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ABSTRACT. We study the large-order asymptotics for the Kuznetsov-Ma breather of the nonlinear Schrödinger
equation in the far-field regime. With the aid of Darboux transformation, we first derive the corresponding
Riemann-Hilbert representation for the high-order Kuznetsov-Ma breathers. Under the far-field limit, there are
five asymptotical regions in the space-time plane where the breathers behave differently, the genus-two region,
the algebraic-decay region, and three distinct genus-zero regions. With the aid of the Deift-Zhou nonlinear steep-
est decent method, we give the leading order term for each region and verify the consistency between the exact
solution and the asymptotic solution numerically. Compared to the previous studies about the large-order asymp-
totic analysis of rogue waves and solitons, we find a novel genus-two asymptotic region, which further enriches
the research of large-order dynamics.
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1 Introduction
The well-known one-dimensional focusing nonlinear Schrödinger (NLS) equation

(1) iqt +
1
2

qxx + |q|2 q = 0,

is a completely integrable equation and can be studied via the inverse scattering transform [23, 21]. For
an appropriate initial datum, we can calculate the scattering data explicitly. As to the standard N-soliton
solutions, the scattering data consist of N distinct first-order poles, and the real and imaginary parts of
the poles represent the velocity and amplitude of soliton respectively. If these N distinct poles degenerate
into N-th order pole, we will get the N-th order solitons, each of which shares the same amplitude and
velocity and is separated from each other with logarithmic type. These N-th order soliton solutions have
evident different behaviors from the N-soliton solutions. Besides the soliton solutions, under the non-zero
background, the NLS equation (1) also has rich family solutions, such as the rational rogue wave [22, 14], the
Kuznetsov-Ma breather (KMB)[17, 20], the Akhmediev breather (AB)[1] and the Tajiri-Watanabe breather
[24]. In general, breathers develop due to the instability of small amplitude chaotic perturbation, and they
are also related to the modulational instability and the interference effects between a bright soliton and a
plane-wave background [12, 27]. Analogously, under the non-zero background, we can also get the high-
order rogue waves, KMBs, ABs, Tajiri-Watanabe breathers [15, 26], and their mixtures. One direct physical
explanation about the high-order breathers is that they are related to the high-order modulational instability
of the plane waves. In the recent works [6, 5, 4, 8], the authors analyzed the large-order asymptotics of
solitons and rogue waves in the near-field and far-field regimes, thus it is natural to consider what the
large-order asymptotics of breathers will be.

In this paper, we would like to study the large-order asymptotics of KMBs under the far-field limit, and
the analysis of the ABs will be performed in the near future. In a recent literature [7], Bilman and Miller
put forward the robust inverse scattering method and then give the Riemann-Hilbert problem (RHP) for
the high-order rogue waves. Through two different scale transformations, they studied both the near-
field [6] and far-field asymptotics [8] for the rogue waves via the Deift-Zhou nonlinear steepest-descent
method [11, 10]. Meanwhile, Bilman, Buckingham and Wang also analyzed the near-field and far-field
asymptotics for the high-order solitons [5, 4]. The results in these articles indicate a fact, in the near-field
limit, the asymptotics of high-order rogue waves degenerate into the infinite-order solitons [6]. But their far-
field large-order asymptotic behaviors are quite different due to various formulas of their corresponding
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Riemann-Hilbert representations in the far-field regime, which can be verified from the Ref. [8]. In this
paper, Bilman and Miller formulated a RHP for both the solitons and rogue waves, and the exponent phase
term is written as −iMϑ(λ; χ, τ), where the order M can vary continuously. For the soliton solutions,
M = 1

2 k, k ∈ Z≥0 and for the rogue waves, M = 1
2 k + 1

4 , k ∈ Z≥0. Recently, we analyzed the large-order
asymptotics of high-order two-solitons with identical real parts [19], which can also be called the high-
order breathers on the vanishing background. And we found a new genus-three region compared with the
high-order solitons with a single spectrum. Although the rogue wave can be regarded as a limitation of the
KMB, their dynamics are completely different. Their high-order counterparts also have distinct dynamics.
So it is meaningful to analyze the large-order dynamics of KMBs. In contrast to the large-order asymptotics
of high-order rogue waves [8], we will confront some challenges for the KMB. A major difficulty comes
from the special form of the phase term. On the one hand, compared to the large-order rogue waves, there
are two kinds of singularities in the KMB phase term, one is the spectrum λ = |α|i (α > 1), the other one is
λ = ±i. On the other hand, compared to the large-order breathers on the vanishing background [19], there
appears a new factor ir

4n log
(

λ−i
λ+i

)
in the phase term, where n is the order number of KMB. Consequently,

there appears a new branch cut [−i, i]. During the deformation of the RHP, an additional jump condition
from this new cut leads to difficulties in the analysis.

Another motivation for this work is coming from the study of breather gas and integrable turbulence
[2, 13]. In general, turbulence can be expressed by the nonlinear modes of integrable systems. And the
state of the turbulence is determined by the majority of excitations about the solitons or the breathers. Since
the breather is related to modulation instability, it is important in the formation of the chaotic wave field.
Especially, when studying the chaotic wave field, we always assume that there are an infinite number of
breathers. In the literature [13], the authors gave a description of the soliton gas and breather gas with
the finite-gap theory. For large-order solitons, we have obtained the high-genus region, thus we think for
the large-order breathers, we can also get the high-genus region, the leading term in this region will be
expressed with the Riemann-Theta function, which may help us understand the breather gas to a certain
extent.

Before analysis, we first present some preliminaries about the NLS equation.

1.1 The Riemann-Hilbert representation of large-order Kuznetsov-Ma breathers
The Lax pair for the NLS equation (1) is

(2)
ΦΦΦx = U(λ; x, t)ΦΦΦ, U = −iλσ3 + Q,

ΦΦΦx = V(λ; x, t)ΦΦΦ, V = −iλ2σ3 + λQ +
1
2

iσ3

(
Qx −Q2

)
,

where λ is the spectral parameter and Q is given by

Q =

[
0 q
−q∗ 0

]
.

Let Σc be a vertical segment connecting −i to i with upward orientation. With the seed solution q = eit, we
can get the fundamental solution matrix

(3) ΦΦΦbg(λ; x, t) = e
it
2 σ3 n(λ)

[
1 iλ− iρ(λ)

iλ− iρ(λ) 1

]
e−iθ(λ;x,t)σ3 := e

it
2 σ3 E(λ)e−iθ(λ;x,t)σ3 ,

where ρ(λ) and n(λ) are two analytic functions for λ /∈ Σc satisfying the conditions ρ2(λ) = 1+λ2, n2(λ) =
λ+ρ(λ)
2ρ(λ)

respectively, and θ(λ; x, t) = ρ(λ) (x + λt). Thus, to obtain a holomorphic matrix solution in C for

Lax pair (2) with q = eit, we normalize the above solution to ΦΦΦin
bg(λ; x, t) = e

it
2 σ3 E(λ)e−iθ(λ;x,t)σ3 E−1(λ).

One of the simplest methods to derive the high-order KMB solutions is using the high-order Darboux
transformation[25, 18], which is shown in the following theorem.

