which is an integral of motion.
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The organization of the paper is as follows. In Section 2 we remind the main facts
about the elliptic RS model. In Section 3 we show, reproducing the result of [16], that
the dynamics of the deformed RS system is the H−

1 -flow of the RS system restricted to the
space of pairs. The core of the paper is Section 4, where we prove that the space of pairs
is invariant under all higher H

−
k -flows and find integrals of motion of the deformed RS

system in the explicit form. The generating function of the integrals of motion is found
in Section 5. In Section 6 we make concluding remarks and list some open problems.
There are also two appendices. In Appendix A the definition and main properties of
the Weierstrass functions are presented. In Appendix B we prove an identity for elliptic
functions which is the key identity for the proof of Theorem 4.1 in Section 4.

This paper has grown up from our joint works [16, 17] with Igor Krichever. Soon
after the present work was started, my older friend and co-author Igor Krichever passed
away. He worked till the last his days, and we had several illuminating conversations.
With sorrow and gratefulness, I dedicate this paper to his memory.

2 The RS system

Here we collect the main facts on the elliptic RS system following the paper [9].

The N -particle elliptic RS system is a completely integrable model. The canonical
Poisson brackets between coordinates and momenta are {xi, pj} = δij . The integrals of
motion in involution have the form

In =
∑

I⊂{1,...,N}, |I|=n

exp
(

∑

i∈I

pi
)

∏

i∈I,j /∈I

σ(xij + η)

σ(xij)
, n = 1, . . . , N. (2.1)

It is natural to put I0 = 1. Important particular cases of (2.1) are

I1 =
N
∑

i=1

epi
∏

j 6=i

σ(xij + η)

σ(xij)
(2.2)

which is the Hamiltonian H1 of the chiral RS model and

IN = exp
(

N
∑

i=1

pi
)

. (2.3)

Comparing to the paper [9], our formulas differ by the canonical transformation

epi → epi
∏

j 6=i

σ1/2(xij + η)

σ1/2(xij − η)
, xi → xi,

which allows one to eliminate square roots in the formulas from [9].

Let us denote the time variable of the Hamiltonian flow with the Hamiltonian H1 = I1
by t1. The velocities of the particles are

∗
xi=

∂H1

∂pi
= epi

∏

j 6=i

σ(xij + η)

σ(xij)
, (2.4)
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where star means the t1-derivative. Note that in terms of velocities the integrals of motion
(2.1) read:

In =
1

n!

N
∑

[i1...in]

∗
xi1 . . .

∗
xin

n
∏

α,β=1
α<β

σ2(xiαiβ)

σ(xiαiβ+η)σ(xiαiβ−η)
. (2.5)

Here
N
∑

[i1...in]

means summation over all distinct indexes i1, . . . , in from 1 to N . It is not

difficult to verify that the Hamiltonian equations
∗
pi= −∂H1/∂xi are equivalent to the

following equations of motion:

∗∗
x i +

N
∑

k 6=i

∗
xi

∗
xk

(

ζ(xik + η) + ζ(xik − η)− 2ζ(xik)
)

= 0 (2.6)

which are equations (1.2).

One can also introduce integrals of motion I−n as

I−n = I
−1
N IN−n =

∑

I⊂{1,...,N}, |I|=n

exp
(

−
∑

i∈I

pi
)

∏

i∈I,j /∈I

σ(xij − η)

σ(xij)
. (2.7)

In particular,

I−1 =
N
∑

i=1

e−pi
∏

j 6=i

σ(xij − η)

σ(xij)
. (2.8)

It can be easily verified that equations of motion in the time t̄1 corresponding to the
Hamiltonian H̄1 = σ2(η)I−1 are the same as (1.2).

Let us introduce the renormalized integrals of motion:

Jn =
σ(|n|η)

σn(η)
In, n = ±1, . . . ,±N. (2.9)

In the paper [15] it was shown that the higher Hamiltonians of the RS model can be
obtained from the equation of the spectral curve

zN +
N
∑

n=1

φn(λ) Jn z
N−n = 0, φn(λ) =

σ(λ− nη)

σ(λ)σ(nη)
(2.10)

as
Hn = res

z=∞

(

zn−1λ(z)
)

. (2.11)

In general, they are expressed as

Hn = Jn +Qn(J1, . . . , Jn−1),

H̄n = J−n +Qn(J−1, . . . , J−n+1)
(2.12)

for n ∈ N, where Qn are some homogeneous polynomials of homogeneity n (with degree
of Jk being put equal to k). For example:

H1 = J1,

H2 = J2 − ζ(η)J21,

H3 = J3 − (ζ(η) + ζ(2η))J1J2 +
(

3
2
ζ2(η)− 1

2
℘(η)

)

J
3
1

(2.13)
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Figure 1: Pairs of RS particles (N = 6, N0 = 3).

(see [15]). We also introduce the Hamiltonians

H
±
n = Hn ± H̄n. (2.14)

On the Toda lattice side, the RS dynamics corresponds to the dynamics of poles of elliptic
solutions and the Hamiltonians H±

n generate the flows ∂tn ±∂t̄n , where tn, t̄n are canonical
higher times of the Toda lattice hierarchy.

