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ON THE LARGE-ORDER ASYMTPTICS OF KUZNETSOV-MA BREATHERS

LIMING LING AND XIAOEN ZHANG

ABSTRACT. We study the large-order asymptotics for the Kuznetsov-Ma breather of the nonlinear Schrodinger
equation in the far-field regime. With the aid of Darboux transformation, we first derive the corresponding
Riemann-Hilbert representation for the high-order Kuznetsov-Ma breathers. Under the far-field limit, there are
five asymptotical regions in the space-time plane where the breathers behave differently, the genus-two region,
the algebraic-decay region, and three distinct genus-zero regions. With the aid of the Deift-Zhou nonlinear steep-
est decent method, we give the leading order term for each region and verify the consistency between the exact
solution and the asymptotic solution numerically. Compared to the previous studies about the large-order asymp-
totic analysis of rogue waves and solitons, we find a novel genus-two asymptotic region, which further enriches
the research of large-order dynamics.
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1 Introduction

The well-known one-dimensional focusing nonlinear Schrédinger (NLS) equation

o
1) iq: + 52 + 9] =0,

is a completely integrable equation and can be studied via the inverse scattering transform [23) 21]. For
an appropriate initial datum, we can calculate the scattering data explicitly. As to the standard N-soliton
solutions, the scattering data consist of N distinct first-order poles, and the real and imaginary parts of
the poles represent the velocity and amplitude of soliton respectively. If these N distinct poles degenerate
into N-th order pole, we will get the N-th order solitons, each of which shares the same amplitude and
velocity and is separated from each other with logarithmic type. These N-th order soliton solutions have
evident different behaviors from the N-soliton solutions. Besides the soliton solutions, under the non-zero
background, the NLS equation (1)) also has rich family solutions, such as the rational rogue wave [22}14], the
Kuznetsov-Ma breather (KMB)[17, 20], the Akhmediev breather (AB)[1] and the Tajiri-Watanabe breather
[24]. In general, breathers develop due to the instability of small amplitude chaotic perturbation, and they
are also related to the modulational instability and the interference effects between a bright soliton and a
plane-wave background [12] 27]. Analogously, under the non-zero background, we can also get the high-
order rogue waves, KMBs, ABs, Tajiri-Watanabe breathers [15] 26], and their mixtures. One direct physical
explanation about the high-order breathers is that they are related to the high-order modulational instability
of the plane waves. In the recent works [6), 5, 4, 8], the authors analyzed the large-order asymptotics of
solitons and rogue waves in the near-field and far-field regimes, thus it is natural to consider what the
large-order asymptotics of breathers will be.

In this paper, we would like to study the large-order asymptotics of KMBs under the far-field limit, and
the analysis of the ABs will be performed in the near future. In a recent literature [7]], Bilman and Miller
put forward the robust inverse scattering method and then give the Riemann-Hilbert problem (RHP) for
the high-order rogue waves. Through two different scale transformations, they studied both the near-
field [6] and far-field asymptotics [8] for the rogue waves via the Deift-Zhou nonlinear steepest-descent
method [11} 10]. Meanwhile, Bilman, Buckingham and Wang also analyzed the near-field and far-field
asymptotics for the high-order solitons [5] 4]. The results in these articles indicate a fact, in the near-field
limit, the asymptotics of high-order rogue waves degenerate into the infinite-order solitons [6]. But their far-
field large-order asymptotic behaviors are quite different due to various formulas of their corresponding
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Riemann-Hilbert representations in the far-field regime, which can be verified from the Ref. [§]. In this
paper, Bilman and Miller formulated a RHP for both the solitons and rogue waves, and the exponent phase
term is written as —iM®9(A; x, T), where the order M can vary continuously. For the soliton solutions,
M = Yk, k € Z¢ and for the rogue waves, M = %k + %,k € Z>g. Recently, we analyzed the large-order
asymptotics of high-order two-solitons with identical real parts [19], which can also be called the high-
order breathers on the vanishing background. And we found a new genus-three region compared with the
high-order solitons with a single spectrum. Although the rogue wave can be regarded as a limitation of the
KMB, their dynamics are completely different. Their high-order counterparts also have distinct dynamics.
So it is meaningful to analyze the large-order dynamics of KMBs. In contrast to the large-order asymptotics
of high-order rogue waves [8], we will confront some challenges for the KMB. A major difficulty comes
from the special form of the phase term. On the one hand, compared to the large-order rogue waves, there
are two kinds of singularities in the KMB phase term, one is the spectrum A = |a|i (& > 1), the other one is
A = £i. On the other hand, compared to the large-order breathers on the vanishing background [19], there

A—=i
A+

there appears a new branch cut [—i,i]. During the deformation of the RHP, an additional jump condition
from this new cut leads to difficulties in the analysis.

Another motivation for this work is coming from the study of breather gas and integrable turbulence
[2,13]. In general, turbulence can be expressed by the nonlinear modes of integrable systems. And the
state of the turbulence is determined by the majority of excitations about the solitons or the breathers. Since
the breather is related to modulation instability, it is important in the formation of the chaotic wave field.
Especially, when studying the chaotic wave field, we always assume that there are an infinite number of
breathers. In the literature [13], the authors gave a description of the soliton gas and breather gas with
the finite-gap theory. For large-order solitons, we have obtained the high-genus region, thus we think for
the large-order breathers, we can also get the high-genus region, the leading term in this region will be
expressed with the Riemann-Theta function, which may help us understand the breather gas to a certain
extent.

Before analysis, we first present some preliminaries about the NLS equation.

appears a new factor i—; log ( ) in the phase term, where 7 is the order number of KMB. Consequently,

1.1 The Riemann-Hilbert representation of large-order Kuznetsov-Ma breathers
The Lax pair for the NLS equation () is

&, =U\x,t)®, U=—ilcz+0Q,

2
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where A is the spectral parameter and Q is given by

_ |0 4
e- [—q* 0} '
Let X be a vertical segment connecting —i to i with upward orientation. With the seed solution g = e', we
can get the fundamental solution matrix

it 1 iA—ip(A)| _ig(a; it —i0(As

) q)bg(/\/' X, t) _ ez‘73n()\) L)\ B ip()L) 1P( )] e 0(Axt)os . eZUSE(A)e 16(/\,x,t)(73’
where p(A) and 1(A) are two analytic functions for A ¢ X satisfying the conditions p?(A) = 1+ A2, n%(A) =
A+p(A)

2p(A) . _ } _
Lax pair (2) with g = e'!, we normalize the above solution to @Lré(/\; x, 1) = e2BE(A)e WAxHBE-1()),
One of the simplest methods to derive the high-order KMB solutions is using the high-order Darboux
transformation[25] [18], which is shown in the following theorem.

respectively, and 6(A; x,t) = p(A) (x + At). Thus, to obtain a holomorphic matrix solution in C for

Theorem 1. Suppose there exists a smooth solution g € L®(IR?) U C*(IR?), the Lax solution ®(A; x,t) is a holo-
morphic function in the whole complex plane C, then the Darboux transformation for the linear system (2) can be
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given by
4) T,(A;xt) =1+Y,M DY, M=Xx'sx,

where Y, = [gbgo], gl]f . ,4)%"_1]} and
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g_ <<i+j—2> (-1 I )
P=1 (A=At 1<ij<n /

Lo [k k
with ¢;) = i (d%) P1[r=p, and
_ ity [sin(o(A)(x +At)) [—ider + c2 c1
P =e2 { ey iAcy — 1 + cos(p(A)(x + At)) ol (7
c1, ¢ are arbitrary complex constants, A1 € iR and |A1| > 1. The corresponding Bicklund transformation between
q and ") is represented in terms of determinant form:

el det(M +2ie Y, 1 Y} )
det(M)

Remark 1. By choosing different parameters A1, we can get different kinds of breathers. If Ay = ai with0 < a < 1,
we can get the so-called AB [1l], which is localized in the t direction and periodic in the x direction. If Ay = ai with
« > 1, then we can get the so-called KMB [17,20], which is localized in the x direction and periodic in the t direction.
If Ay = i, then this special peregrine breather [22] is also called the rogue wave solution. If Ay + A} # 0, then we can
obtain the Tajiri-Wantanbe breather [24].

() g = et 421y, ;MY =

Especially, for n = 1, the complex constants c1, ¢; can be absorbed by the phase term 6(A; x, t), then the
(0]

fundamental solution ¢; " can be written as another equivalent formula,
i i A At -
(6) 4)%01 = el {(i)&l - 1)sm(p( 1);?;_) 1t+c)) [ 11} + cos(p(A1)(x + A1t +¢)) [ﬂ },
1

where the parameters c and ¢y, c; satisfy the following relations,

_ (iAp = 1) sin(p(Aq)c) _ (iA = 1) sin(p(Aq)c)
(7) 0= -2 o) U2l fcos(p(M)e), o =~ o) !

Under the choice of the above parameters, the first-order KMB reads

+ cos(p(A1)c).

®) 1] _ it (€08 [sinh(2¢)(t — tg) — 2i¢p] — cosh(¢) cosh [2sinh(¢) (x — xp)]
1 cosh(¢) cosh [2sinh(¢)(x — x0)] — cos [sinh(2)(t — )] ) *
where ¢ = arccosh(—iA1),xg = —R(c),tp = —Ci}(f()q)). It is clear that the KMB gl!l is localized in the x

direction and periodic in the t direction. Choosing proper parameters c; and cp, we exhibit the second up
to the fourth order breathers by the computer graphics (Fig. [I). For |c1| # |cy|, these solutions present
asymmetric features. As the increasing of order, the expressions for the high-order breathers are enormous,
so it is hard to analyze the dynamic behavior for these solutions directly. An alternative way to deal with
large-order solutions is utilizing the Riemann-Hilbert representation.