Theorem 1. Suppose there exists a smooth solution q ∈ L∞(R2) ∪ C∞(R2), the Lax solution ΦΦΦ(λ; x, t) is a holo-
morphic function in the whole complex plane C, then the Darboux transformation for the linear system (2) can be
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given by

(4) Tn(λ; x, t) = I + YnM−1DY†
n, M = X†SX,

where Yn =
[
φφφ
[0]
1 , φφφ

[1]
1 , · · · , φφφ

[n−1]
1

]
and

D =


1

λ−λ∗1
0 · · · 0

1
(λ−λ∗1)

2
1

λ−λ∗1
· · · 0

...
...

. . .
...

1
(λ−λ∗1)

n
1

(λ−λ∗1)
n−1 · · · 1

λ−λ∗1

 , X =


φφφ
[0]
1 φφφ

[1]
1 · · · φφφ

[n−1]
1

0 φφφ
[0]
1 · · · φφφ

[n−2]
1

...
...

. . .
...

0 0 · · · φφφ
[0]
1

 ,

S =

((
i + j− 2

i− 1

)
(−1)i−1I2

(λ∗1 − λ1)i+j−1

)
1≤i,j≤n

,

with φφφ
[k]
1 = 1

k!

(
d

dλ

)k
φφφ1|λ=λ1 and

φφφ1 = e
it
2 σ3

{
sin(ρ(λ)(x + λt))

ρ(λ)

[−iλc1 + c2
iλc2 − c1

]
+ cos(ρ(λ)(x + λt))

[
c1
c2

]}
,

c1, c2 are arbitrary complex constants, λ1 ∈ iR and |λ1| > 1. The corresponding Bäcklund transformation between
q and q[n] is represented in terms of determinant form:

(5) q[n] = eit + 2iYn,1M−1Y†
n,2 =

eit det(M + 2ie−itYn,1Y†
n,2)

det(M)
.

Remark 1. By choosing different parameters λ1, we can get different kinds of breathers. If λ1 = αi with 0 < α < 1,
we can get the so-called AB [1], which is localized in the t direction and periodic in the x direction. If λ1 = αi with
α > 1, then we can get the so-called KMB [17, 20], which is localized in the x direction and periodic in the t direction.
If λ1 = i, then this special peregrine breather [22] is also called the rogue wave solution. If λ1 + λ∗1 6= 0, then we can
obtain the Tajiri-Wantanbe breather [24].

Especially, for n = 1, the complex constants c1, c2 can be absorbed by the phase term θ(λ; x, t), then the
fundamental solution φ

[0]
1 can be written as another equivalent formula,

(6) φ
[0]
1 = e

it
2 σ3

{
(iλ1 − 1)

sin(ρ(λ1)(x + λ1t + c))
ρ(λ1)

[−1
1

]
+ cos(ρ(λ1)(x + λ1t + c))

[
1
1

]}
,

where the parameters c and c1, c2 satisfy the following relations,

(7) c1 = − (iλ1 − 1) sin(ρ(λ1)c)
ρ(λ1)

+ cos(ρ(λ1)c), c2 =
(iλ1 − 1) sin(ρ(λ1)c)

ρ(λ1)
+ cos(ρ(λ1)c).

Under the choice of the above parameters, the first-order KMB reads

(8) q[1] = eit
(

cos [sinh(2φ)(t− t0)− 2iφ]− cosh(φ) cosh [2 sinh(φ)(x− x0)]

cosh(φ) cosh [2 sinh(φ)(x− x0)]− cos [sinh(2φ)(t− t0)]

)
,

where φ = arccosh(−iλ1), x0 = −<(c), t0 = − =(c)
cosh(φ) . It is clear that the KMB q[1] is localized in the x

direction and periodic in the t direction. Choosing proper parameters c1 and c2, we exhibit the second up
to the fourth order breathers by the computer graphics (Fig. 1). For |c1| 6= |c2|, these solutions present
asymmetric features. As the increasing of order, the expressions for the high-order breathers are enormous,
so it is hard to analyze the dynamic behavior for these solutions directly. An alternative way to deal with
large-order solutions is utilizing the Riemann-Hilbert representation.

Remark 2. For the fundamental solution Eq.(3), the phase term is written as θ(λ; x, t) = ρ(λ) (x + λt) . Actually,
we can multiply a diagonal matrix independent of the variables x, t from the righthand side of E(λ). In other words,
we can add a polynomial of λ into the phase term. In that case, the breather shape will change correspondingly. But
in the following study, we still choose the phase term θ(λ; x, t) such that the Darboux matrix Tn(λ; x, t) has a good
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|q[2]| The 2-nd order breather
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|q[4]| The 4-th order breather
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|q[3]| The 3-rd order breather
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FIGURE 1. The asymmetric soliton solutions by choosing λ1 = 2i, c1 = 1, c2 = 5.

decomposition at the point (x, t) = (0, 0). If c1 and c2 are independent of spectral parameters λ1, it follows that, by a
direct calculation, this decomposition of Darboux matrix is given as follows,

(9)
(

λ− λ1

λ− λ∗1

)−n/2
Tn(λ; 0, 0) = Qc

(
λ− λ1

λ− λ∗1

) 1
2 nσ3

Q−1
c , Qc =

1
|c|

[
c1 −c∗2
c2 c∗1

]
, |c| =

√
|c1|2 + |c2|2.

With the aid of the above decomposition of Darboux transformation, the solution q[n](x, t) at the point
(x, t) = (0, 0) is given easily,

(10) q[n](0, 0) = 1 +
4=(λ1)nc1c∗2
|c|2 .

If c1 = c2, the origin point is also the location of the maximal value of norm |q[n](x, t)|, which can be proved
by the mean value inequality.

From the definition of E(λ) in Eq.(3), we know that it can be decomposed into E(λ) = Qd

(
λ−i
λ+i

) 1
4 σ3

Q−1
d ,

where Qd = 1√
2

[
1 −1
1 1

]
. We would like to establish a RHP to study the large-order asymptotics of KMBs

in the far-field regime. Fortunately, we can get two types of RHPs under some constraints to the parameters
c1, c2, one is c1 = c2 and the other is c1 = −c2. That is, Qc = Qd and Qc = Q−1

d . For the general c1 and c2,
we just exhibit some exact solutions figures in Fig.1. The corresponding large-order asymptotics has some
additional difficulties to be overcome. We have not yet thought of a suitable RHP to deal with the general
case, where the difficulty is that the matrix Qc in the Darboux matrix Tn(λ; 0, 0) and Qd appearing in E(λ)
have not evident relations. Thus the RHP given in the current paper will not be available anymore. Next,
we merely construct the RHP for the above-mentioned two special cases.

Based on the idea of normalization, by using the fundamental solution (3) and the Darboux matrix (4),
we define two sectional analytic matrices
(11)

M[n](λ; x, t) :=



r
1
2 σ3 Tn(λ; x, t)e

it
2 σ3 E(λ)e−iθ(λ;x,t)σ3 E−1(λ)Tn(λ; 0, 0)−1Qr

deiθ̂(λ;x,t)σ3 r−
1
2 σ3 , λ inside D0,(

λ− λ1

λ− λ∗1

)−n/2
r

1
2 σ3 Tn(λ; x, t)e

it
2 σ3 E(λ)ei[θ̂(λ;x,t)−θ(λ;x,t)]σ3

×
(

λ− λ1

λ− λ∗1

)−n/2σ3
(

λ− i
λ + i

)−1/4rσ3

r−
1
2 σ3 , λ exterior to D0,

where θ̂(λ; x, t) := λ (x + λt) , r = ±1. And r = 1 represents the case c1 = c2; r = −1 corresponds to the
other case c1 = −c2. D0 is a big closed contour involving the spectra ±λ1,±i. Then the newly defined
matrix M[n](λ; x, t) satisfies the following RHP.