3 The deformed RS model as a dynamical system

for pairs of the RS particles

In this section we reproduce the result of [16] and show that the restriction of the RS
dynamics of N = 2N0 particles to the subspace P in which the particles stick together
in N0 pairs such that

x2i − x2i−1 = η, i = 1, . . . , N0 (3.1)

leads to the equations of motion of the deformed RS system for coordinates of the pairs.
It is natural to introduce the variables

Xi = x2i−1, i = 1, . . . , N0 (3.2)

which are coordinates of the pairs. It was proved in [16] that such structure is preserved
by the H

−
1 -flow ∂t = ∂t1 − ∂t̄1 but is destroyed by the H

+
1 -flow ∂t1 + ∂t̄1 . Therefore, to

define the dynamical system we should fix T+
1 = 1

2
(t1 + t̄1) to be 0, i.e. put t̄1 = −t1,

and consider the evolution with respect to the time t = T−
1 = 1

2
(t1 − t̄1).

For the velocities ẋi = ∂H−
1 /∂pi we have:

ẋ2i−1 = ep2i−1

2N0
∏

j=1, 6=2i−1

σ(x2i−1,j + η)

σ(x2i−1,j)
+ σ2(η)e−p2i−1

2N0
∏

j=1, 6=2i−1

σ(x2i−1,j − η)

σ(x2i−1,j)
, (3.3)

ẋ2i = ep2i
2N0
∏

j=1, 6=2i

σ(x2i,j + η)

σ(x2i,j)
+ σ2(η)e−p2i

2N0
∏

j=1, 6=2i

σ(x2i,j − η)

σ(x2i,j)
. (3.4)

Under the constraint (3.1) the first term in the right hand side of (3.3) vanishes. The
second term in the right hand side of (3.4) also vanishes. Then in terms of coordinates
Xi of the pairs equations (3.3), (3.4) read:

ẋ2i−1 = σ(η)σ(2η)e−p2i−1

N0
∏

j=1, 6=i

σ(Xij − 2η)

σ(Xij)
,

ẋ2i =
σ(2η)

σ(η)
ep2i

N0
∏

j=1, 6=i

σ(Xij + 2η)

σ(Xij)
.

(3.5)
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From (3.5) it is clear that if we set

p2i−1 = αi + Pi, p2i = αi − Pi, i = 1, . . . , N0, (3.6)

where

αi = log σ(η) +
1

2

N0
∑

j 6=i

log
σ(Xij − 2η)

σ(Xij + 2η)
(3.7)

and Pi are arbitrary, then we have ẋ2i−1 = ẋ2i for any i, so the distance between the
particles in each pair is preserved by the dynamics. Under the H

−
1 -flow each pair moves

as a whole thing. Equations (3.5) are then equivalent to the single equation

Ẋi = σ(2η)e−Pi

N0
∏

j 6=i

(σ(Xij − 2η)σ(Xij + 2η))1/2

σ(Xij)
. (3.8)

We have passed from the initial 4N0-dimensional phase space F with coordinates
({xi}N , {pi}N) to the 2N0-dimensional subspace P ⊂ F of pairs defined by the constraints























x2i − x2i−1 = η, x2i−1 = Xi,

p2i−1 + p2i = 2 log σ(η) +
∑

j 6=i

log
σ(Xij − 2η)

σ(Xij + 2η)
.

(3.9)

The coordinates in P are ({Xi}N0, {Pi}N0).

Proposition 3.1 The space P ⊂ F defined by (3.9) is Lagrangian.

Proof. We should prove that the restriction of the canonical 2-form Ω =
2N
∑

i=1

dpi ∧ dxi to

the half-dimensional subspace P is identically zero. This is a simple calculation with the
help of equations (3.6), (3.7) and (3.9).

Theorem 3.1 The subspace P is preserved by the Hamiltonian flow with the Hamilto-
nian H

−
1 = H1− H̄1 and equations of motion of the deformed RS model (1.4) are obtained

as the restriction of this flow to the subspace P.

Proof. Restricting the second set of the Hamiltonian equations, ṗi = −∂H−
1 /∂xi, to the

8



subspace P, we have:

ṗ2i−1 = σ(η)σ(2η)e−αi−Pi

N0
∏

k=1, 6=i

σ(Xik − 2η)

σ(Xik)





N0
∑

j=1, 6=i

(

ζ(Xij−2η)−ζ(Xij)
)

+ζ(η)−ζ(2η)





+ σ(η)σ(2η)
N0
∑

l=1, 6=i

e−αl−Pl

N0
∏

k=1, 6=l

σ(Xlk − 2η)

σ(Xlk)

(

ζ(Xil + η)− ζ(Xil)
)

−
σ(2η)

σ(η)

N0
∑

l=1

eαl−Pl

n
∏

k=1, 6=l

σ(Xlk + 2η)

σ(Xlk)

(

ζ(Xil − 2η)− ζ(Xil − η)
)

+ σ−1(η)eαi+Pi

N0
∏

k=1, 6=i

σ(Xik + η)

σ(Xik)− η)
− σ(η)e−αi+Pi

N0
∏

k=1, 6=i

σ(Xik − η)

σ(Xik) + η)
.

(3.10)
Taking the time derivative of (3.8), we obtain:

Ẍi = −σ(2η)Ṗie
−Pi

N0
∏

j 6=i

(σ(Xij − 2η)σ(Xij + 2η))1/2

σ(Xij)

+
1

2

N0
∑

j 6=i

Ẋi(Ẋi − Ẋj)
(

ζ(Xij − 2η) + ζ(Xij + 2η)− 2ζ(Xij)
)

,

(3.11)

where we should substitute Ṗi = −α̇i + ṗ2i−1 from (3.10) taking into account (3.8):

Ṗi = −α̇i + Ẋi





N0
∑

j 6=i

(

ζ(Xij − 2η)− ζ(Xij)
)

+ ζ(η)− ζ(2η)





+
N0
∑

l 6=i

Ẋl

(

ζ(Xil + η)− ζ(Xil)
)

−
N0
∑

l=1

Ẋl

(

ζ(Xil − 2η)− ζ(Xil − η)
)

+ePi

N0
∏

k 6=i

σ1/2(Xik − 2η)σ(Xik + η)

σ1/2(Xik + 2η)σ(Xik − η)
− ePi

N0
∏

k 6=i

σ1/2(Xik + 2η)σ(Xik − η)

σ1/2(Xik − 2η)σ(Xik + η)
.