Remark 2. For the fundamental solution Eq.(3), the phase term is written as 0(A; x,t) = p(A) (x + At) . Actually,

we can multiply a diagonal matrix independent of the variables x, t from the righthand side of E(A). In other words,

we can add a polynomial of A into the phase term. In that case, the breather shape will change correspondingly. But

in the following study, we still choose the phase term 0(A; x, t) such that the Darboux matrix T, (A; x,t) has a good
3



FIGURE 1. The asymmetric soliton solutions by choosing A1 = 2i,c; =1,cp = 5.

decomposition at the point (x,t) = (0,0). If ¢y and cy are independent of spectral parameters Ay, it follows that, by a
direct calculation, this decomposition of Darboux matrix is given as follows,

1
A=A —n/2 ' B A=A\ 2" . 1 [q —c5 _\/ﬁ
) (/\_/\T> Tn()L,0,0) =Qc )‘_)‘T c s Qc= m e CT ’ |C‘ = |C1| + |C2| .

With the aid of the above decomposition of Darboux transformation, the solution g (x,t) at the point
(x,t) = (0,0) is given easily,

43(Aq)neicy

[n] _
(10) q™(0,0) =1+ 2

If ¢q = ¢y, the origin point is also the location of the maximal value of norm \q["} (x,t)|, which can be proved
by the mean value inequality.
. l(7'

From the definition of E(A) in Eq.(3), we know that it can be decomposed into E(A) = Q, (ﬁ—;) e (o
where Q; = % E _11} . We would like to establish a RHP to study the large-order asymptotics of KMBs
in the far-field regime. Fortunately, we can get two types of RHPs under some constraints to the parameters
c1,Cp, one is ¢ = ¢ and the other is ¢y = —cp. Thatis, Q. = Q,; and Q, = Q;l. For the general ¢; and ¢y,
we just exhibit some exact solutions figures in Fig[I] The corresponding large-order asymptotics has some
additional difficulties to be overcome. We have not yet thought of a suitable RHP to deal with the general
case, where the difficulty is that the matrix Q. in the Darboux matrix T, (A;0,0) and Q, appearing in E(A)
have not evident relations. Thus the RHP given in the current paper will not be available anymore. Next,
we merely construct the RHP for the above-mentioned two special cases.

Based on the idea of normalization, by using the fundamental solution (3) and the Darboux matrix (4),
we define two sectional analytic matrices

(11) '
rABT, (A;x, et BE(A)e PAIBE T (A)T, (4;0,0)"1Qel("*4)%;~ 2%, Ainside Dy,
A=A\, ) it o 1[0, t)—0 (A )]0
Mg = | (oa) AT neted o

)\ _ )\ 771/2(73 )\ s 71/41‘(73
X (/\ /\i> (A i, 1) r~2%, )\ exterior to Dy,
-M

where (A;x,t) := A(x +At),r = £1. And r = 1 represents the case c; = cp; 7 = —1 corresponds to the

other case c; = —cp. Dy is a big closed contour involving the spectra +A1, £i. Then the newly defined
matrix M (A; x, t) satisfies the following RHP.

Riemann-Hilbert Problem 1. (KMB of order n-reformulation) Let (x,t) € R? be arbitrary parameters, and n €

Z.~. Then we can find a 2 x 2 matrix function MU' (A; x, t) with the following properties:
4



e Analyticity: MU"\(A; x,t) is analytic for A € C \ dDy. It takes the continuous boundary values from the
interior and exterior of dDy.
o Jump condition: The boundary values on the jump contour dDy are related by

5 s l}’(7'3
LIvy — [y, —if(Axt) o3 A=A 2B A —i\4
12) MY (A;x,t) = MY (A;x, t)e (A 5 —

A—1 3103 A—A
-1 1 (A3 )
xQ, <A+i> (/\ /\T) ;A €aDo.

o Normalization: M["] (AMx,t) =1+ (9()\*1), as A — co.

The potential g™} (x, t) can be recovered with
(13) g (x,t) = 2ir lim AMI(A; x, £)10
—00

The existence and uniqueness of above RHP can be proved by the Zhou’s vanishing lemma [28]. With
this RHP [1} we prepare to study the large-order asymptotics of KMBs in the far-field regime. Before dis-
cussing it, we first introduce a scale transformation of x and t such that they have the same order with the

+20
A=A 273
factor (rﬁ) ,
(14) x=mny, t=nrt,

then the jump matrix in RHP[I|changes into

(15) M[f:] (A, nx,nt) = M[_n] (A n)(,nr)efi”ﬂ()”x”)‘”Q;leinﬁ()‘;’C'T)‘73, A € 9Dy,
where

1. A— /\1 ir A—i
1 A; = Ax + A%t + Zil 71 .

Compared to the large-order solitons with single spectrum, there adds a factor i log (/\ 1) in the large-

order KMBs. When 1 — oo, this factor will vanish, but for the large-order asymptotics, these two solutions
have distinct behaviors. Next, we give several decompositions to this constant matrix Q;lz

1 [ 1 0] 1 S

S L [ T

. ﬁ 0 1 l 1 O 1" r”

) Q;' = [0 \[] [O %H . J R (“DUL"),
1

Q;' =0f [ 12] [01 (ﬂ Ll) ] — o?oPlol,  (“puTL),

- 1 0]fo 1][1 0
Q' -/ [; 1} {—1 0} {1 1} =0/'Q oy, (“DLTL"),

which will be useful in the following analysis.

In this paper, we are focusing on the study of the large-order asymptotics of KMBs, without loss of
generality, we choose two types of parameters A; = %i,cl = —¢cp=1,and Ay = 2i,c1 = ¢ = 1, and
give the density plots in Fig. [2| From these two figures, we can see that there are five different asymptotic
regions, which are called the genus-two region (g> in Fig. [2), the genus-zero-up region (gfj in Fig. [2), the
genus-zero-down region (gS in Fig. , the genus-zero-infinity region (g5’ in Fig. and the algebraic-
decay region (A in Fig. [2). In the reference [4], the authors gave a detailed description for calculating the
boundaries between different regions. Similarly, we will give a brief description of the boundaries for the

5



The 20-th order KM breather

FIGURE 2. The boundary between different regions(left), the 20-th order KMBs by choos-
ing Ay = %i, c1= — cp=1(middle), A1 = 2i, c;=cp=1(right).

high-order KMBs. With the definition of 9(A; x, T) in Eq.(16), for convenience, we set the spectral parameter
A1 = ai(a > 1). The critical points of #(A; x, T) satisfy the following algebraic equation:

(18) 2n (x +27A) (Az + 1) (/\2 + az) — A2(r 4 2an) — a(ar +2n) = 0.

If the discriminant of Eq.(I8) about A is greater than 0, the quintic polynomial Eq.(I8) has at least three
real critical points, which corresponds to the algebraic-decay region. Next, we give the boundary between
g2 and g& regions, which is given by the condition & (¢(A%)) = 0, where A* are two critical points of
®(A; x, 7). The rest of curves (Fig. IZI) are the boundaries between gi and gd as well as g, and the boundary
between ¢ and g7, these two boundaries all depend on an algebraic curve of genus-zero. For these three

genus-zero regions, we need introduce a g-function [9] defined as
(19)

/ L R(/\) 1r 1r i i , .
W= (2n (A—DRE) 2n(A+DR(—1) ~ (A—K)R(K) (A+kK)R(—K) 4T> — ),

where

gM) =ghx, 1), R(A)=RAx,7) = \/(/\ —a(x, 1) (A = ai(x, 7).
At this time, the controlling phase term becomes h(A) = h(A; x, T) := g(A) +8(A; x, T) rather than ¢(A; x, T).
From g¢’(A), we know that 1’ (A) equals to

, R(M) ir ir i i

@) K== (211 =D RA) 21 H)R(—1) T A—F)R(K)  (A+R)R(—k) +4T) '

On the one hand, in the genus-zero-down region, h’'(A) should have at least two real roots such that the
singularities A = +ai, A = i are all in a closed curve given by the J(h(A)). As T increases, these two real
roots coincide into one double root, then the variable (x, T) will transfer into the genus-zero-up region. On
the other hand, in the genus-zero-infinity region, /’(A) has the real root and in the genus-zero-up region,
h'(A) only has complex roots, thus the boundary between genus-zero-infinity region and the genus-zero-
up region satisfies the same condition. Moreover, similar to the boundary between g, and gg’ regions, the
boundary between g and g» regions satisfies the condition (h(;\i)), where A* are the critical points of
h(A). Then the boundaries given in Fig. Elhave been given completely. In the following, we would like to
derive the asymptotic expressions of high-order KMBs for the above mentioned five different regions.

2 The large-order asymptotics in the genus-two region

Firstly, we prepare to study the asymptotics in the genus-two region. Before studying it, we introduce a
22(A)-function satisfying the following RHP.

Riemann-Hilbert Problem 2. Let (x,7) € R?, we can find a g(A) = g2(A; x, T)-function with following
conditions.
6



Analyticity: g»(A) is analytic in C \ Xy, UTg U Ty, where these arcs are to be determined, and it takes the
continuous boundary conditions from the left and right sides of each arc.
Jump Condition: The jump conditions on these arcs are related by

82,4+ (A) + 82, (A) +20(A x, T) =2, AeZy,
(21) 82+(7\)+g2 M)+ x, 1) +0-(Lx, 1) =1, A€ Xy,
82,+(A) —&2,-(A) = @, AETS,.
e Normalization: As A — oo, gp(A) satisfies
(22) g2(A) = O(A1).
e Symmetry: ¢»(A) satisfies the Schwartz symmetric condition,
(23) 82(A) = &(A7)".