Riemann-Hilbert Problem 1. (KMB of order n-reformulation) Let (x, t) ∈ R2 be arbitrary parameters, and n ∈
Z>0. Then we can find a 2× 2 matrix function M[n](λ; x, t) with the following properties:

4



• Analyticity: M[n](λ; x, t) is analytic for λ ∈ C \ ∂D0. It takes the continuous boundary values from the
interior and exterior of ∂D0.
• Jump condition: The boundary values on the jump contour ∂D0 are related by

(12) M[n]
+ (λ; x, t) = M[n]

− (λ; x, t)e−iθ̂(λ;x,t)σ3

(
λ− λ1

λ− λ∗1

) n
2 σ3
(

λ− i
λ + i

) 1
4 rσ3

×Q−1
d

(
λ− i
λ + i

)− 1
4 rσ3

(
λ− λ1

λ− λ∗1

)− n
2 σ3

eiθ̂(λ;x,t)σ3 , λ ∈ ∂D0.

• Normalization: M[n](λ; x, t) = I +O(λ−1), as λ→ ∞.

The potential q[n](x, t) can be recovered with

(13) q[n](x, t) = 2ir lim
λ→∞

λM[n](λ; x, t)12.

The existence and uniqueness of above RHP can be proved by the Zhou’s vanishing lemma [28]. With
this RHP 1, we prepare to study the large-order asymptotics of KMBs in the far-field regime. Before dis-
cussing it, we first introduce a scale transformation of x and t such that they have the same order with the

factor
(

λ−λ1
λ−λ∗1

)± n
2 σ3

,

(14) x = nχ, t = nτ,

then the jump matrix in RHP 1 changes into

(15) M[n]
+ (λ; nχ, nτ) = M[n]

− (λ; nχ, nτ)e−inϑ(λ;χ,τ)σ3 Q−1
d einϑ(λ;χ,τ)σ3 , λ ∈ ∂D0,

where

(16) ϑ(λ; χ, τ) = λχ + λ2τ +
1
2

i log
(

λ− λ1

λ− λ∗1

)
+

ir
4n

log
(

λ− i
λ + i

)
.

Compared to the large-order solitons with single spectrum, there adds a factor ir
4n log

(
λ−i
λ+i

)
in the large-

order KMBs. When n→ ∞, this factor will vanish, but for the large-order asymptotics, these two solutions
have distinct behaviors. Next, we give several decompositions to this constant matrix Q−1

d :

(17)

Q−1
d =

[√
2

2 0
0
√

2

] [
1 0
− 1

2 1

] [
1 1
0 1

]
:= Q[1]

L Q[1]
C Q[1]

R , (“DLU”) ,

Q−1
d =

[√
2 0

0
√

2
2

] [
1 1

2
0 1

] [
1 0
−1 1

]
:= Q[2]

L Q[2]
C Q[2]

R , (“DUL”) ,

Q−1
d = Q[2]

L

[
1 − 1

2
0 1

] [
0 1
−1 0

] [
1 −1
0 1

]
:= Q[2]

L Q[3]
L Q[3]

C Q[3]
R , (“DUTU”) ,

Q−1
d = Q[1]

L

[
1 0
1
2 1

] [
0 1
−1 0

] [
1 0
1 1

]
:= Q[1]

L Q[4]
L Q[4]

C Q[4]
R , (“DLTL”) ,

which will be useful in the following analysis.
In this paper, we are focusing on the study of the large-order asymptotics of KMBs, without loss of

generality, we choose two types of parameters λ1 = 3
2 i, c1 = −c2 = 1, and λ1 = 2i, c1 = c2 = 1, and

give the density plots in Fig. 2. From these two figures, we can see that there are five different asymptotic
regions, which are called the genus-two region (g2 in Fig. 2), the genus-zero-up region (gu

0 in Fig. 2), the
genus-zero-down region (gd

0 in Fig. 2), the genus-zero-infinity region (g∞
0 in Fig. 2) and the algebraic-

decay region (A in Fig. 2). In the reference [4], the authors gave a detailed description for calculating the
boundaries between different regions. Similarly, we will give a brief description of the boundaries for the

5
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FIGURE 2. The boundary between different regions(left), the 20-th order KMBs by choos-
ing λ1 = 3

2 i, c1=− c2=1(middle), λ1 = 2i, c1=c2=1(right).

high-order KMBs. With the definition of ϑ(λ; χ, τ) in Eq.(16), for convenience, we set the spectral parameter
λ1 = αi(α > 1). The critical points of ϑ(λ; χ, τ) satisfy the following algebraic equation:

(18) 2n (χ + 2τλ)
(

λ2 + 1
) (

λ2 + α2
)
− λ2(r + 2αn)− α(αr + 2n) = 0.

If the discriminant of Eq.(18) about λ is greater than 0, the quintic polynomial Eq.(18) has at least three
real critical points, which corresponds to the algebraic-decay region. Next, we give the boundary between
g2 and g∞

0 regions, which is given by the condition = (ϑ(λ±)) = 0, where λ± are two critical points of
ϑ(λ; χ, τ). The rest of curves (Fig. 2) are the boundaries between gu

0 and gd
0 as well as g2, and the boundary

between gu
0 and g∞

0 , these two boundaries all depend on an algebraic curve of genus-zero. For these three
genus-zero regions, we need introduce a g-function [9] defined as
(19)

g′(λ) :=
R(λ)

2

(
ir

2n (λ− i) R(i)
− ir

2n(λ + i)R(−i)
+

i
(λ− ki)R(ki)

− i
(λ + ki)R(−ki)

+ 4τ

)
− ϑ′(λ; χ, τ),

where
g(λ) ≡ g(λ; χ, τ), R(λ) ≡ R(λ; χ, τ) =

√
(λ− a1(χ, τ))(λ− a∗1(χ, τ)).

At this time, the controlling phase term becomes h(λ) ≡ h(λ; χ, τ) := g(λ)+ϑ(λ; χ, τ) rather than ϑ(λ; χ, τ).
From g′(λ), we know that h′(λ) equals to

(20) h′(λ) =
R(λ)

2

(
ir

2n (λ−i) R(i)
− ir

2n(λ+i)R(−i)
+

i
(λ−ki)R(ki)

− i
(λ+ki)R(−ki)

+4τ

)
.

On the one hand, in the genus-zero-down region, h′(λ) should have at least two real roots such that the
singularities λ = ±αi, λ = ±i are all in a closed curve given by the =(h(λ)). As τ increases, these two real
roots coincide into one double root, then the variable (χ, τ) will transfer into the genus-zero-up region. On
the other hand, in the genus-zero-infinity region, h′(λ) has the real root and in the genus-zero-up region,
h′(λ) only has complex roots, thus the boundary between genus-zero-infinity region and the genus-zero-
up region satisfies the same condition. Moreover, similar to the boundary between g2 and g∞

0 regions, the
boundary between gu

0 and g2 regions satisfies the condition =
(
h(λ̂±)

)
, where λ̂± are the critical points of

h(λ). Then the boundaries given in Fig. 2 have been given completely. In the following, we would like to
derive the asymptotic expressions of high-order KMBs for the above mentioned five different regions.