Plugging here α̇i from (3.7) and substituting into (3.11), we finally obtain:

Ẍi = −
N0
∑

j 6=i

ẊiẊj

(

ζ(Xij + η) + ζ(Xij − η)− 2ζ(Xij)
)

+ σ(2η)
(

U+
i − U−

i

)

, (3.12)

where

U±
i =

N0
∏

j 6=i

σ(Xij ± 2η)σ(Xij ∓ η)

σ(Xij ± η)σ(Xij)
. (3.13)

These are equations (1.1), (1.2) of the deformed RS system (at g = σ(2η), N = N0).
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4 Integrals of motion

In this section we are going to prove that the subspace P is invariant not only with respect
to the H

−
1 -flow but also with respect to all higher H−

k -flows. This gives the possibility to
obtain integrals of motion Jn of the deformed RS model by restriction of the RS integrals
of motion Jn, J−n to the subspace P. We denote the restriction of Jk by Jk:

Jk(({Xi}N0, {Pi}N0) = Jk({xℓ}N , {pℓ}N)
∣

∣

∣

P
, k ∈ Z. (4.1)

The notation Jk({xℓ}N , {pℓ}N)
∣

∣

∣

P
means that the variables xℓ, pℓ are constrained by the

relations (3.9), i.e.
x2i−1 = Xi, x2i = Xi + η,

p2i−1 = αi({Xj}N0) + Pi, p2i = αi({Xj}N0)− Pi,

where αi is given by (3.7). Note that Jk can be regarded as a function of {Xj}N0 and
{Ẋj}N0 by virtue of equation (3.8) and

∂Jk

∂Pi
= −Ẋi

∂Jk

∂Ẋi

.

The similar notation will be used for the restriction of the Hamiltonians:

Hk({Xi}N0, {Pi}N0) = Hk({xℓ}N , {pℓ}N)
∣

∣

∣

P
,

H̄k({Xi}, {Pi}) = H̄k({xℓ}N , {pℓ}N)
∣

∣

∣

P
.

(4.2)

Theorem 4.1 The space P of pairs defined by (3.9) is invariant with respect to the
Hamiltonian flows ∂tk − ∂t̄k with the Hamiltonians H−

k for all k ≥ 1.

The rest of this section is devoted to the proof of Theorem 4.1. The explicit expressions
for integrals of motion of the deformed RS system will follow from the proof.

To prove that the first constraint, x2i−1 − x2i = η, is preserved, we should show that
(∂tk − ∂t̄k)x2i−1 = (∂tk − ∂t̄k)x2i for all i = 1, . . . , N0, i.e. that

∂Hk

∂p2i−1
−

∂H̄k

∂p2i−1
=

∂Hk

∂p2i
−

∂H̄k

∂p2i
(4.3)

if the coordinates and momenta are restricted to the space P. Note that equations (3.6)
imply that ∂p2i−1

− ∂p2i = ∂Pi
, so (4.3) is equivalent to

∂Hk

∂Pi
=

∂H̄k

∂Pi
. (4.4)

From (2.12) it follows that it is enough to prove that Jn = J−n.

Let N be the set N = {1, . . . , N0}. Separating the summation in (2.1) over odd and
even indexes (with m odd indexes and n−m even ones), we can write, for 0 < n ≤ N0:

Jn =
n
∑

m=0

Jn,m, (4.5)
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where

Jn,m =
σ(nη)

σn(η)

∑

I,J⊆N
|I|=m

|J |=n−m

(

∏

i∈I

ep2i−1

)(

∏

j∈J

ep2j
)

×
∏

ℓ∈N\I

∏

i∈I

σ(Xiℓ + η)

σ(Xiℓ)

∏

ℓ∈N\I

∏

j∈J

σ(Xjℓ + 2η)

σ(Xiℓ + η)

×
∏

ℓ∈N\J

∏

i∈I

σ(Xiℓ)

σ(Xiℓ − η)

∏

ℓ∈N\J

∏

j∈J

σ(Xjℓ + η)

σ(Xjℓ)
.

(4.6)

Obviously, this is zero unless I ∩ (N \ J ) = ∅, i.e. the set I should be contained in J ,
I ⊆ J . Since |I| = m, |J | = n −m, this is possible only if m ≤ [n/2], otherwise Jn,m

vanishes. Using (3.6), (3.7), (3.8), we then have:

(

∏

i∈I

ep2i−1

)(

∏

j∈J

ep2j
)

=
σn(η)

σn−2m(2η)

(

∏

i∈I

∏

ℓ∈N\{i}

σ(Xiℓ − 2η)

σ(Xiℓ + 2η)

) (

∏

j∈J\I

∏

ℓ∈N\{j}

σ(Xjℓ)

σ(Xjℓ + 2η)

)

∏

j∈J\I

Ẋj .