From the definition of phase term ¢(A; x, T) in Eq.(16), we differentiate g»(A) with respect to A to remove

the logarithm terms and the integral constants xjy, I, @, simultaneously, then we have
24) g () +gh (A)= 2 —dAr— P ir
@) & M te (W)= —2x 4= T T =) T A1)

To solve this scalar RHP, we introduce a square root function Ry(A) = Ry (A; x, T) with the definition

A€y UL,

(25) Ra(A) = /(A —a2) (A — a5)(A — ba)(A — b3) (A — d2) (A — d5)
= /A6 — 51 A5 + 5904 — 5343 + 5442 — 55 + 56,

the parameters ay, by, dy and s;(i = 1, - - - ,6) have the following relationship,
51 =2 (agr + bor + d2r) , 52 = |a2|* + |b2|* + |d2|* + 4 (azrbar + G2rdar + bordar),
s3 = 2|az|* (bor + dar) + 2|ba|* (a2r + dar) + 2|da|* (a2r + bar) + 8azrbordar,
sq = |ag|? (|032|2 +4b2Rd2R) + |bo? (|ﬂz|2 +4ﬂ2Rd2R> + |da? (\bz|2 +4ﬂ2Rb2R) ,
55 = 2ayr |by|*[da|* + 2bag|az|*|da|* + 2dar a2 [P|ba]?, 56 = |a2]?[b2|*|da ?,
where ayg, bog, dar are the real parts of a3, by, dy respectively. Divide g5 (A) by the Ry(A) function, we have
- (gé()x)) B (gé(/\) ) I\ ki =t e T mao T moe .

Ro(A) )4 \Ra(A) Ro4(A)

With the Plemelj formula and the generalized residue theorem, g (A) can be expressed into an explicit
formula:

—X — 25T — s+ e — s T
g5 (A) = Ra(M) <Res+ Res+Res +Res> ( 2e-h) 26-A) o ( ) i (5+))

(26)

s=A1  s=A Rz(s) (S — /\)
—X = 25T — gty + z(s—im ~ o =1l I (s+1)
8) +Ra(Y) (R”)( Ry(s) (5— 1)
i i ir ir
=Ry(A) |— + — ~ + - ;
2(Y) { 2R2(A1)(A1 0 PR ) IRe()G—A) | AnRy(— D) (i /\)}
oy —2AT— 1 i 1 ir 1 ir 1

e M 2N T mAi At

By adding the g»(A)-function into the phase term ¢(A; x, T), the phase term can be modified as hy(A) =
ha(As x,T) := g2(A) + 8(A; x, T), thus we have

@) H2(4) = Ra(A) {_ R =) | 2R —A)  EnRa()(i—A) | anRa(—i)(—i— /\)}



For fixed (), T) in this region, there are six parameters s;(i = 1, - - ,6) to be determined. From the normal-
ization condition of g>(A) at A = oo, we get four relations about these unknown parameters,

1 1 r r

o) ‘Ra(A1) Ry(A}) + 2nR,(1) 2nRp(—i) 0,
n .
40 o) :RZ:E\):H) B Iii(zlA(fx)i) - 2n1i<:2(i) - ZnRi{(—i) —4r=0,
o) :Rz(}\l) - Rz(lA;) TR ) | 2nRy(—) X T AT =0
i3 (%3
on) :Rzl(A)lu) - 112(2%\);) 2nRrg(i) * ZnRzr(—i) +% (452 = 3sf) —six =0

From the first relation in Eq.(30), we have
1 1 r r
Ra(A1) ~ Ra(A])  2nRy(i) ~ 2nRo(—i)’
Substituting the above relation into the second equation of Eq. (30), we get
(32) 1 _ 2t iMq+1 Jri/\l—l r '
Rp(A7)  =S(A1)  4S(A)nRp(i)  45(Aq)n Ro(—i)

Similarly, substitute Eq.(31) and Eq.(32) into the third equation and the fourth equation in Eq.(30), we have

@1

1 (8|A1]> — 8R(A1)s1 + 357 — 4sp — 16R(Aq)i+ 4is1) T+ (251 — 8R(A1) +4i) x

- R " 2(i— A)(i—A) '
1 (452 —3s7+4s1A] —8) T+ (4A] —2s1) x
Ro(M) 4(1+ A3 () '

Separating the real and the imaginary parts of these two equations in Eq.(33), then we get four relations
about the unknown parameters s;(i = 1,2, - - - ,6). Moreover, substitute Eq.(33) into the Eq.(29), we get
(34)

Lo 8TA2+ (4x+4s1T—16R (A1) T) A+8|A1[2T—8R(A1)s1T+355T—4s2T+8T—8R (A1) x+251x
hy(A)=Ra(A) :

AA—A) A=A (A2 +1)

Obviously, 5 (A) has eight roots, six of which are the branch points and the remaining two are a pair of
conjugate complex roots. By integrating g5(A) function, we get the g>(A) function, which is shown in
theorem 21

Theorem 2. With the explicit formula of gh(A) in Eq.(28), the g»(A)-function defined by

0 = [ ghs)ds

satisfies all the jump conditions in RHP |2} and the integrated constants can also be determined.

Proof. From the explicit formula g (A) in Eq.(28), we know that g5 (A) has the same branch cuts with Rp(A),
and the singularities A = Aq, A}, i can be removed, thus it only has the jump discontinuity on the branch
cuts and satisfies the jump conditions in RHP 2| Choose one suitable integral path, these integrated con-
stants can be expressed as

a b d
(35 K= 2/ 2gé(s)ds +20(ag; x, T), @2 = 2/ ’ Hy(s)ds, I =1+ r% + 2/ ’ H(s)ds.
0 a by
]

To determine the unknown parameters s;(i = 1,2---,6), we impose these two integrals | :22 h(s)ds

and [, hd; h}(s)ds as real numbers. Combining the four normalization conditions in Eq.(30), we numerically

obtain these six unknown branch points. In Fig[2) we give two figures by choosing different spectra Ay and

parameters cq,c2. Both of them have five asymptotic regions. To verify it, we will check the asymptotic
8



solutions and the exact solutions by choosing the given Ay, ¢, ¢, in Figl] and setting (x, 7) in the fixed

regions(shown by the green dashed line in Fig[2). In this genus-two region, we choose A1 = 2i,¢; = ¢ = 1,

which corresponds r = 1, under this parameters setting, we give the sign chart of J(h2(A)) and the jump
1

contours for the following defined S1(A; x, T) and Ty (A; x, 7) in Fig. by puttingt =1, x = 1.

Im&)\)

2 -15 -1 -05 0 05 1 15 2 4-2 -1.5

FIGURE 3. The sign chart of 3(hy(A; §, £)) in the genus-two region, where S(hz(A; 1, 1)) >

O(unshaded) and S(h2(A; 1, 2)) < O(shaded). It should be noted that for this region, 15 (A)
has no real roots, it is no longer possible to choose the branch cut ¥, as the curve of
S(h2(A)). We set X, as arbitrary segments connecting the branch points of Ry(A). The
left one gives the jump contour for S;(A; x, T) and the right panel is the corresponding

jump contour for Ty (A; x, T).

Next, we begin to deform this RHP[I} Set

M[n] (/\,. X, T)efinﬁ()\;)(,l')ag,Qdfleinﬁ(?\;xﬂ')ag, A€ DN (D;r U D;)C ,

(36) S1(Ax, T) =
( ) M (A xT), otherwise,

where Dfﬁ = Rfcz U Qli U RI—LF U R* U OQF, then the jump of S1(A; x, T) transfers to an and X¢. Since
O (A x, 1) =0 (A x, T) = —r9; for A € Lg, the jumps of S;(A; x, T) become

0 ir

ir 0

S1,+(Mx,T) = 51,7()\;X,T)efi”ﬁ(A;X’T)Q;leiw()‘”m), A € 9DF.
9

S; N ()\,’ X, T) =S, _ (A,‘ X, ,L.)efim?_ (Ax,T)os [ ] eimh()\;x,f)@, Ae Zg/

(37)



With the theory of nonlinear steepest-descent method, we continue to define the sectional analytic matrices