2 The large-order asymptotics in the genus-two region
Firstly, we prepare to study the asymptotics in the genus-two region. Before studying it, we introduce a

g2(λ)-function satisfying the following RHP.

Riemann-Hilbert Problem 2. Let (χ, τ) ∈ R2, we can find a g2(λ) := g2(λ; χ, τ)-function with following
conditions.

6



• Analyticity: g2(λ) is analytic in C \ Σ±g2
∪ Σg ∪ Γ±g2

, where these arcs are to be determined, and it takes the
continuous boundary conditions from the left and right sides of each arc.
• Jump Condition: The jump conditions on these arcs are related by

(21)

g2,+(λ) + g2,−(λ) + 2ϑ(λ; χ, τ) = κ2, λ ∈ Σ±g2
,

g2,+(λ) + g2,−(λ) + ϑ+(λ; χ, τ) + ϑ−(λ; χ, τ) = l2, λ ∈ Σg,

g2,+(λ)− g2,−(λ) = v2, λ ∈ Γ±g2
.

• Normalization: As λ→ ∞, g2(λ) satisfies

(22) g2(λ)→ O(λ−1).

• Symmetry: g2(λ) satisfies the Schwartz symmetric condition,

(23) g2(λ) = g2(λ
∗)∗.

From the definition of phase term ϑ(λ; χ, τ) in Eq.(16), we differentiate g2(λ) with respect to λ to remove
the logarithm terms and the integral constants κ2, l2, v2 simultaneously, then we have

(24) g′2,+(λ) + g′2,−(λ) = −2χ− 4λτ − i
λ− λ1

+
i

λ− λ∗1
− ir

2n(λ− i)
+

ir
2n(λ + i)

, λ ∈ Σ±g2
∪ Σg.

To solve this scalar RHP, we introduce a square root function R2(λ) ≡ R2(λ; χ, τ) with the definition

(25) R2(λ) :=
√
(λ− a2)(λ− a∗2)(λ− b2)(λ− b∗2)(λ− d2)(λ− d∗2)

:=
√

λ6 − s1λ5 + s2λ4 − s3λ3 + s4λ2 − s5λ + s6,

the parameters a2, b2, d2 and si(i = 1, · · · , 6) have the following relationship,

(26)

s1 = 2 (a2R + b2R + d2R) , s2 = |a2|2 + |b2|2 + |d2|2 + 4 (a2Rb2R + a2Rd2R + b2Rd2R) ,

s3 = 2|a2|2 (b2R + d2R) + 2|b2|2 (a2R + d2R) + 2|d2|2 (a2R + b2R) + 8a2Rb2Rd2R,

s4 = |a2|2
(
|d2|2 + 4b2Rd2R

)
+ |b2|2

(
|a2|2 + 4a2Rd2R

)
+ |d2|2

(
|b2|2 + 4a2Rb2R

)
,

s5 = 2a2R|b2|2|d2|2 + 2b2R|a2|2|d2|2 + 2d2R|a2|2|b2|2, s6 = |a2|2|b2|2|d2|2,

where a2R, b2R, d2R are the real parts of a2, b2, d2 respectively. Divide g′2(λ) by the R2(λ) function, we have

(27)
(

g′2(λ)
R2(λ)

)
+
−
(

g′2(λ)
R2(λ)

)
−
=
−2χ− 4λτ − i

λ−λ1
+ i

λ−λ∗1
− ir

2n(λ−i) +
ir

2n(λ+i)

R2,+(λ)
.

With the Plemelj formula and the generalized residue theorem, g′2(λ) can be expressed into an explicit
formula:

(28)

g′2(λ) = R2(λ)

(
Res
s=λ

+ Res
s=λ1

+ Res
s=λ∗1

+ Res
s=∞

)−χ− 2sτ − i
2(s−λ1)

+ i
2(s−λ∗1)

− 1
4n

ir
(s−i) +

1
4n

ir
(s+i)

R2(s) (s− λ)


+ R2(λ)

(
Res
s=i

+ Res
s=−i

)−χ− 2sτ − i
2(s−λ1)

+ i
2(s−λ∗1)

− 1
4n

ir
(s−i) +

1
4n

ir
(s+i)

R2(s) (s− λ)


= R2(λ)

[
− i

2R2(λ1)(λ1 − λ)
+

i
2R2(λ∗1)(λ

∗
1 − λ)

− ir
4nR2(i)(i− λ)

+
ir

4nR2(−i)(−i− λ)

]
− χ− 2λτ − i

2
1

λ− λ1
+

i
2

1
λ− λ∗1

− ir
4n

1
λ− i

− ir
4n

1
λ + i

.

By adding the g2(λ)-function into the phase term ϑ(λ; χ, τ), the phase term can be modified as h2(λ) ≡
h2(λ; χ, τ) := g2(λ) + ϑ(λ; χ, τ), thus we have

(29) h′2(λ) = R2(λ)

[
− i

2R2(λ1)(λ1 − λ)
+

i
2R2(λ∗1)(λ

∗
1 − λ)

− ir
4nR2(i)(i− λ)

+
ir

4nR2(−i)(−i− λ)

]
.
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For fixed (χ, τ) in this region, there are six parameters si(i = 1, · · · , 6) to be determined. From the normal-
ization condition of g2(λ) at λ = ∞, we get four relations about these unknown parameters,

(30)

O(λ2) :
1

R2(λ1)
− 1

R2(λ∗1)
+

r
2nR2(i)

− r
2nR2(−i)

= 0,

O(λ) :
iλ1

R2(λ1)
− iλ∗1

R2(λ∗1)
− r

2nR2(i)
− r

2nR2(−i)
− 4τ = 0,

O(1) :
iλ2

1
R2(λ1)

− i(λ∗1)
2

R2(λ∗1)
− ir

2nR2(i)
+

ir
2nR2(−i)

− 2χ− 2τs1 = 0,

O(λ−1) :
iλ3

1
R2(λ1)

− i(λ∗1)
3

R2(λ∗1)
+

r
2nR2(i)

+
r

2nR2(−i)
+

1
2

(
4s2 − 3s2

1

)
τ − s1χ = 0.

From the first relation in Eq.(30), we have

(31)
1

R2(λ1)
=

1
R2(λ∗1)

− r
2nR2(i)

+
r

2nR2(−i)
.

Substituting the above relation into the second equation of Eq. (30), we get

(32)
1

R2(λ∗1)
=

2τ

−=(λ1)
− iλ1 + 1

4=(λ1)n
r

R2(i)
+

iλ1 − 1
4=(λ1)n

r
R2(−i)

.

Similarly, substitute Eq.(31) and Eq.(32) into the third equation and the fourth equation in Eq.(30), we have

(33)

1
R2(i)

= −nr
(
8|λ1|2 − 8<(λ1)s1 + 3s2

1 − 4s2 − 16<(λ1)i + 4is1
)

τ + (2s1 − 8<(λ1) + 4i) χ

2(i− λ1)(i− λ∗1)
,

1
R2(λ1)

=

(
4s2 − 3s2

1 + 4s1λ∗1 − 8
)

τ +
(
4λ∗1 − 2s1

)
χ

4(1 + λ2
1)=(λ1)

.