The expression for J−n,m is similar but in this case m is the number of even indexes
rather than odd and η in all factors in the products should be replaced by −η. After
plugging this into (4.6) and cancellations, we obtain:

J±n,m =
σ(nη)

σn−2m(η)

∑

J
|J |=n−m

∑

I⊆J
|I|=m

(

∏

j∈J\I

Ẋj

)(

∏

i,j∈J\I
i<j

V (Xij)
)(

∏

i∈I

∏

ℓ∈N\J

U±(Xiℓ)
)

, (4.7)

where

V (Xij) =
σ2(Xij)

σ(Xij + η) σ(Xij − η)
, (4.8)

U±(Xij) =
σ(Xij ± 2η) σ(Xij ∓ η)

σ(Xij ± η) σ(Xij)
. (4.9)

Passing from summation over the subsets J ⊂ N and I ⊆ J to the summation over
subsets I and I ′ such that I ∩ I ′ = ∅ (I ′ = J \ I), we can write the r.h.s. of (4.7) in
the form

J±n,m =
σ(nη)

σn−2m(η)

∑

I,I′,I∩I′=∅
|I|=m,|I′|=n−2m

(

∏

j∈I′

Ẋj

)(

∏

i,j∈I′

i<j

V (Xij)
)(

∏

i∈I

∏

ℓ∈N\(I∪I′)

U±(Xiℓ)
)

. (4.10)

The equality Jn,m = J−n,m is a consequence of the following lemma:

Lemma 4.1 For any N ′ ⊆ N = {1, . . . , N0} it holds:

∑

I⊂N ′

∏

i∈I

∏

ℓ∈N ′\I

U+(Xiℓ) =
∑

I⊂N ′

∏

i∈I

∏

ℓ∈N ′\I

U−(Xiℓ). (4.11)
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The lemma is proved in Appendix B. Applying the lemma with N ′ = N \I ′ to (4.10), we
see that Jn,m = J−n,m. The formula (1.7) for the integrals of motion in the Introduction
is an explicitly symmetrized version of (4.10):

Jn =
1

2

[n/2]
∑

m=0

(Jn,m + J−n,m).

We have proved the half of the statement of Theorem 4.1: namely, that the first constraint
in (3.9), x2i − x2i−1 = η, is invariant under the flows ∂tk − ∂t̄k .

Let us prove that the second constraint in (3.9) is preserved too. We should show
that the equality in (3.9) remains true after applying ∂tn − ∂t̄n to the both sides. In the
l.h.s. we then have

∂H−
n

∂x2i−1
+

∂H−
n

∂x2i
=

∂H−
n

∂Xi
.

Without loss of generality we may put i = 1 for simplicity of the notation. Then we have
to prove that

∂H−
n

∂X1

=
∑

k 6=1

(

∂H−
n

∂p1
−

∂H−
n

∂p2k−1

)

(

ζ(X1k + 2η)− ζ(X1k − 2η)
)

.

From (2.12) it is clear that it is equivalent to

∂J−n
∂X1

=
∑

k 6=1

(

∂J−n
∂p1

−
∂J−n

∂p2k−1

)

(

ζ(X1k + 2η)− ζ(X1k − 2η)
)

. (4.12)

Repeating the calculation leading to (4.10) for the restriction of ∂J±n/∂p2k−1 to the
subspace P, we obtain:

∂Jn
∂p2k−1

=
σ(nη)

σn−2m(η)

[n/2]
∑

m=0

∑

I∩I′=∅
|I|=m, |I′|=n−2m

Θ(k ∈ I)XI′U−
II′, (4.13)

∂J−n

∂p2k−1

=
σ(nη)

σn−2m(η)

[n/2]
∑

m=0

∑

I∩I′=∅
|I|=m, |I′|=n−2m

Θ(k ∈ I ∪ I ′)XI′U+
II′. (4.14)

Here
XI′ =

(

∏

j∈I′

Ẋj

)

∏

j1,j2∈I′

j1<j2

Vj1j2 , (4.15)

U±
II′ =

∏

i∈I

∏

j∈N\(I∪I′)

U±(Xij) (4.16)

and Θ(S) is the function which is equal to 1 if the statement S is true and 0 otherwise.
Combining (4.13) and (4.14), we get:

∂J−n
∂p2k−1

=
[n/2]
∑

m=0

κnm















∑

I∩I′=∅
|I|=m, |I′|=n−2m

Θ(k ∈ I)XI′

(

U−
II′ + U+

II′

)

+
∑

I∩I′=∅
|I|=m, |I′|=n−2m

Θ(k ∈ I ′)XI′U+
II′















,

(4.17)
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where
κnm = σ(nη)σ2m−n(η). (4.18)

A similar calculation gives

∂J±n

∂X1
=

[n/2]
∑

m=0

κnm

∑

I∩I′=∅
|I|=m, |I′|=n−2m

XI′U∓
II′Z±

II′, (4.19)

where

Z+
II′ = Θ(1∈I)





∑

ℓ∈N\(I∪I′)

(

ζ(X1ℓ + η)− ζ(X1ℓ − η)
)

+
∑

ℓ∈I′

(

ζ(X1ℓ + η)− ζ(X1ℓ)
)





+Θ(1∈I ∪ I ′)





∑

ℓ∈N\(I∪I′)

(

ζ(X1ℓ + 2η)− ζ(X1ℓ)
)

+
∑

ℓ∈I′

(

ζ(X1ℓ + 2η)− ζ(X1ℓ + η)
)





+Θ(1∈N \ I)





∑

ℓ∈I

(

ζ(X1ℓ + 2η)− ζ(X1ℓ)
)

+
∑

ℓ∈I′

(

ζ(X1ℓ + 2η)− ζ(X1ℓ + η)
)





+Θ(1∈N \ (I ∪ I ′))





∑

ℓ∈I

(

ζ(X1ℓ + η)− ζ(X1ℓ − η)
)

+
∑

ℓ∈I′

(

ζ(X1ℓ + η)− ζ(X1ℓ)
)





(4.20)
and Z−

II′ is obtained from Z+
II′ by the change η → −η. This expression can be brought

to a more convenient form by using the obvious relations

Θ(1∈I ∪ I ′) = Θ(1 ∈ I) + Θ(1 ∈ I ′), Θ(1∈N \ (I) = 1−Θ(1 ∈ I).