with the sign of (hy(A)). Define

TiA 0 1) : = S1(Ax, T)e—inﬂ(/\;x,r)ag (Qg])—l S8 (A, T)03 ging2 (A)o3 = Lfr ULt
T4 T) i =S1(A x0T )Q[Lz]e—inﬂ(/\;x,’r)agQ[CZ]einﬂ(A;)(,T)@eingz(/\)agl = Rfr UR™,
Ty (A1, T) : = S1(A; x, 1) QP ets2 (Mo reQfuq,
Ti(A 0 T) : = S1(Asx, T)Q[Lz]efinﬁ(/\;)(,r)asQ[L3]einﬁ()\;x,r)@eingz()\)ag,, = RlZ’
Ti(Ax,T) : = S1(A;x, T)e—inﬁ(/\;)(,r)(73 (Qg])*l el8 (A, T)03 6ing2 (M) o3 = LTZ/
(38) Ti(Ax, T) = S1(A; x, T)e MNaTI% <Q£{1]>*1einl?(/\;)(,r)(73eing2(/\)a3 AeLi UL,
T4 1) : = S1(Aix, T)Q l]efinb“(/\;)(,r)ag,Qg]einlﬁ‘()\;}(,r)ag,eingz(/\)as, AERUR,
Ty (A1, T) : = S1(A;x, 7) QL el (Mes, AeQruar,
Ti(Ax0T) =S1(A x0T )Q 1] o—ind(A;x,7) asQ[4 P (AxT)0s ginga (V) AE Ry,
Ti(A; 1 7) : = S1(A; x, T)e oA TIos (le]) QM(Ax,T)a3 inga (A)o3 AeLpy,
Ti1(Ax,T):=8S1(Ax, T)e ing2(A)os otherwise.
Then the jump conditions of Ty (A; x, T) change into
T+ (Lx 1) =T1 (M), T)e*i”hzwgi"Q%]ei”hZ(/\)%, S Czrlr uc,
T+ (Lx 1) =T1-(Ax, T)efi”hZ(/\)%Qg]einhzu)"f‘, Ae C;{l UCg,
T (Ax 1) =Ti (A x, T)efinhz(/\)agQ[E]einhz(/\)ag,l Ac CRlZ
Ty (A X 7) = Ty (A x, T)e Nmgleinh e, rect
Ty (Ax,T) = Ty (A x, T)e MeMngpleWe, y e uc,
Ty (4x,T) = Ty (A y, r)e MeMnglleWe, yecp ucy,
(39) Ty, (A7) = T1,7(A;X,T)efinhz(/\)UgQ[L4]einh2(/\)¢73/ A€ Cr,, UGk,
T (Ax 1) =To (A x, T)efinhz(/\)agggg]einhz(/\)crg,, recp,
Tt =T | e T | rexy,
Ti+(Ax,7) =T1,— (A x, T) 7eingfir% e_inl(2)+irg] , A E X,
T (Ax 1) =T, (A xT) elzwz 68@2} , Ae 1";,'[2.

From the sign chart of S(/12(A)) in Fig. [Bland the definition in Eq.(I7), when # is large, the jump matrices
will converge to the identity matrix exponentially except for the contours Z S UXe U F

construct the parametrix to give the asymptotic analysis in the genus-two reg1on

2.1 Parametrix construction for T1(A; x, 7)

From the jump conditions in Eq.(39), we construct the outer parametrix T{Ut(A; x, T) satisfying the fol-

lowing RHP.

10

. Next, we will



Riemann-Hilbert Problem 3. (RHP for the outer parametrix T (A; x, 7)) Find a 2 x 2 matrix TS (A; x, 7)
satisfying the following conditions.

e Analyticity: TSUH(A; x, T) is analyticin A € C \ (Zi UZg UTE, )
e Jump condition: The boundary values on the contours (Z UxeU Fi) are related by TO‘“()L X T) =
T‘l’}‘_t (A )VT?ut (A; x, T), where VT?ut (A x,T)is

r 0 e—imcz
_einxz 0 :| ’ A€ Zg:gtz/
0 e—inlﬁ-ir%
(40) VT?ut (/\, X, T) = _eiVllz—iV% 0 ‘| , /\ S Zg,
_eil’l(ﬂz 0
0 ein@2:| , AeTy,.

e Normalization: T{"!(A; x,7) — Las A — co.

To solve this RHP, we introduce a scalar function F(A; x, T) with the following conditions,

FL(Ax 1)+ F-(A x, T) = inky, A€ Z;Z,
(41) EL(Ax 1) + F-(A;x,T) = inly — irg, Aex,,
Fr(Ax 1) —F_(Ax,T) = iny, A ETy,.

With the Plemelj formula, F(A; x, T) can be expressed into an integral form,

R, ()\) inxy inly — inw@,
(42) Fxxt)=——-+ — A+ | = —a—4ac|.
WD) = [ o Bk T S s @GN
When A — oo, we easily get the following expansion formula,
(43) F(Ax,1) = BA*+ FA+FR+ 0\,

where

1 inky inly —ir7 inw,
27 (/z ROk, TRG) @ty RZ(C)d§>'

I —
R (/Z gt [ e s e . 1”“’%@) 3B

Rz ()
1 inksy inly—irZ inw, 352
Fo=—5_ </z;2 R2(§)§2d§+ oD 252 é§+/ g%zg) —Fl+<2 —81> B

Based on the definition of this scalar function F(A; x, T), we redefine a new matrix O1(A; x, 7),

(45) O1(A; x, 7) = diag (eFO,efpﬂ) TU(A; x, T)diag (e*F()‘;X’T),eF(A;X'T)) .
It is clear that O1(A; x, T) satisfies a simple constant jump condition at A € Z S Uy,
(46) 01,1 (A4 x,7) = 01, (A x,T)(i0n), A€y UL,

When A — o0, O1(A; x, T) has the following normalization condition,

(47) 01 (A; x, T)diag (eFl/HFzAZ,e*PV\*FZ’\Z) —1 as A — oo

Before solving this RHP, we give the definition of the Riemann-Theta function.
11



Definition 1. The ®(u) function is defined as [3]

(48) Ou) = O(w;B) := Y er(mBmyt(mu)
meZs

where B is a period matrix, and ©(u) function has the following periodic properties,
(49) O(u+27iej)) = O(u),  O(u+Bej) = e 2% "0O(u),

where ejs are the unit basis vectors in C8 with the coordinates (e;); = dj, and Be;s indicate the j—th column of the
period matrix B.

The square root function R(A) in Eq.(25) is related to a genus-two Riemann surface, and we give a
homology basis for it in Figl4

FIGURE 4. Homology basis for the Riemann surface of genus-two. The solid paths indicate
the first sheet and the dashed lines lie in the second sheet.

Now, we introduce the Abel integrals for the genus-two region,

2 ,
A '21 jig*”
50 i) = [ (@), =12 (&)= o
(50) ]( ) a3 lp](é) & ‘P](‘f») Ra(¢)
The coefficients cj;s can be uniquely determined by the following conditions,
(51) / dwi(P) = 2midy, (j,1=1,2),
&

where dw;(P) is a holomorphic differential on the Riemann surface. On the basis of w;(A)(j = 1,2), we can
calculate the period B matrix,

(52) Bﬂ:/ﬁdw]»(w), (,1=1,2),
Y Pl

which is a symmetric matrix, and its real part is negative definite. Then we can define the Abel mapping
from the Riemann surface x to its Jacobian variety Jac{x} = C?/A, A : x — Jac{x},

(53) Ai(P) = /P

dw; , 1=1,2,
Py w](Q) )

where A is the lattice defined by

(54) A = {27iN + BM,N, M € Z?},

and the point P is given from the base point a; satisfying the condition 71(Py) = a3 and Q is the integration
variable. With the definition of Abel mapping A, for the integral divisors D = P; + P,, we have the
following identity relationship
(55) A(D) = A(P1) + A(P2).

12



For A in the branch cuts or the gaps (shown in the blue and red lines in Fig[3), the Abel integrals A(A)
satisfies the following conditions,

Ai(A)—A_(A)=0  mod 2miZ?, A€ (b},d5) U (by,dy),
(56) A (A)+A_(A) =Be; mod2miZ?, A€ (d3,da),
A ()\) + A_ (/\) = Be, mod 27TiZ3, A€ (bz, le) .

Next, we will introduce another Abel integrals with the singularities at the point P+,

5 .
) ¥ sl
(57) 0;(A) :/a* Yie)de, j=12 %)= ﬂRzT

these Abel integrals satisfy the following normalization condition,

O (A) = A+0(1), (L) = A24+0(1), P— Py,

58
(58) /alde(P):O, i1=1,2,

which can determine the unknown coefficients s;;s uniquely. For these Abel integrals, the corresponding
“B” matrix by integrating around the B circles can be given as,

(59) uj:/ﬁvdal(m, v,-://gldnz(?), i=12.
] ]

Based on the normalization conditions of Q3;(1)(j = 1,2), we get some important properties when A — oo,
one useful property for us is that the limits J; (j = 1,2) defined as

A A

(60) Ji == lim / A (P)— A, Jp:= lim / 4, (P) — A2

A—r00 g; A—r00 a;
are existent.

Before solving the RHP for the matrix O1(A; x, T), we now introduce an auxiliary matrix P1(A; x, T)

defined as

O(A(\)+d—UF,—VE) ©(A(N)—d+UF +VE)

. o O(A(A)+d O(A(A)—d —(M AR+ (M)EF,
(61) P (A X, T) = @(A(A)(—d(—)ljl-”l)—VFZ) @(A(A)(+e§+)l,lpl)+w2) e~ (WAL WR)%,
AN -d) AN )

With the properties of Theta function and the Abel integrals, the matrix function P;(A; x, T) satisfies the
following jump conditions,

0 1
(62) P (x1)=P_(AxT) L O] , A€ Zétz U Ze.

By using P;(A; x, T), we can construct the solutions to O1(A; x, T), that is

(7(/\) + ﬁ) Pi(Ax T i (7(/\) - ﬁ) Py (A X T
=i (Y = ) P D (v + =) PrAx )
where C; and C; are two constants determined from the normalization condition in Eq.(#7),

Cy = O (A(x) +d) elifithb
'” ©(A(w) +d —UF — VE,) ’

(63) O1(Ax,7T) = %diag (C1, C) [

(64)
C, = O (A() + d) e*hFl*]ZFZ,
O (A() +d+UF, +VE)
1
and y(A) = (Eﬁ:ii;g::ﬁ;&:gﬁ;) ! satisfies v, = —iy_. Suppose ¥ — % has two zeros Py, P, at the first
2

sheet Riemann surface. Then the constant matrix d can be given by the following formula,

(65) d=A(D)+K,
13



where K is the Riemann-Theta constant vector[3,[16], defined as

27ti + Bj; 1 2 Q .
770

I=1,1#£] "%

The integral formula seems much more complicated, but in our hyperelliptic case, the entries K;s are also
equal to another simple formula,

13 .
(67) KjZEZB,]-er(]—z).
=1

Then the outer parametrix T$"(A; x, T) is constructed completely. We hope that the outer parametrix can
match Ty (A; x, T) very well, but unfortunately, the outer parametrix has singularities at the branch points
ap, by, d>, a3,b3,d;. Thus we should construct the inner parametrices at the neighbourhood of these points.
In Refs.[5[8] and our previous article[19], there is a detailed calculation for constructing the inner paramet-
rices, and the results show that these inner parametrices are related to the Airy function, and the error is
O(n~1). In this paper, we omit the details and only give some notations. Then the global parametrix for
T1(A; x, T) is written as

TP(Ax, 1), A€ Dgyl6),
T1 (M x 1), AeDgo),
by
T1 (Mx,T), A€ Dy,(d),
(68) T (o) = TR T), Ac Dy; (9),
T2 x, 1), A€ Dyyl(6),
1 Thxt), Ae Dy (6),
T?Ut(/\’ X/ T)/ A c C \ (D‘ZZra;/bZ/b;,dz,dz (5) U 22':2 U Zg U rg:tz) .