Separating the real and the imaginary parts of these two equations in Eq.(33), then we get four relations
about the unknown parameters si(i = 1, 2, · · · , 6). Moreover, substitute Eq.(33) into the Eq.(29), we get
(34)

h′2(λ)=R2(λ)
8τλ2+ (4χ+4s1τ−16<(λ1)τ) λ+8|λ1|2τ−8<(λ1)s1τ+3s2

1τ−4s2τ+8τ−8<(λ1)χ+2s1χ

4(λ− λ1)(λ− λ∗1)(λ
2 + 1)

.

Obviously, h′2(λ) has eight roots, six of which are the branch points and the remaining two are a pair of
conjugate complex roots. By integrating g′2(λ) function, we get the g2(λ) function, which is shown in
theorem 2.

Theorem 2. With the explicit formula of g′2(λ) in Eq.(28), the g2(λ)-function defined by

g2(λ) =
∫ λ

∞
g′2(s)ds

satisfies all the jump conditions in RHP 2, and the integrated constants can also be determined.

Proof. From the explicit formula g′2(λ) in Eq.(28), we know that g′2(λ) has the same branch cuts with R2(λ),
and the singularities λ = λ1, λ∗1 ,±i can be removed, thus it only has the jump discontinuity on the branch
cuts and satisfies the jump conditions in RHP 2. Choose one suitable integral path, these integrated con-
stants can be expressed as

(35) κ2 = 2
∫ a2

∞
g′2(s)ds + 2ϑ(a2; χ, τ), v2 = 2

∫ b2

a2

h′2(s)ds, l2 = κ2 + r
π

2n
+ 2

∫ d2

b2

h′2(s)ds.

�

To determine the unknown parameters si(i = 1, 2 · · · , 6), we impose these two integrals
∫ b2

a2
h′2(s)ds

and
∫ d2

b2
h′2(s)ds as real numbers. Combining the four normalization conditions in Eq.(30), we numerically

obtain these six unknown branch points. In Fig.2, we give two figures by choosing different spectra λ1 and
parameters c1, c2. Both of them have five asymptotic regions. To verify it, we will check the asymptotic
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solutions and the exact solutions by choosing the given λ1, c1, c2 in Fig.2 and setting (χ, τ) in the fixed
regions(shown by the green dashed line in Fig.2). In this genus-two region, we choose λ1 = 2i, c1 = c2 = 1,
which corresponds r = 1, under this parameters setting, we give the sign chart of =(h2(λ)) and the jump
contours for the following defined S1(λ; χ, τ) and T1(λ; χ, τ) in Fig. 3 by putting τ = 1

4 , χ = 1
5 .

Im(λ)

Re(λ)
-4

-3

-2

-1

0

1

2

3

4

L+
1,Σ R+

1,Σ Ω+
1 R+

1,Γ L+
1,Γ

Ω+

R+ L+

L−
1,Σ R−

1,Σ Ω−
1 R−

1,Γ L−
1,Γ

Ω−R− L−

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a2

b2

d2

a∗
2

b∗
2

d∗
2

•

•

•

•

Im(λ)

Re(λ)
-4

-3

-2
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0

1

2

3

4

C+
L1,Σ

Σ+
g2

C+
R1,Σ

Γ+
g2

C+
R1,Γ

C+
L1,Γ

Σg

C+
R C+

L

C−
L1,Σ

Σ−
g2

C−
R1,Σ

Γ−
g2

C−
R1,Γ

C−
L1,Γ

C−
R

C−
L

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a2

b2

d2

a∗
12

b∗
2

d∗
2

•

•

•

•

FIGURE 3. The sign chart of=(h2(λ; 1
4 , 1

5 )) in the genus-two region, where=(h2(λ; 1
4 , 1

5 )) >

0(unshaded) and =(h2(λ; 1
4 , 1

5 )) < 0(shaded). It should be noted that for this region, h′2(λ)
has no real roots, it is no longer possible to choose the branch cut Σg as the curve of
=(h2(λ)). We set Σg as arbitrary segments connecting the branch points of R2(λ). The
left one gives the jump contour for S1(λ; χ, τ) and the right panel is the corresponding
jump contour for T1(λ; χ, τ).

Next, we begin to deform this RHP 1. Set

(36) S1(λ; χ, τ) :=

{
M[n](λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q−1

d einϑ(λ;χ,τ)σ3 , λ ∈ D0 ∩
(

D+
1 ∪ D−1

)c ,

M[n](λ; χ, τ), otherwise,

where D±1 = R±1,Σ ∪ Ω±1 ∪ R±1,Γ ∪ R± ∪ Ω±, then the jump of S1(λ; χ, τ) transfers to ∂D±1 and Σg. Since
ϑ+(λ; χ, τ)− ϑ−(λ; χ, τ) = −r π

2n for λ ∈ Σg, the jumps of S1(λ; χ, τ) become

S1,+(λ; χ, τ) = S1,−(λ; χ, τ)e−inϑ−(λ;χ,τ)σ3

[
0 ir
ir 0

]
einϑ+(λ;χ,τ)σ3 , λ ∈ Σg,

S1,+(λ; χ, τ) = S1,−(λ; χ, τ)e−inϑ(λ;χ,τ)Q−1
d einϑ(λ;χ,τ), λ ∈ ∂D±1 .

(37)
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With the theory of nonlinear steepest-descent method, we continue to define the sectional analytic matrices
with the sign of =(h2(λ)). Define

(38)

T1(λ; χ, τ) : = S1(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[2]
R

)−1
einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ L+

1,Γ ∪ L+,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[2]
L e−inϑ(λ;χ,τ)σ3 Q[2]

C einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ R+
1,Γ ∪ R+,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[2]
L eing2(λ)σ3 , λ ∈ Ω+

1 ∪Ω,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[2]
L e−inϑ(λ;χ,τ)σ3 Q[3]

L einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ R+
1,Σ,

T1(λ; χ, τ) : = S1(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[3]
R

)−1
einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ L+

1,Σ,

T1(λ; χ, τ) : = S1(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[1]
R

)−1
einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ L−1,Γ ∪ L−,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[1]
L e−inϑ(λ;χ,τ)σ3 Q[1]

C einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ R−1,Γ ∪ R−,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[1]
L eing2(λ)σ3 , λ ∈ Ω−1 ∪Ω−,

T1(λ; χ, τ) : = S1(λ; χ, τ)Q[1]
L e−inϑ(λ;χ,τ)σ3 Q[4]

L einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ R−1,Σ,

T1(λ; χ, τ) : = S1(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[4]
R

)−1
einϑ(λ;χ,τ)σ3eing2(λ)σ3 , λ ∈ L−1,Σ,

T1(λ; χ, τ) : = S1(λ; χ, τ)eing2(λ)σ3 , otherwise.