The right hand sides of (4.17) and (4.19) are sums over m = 0, . . . [n/2]. Let us denote

the mth terms of the sums by
∂J−n,m
∂p2k−1

and
∂J−±n,m

∂X1
. We are going to show that

∂Jn,m
∂X1

−
∂J−n,m

∂X1

=
∑

k 6=1

(

∂J−n,m
∂p1

−
∂J−n,m
∂p2k−1

)

(

ζ(X1k + 2η)− ζ(X1k − 2η)
)

(4.21)
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from which (4.12) follows. A straightforward calculation yields:

κ−1
nm







∂J−n,m
∂X1

−
∑

k 6=1

(

∂J−n,m
∂p1

−
∂J−n,m
∂p2k−1

)

(

ζ(X1k + 2η)− ζ(X1k − 2η)
)







=
∑

I∩I′=∅

XI′







Θ(1 ∈ I)



U−
II′

∑

ℓ

′
ζ−(X1ℓ)− U+

II′

∑

ℓ

′
ζ+(X1ℓ) + U+

II′

∑

ℓ∈I

′
ζ+(X1ℓ)

+U+
II′

∑

ℓ∈I

′
ζ−(X1ℓ)− U−

II′

∑

ℓ∈I

′
ζ−(X1ℓ)− U−

II′

∑

ℓ∈I

′
ζ+(X1ℓ)

+U+
II′

∑

ℓ∈I′

ζ+(X1ℓ)− U−
II′

∑

ℓ∈I′

ζ−(X1ℓ)





+ Θ(1 ∈ I ′)



U+
II′

∑

ℓ∈I

ζ−(X1ℓ)− U−
II′

∑

ℓ∈I

ζ+(X1ℓ)





+
∑

k 6=1

Θ(k ∈ I)
[

U−
II′ζ+(X1k)− U+

II′ζ−(X1k)
]







,

(4.22)

where
ζ±(X) = ζ(X ± 2η) + ζ(X ∓ η)− ζ(X +±η)− ζ(X) (4.23)

and
∑

ℓ

′
means that ℓ 6= 1.

Lemma 4.2 The following identity holds:

∑

I

Θ(1 ∈ I)









U−
II′

∑

ℓ∈N\(I∪I′)
ℓ 6=1

ζ−(X1ℓ)− U+
II′

∑

ℓ∈N\(I∪I′)
ℓ 6=1

ζ+(X1ℓ)

−U−
II′

∑

ℓ∈I,ℓ 6=1

ζ+(X1ℓ) + U+
II′

∑

ℓ∈I,ℓ 6=1

ζ−(X1ℓ)





+
∑

I

Θ(1 ∈ I ′)



U+
II′

∑

ℓ∈I

ζ−(X1ℓ)− U−
II′

∑

ℓ∈I

ζ+(X1ℓ)





+
∑

I



U−
II′

∑

ℓ∈I,ℓ 6=1

ζ+(X1ℓ)− U+
II′

∑

ℓ∈I,ℓ 6=1

ζ−(X1ℓ)



 = 0,

(4.24)

where U±
II′ and ζ±(x) are defined in (4.16) and (4.23) respectively.

Proof. This is the X1-derivative of the identity (4.11) from Lemma 4.1 with N ′ =
N \ I ′.
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Using this identity, it is easy to see that the r.h.s. of (4.22) is zero. Therefore, the
invariance of the subspace P of pairs with respect to the flows with Hamiltonians H−

n is
proved.

So far we considered the restriction of Jn with n < N/2 = N0. The case N/2 <
n ≤ N can be considered in a similar way with the result that the restriction of Jn with
N0 < n ≤ 2N0 is Jn−2N0. The proof of Theorem 4.1 can be extended to this case, too.

Finally, let us comment on whether the integrals of motion are in involution. As soon
as the Hamiltonian structure of the deformed RS system (if any) is not known, we are
not able to calculate the Poisson brackets between the integrals of motion and prove that
they are equal to zero. Our integrals of motion are functions of coordinates and velocities
rather than coordinates and momenta. However, in any integrable system all integrals of
motion that are in involution are conserved quantities for the flows generated by any one
of them. Each higher Hamiltonian H

−
n of the RS system defines a flow ∂T−

n
on the “phase

space” P of the deformed RS system. From the fact that RS integrals of motion are in
involution it follows that the restrictions Hn of the RS Hamiltonians to the space P are
conserved under all ∂T−

k
-flows. In this sense we can say that the integrals of motion Hn

and Jn of the deformed RS system are in involution.

5 Generating function of the integrals of motion

It is known that the integrals of motion of the RS system with 2N particles can be unified
into a generating function which is the determinant of the 2N×2N matrix zI − L(λ),
where I is the unity matrix, z is the spectral parameter and L(λ) is the Lax matrix
depending on another spectral parameter λ. The Lax matrix has the form

Lij(λ) = ∂t1xi φ(xij − η, λ), (5.1)

where the function φ(x, λ) is given by

φ(x, λ) =
σ(x+ λ)

σ(λ)σ(x)
. (5.2)

Proposition 5.1 ([9]) It holds

det
1≤i,j≤2N

(

zδij − Lij(λ)
)

= z2N +
2N
∑

k=1

z2N−k σ(λ− kη)

σ(λ)σ(kη)
Jk, (5.3)

where Jk are the RS integrals of motion (2.9) (see (2.10) with N → 2N).