Then we will analyze the error between Ty (A; x, T) and its parametrix T1(A; x, T) in the next subsection.

2.2 Error analysis

To study the error, we set the error function £ (A; x, T) between T1(A; x, T) and T1(A; x, T) as

(69) E(Ax 1) =Ti(Ax 1) (T1(A4x 1))

Set the jump matrix for the error function &£ (A; x, T) as Vg, (A; x, 7). In our previous work [19], we have
given a detailed analysis for the error estimation. Following that result, we present the order of the error
estimation,

Ve, (L x,7) — 1|l = O (e711") (u1 > 0), Aeci ucﬁmuciruci UCx UCT,
(70)

IVe,(Asx,T) =T =0(n™ 1), Ae aDuz,a;,hz,h;,dz,d; (6)-

-1

Finally, we can recover the potential function ¢! (n, nt) from Ty (A; x, 7)
q" (nx, nt) = 2ir lim ATy(A;x, 7)1z
= 2ir /\lgrolo)\ (&I (A x 1),
= 2ir lim A (En(x DT ) + EL2 (A x, T T2 (A 1, 1))
= 2ir lim AP35 (A5, 7) + O(n™1).
—00 .

14
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Substituting TS"*(A; x, T) into Eq.(71), then the asymptotic expression for the genus-two region is,
O (A(c) +d) O (A() —d+UF, + VE)
© (A(c0) +d —UF, — VE) O (A(c0) —d)
X i (S(by) — S(ap) — S(da)) e2N11222720 1 O (1),

With this expression, we check the asymptotic solution and the exact solution by choosing T = 1,¢1 = ¢ =
1in Figh]

72) q"(nx,nt) =71

8
6 —exact solution —exact solution 6 —exact solution
----- asymptotic solution 6 -+ asymptotic solution 4 -+ asymptotic solution
4 4 2
lql R(q)2 S(a)
0 0
2 -2
-2
-4
0 -4
-0.5 0 0.5 -0.5 0 0.5 -05 0 0.5
X X X

FIGURE 5. The comparison between the exact solution (20-th order KMBs) and the asymp-
totics in genus-two region by choosing T = % (as shown in the green dashed line in the

right panel in Fig. @), ¢1 = ¢p = 1. The left one is the modulus q[”] (nyx,nt), the middle is
the real part, and the right is the imaginary part. It is seen that they are fitting very well.

3 Genus-zero-infinity and genus-zero-up regions

In the last section, we have obtained the asymptotic expression in the genus-two region. And we check
the asymptotics by choosing a group of parameters A = 2i,ci =c; =1,7 = %. For the rest of regions, we
will choose another group of parameters A; = %i, c1 = —cp = 1, to verify their asymptotics numerically.
In this section, we first analyze the asymptotics in the genus-zero-infinity region(g§’ in Figl2). For the
large-order asymptotics of high-order solitons in the exponent-decay region [5], the leading order term
exponentially decays to the zero background, in which the leading order term can be derived directly.
However, the leading order term in the genus-zero-infinity region will approach to the background wave

g (nx, nt) — €. Thus the corresponding asymptotic analysis for both two kinds of regions are different.

. \1/4
For the high-order KMBs, there appears a new factor 7 (Q—E) in the phase term ¢(A; x, T), which brings
a new branch cut in the vertical segment ¥, = [—i,i]. Thus, the previous method in studying the large-

order asymptotics of solitons can not apply to KMBs, and we need new skills to deal with this branch cut.
A frequently-used way is to introduce a proper g-function. To this end, we give a RHP for the g1(A; x, 7)-
function in this section.

Riemann-Hilbert Problem 4. Let (x,7) € R?, we can find a g1(A) := g1(A; x, T)-function satisfying the follow-
ing conditions:

e Analyticity: g1(A) is analytic in C \ Xg,, where L¢, is a branch cut to be determined, and it takes the

continuous boundary conditions from the left and right sides of X, .

e Jump Condition: The boundary values on the jump contour X, are related by
(73) g1+A)+g-A)+0+(Mx, 1) +0-(Ax, 1) =K1, AEX,.

e Normalization: As A — oo, g1(A) satisfies
(74) g1(4) > O(A7H).
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e Symmetry: ¢1(A) satisfies the Schwartz symmetric condition:
(75) 81(A) = g1 (AY).

For this case, we still analyze its derivative to A and eliminate these two logarithmic terms and the
integral constant ;. When A € Zgw we have

, S i i1 1
(76) A L Wy L Wy Ll Py Wl Ty ey

Similarly, we can introduce a square root function Rq(A) = Ry (A; x, T) with the definition

(77) Ri(A)i=y/(A—a)(A—a}), & =ai(x,7),
then 1%(();\)) satisfies the relation
78) (g’l()\)> _(gm)) B A e e TP = R P
Ri(A) /)4 \Ri(A)/_ Ri(A)+ ’
which can also be solved by the Plemelj formula,
. . 1 -

(79) '(A)—le)/ AT en e e e,

SV o )y, Ri(5)(s — A) '

With the generalized residue theorem, g (A) can be given as an explicit formula:

e i i1 ir 1 ir
@A) = Ry(A) (Res—i— Res - Res —I—Res) ( X = 25T G-A) 2(s—A7)  4n (s—i) T (s+i))
1(A) =
s=A 5=00

s=A1  s=A] R4 (S) (S — A)
—X 25T - 2(siA1) + 2(siA*) ~ (siji) + 4 (si;i)
+Ry(A) [Res+ R i
(80) 1Y) (seis es) ( Ri(s) (5 — A)
i i ir ir
= Ry(A) |- + S S— A
O | R R RO R
i 1 1 1 ir 1 ir 1

BEAREALIR Y W SV W I P g Ry

Moreover, the phase term will be modified as 11 (A) = iy (A; x, T) := g1(A) + 8(A; x, T), thus we have
81) H,(A) = Ry (A {— i + i IR S L

B @A) =R [~ R At =) 2R D — A SR @G = A) | dnRy (D) (i )
Compared to the formula of g5(A) in Eq.(28), g} (A) seems similar by replacing R(A) with Ry(A), which
only adds an additional factor 2R; (A)7. But the asymptotics for these two regions are different due to the
difference between Ry (A) and Ry (A). In the genus-two region, the normalization condition of g(A) at A = oo
produces four conditions to the parameters s;(i = 1, - - - ,6). While in the genus-zero region, we have only
two parameters to de determined, the real and imaginary parts of ;. The normalization condition of g} (1)
in the large-A expansion can derive two relations about these two parameters, and we do not need other
conditions anymore,

+2T] .

i " i o " ir 0
2R1 ()\1) 2R1 (/\T) 47’1R1 (1) 4:71R1 (1) -

1/\1( 1/\1 r r 2 2
: — 2 -9 =0.

SRy(AT)  2Ry(A) | AR () | AnRy () R(a1)7r = S(an)7r + Rlar)x =0
Then we can calculate the unknown parameters numerically. In this region, /| (A) has real root. By choosing
proper (x, T) in this region, we give the sign chart of $(h1(A)) in Fig. [6l

For (x, T) in the genus-zero-up region, the definition of g1(A)-function is similar with the genus-zero-

infinity region. But in the genus-zero-up region, 1 (A) has no real roots, thus the jump contour of I (/11(A))
16
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m(A
m() o 1(2>

2
157 15¢
1t 1t
051 05
0 0
-0.5 -0.5
1 1
15 -15
. 2
D 15 -1 RPN 2 15 -1 -0 5 1 15 Rez(A)

FIGURE 6 The sign chart of J(hy(A; {5, 200)) in the genus-zero-infinity region, where
S(h1(A; 45, 5)) > O(unshaded) and (k1 (A; 75, 555)) < O(shaded). The left one gives

the original contour for S(A; x, T), and the right panel is the corresponding jump contour
for To(A; x, T).

has a slight difference with the genus-zero-infinity region. We omit the details for the genus-zero-up region
and only give the sign chart of $(h;(A)) by choosing one fixed (x, T) in Fig[7

Im(3) - ()
2.25 2.25
15 15
0.75 0.75
0 0
075} 075
15+ -1.5¢
225} 225
3y 45 4 05 0 05 1 15 2 %y 45 1 05 0 05 1 15 2
Re(A) Re(A)

FIGURE 7. The sign chart of (I (/\,é, 100)) in the genus-zero-up region, where
S(h (A4, 385)) > O(unshaded) and I(hy(A; L, 2%)) < O(shaded). The cut Z, is chosen
as arbitrary segments connecting the branch points of Rq(A). The left one gives the jump
contour for Sy(A;x,7), and the right panel is the corresponding jump contour for
T2 (A x, 7).
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With the sign of S(h1(A)) in Figl6|and Fig[7} we can analyze the asymptotics for the genus-zero-infinity
region and genus-zero-up region together via the nonlinear steepest-descent method. Similarly, set

MU (4; x, T)e 0 0xDBQ 1m0 Tn A e Dy (D U Dy,
(83) S2(Mx, T) = {MM i), therwise,

where D; = in U Rzi. Then the jump curves of S, (A; x, T) transfer into 8D2i and the contour X, . That is
0 ir
ir 0

So+(Ax,T)=S2-(Ax, T)e*i”ﬁm”"r)Q;lei”‘?(A;X'T), A€ E)D;

SZ,+ (/\,, X T) _ SZ,— ()\; X T)efinﬂ, (Ax,7)03 [ ] einﬂ+(/\;x,r)(73, Ae Zglr

(84)

In the regions OF, R2i and in, we define a similar matrix T»(A; x, T) as T1(A; x, T) in the regions O*, R+
and L in Eq.(38) by replacing g»(1) with g1(A) respectively. As a result, when 7 is large, the primary jump
condition of T»(A; x, T) changes into

ire~inx1

0
(85) T2’+ (/\, X, T) = TZ’_ (/\, X, T) |:ireim(1 0 :| ’ A S 281 .