Then the jump conditions of T1(λ; χ, τ) change into

(39)

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[2]
R einh2(λ)σ3 , λ ∈ C+

L1,Γ
∪ C+

L ,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[2]
C einh2(λ)σ3 , λ ∈ C+

R1,Γ
∪ C+

R ,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[3]
L einh2(λ)σ3 , λ ∈ C+

R1,Σ
,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[3]
R einh2(λ)σ3 , λ ∈ C+

L1,Σ
,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[1]
R einh2(λ)σ3 , λ ∈ C−L1,Γ

∪ C−L ,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[1]
C einh2(λ)σ3 , λ ∈ C−R1,Γ

∪ C−R ,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[4]
L einh2(λ)σ3 , λ ∈ C−R1,Σ

∪ C−R ,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)e−inh2(λ)σ3 Q[4]
R einh2(λ)σ3 , λ ∈ C−L1,Σ

,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)

[
0 e−inκ2

−einκ2 0

]
, λ ∈ Σ±g2

,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)

[
0 e−inl2+ir π

2

−einl2−ir π
2 0

]
, λ ∈ Σg,

T1,+(λ; χ, τ) = T1,−(λ; χ, τ)

[
einv2 0

0 e−inv2

]
, λ ∈ Γ±g2

.

From the sign chart of =(h2(λ)) in Fig. 3 and the definition in Eq.(17), when n is large, the jump matrices
will converge to the identity matrix exponentially except for the contours Σ±g2

∪ Σg ∪ Γ±g2
. Next, we will

construct the parametrix to give the asymptotic analysis in the genus-two region.

2.1 Parametrix construction for T1(λ; χ, τ)

From the jump conditions in Eq.(39), we construct the outer parametrix Ṫout
1 (λ; χ, τ) satisfying the fol-

lowing RHP.
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Riemann-Hilbert Problem 3. (RHP for the outer parametrix Ṫout
1 (λ; χ, τ)) Find a 2 × 2 matrix Ṫout

1 (λ; χ, τ)
satisfying the following conditions.

• Analyticity: Ṫout
1 (λ; χ, τ) is analytic in λ ∈ C \

(
Σ±g2
∪ Σg ∪ Γ±g2

)
.

• Jump condition: The boundary values on the contours
(

Σ±g2
∪ Σg ∪ Γ±g2

)
are related by Ṫout

1,+(λ; χ, τ) =

Ṫout
1,−(λ; χ, τ)VṪout

1
(λ; χ, τ), where VṪout

1
(λ; χ, τ) is

(40) VṪout
1
(λ; χ, τ) =



[
0 e−inκ2

−einκ2 0

]
, λ ∈ Σ±g2

,[
0 e−inl2+ir π

2

−einl2−ir π
2 0

]
, λ ∈ Σg,[

einv2 0
0 e−inv2

]
, λ ∈ Γ±g2

.

• Normalization: Ṫout
1 (λ; χ, τ)→ I as λ→ ∞.

To solve this RHP, we introduce a scalar function F(λ; χ, τ) with the following conditions,

(41)

F+(λ; χ, τ) + F−(λ; χ, τ) = inκ2, λ ∈ Σ±g2
,

F+(λ; χ, τ) + F−(λ; χ, τ) = inl2 − ir
π

2
, λ ∈ Σg,

F+(λ; χ, τ)− F−(λ; χ, τ) = inv2, λ ∈ Γ±g2
.

With the Plemelj formula, F(λ; χ, τ) can be expressed into an integral form,

(42) F(λ; χ, τ) =
R2(λ)

2πi

[ ∫
Σ±g2

inκ2

R2(ξ)(ξ − λ)
dξ +

∫
Σg

inl2 − ir π
2

R2(ξ)(ξ − λ)
dξ +

∫
Γ±g2

inv2

R2(ξ)(ξ − λ)
dξ

]
.

When λ→ ∞, we easily get the following expansion formula,

(43) F(λ; χ, τ) = F2λ2 + F1λ + F0 +O(λ−1),

where

(44)

F2 = − 1
2πi

(∫
Σ±g2

inκ2

R2(ξ)
dξ +

∫
Σg

inl2 − ir π
2

R2(ξ)
dξ +

∫
Γ±g2

inv2

R2(ξ)
dξ

)
,

F1 = − 1
2πi

(∫
Σ±g2

inκ2

R2(ξ)
ξdξ+

∫
Σg

inl2−ir π
2

R2(ξ)
ξdξ+

∫
Γ±g2

inv2

R2(ξ)
ξdξ

)
− s1

2
F2,

F0 = − 1
2πi

(∫
Σ±g2

inκ2

R2(ξ)
ξ2dξ+

∫
Σg

inl2−ir π
2

R2(ξ)
ξ2dξ+

∫
Γ±g2

inv2

R2(ξ)
ξ2dξ

)
− s1

2
F1 +

(
s2

2
− 3s2

1
8

)
F2.

Based on the definition of this scalar function F(λ; χ, τ), we redefine a new matrix O1(λ; χ, τ),

(45) O1(λ; χ, τ) = diag
(

eF0 , e−F0
)

Ṫout
1 (λ; χ, τ)diag

(
e−F(λ;χ,τ), eF(λ;χ,τ)

)
.

It is clear that O1(λ; χ, τ) satisfies a simple constant jump condition at λ ∈ Σ±g2
∪ Σg,

(46) O1,+(λ; χ, τ) = O1,−(λ; χ, τ)(iσ2), λ ∈ Σ±g2
∪ Σg.

When λ→ ∞, O1(λ; χ, τ) has the following normalization condition,

(47) O1(λ; χ, τ)diag
(

eF1λ+F2λ2
, e−F1λ−F2λ2

)
→ I as λ→ ∞.

Before solving this RHP, we give the definition of the Riemann-Theta function.
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Definition 1. The Θ(u) function is defined as [3]

(48) Θ(u) ≡ Θ(u; B) := ∑
m∈Zg

e
1
2 〈m,Bm〉+〈m,u〉,

where B is a period matrix, and Θ(u) function has the following periodic properties,

(49) Θ(u + 2πiej) = Θ(u), Θ(u + Bej) = e−
1
2 Bjj−uj Θ(u),

where ejs are the unit basis vectors in Cg with the coordinates (ej)k = δjk, and Bejs indicate the j−th column of the
period matrix B.

The square root function R2(λ) in Eq.(25) is related to a genus-two Riemann surface, and we give a
homology basis for it in Fig.4.

α
1

α
2

β
1

β
2

a
2

b
2

d
2

d ∗2b ∗2

a ∗2

FIGURE 4. Homology basis for the Riemann surface of genus-two. The solid paths indicate
the first sheet and the dashed lines lie in the second sheet.

Now, we introduce the Abel integrals for the genus-two region,

(50) ωj(λ) =
∫ λ

a∗2
ψj(ξ)dξ, j = 1, 2, ψj(ξ) :=

2
∑

i=1
cjiξ

2−i

R2(ξ)
.