Proof of this proposition is based on the formula for the determinant of the elliptic Cauchy
matrix:

det
1≤i,j≤n

φ(yi − xj) =
σ
(

λ+
n
∑

k=1
(yk − xk)

)

σ(λ)

∏

k<l
σ(yk − yl)σ(xl − xk)

∏

k,l
σ(yk − xl)

. (5.4)
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In this section we are going to construct the generating function for the integrals of
motion (1.7). The idea is to restrict the Lax matrix (5.1) to the subspace P. How-
ever, the direct restriction is not possible because some matrix elements become infinite.
Nevertheless, we shall see that the determinant (5.3) is finite.

To regularize the Lax matrix, we put

x2i − x2i−1 = η + ε (5.5)

and tend ε → 0 at the end. At ε = 0 we have ∂t1x2i = Ẋi and ∂t1x2i−1 = 0. To proceed,
we need to find ∂t1x2i−1 up to the first non-vanishing order in ε. A simple calculation
shows that

∂t1x2i−1 = εσ(2η)Ẋ−1
i U−

i +O(ε2), (5.6)

where U−
i is given by (3.13) (with N0 → N). The further calculation of matrix elements

of the Lax matrix is straightforward:

L2i−1,2j−1 := L
(oo)
ij = εσ(2η)Ẋ−1

i U−
i φ(Xij − η, λ) +O(ε2),

L2i−1,2j := L
(oe)
ij = εσ(2η)Ẋ−1

i U−
i φ(Xij − 2η, λ) +O(ε2),

L2i,2j−1 := L
(eo)
ij = Ẋiφ(Xij + ε, λ) + δijO(1) +O(ε),

L2i,2j := L
(ee)
ij = Ẋiφ(Xij − η, λ) +O(ε).

(5.7)

After re-numeration of rows and columns, the Lax matrix can be represented as a 2×2
block matrix:

L =









L
(oo)
ij L

(oe)
ij

L
(eo)
ij L

(ee)
ij









, i, j = 1, . . . , N. (5.8)

We see that L
(eo)
ii is singular as ε → 0 since φ(ε, λ) = ε−1 + O(1). Using the formula for

determinant of a block matrix, we have:

det(zI − L) = det
(

zI − L(oo)
)

det
(

zI − L(ee) − L(eo)(zI − L(oo))−1L(oe)
)

.

It is easy to see that the right hand side is finite as ε → 0. In order to find the limit as
ε → 0 we can put L

(oo)
ij = 0 and forget about the next-to-leading powers of ε in other

blocks. In this way we find:

lim
ε→0

(

L(eo)(zI − L(oo))−1L(oe)
)

ij
= σ(2η)z−1U−

i φ(Xij − 2η, λ).

Therefore, the generating function of integrals of motion is

R(z, λ) = det
1≤i,j≤N

(

zδij − Ẋiφ(Xij−η, λ)− σ(2η)z−1U−
i φ(Xij−2η, λ)

)

. (5.9)

Proposition 5.2 The generating function R(z, λ) is given by

R(z, λ) = zN + z−N σ(λ− 2Nη)

σ(λ)

+
N
∑

k=1

zN−k σ(λ− kη)

σ(λ)σ(kη)
Jk +

N−1
∑

k=1

zk−N σ(λ− 2Nη + kη)

σ(λ)σ(kη)
J−k,

(5.10)
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where the integrals of motion are

J±k =
[k/2]
∑

m=0

J±k,m

and J±k,m are given in (4.10).

Sketch of proof. The proof is a lengthy but straightforward calculation which uses the
formula for determinant of sum of two matrices and the formula for determinant of
the elliptic Cauchy matrix (5.4). Here are some details. First of all, the determinant
det(I + M) is equal to the sum of all diagonal minors of the matrix M of all sizes,
including the “empty minor” which is put equal to 1. After that we encounter the
determinants of the form det(AJ + BJ ), where AJ , BJ are diagonal minors of the
matrices Ẋiφ(Xij−η, λ), σ(2η)z−1U−

i φ(Xij−2η, λ) of size n ≤ N with rows and columns
indexed by indexes from a set J = {j1, . . . , jn} ⊆ {1, . . . , N} (j1 < j2 < . . . < jn ≤ N).
The formula for determinant of sum of two matrices states that

det(AJ +BJ ) =
∑

I⊆J

detA
(B)
J \I ,

where summation is carried out over all subsets I of the set J and A
(B)
J\I is the matrix AJ

in which rows numbered by indexes from the set I are substituted by the corresponding
rows of the matrix BJ . Each A

(B)
J\I is an elliptic Cauchy matrix (multiplied by a diagonal

matrix), so the determinant of it is known. To see this, we choose in (5.4) xj = Xj and

yj = Xj − η if j ∈ J \ I,

yj = Xj − 2η if j ∈ I.

The determinant in (5.9) is represented as a Laurent polynomial in z with coefficients
which are sums over sets I, I ′ ⊆ {1, . . . , N} such that I ∩ I ′ = ∅ as in (4.10).