And other jump conditions will decay to the identity matrix exponentially. Next, we will give the parametrix
construction for T (A; x, T) in the following subsection.

3.1 Parametrix construction

Similar to the analysis in the genus-two region, we first give an outer parametrix T$"!(A; x, T) satisfying
the same jump conditions for A € ¥, . By the Plemelj formula, the outer parametrix can be given as

rout LS A—ap\ ¥ 1, ™,
(86) T3 (AL x, 1) =e 2 BQy Py Q,e2%, Aek,.

It can be seen that the outer parametrix has two singularities at A = a1, A = aj, thus we should consider the
local analysis at these two points. Set the inner parametrices as

T3H (A x,T), A€ Dgy(6),
(87) o
T, (A x 1), Ae D”T (9),
based on the result in [8], in the neighbourhood of A = a; and A = 47, the inner parametrices Tgl (A x,T)
and Tgl (A; x, T) are related to the Airy function, and we have an error estimation of Tgl (A T), Tgl (A x,T)
and TS"(A; x, 7)

. cou -1 _
T3 (A, T) (TS (A x, 7)) || = O™,

(88) i1 rout -1 -1
1Ty (A, ©) (T3 (A7) | = O ™)
Then the global parametrix can be defined by
T (A x,T), A € Dy, (6),
(89) Tz(/\; X/ T) = Tgl (/\; X/ T)/ Ae Du{ (5),

T (Ax 1), A€C\ (Dy(0)UD, () ULy, ).

Next, we can give the error analysis between T»(A; x, T) and its parametrix T (A; x, T), define

(90) £ ) = TaAix ) (X 1)
then the solution gl (1, nT) can be given in Eq.(91)
(91) g" (nx, nt) = S(ay)e "™ + O(n7).
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Remark 3. In the genus-zero-infinity and genus-zero-up regions, if the branch point aj is close to i, the asymptotic
expression Eq.(9T) will tend to the background solution q = e't. Indeed, this result can also be obtained from the jump
condition in the RHH4} With the Plemelj formula, we have

_ Ry(A) k1 =04 (&x 1) —0-(Gx 1)
S kR

From the normalization of g1(A) as A — oo, we get an identity,

K1 B O (Ex,T)+0 (5 X, T)
e R sy R0 i

With the aid of the generalized residue theorem, the integration constant k1 can be represented by

(92) g1(A)

(93) Z.

af 2i
(94) K1 = (2R(a1)2 —s(al)z)wz%(m)mi.f_mRll@dé‘ﬂ : Rll@dé-

If a; — i, the last two integrals in Eq.(94) vanish, then xy — —t. Plugging it into the asymptotic expression (91)),
we get g1 (ny, nt) — €T = e,

By choosing proper parameters in these two regions, we compare the exact and the asymptotic solutions
in Figl§|and Fig[9]

2 4 3
—exact solution —exact solution —exact solution
15 asymptotic solution 31 e asymptotic solution ol asymptotic solution
) 1 1 1
2 | 1
lal 1 LS Ry A T L
i i/
05 i 0 W ° !
A 1 1
¥ -1 ' -1 .
0 1 1 1
02 04 06 08 02 04 06 0.8 02 04 06 08
X X X

FIGURE 8. The comparison between the exact solution (20-th order KMBs) and its asymp-
totic solution in the algebraic-decay region(as show by the alphabet A) and the genus-zero-
infinity region(as shown by ¢¢°) by choosing 7 = ﬁ (as shown by the green dashed line in
the middle panel in Fig. , ¢ = —cy = 1. The left one is the modulus of ¢"! (ny, nt), the
middle and right panels show the real and imaginary parts of 4"/ (nx, nt) respectively.

4 Genus-zero-down region

In this section, we continue to study the asymptotics in the genus-zero-down region. For the asymptotics
of KMBs, we present three types of genus-zero regions, the genus-zero-infinity region, the genus-zero-up
region and the genus-zero-down region. In the last section, we have studied two of them. Now we give the
analysis for the genus-zero-down region. Similar with the asymptotics in the other two genus-zero regions,
we also need an auxiliary g-function(this g-function is set as go(A) := go(A; x, 7)), which has a similar
formula with g1 (A) in RHP[ But the jump contour of S(hg(A) = ho(A; x, T) := go(A) + 9(A; x, 7)) in this
region is very different. In the above discussion, the branch cut [—1, i] contains two parts, one coincides with
the cut of g1 (A)-function, and the other one connects the branch point a; and i as well as a} and —i. But in
this region, the branch cut [—i,i] is in a closed region and the cut for the corresponding go(A)-function is
independent of the cut [—i,i]. Thus the RHP for go(A)-function is the same as g1 (A)-function by replacing
0+ (A; x, T) with 8(A; x, T), the integration constant «; is replaced with k. Moreover, we introduce the root

function Ro(A) = Ro(A; x, T) = \/(/\ —ag)(A —aj) to replace Ry(A). By choosing one proper x and T in
this region, we give the sign chart of S(ho(A)) in Fig[10]
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—exact solution —exact solution —exact solution
ol L asymptotic solution ol I asymptotic solution P asymptotic solution
. . R Ry
lq| ZM (@¢ 3@
15
-2 -2
1
-0.5 0 0.5 -05 0 0.5 -0.5 0 0.5
X X X

FIGURE 9. The comparison between the exact solution (20-th order KMBs) and the asymp-
totics in the genus-zero-up region by choosing T = % (as shown by the green dashed line
in the middle panel in Fig. , ¢1 = —cp = 1. The left one is the modulus of q["] (nx,nt),
the middle and right panels show the real and imaginary parts of "/ (nx, nT) respectively.

L — iy
2.25 L;; 225
15 15
0.75 0.75
0 r:o 0
075! | 075!
15} -1.5¢
225} fax 225}
B3 225 15 075 0 075 15 225 N 33 225 15 -075 0 075 15 225 i

FIGURE 10. The sign chart of S(ho(A; 1, 75)) in the genus-zero-down region, where
S(ho(A; %, 45)) > O(unshaded) and I(ho(A; &, 45)) < O(shaded). The left one gives the
original jump contour for S3(A; x, T), and the right one is the corresponding jump contour
after deformation.

Then we can define a similar sectional holomorphic function S3(A; x, T) as Eq.(36),
MM X, T efinﬂ()\;)(,f)@Qfleinﬁ()\;x,f)@’ AeDon DY uUDs C’

(95) S3(Ax, ) i= Pix7) g 0N (D5 UD5)
M (A x 1), otherwise,

where D = Riy UQj U RS Since ¢(A) has no cut at Zéto, the jump conditions between S3(A; x, T) and
S»2(A; x, T) have a little difference, in this case, we have

(96) S+ (M x, T) = S3— (A x, T)e AT QLT ) € 9DF.

Next, in the regions Lajfz, R3i,):' Q?, RB%F' LBi,F, define a similar matrix T3(A; x, T) as T1(A; x, 7) in Eq.(38) in
the corresponding regions Ly, R}, QF, Ry, i} by replacing ¢»(A) with go(A). Then the primary jump
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conditions for T3(A; x, T) are,

0 e—inko "
97) Ts,+ (/\r X T) =Ts- ()‘;X/ T) |:_eimc0 0 :| , A€ Z‘gol

Ts+ (A x 1) =Ts— (A x,7)2%, Ael

Next we will give the parametrix construction for T3(A; x, T).