The coefficients cjis can be uniquely determined by the following conditions,

(51)
∫

αl

dωj(P) = 2πiδjl , (j, l = 1, 2),

where dωj(P) is a holomorphic differential on the Riemann surface. On the basis of ωj(λ)(j = 1, 2), we can
calculate the period B matrix,

(52) Bjl =
∫

βl

dωj(P), (j, l = 1, 2),

which is a symmetric matrix, and its real part is negative definite. Then we can define the Abel mapping
from the Riemann surface χχχ to its Jacobian variety Jac{χχχ} = C2/Λ, A : χχχ→ Jac{χχχ},

(53) Aj(P) =
∫ P
P0

dωj(Q), j = 1, 2,

where Λ is the lattice defined by

(54) Λ = {2πiN + BM, N, M ∈ Z2},
and the pointP0 is given from the base point a∗2 satisfying the condition π(P0) = a∗2 andQ is the integration
variable. With the definition of Abel mapping A, for the integral divisors D = P1 + P2, we have the
following identity relationship

(55) A(D) = A(P1) + A(P2).
12



For λ in the branch cuts or the gaps (shown in the blue and red lines in Fig.3), the Abel integrals A(λ)
satisfies the following conditions,

(56)

A+(λ)−A−(λ) = 0 mod 2πiZ2, λ ∈ (b∗2 , d∗2) ∪ (b2, d2) ,

A+(λ) + A−(λ) = Be1 mod 2πiZ2, λ ∈ (d∗2 , d2) ,

A+(λ) + A−(λ) = Be2 mod 2πiZ3, λ ∈ (b2, a2) .

Next, we will introduce another Abel integrals with the singularities at the point P∞+ ,

(57)
Ωj(λ) =

∫ λ

a∗2
Ψj(ξ)dξ, j = 1, 2, Ψj(ξ) =

5
∑

i=1
sjiξ

5−i

R2(ξ)
,

these Abel integrals satisfy the following normalization condition,

(58)
Ω1(λ)→ λ +O(1), Ω2(λ)→ λ2 +O(1), P→ P∞+ ,∫

αl

dΩj(P) = 0, j, l = 1, 2,

which can determine the unknown coefficients sjis uniquely. For these Abel integrals, the corresponding
“B” matrix by integrating around the β circles can be given as,

(59) Uj =
∫

β j

dΩ1(P), Vj =
∫

β j

dΩ2(P), j = 1, 2.

Based on the normalization conditions of Ωj(λ)(j = 1, 2), we get some important properties when λ→ ∞,
one useful property for us is that the limits Jj (j = 1, 2) defined as

(60) J1 := lim
λ→∞

∫ λ

a∗2
dΩ1(P)− λ, J2 := lim

λ→∞

∫ λ

a∗2
dΩ2(P)− λ2

are existent.
Before solving the RHP for the matrix O1(λ; χ, τ), we now introduce an auxiliary matrix P1(λ; χ, τ)

defined as

(61) P1(λ; χ, τ) :=

Θ(A(λ)+d−UUUF1−VVVF2)
Θ(A(λ)+d)

Θ(A(λ)−d+UUUF1+VVVF2)
Θ(A(λ)−d)

Θ(A(λ)−d−UUUF1−VVVF2)
Θ(A(λ)−d)

Θ(A(λ)+d+UUUF1+VVVF2)
Θ(A(λ)+d)

 e−(Ω1(λ)F1+Ω2(λ)F2)σ3 .

With the properties of Theta function and the Abel integrals, the matrix function P1(λ; χ, τ) satisfies the
following jump conditions,

(62) P1,+(λ; χ, τ) = P1,−(λ; χ, τ)

[
0 1
1 0

]
, λ ∈ Σ±g2

∪ Σg.

By using P1(λ; χ, τ), we can construct the solutions to O1(λ; χ, τ), that is

(63) O1(λ; χ, τ) :=
1
2

diag (C1, C2)

 (
γ(λ) + 1

γ(λ)

)
P1(λ; χ, τ)11 i

(
γ(λ)− 1

γ(λ)

)
P1(λ; χ, τ)12

−i
(

γ(λ)− 1
γ(λ)

)
P1(λ; χ, τ)21

(
γ(λ) + 1

γ(λ)

)
P1(λ; χ, τ)22

 ,

where C1 and C2 are two constants determined from the normalization condition in Eq.(47),

(64)
C1 =

Θ (A(∞) + d)
Θ (A(∞) + d−UUUF1 −VVVF2)

eJ1F1+J2F2 ,

C2 =
Θ (A(∞) + d)

Θ (A(∞) + d +UUUF1 +VVVF2)
e−J1F1−J2F2 ,

and γ(λ) =
(
(λ−a∗2)(λ−b2)(λ−d∗2)
(λ−a2)(λ−b∗2 )(λ−d2)

) 1
4 satisfies γ+ = −iγ−. Suppose γ − 1

γ has two zeros P1,P2 at the first
sheet Riemann surface. Then the constant matrix d can be given by the following formula,

(65) d = A (D) + K,
13



where K is the Riemann-Theta constant vector[3, 16], defined as

(66) Kj =
2πi + Bjj

2
− 1

2πi

2

∑
l=1,l 6=j

∫
αl

(∫ Q
P0

ωj

)
ωl(j = 1, 2).

The integral formula seems much more complicated, but in our hyperelliptic case, the entries Kjs are also
equal to another simple formula,

(67) Kj =
1
2

2

∑
l=1

Bl j + πi (j− 2) .

Then the outer parametrix Ṫout
1 (λ; χ, τ) is constructed completely. We hope that the outer parametrix can

match T1(λ; χ, τ) very well, but unfortunately, the outer parametrix has singularities at the branch points
a2, b2, d2, a∗2 , b∗2 , d∗2 . Thus we should construct the inner parametrices at the neighbourhood of these points.
In Refs.[5, 8] and our previous article[19], there is a detailed calculation for constructing the inner paramet-
rices, and the results show that these inner parametrices are related to the Airy function, and the error is
O(n−1). In this paper, we omit the details and only give some notations. Then the global parametrix for
T1(λ; χ, τ) is written as

(68) Ṫ1(λ; χ, τ) :=



Ṫa2
1 (λ; χ, τ), λ ∈ Da2(δ),

Ṫa∗2
1 (λ; χ, τ), λ ∈ Da∗2 (δ),

Ṫb2
1 (λ; χ, τ), λ ∈ Db2(δ),

Ṫb∗2
1 (λ; χ, τ), λ ∈ Db∗2 (δ),

Ṫd2
1 (λ; χ, τ), λ ∈ Dd2(δ),

Ṫd∗2
1 (λ; χ, τ), λ ∈ Dd∗2 (δ),

Ṫout
1 (λ; χ, τ), λ ∈ C \

(
Da2,a∗2 ,b2,b∗2 ,d2,d∗2 (δ) ∪ Σ±g2

∪ Σg ∪ Γ±g2

)
.

Then we will analyze the error between T1(λ; χ, τ) and its parametrix Ṫ1(λ; χ, τ) in the next subsection.

2.2 Error analysis

To study the error, we set the error function E1(λ; χ, τ) between T1(λ; χ, τ) and Ṫ1(λ; χ, τ) as

(69) E1(λ; χ, τ) := T1(λ; χ, τ)
(
Ṫ1(λ; χ, τ)

)−1 .

Set the jump matrix for the error function E1(λ; χ, τ) as VE1(λ; χ, τ). In our previous work [19], we have
given a detailed analysis for the error estimation. Following that result, we present the order of the error
estimation,

(70)
‖VE1(λ; χ, τ)− I‖ = O

(
e−µ1n) (µ1 > 0), λ ∈ C±L1,Σ

∪ C±R1,Σ
∪ C±R1,Γ

∪ C±L1,Γ
∪ C±R ∪ C±L ,

‖VE1(λ; χ, τ)− I‖ = O(n−1), λ ∈ ∂Da2,a∗2 ,b2,b∗2 ,d2,d∗2 (δ).