The characteristic equation
R(z, λ) = 0 (5.11)

defines a Riemann surface Γ̃ which is a 2N -sheet covering of the λ-plane. This Riemann
surface is an integral of motion. Any point of it is P = (z, λ), where z, λ are connected
by equation (5.11). There are 2N points above each point λ. It is easy to see from the
right hand side of (5.10) that the Riemann surface Γ̃ is invariant under the simultaneous
transformations

λ 7→ λ+ 2ω, z 7→ e−2ζ(ω)ηz and λ 7→ λ+ 2ω′, z 7→ e−2ζ(ω′)ηz. (5.12)

The factor of Γ̃ over the transformations (5.12) is an algebraic curve Γ which covers the
elliptic curve with periods 2ω, 2ω′. It is the spectral curve of the deformed RS model.

Proposition 5.3 The spectral curve Γ admits a holomorphic involution ι with two fixed
points.
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Proof. In the previous section it was proved that J−k = Jk. Therefore, the equation
R(z, λ) = 0 is invariant under the involution

ι : (z, λ) 7→ (z−1, 2Nη − λ), (5.13)

as is easily seen from (5.10). The fixed points lie above the points λ∗ such that λ∗ =
2Nη − λ∗ modulo the lattice with periods 2ω, 2ω′, i.e. λ∗ = Nη − ωα, where ωα is either
0 or one of the three half-periods ω1 = ω, ω2 = ω′, ω3 = ω + ω′. Substituting this into
the equation of the spectral curve and taking into account that J−k = Jk, we conclude
that the fixed points are (±1, Nη) and there are no fixed points above λ∗ = Nη − ωα

with ωα 6= 0.

6 Conclusion and open problems

In this paper we have found the complete set of integrals of motion for the deformed RS
system with equations of motion (1.4). This provides enough evidence for integrability
of the system. Our method was based on the fact that the deformed RS system is
equivalent to the dynamical system for pairs of particles in the standard RS model (with
even number of particles) moving as whole things so that the distance between particles
in each pair is equal to η, the inverse “velocity of light” in the RS (= relativistic CM)
model. Such pairs are preserved by only a “half” of the higher Hamiltonian flows, so we
consider only H

−
k -flows and put the time variables associated with the H

+
k -flows to zero.

The configurations in the full phase space F when particles stick together in pairs form a
half-dimensional subspace P ⊂ F and we have proved that this subspace is Lagrangian
and invariant under all H−

k -flows. Then integrals of motion for the deformed RS system
can be obtained by restricting the known RS integrals of motion to the subspace P. This
job has been done in the present paper.

In the η → 0 limit (in which the RS system reduces to the CM system) the particles
in each pair turn out to merge in one and the same point. This singular limiting case
was discussed in [19].

It is an interesting question whether any clusters of RS particles other than pairs
are possible in this sense. For example, one may consider “strings” of M particles such
that the coordinates of the particles in the ith string are xMi+1−α = Xi + (M − α)η,
α = 1, . . . ,M , with Xi being the coordinate of the string moving as a whole thing. It
is natural to ask whether some Hamiltonian flows of the RS model preserve such string
structure.

We should stress that the connection between the standard RS system and the de-
formed RS system is not trivial and has different aspects. On one hand, the latter is an
extension of the former and includes it as a particular case because equations of motion
(1.4) differ from equations of motion (1.2) of the RS system by presence of some addi-
tional terms. However, on the other hand, the deformed RS system is contained in the
RS system since it can be regarded as its reduction in the sense that the equations of
motion (1.4) are obtained by restriction of the RS dynamics to the subspace P of pairs.

Finally, let us list some open problems which arise in connection with the deformed
RS system. First, it is important to answer the question whether the deformed RS
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system is Hamiltonian or not. A related problem is quantization of the deformed RS
system. Second, it would be highly desirable to find a commutation representation for
equations of motion (1.4) such as Lax representation or Manakov’s triple representation
[20]. It is the latter that is known to exist for equations (1.6) which can be obtained from
(1.4) in the η → 0 limit. That is why it is natural to conjecture that Manakov’s triple
representation exists for equations (1.4) for all η 6= 0. Third, it would be interesting to
find Bäcklund transformations of the deformed RS system which are closely connected
with the so-called self-dual form of equations of motion and integrable time discretization
of them. All this is known to exist for the CM and RS systems (see [21]-[27]). We hope
to discuss these problems elsewhere.

Appendix A: The Weierstrass functions

In this appendix we present the definition and main properties of the Weierstrass func-
tions: the σ-function, the ζ-function and the ℘-function which are widely used in the
main text.

Let ω, ω′ be complex numbers such that Im(ω′/ω) > 0. The Weierstrass σ-function
with quasi-periods 2ω, 2ω′ is defined by the following infinite product over the lattice
2ωm+ 2ω′m′, m,m′ ∈ Z:

σ(x) = σ(x|ω, ω′) = x
∏

s 6=0

(

1−
x

s

)

e
x
s
+ x2

2s2 , s = 2ωm+ 2ω′m′ m,m′ ∈ Z. (A1)

It is an odd entire quasiperiodic function in the complex plane. As x → 0,

σ(x) = x+O(x5), x → 0. (A2)

The monodromy properties of the σ-function under shifts by the quasi-periods are as
follows:

σ(x+ 2ω) = −e2ζ(ω)(x+ω)σ(x),

σ(x+ 2ω′) = −e2ζ(ω
′)(x+ω′)σ(x).

(A3)

Here ζ(x) is the Weierstrass ζ-function defined as

ζ(x) =
σ′(x)

σ(x)
. (A4)

The monodromy properties imply that the function

f(x) =
M
∏

α=1

σ(x− aα)

σ(x− bα)
,

M
∑

α=1

(aα − bα) = 0

is a double-periodic function with periods 2ω, 2ω′ (an elliptic function).