4.1 Parametrix construction for T3(A; x, 7)

In our previous work [19], we analyzed the large-order asymptotics of breathers for the NLS equation,
which is constructed from two solitons on the vanishing background with the same velocity. The phase
terms between these two breathers are different, but for this genus-zero region, the jump contour of the
S(ho(A)) is very similar because the singularities appearing in the phase terms are all in a closed contour.
As a result, after the deformation of contours, the jump conditions given in Eq. are similar to the last
jump conditions in the reference [19] Eq.(77). Therefore, the parametrix construction will also be similar. In
the work [19], we presented a detailed analysis for the parametrix construction. Thus we only give a brief
statement in this work,. From the constant jump matrices when A € Zg% and A € I, the outer parametrix

T$"(A; x, T) can be given as

. A —by\ P log (2)
out . 0 g +
(98) TSU(A) ._K3(A)(A_CO> S = AEC\(ZgOUI),

where K3(A) = K3(A; x, 7) equals to

1
i ikn (c0)—ink — 103 inkp —2iks (0o i . .
(99) Ks(A) = e e 230 Oand(ﬁ ”g)“ Qe T Mo s ks (1) k(o))
—a
0

and k3(\) is defined as

‘o 1 A — by
b Ro<c><c—A>d“’”°g(A—co)'

(100) ks(A) = pRo(A)

then k3 (o) can be calculated directly,
co 1

(101) ks(o0) = /\11_1};](3()\) =P md‘:-

It is easy to see that the outer parametrix TS"(A; x, T) has singularities at the points A = by, A = cg, A =
ap, A = aj. Thus we should consider the inner parametrices at the neighbourhood of these points. Similar
as [8)[19], the inner parametrices at the neighbourhood of these points A = by and A = ¢ can be defined as

(102) T3 (A; x, ) = Ka(A)ntr/2e 00 H (1) Uqy (g )01, A € D¢y (),

. ipo3
Heo(A) = Hey (A2, 7) := (A= bo)¥” <£—(A3) '

K () Hy, (1) 200005030, (74, ) (—io)i= ™00, A € Dy, _(8),

K; ()\)Hbo ()L)niP%/Zeinho(bo)Usi—UsUbO (Cbo ) (_ia-z)i—lfseiﬂho(bo)lfs

b . . —ink, ink,
(103) T?)O (/\/ Xr T)'_ X eTOU@ (io-z)eTOUS/ Ac Dbo,+ (5)’
Hy, (A) = Hy (A7) = (Z’O‘A)% (o — A)"7% (i)
hO - bO 4 7 . fbo (A) 0 2 7

where f)(A) == fe, (A X, T), fo,(A) == fu,(A; X, T) are two conformal mappings defined at the neighbour-
hood of A = by and A = cg respectively,

(104) fin(A) =2 (ho(bo) —ho(A)),  for (A) = 2 (ho(A) — ho(co)) -
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For convenience, we suppose f; (bo) = —y/—hg(bo) < 0, f (co) = y/hg(co) > 0. It should be noticed
that ip(A) is discontinuous at the point A = by, and in this case, we choose the right value of the cut Zg,to
in the later analysis, that is hig(bg) := ho,— (bo). The variables {, , (¢, are defined as {p,, = nt/2 foo(A), ey =

n'/2f, (A), and the solution to U({) can be given with the parabolic cylinder function. The large- asymp-
totics is

. -2 -3
(105) U(Q)gr» =T+ 2}7; [_0/3 g} * {85233 gggzﬂ e

where
-1
(106) x = 23/2r (11n7(r )) i/ dei(n@)2/(27) g

The inner parametrices at the local points A = a9 and A = ”5 are related to the Airy function [8} 19], which

can be defined as T5°(A; x, T) and TZS (A; x, T) respectively. Then the global parametrix for T3(A; x, T) can
be defined by

T (A x,7), A € Dy, (),
T (A x, 1), A € D¢, (6),
107)  Ts(Axp 1) = T Ax ), A € Dgy(8),
TZS (A x,7) A€ Dy (9),
(A x,7), AeC)\ (Dbo (6) UD¢,(6) UDgy (8) UDys (6) UZE U 1)

Next,we will analyze the error between T3(A; x, T) and T3(A x, 7).

4.2 Error analysis

Set the error function between T3(A; x, T) and T3(A; x, T) as
(108) & (/\; X T) =Ts (A; X T) (T3 ()‘; X T))
For convenience, denote Vg, (A; x, T) as the jump matrix for £3(A; x, T) and Yg, as the jump contours. From

the definition of T3(A; x, T), the jump matrices V¢, (A; x, T) at the boundary of Dy, (), D, (6), Day (6), Dy (5)
equal to

-1

bo C0,a0 116

. ,C0,40, . —1
(109) V53 (/\/ X’ T) = T3 (/\’ X’ T) (Tgut (A’ X’ T)) 7 /\ 6 ang,Cg,llo,ﬂS (5)
If A € 9Dy, (6) and A € 9D, (9), Vg, (A; x, T) are written as

(110) Ve, (A2, T) = My (A T) Uy (G0) 3. " Hiy (i, T) 7, A € ADy, (9),
Hy, (A x, T) = Ks(A)Hy, (A) P/ 2eiholbo)si=cs,
and
(111) Ve,(4x, 1) = Hey (A X, T)Uco(éco)d’é”mco (Lx, )7, A €aD(6),
Hey (A x,T) := Kz(A)Hg, (A) iP5/ 2 inho(c0)3,

If A € 9D, (6) U 9Dy (9), Vg, (A; x, T) can be given in a similar formula with our previous article(Eq.(101)
in [19]). From the asymptotic expression of U(¢) in Eq.(105) and the estimation for A € 9Dy, (5) UdD,; (5)
in [19], the jump matrices V¢, (A; x, T) satisfies the following estimation,

[Ve,(A;0,7) =TI = O (e ") (43 >0), A€ ci U Cf;ﬂ U cf;” U c;f—3F
(112) IVe,(Aix, ) = 1| = O(n™"), A €Dy (6),

Ve, (A, 1) =1l = O(n™12), A € Dy, (0)-
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Under this case, the solution gl (1, nT) can be recovered by

q[”](n)(, nt) = 2ir im AT3(A; x, T)12
(113) Ao . -
= 2ir )}I_{I;o)\ (E311(Mx, DTS (A X T) + E312(A X, T) TS (A X, 7)) -

Moreover, we can simplify Eq.(113) into

(114) g™ (nx, nt) = 2ir Alim AT (M x, 1) + E312(A 1, T)) -
—00 ’

Next, we will calculate the entry of £312(A; x, T) and then give the leading-order term for gl (ny, n).
From the error estimations in Eq.(I12), we only calculate it for A € 9Dy, (6) and A € 9D, (6). In other
contours, we omit the calculations. When A € 9Dy, (6) U dD¢,(J), with the Plemelj formula, the solution to
&AM x, 1) is

1 & (Gx1)Ve(Gx,T) = 1)
115 SNix ) =T+ | :
(1) s(hxT) 2711 JaDy,, (8)UdD¢, (8) g—A

Az +0 (n—l).

When A — oo, the asymptotic expansion is given by,
(116)

1 .
SNy T) =1 — A‘]/
34 T) 27t 57 Japy, (6)UaDg (6)

[e9)

& (GX T (Ve (@G, ~DF e +0 (n7), Al > oo

Then we further have

1

117)  lim A& 12(A; x, :*7'/
(117)  lim A&312(A:x,T) Zm[ 9Dy, (6)U9D¢y (9)

E311,— (5 X, T)Vey12(¢; x, T)dG

_(&x, A% ;x,T)—1)d -1
+ /BDbO(J)uaDCO(J) &1, (G x,T) (Ve (&G x, 1) — 1) C} +0 (” )

From the definition of V¢, (A; x, T) in Eq.(T10) and Eq.(TTI), we simplify the potential " (nyx, nt) as

W18 g (nx, ) = 20r lim ATSHAx,7) — -

v cx, T)VAE+ O (n1).
n‘/an0(5)UBDCO(5) 53/12(6)(77) &+ (1’1 )

For A € 9Dy, (8) U0D¢,(9), Vg, 12(A; x, T) equals to

i”ip (Hco,n()\))2 (Ka11(A))% e 2mholco)y
2n1/2fC0 (/\)
B in_i” (Hop22(1))* (K312(1))* e2inholco) g
2n1/2fe (M)

(119) Vg (A x 1) = —

+0(n™t), A€aD(6),

and

ni? (Hb0,12,7 ()t)) -2 (K3,12,— (/\))2 e2inho,— (bo) 5
2711/2be’_ ()\)
4 i”_ip (Hpp12,- (1)) (Kz 11, (1)) e~ 2o (o) g
20172 fy, (M)
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(120) Vg (Ax 1) =i

+0(n '), A€aDy(é),




where « and B are defined as in Eq. (106). By the residue theorem, we have

1

121 - — \Y% sy, T)d
(121) 7 oy (610006 £,12(8 X, T)dE

niv (Hbo,u,f(bo))fz (K312, (bo))? e?ho~(bo) n noi (Hho,lz,f(bo))z(Ka,f,n(bo))zefzi"ho'*(b())ﬁ
nl/2 /—hgr_(bo) nl/2 —hg,_(bo)
n' (Hco,11(00))2(K3,11(Co))29_2mh0(C°)“ n noiv (Hco,zz(Co))2(K3,12(CO))2921"h°(C°)5 n

n'/2, /hg (co) n'/2, [ (co)

Substituting the entries of Hy, ., (1) and K3(A) into Eq.(121), we can get the asymptotic expression in the
genus-zero-down region as Eq.(122),

+ O(i’lil).

(122) q[n] (nx,nt) = re2iks(e0)—inkg l V2P (mlfei%o — m?fe_i%o)

nt/2,/—hy _(bo)
\/2 . .
TR (mife“l’co - mcfe“"’60> —iS(ag)

n1/2, /g (co)

7T .
Pro=7+ log(2)p— arg (T (ip)) 42k, (bo)+2nhg,— (by)+plog (—”hf{,f(bo)(co - bo)z) —nK,

¢C0:g+ log(2)p—arg (T (ip)) —2k3(co)—2nho(co)+plog (nhg(co)(co - bo)2> +no,

1 1 by—a byp—a 1 1 byp—a by—a
(123) bt % 0—40 0—40 bp_1t 1 0—40 0—4o
(e 2+4 bo—ﬂ3+ bo—aé o M- 2 4 bo—a8+ bo—aé !
1.1 o 11 -
o~ = Co—4ao Co—4ag co_t 1 co—ap co—4aop
(e 2+4 (\/co—a5+ (\/co—c%) ) S W ( co—a3+ < co—a3> ) '

Similarly, by choosing one fixed 7 in this region, we numerically verify the consistency between the exact
solution and the asymptotic solution in Fig[T1]

+ O(n_l),

where

5
—exact solution 6 —exact solution 6 —exact solution
4+ | asymptotic solution|{ | |- asymptotic solution|| | | asymptotic solution
4 4
3
al R(g) 2 3(g) 2
2 0 0
1 -2 -2
0 -4 -4
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X X X

FIGURE 11. The comparison between the exact solution (20-th order KMBs) and its as-
ymptotic solution in the genus-zero-down region by choosing T = 11—0 (as shown by the
green dashed line in the middle panel in Fig. ), c; = —c; = 1. The left one is the mod-
ulus of gl"(nx,nt), and the middle and right panels are the real and imaginary parts of
g™ (nx, nt) respectively.