The Weierstrass ζ-function can be represented as a sum over the lattice as follows:

ζ(x) =
1

x
+
∑

s 6=0

( 1

x− s
+

1

s
+

x

s2

)

, s = 2ωm+ 2ω′m′ m,m′ ∈ Z. (A5)
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It is an odd function with first order poles at the points of the lattice. As x → 0,

ζ(x) =
1

x
+O(x3), x → 0. (A6)

If the argument is shifted by any quasi-period, the ζ-function is transformed as follows:

ζ(x+ 2ω) = ζ(x) + ζ(ω),

ζ(x+ 2ω′) = ζ(x) + ζ(ω′).
(A7)

These values ζ(ω), ζ(ω′) are related by the identity 2ω′ζ(ω)− 2ωζ(ω′) = πi. The trans-
formation properties (A7) imply that the function

g(x) =
M
∑

α=1

Aαζ(x− aα),
M
∑

α=1

Aα = 0

is an elliptic function.

The Weierstrass ℘-function is defined as ℘(x) = −ζ ′(x). It can be represented as a
sum over the lattice as follows:

℘(x) =
1

x2
+
∑

s 6=0

( 1

(x− s)2
−

1

s2

)

, s = 2ωm+ 2ω′m′ m,m′ ∈ Z. (A8)

It is an even double-periodic function with periods 2ω, 2ω′ and with second order poles
at the points of the lattice s = 2ωm + 2ω′m′ with integer m,m′. As x → 0, ℘(x) =
x−2 +O(x2).

Appendix B: Proof of Lemma 4.1

We set

F±
m =

∑

I⊂N′

|I|=m

∏

i∈I

∏

ℓ∈N ′\I

U±(Xiℓ) =
∑

I⊂N′

|I|=m

∏

i∈I

∏

ℓ∈N ′\I

σ(Xiℓ ± 2η) σ(Xiℓ ∓ η)

σ(Xiℓ ± η) σ(Xiℓ)
(B1)

and consider the function fm = F+
m −F−

m . It is a symmetric function of the variables Xj ,
j ∈ N ′. It is easy to see that it is an elliptic function of each Xj. The statement of the
lemma is that fm = 0 for all m. At m = 1 we have:

f1 =
∑

i∈N ′

∏

ℓ∈N′

ℓ 6=i

σ(Xiℓ + 2η) σ(Xiℓ − η)

σ(Xiℓ + η) σ(Xiℓ)
−
∑

i∈N ′

∏

ℓ∈N′

ℓ 6=i

σ(Xiℓ − 2η) σ(Xiℓ + η)

σ(Xiℓ − η) σ(Xiℓ)
= 0 (B2)

since it is proportional to the sum of residues of the elliptic function

f(X) =
∏

ℓ∈N ′

σ(X −Xℓ + 2η) σ(X −Xℓ − η)

σ(X −Xℓ + η) σ(X −Xℓ)
.

We are going to prove that fm = 0 for all m by induction. Suppose that fm = 0 for
some m; we will show that this is also true for m → m + 1. Due to the symmetry, it
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is enough to consider fm as a function of X1 (without loss of generality we assume that
N ′ ∋ 1). Possible poles of this function are first order poles at X1 = Xj and X1 = Xj±η.
Let us prove that residues at these poles actually vanish. For the poles at X1 = Xj this
is especially simple because it is not difficult to see that res

X1=Xj

F±
m = 0 even without the

inductive assumption. Consider the pole at X1 = X2+η (again, without loss of generality
we can assume that N ′ ∋ 2). Let us introduce the short-hand notation N ′

1 = N ′ \ {1},
N ′

2 = N ′ \ {2}, N ′
12 = N ′ \ {1, 2}. Then we have:

res
X1=X2+η

fm = σ(2η)
∑

I⊆N ′
12

∏

ℓ∈N ′
12\I

U−(X1ℓ)
∏

i∈I

∏

ℓ∈N ′
1\I

U−(Xiℓ)

− σ(2η)
∑

I⊆N ′
12

∏

ℓ∈N ′
12\I

U+(X2ℓ)
∏

i∈I

∏

ℓ∈N ′
2\I

U+(Xiℓ),

(B3)

where |I| = m − 1. Since X1 = X2 + η, we have U+(X2ℓ) = U−(X1ℓ). After simple
transformations of the products, we can represent (B3) in the form

res
X1=X2+η

fm = σ(2η)
∏

ℓ∈N ′
12

U−(X1ℓ)





∑

I⊆N ′
12

∏

i∈I

∏

ℓ∈N ′
12\I

U−(Xiℓ)−
∑

I⊆N ′
12

∏

i∈I

∏

ℓ∈N ′
12\I

U+(Xiℓ)





(B4)
The expression in the square brackets is nothing else than fm−1 which is zero by the
induction assumption. Therefore, res

X1=X2+η
fm = 0 for all m. The pole at X1 = X2 − η

and the poles at X1 = Xj ± η are considered in the similar way. We have shown that
the elliptic function fm as a function of X1 is regular. Therefore, it does not depend on
X1. By virtue of the symmetry, this function is a constant which does not depend on
all Xj’s. To find the constant, one may put Xj = εj and tend ε → 0. It is easy to see
that fm after this substitution is an odd function of ε, so the constant term ∝ ε0 in the
expansion as ε → 0 vanishes. This means that the constant is equal to zero.
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