24



In the next section, we will analyze the asymptotics in the algebraic-decay region.

5 The algebraic-decay region

In the above discussion, we studied the large-order asymptotics for four different regions. To give the
leading-order term, we introduce four kinds of g-functions and modify the original phase term &(A; x, )
into a new one. In the algebraic-decay region, the original phase term ¢(A; x, T) has three real critical points,
which can be used as the controlling phase term. By choosing one fixed x and 7, we give the sign chart of

S(8(A; x, 7)) in Fig[2]

Im(%) Im(é)
2251 2251
150§ 150
075} 075
0 0
0.75 -0.75
-15 1 -15
225 225
-3 -3
2 -15 15 2 2 15 -1 05 0 05 1 15 2
Re()) Re(A)

FIGURE 12. The sign chart of & ( ()\

1
2/
R (19 (/\, ;,0)) < 0 (shaded) and & (19 (A, oL 200)) > 0 (unshaded). The left one gives

the original jump contour for S4(A; x, T), and the right one is the corresponding jump con-
tour after deformation.

)) in the algebraic-decay region, where

»—IN‘

Similarly, introduce the matrix S4(A; x, T) defined by

(124)

M[H] )L, T efinﬁ(/\;)(,T)ng, 7leinl9()L;)(,T)tT3’ A€ Do D+ UD- € ,
A x, 7)== (A7) Q, 0 ( 4 4 )
m!"] (A7), otherwise,

where Df = ij U Rf. Next, set the sectional analytic matrices T4(A; x, T) as follows,

Ta(Ax,T) - = Sa(Asx, )e—mﬂ X T)03 (QE})% einﬂ(/\;x,r)@, Ac LZ'
Ts(A;x,T) - = Sa(A; x, 1) Qe mtNxmos gl ind(ix i, AeR],
Ts(Ax 1) = Sa(Ax, 1)Q7, AeQf,
(125) T x,7) : = Sa(A; x, T)e—mO) (g%])*leinﬂ(/\;)(,r)agl relp,
Ty(Nx,7) s = Sa(A;x, 7)Q e Mg lleinttinties, AERy,
Ty x, 1) = Sa(A x, )Q n, AeQy,
T4 x,T) : = Sa(Xx,T), otherwise.
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By a direct calculation, the jump conditions of T4(A; x, T) change into,

Ty (LX) = Ty (A x, T)e NRDBQRlemnne 3 e cf,
T4,+(/\ X, T ) _ T4,_ (/\;X/ )e—mﬁ Ax,T (73Q 2] 1m9(A)(T)(73 Ae CE ,
(126) Ty (LX) = Ty (A x, T)e MRDBQpleindtinna ) ¢ Cr,
T4+(/\ X, T ) _ T4,—(/\?X/ )e—mﬁ Ax,T) (73Q (1] 1m9()\)(1')(73 = CE ,
T4 +(/\; X T ) T4,— (A;X/ )2U3/ A€l
From the sign chart of S(9(A; x, 7)) in Figll12l when n is large, the jump conditions will exponentially deca
g X g g jump P y y
into the identity matrix except for the contour I = [by,c4]. In the next subsection, we will construct the

parametrix for T4(A; x, T).

5.1 Parametrix construction for T4(A; x, 7)

From the jump matrix in the contour I = [by, c4], we directly give the outer parametrix T{"(A; x, T) as

A —by\ P log (2)
out 4 — 8
(127) A x, )_(A—C4) , P o AeC\ L

Following the calculation in the genus-zero-down region, the inner parametrices at the neighborhood of b,
and c4 can be constructed as

b » o e
S (A X, ) i=n 2T TIN Y (A; x, T) UL, (8, ) (—i02)e " 9T, A € Dy, (),

(128) . . .
TACL4 (/\,. X T) . — 5iPos /Ze—lnﬂ(C4;7(,T)z73 HC4 ()\,‘ X T)UC4 (€C4)elnl9(C4;X,T)U'3, = DC4 (5),
where
(129) _ .
b4 - e _ipos (; oy (e (A, T)\?
H : - — 1pos H . — — 1pos ((LtaV 7 AT )

and f, (A; x, T) and fe, (A; x, T) are two conformal mappings defined as
(1300  fo, (L0 =2[bsx,T) = 0N X D], fe (X T =2[0(Ax,T) — B(cai x, 7))

In this case, we still choose the root such that fé4 (by; x,7) = —/—08"(by; x, 7) <0, fc’4 (e, T) =/ (cxs x, 7) >

0. {p, and , are two variables defined by {3, = nl/sz4()L; X T),Cey = nl/zfc4 (A x,T).
Here U({) is the same as the definition in the genus-zero-down region, and its asymptotics also satisfies

Eq.(105).

Then the global parametrix of T4(A; x, T) is
b
T, (A x 1), A € Dy, (9),
(131) Ta(A 1) = T (A x, T), A € D, (9),
T\, 1), AeC) (1 UDy, (6) U DC4(5)) .

Next we will analyze the error between T4(A; x, T) and the parametrix T4(A; x, 7).

5.2 Error analysis

Without loss of generality, set the error function between Ty (A; x, T) and T4(A; x, T) as E4(A; x, T), that is

. -1

(132) Ea(Ax, 1) == Ta(A x, T) (Ta(Mx, 7)),
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the jump matrix of £4(A; x, T) can be set as V¢, (A; x, T), the corresponding contours are set as Xg,. From

the definition of T4(A; x, T), we have the following estimation for the jump matrix Vg, (MxT),
13 Ve, ™) =1l = O(e ") (s > 0), A e (CfUCE,) NZe,
Ve, (A x,T) = I|| = O(n=1/2), A € 9Dy, (6) UdD, ().

Similar to the genus-zero-down region, the potential g"l (), nT) can be recovered from T4(A; x, T) by
the following formula,

q[”](n)(, nt) = 2ir im AT4(A; x, T)12
(134) . )\'—>°0 —out jout
= 2ir )}glc}o/\ (a1 x, DT (A X, T) + E412(A X, T TS (A X, 7)) -
Moreover, we have
1
135 ] (1 LNT) = — 17— A\Y cx, T)dE+ O(n~3/2).
(135) q" (nx, nt) 7 J3Dy, (610005, 0 e 12(&x,T)dg ( )

Through a similar calculation with the genus-zero-down region, the asymptotic expression in the algebraic-
decay region is given by,

V2p [ezw(b4””) ("0 T) " i), €D X D gl

136) g (ny, nt)=r
(136) g ( X ) /2 —l9”(b4,‘X,T) 19”(C4;X/T)

+ 0(7173/ 2),
where .
¢(x,T) = —pln(n) —2pln(cs —by) — plog(2) — 7w +arg (I (ip)).-
In this case, we choose T = ﬁ and give the comparison between the exact solution and the asymptotic
solution with the genus-zero-infinity region together, which is shown in Fig. It is seen that they are
fitting very well.

6 Conclusions and Discussions

In this paper, we analyze the large-order asymptotics for KMBs of the NLS equation under two con-
straints to the vector constant ¢ = [cl,cz]T, one of which is ¢; = ¢; and the other case is ¢c; = —c¢3. In
the far-field regime, the (), T) space-time plane can be partitioned into five distinct regions. Compared to
the large-order asymptotics of solitons, the phase term appearing in the RHP for the KMBs involves an

additional factor i—; log (Q—;i) , which produces a new cut on [—1, i] and brings new difficulties to study the

asymptotics. Due to this new term, a genus-two region appears under the large-order asymptotics, which
was not reported in the previous studies of high-order solitons and rogue waves [5,8,[19].

Up to now, through the known results in the literature [5] 18 [19], we can obtain uniform insights for
large-order localized waves in both the zero and non-zero backgrounds. In the far-field regime, under the
zero background, the single high-order solitons have four distinct asymptotic regions and the high-order
breathers have five asymptotic regions, where the new additional region is the genus-three. Similarly, under
the non-zero background, compared to the high-order rogue waves there appears a new genus-two region
for the large-order KMBs. In our previous studies [19], we conjectured that, under the zero background, if
there are [ spectral parameters with the same real part, we will get a genus-2/ — 1 region under the large-
order limit. We guess that for the high-order KMBEs, if we construct the general high-order KMBs with two
distinct spectra, namely, the phase term ©¢(A; x, T) will be modified as follows,

. B o i A=A i A=Ay i A—i
(137) 19<A’X’T)_AX+AT+210g(/\—/\1‘)+210g<)\—)\§ +4nlog i)

where A| = 111, Ay = api, a9, 0p > 1,47 # ap, and then we can get six asymptotic regions which involve a
genus-four region.
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In future work, we would like to give a detailed asymptotic analysis of the corresponding RHP with the
modified phase term Eq.(1I37). Moreover, we will generalize the analysis to the general [ spectral param-
eters for the high-order KMBs. As we conjectured, a genus-2! region maybe appear in the center part of
asymptotic regions.
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