Finally, we can recover the potential function q[n](nχ, nτ) from T1(λ; χ, τ)

(71)

q[n](nχ, nτ) = 2ir lim
λ→∞

λT1(λ; χ, τ)12

= 2ir lim
λ→∞

λ
(
E1(λ; χ, τ)Ṫout

1 (λ; χ, τ)
)

12

= 2ir lim
λ→∞

λ
(
E1,11(λ; χ, τ)Ṫout

1,12(λ; χ, τ) + E1,12(λ; χ, τ)Ṫout
1,22(λ; χ, τ)

)
= 2ir lim

λ→∞
λṪout

1,12(λ; χ, τ) +O(n−1).

14



Substituting Ṫout
1 (λ; χ, τ) into Eq.(71), then the asymptotic expression for the genus-two region is,

(72) q[n](nχ, nτ) = r
Θ (A(∞) + d)

Θ (A(∞) + d−UUUF1 −VVVF2)

Θ (A(∞)− d +UUUF1 +VVVF2)

Θ (A(∞)− d)

× i (=(b2)−=(a2)−=(d2)) e2F1 J1+2F2 J2−2F0 +O(n−1).

With this expression, we check the asymptotic solution and the exact solution by choosing τ = 1
4 , c1 = c2 =

1 in Fig.5.
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FIGURE 5. The comparison between the exact solution (20-th order KMBs) and the asymp-
totics in genus-two region by choosing τ = 1

4 (as shown in the green dashed line in the
right panel in Fig. 2), c1 = c2 = 1. The left one is the modulus q[n](nχ, nτ), the middle is
the real part, and the right is the imaginary part. It is seen that they are fitting very well.

3 Genus-zero-infinity and genus-zero-up regions
In the last section, we have obtained the asymptotic expression in the genus-two region. And we check

the asymptotics by choosing a group of parameters λ1 = 2i, c1 = c2 = 1, τ = 1
4 . For the rest of regions, we

will choose another group of parameters λ1 = 3
2 i, c1 = −c2 = 1, to verify their asymptotics numerically.

In this section, we first analyze the asymptotics in the genus-zero-infinity region(g∞
0 in Fig.2). For the

large-order asymptotics of high-order solitons in the exponent-decay region [5], the leading order term
exponentially decays to the zero background, in which the leading order term can be derived directly.
However, the leading order term in the genus-zero-infinity region will approach to the background wave
q[n](nχ, nτ)→ einτ . Thus the corresponding asymptotic analysis for both two kinds of regions are different.

For the high-order KMBs, there appears a new factor ir
4n

(
λ−i
λ+i

)1/4
in the phase term ϑ(λ; χ, τ), which brings

a new branch cut in the vertical segment Σc = [−i, i]. Thus, the previous method in studying the large-
order asymptotics of solitons can not apply to KMBs, and we need new skills to deal with this branch cut.
A frequently-used way is to introduce a proper g-function. To this end, we give a RHP for the g1(λ; χ, τ)-
function in this section.

Riemann-Hilbert Problem 4. Let (χ, τ) ∈ R2, we can find a g1(λ) := g1(λ; χ, τ)-function satisfying the follow-
ing conditions:

• Analyticity: g1(λ) is analytic in C \ Σg1 , where Σg1 is a branch cut to be determined, and it takes the
continuous boundary conditions from the left and right sides of Σg1 .
• Jump Condition: The boundary values on the jump contour Σg1 are related by

(73) g1,+(λ) + g1,−(λ) + ϑ+(λ; χ, τ) + ϑ−(λ; χ, τ) = κ1, λ ∈ Σg1 .

• Normalization: As λ→ ∞, g1(λ) satisfies

(74) g1(λ)→ O(λ−1).
15



• Symmetry: g1(λ) satisfies the Schwartz symmetric condition:

(75) g1(λ) = g∗1(λ
∗).

For this case, we still analyze its derivative to λ and eliminate these two logarithmic terms and the
integral constant κ1. When λ ∈ Σg1 , we have

(76) g′1,+(λ) + g′1,−(λ) = −2χ− 4λτ − i
λ− λ1

+
i

λ− λ∗1
− 1

2n
ir

λ− i
+

1
2n

ir
λ + i

.

Similarly, we can introduce a square root function R1(λ) ≡ R1(λ; χ, τ) with the definition

(77) R1(λ) :=
√
(λ− a1)(λ− a∗1), a1 ≡ a1(χ, τ),

then g′1(λ)
R1(λ)

satisfies the relation

(78)
(

g′1(λ)
R1(λ)

)
+
−
(

g′1(λ)
R1(λ)

)
−
=
−2χ− 4λτ − i

λ−λ1
+ i

λ−λ∗1
− 1

2n
ir

λ−i +
1

2n
ir

λ+i

R1(λ)+
,

which can also be solved by the Plemelj formula,

(79) g′1(λ) =
R1(λ)

2πi

∫
Σg1

−2χ− 4sτ − i
s−λ1

+ i
s−λ∗1

− 1
2n

ir
s−i +

1
2n

ir
s+i

R1(s)(s− λ)
ds.

With the generalized residue theorem, g′1(λ) can be given as an explicit formula:

(80)

g′1(λ) = R1(λ)

(
Res
s=λ

+ Res
s=λ1

+ Res
s=λ∗1

+ Res
s=∞

)−χ− 2sτ − i
2(s−λ1)

+ i
2(s−λ∗1)

− 1
4n

ir
(s−i) +

1
4n

ir
(s+i)

R1(s) (s− λ)


+ R1(λ)

(
Res
s=i

+ Res
s=−i

)−χ− 2sτ − i
2(s−λ1)

+ i
2(s−λ∗1)

− 1
4n

ir
(s−i) +

1
4n

ir
(s+i)

R1(s) (s− λ)


= R1(λ)

[
− i

2R1(λ1)(λ1 − λ)
+

i
2R1(λ

∗
1)(λ

∗
1 − λ)

− ir
4nR1(i)(i− λ)

+
ir

4nR1(−i)(−i− λ)
+2τ

]
− χ− 2λτ − i

2
1

λ− λ1
+

i
2

1
λ− λ∗1

− ir
4n

1
λ− i

− ir
4n

1
λ + i

.

Moreover, the phase term will be modified as h1(λ) ≡ h1(λ; χ, τ) := g1(λ) + ϑ(λ; χ, τ), thus we have

(81) h′1(λ) = R1(λ)

[
− i

2R1(λ1)(λ1 − λ)
+

i
2R1(λ

∗
1)(λ

∗
1 − λ)

− ir
4nR1(i)(i− λ)

+
ir

4nR1(−i)(−i− λ)
+2τ

]
.

Compared to the formula of g′2(λ) in Eq.(28), g′1(λ) seems similar by replacing R2(λ) with R1(λ), which
only adds an additional factor 2R1(λ)τ. But the asymptotics for these two regions are different due to the
difference between R1(λ) and R2(λ). In the genus-two region, the normalization condition of g(λ) at λ = ∞
produces four conditions to the parameters si(i = 1, · · · , 6). While in the genus-zero region, we have only
two parameters to de determined, the real and imaginary parts of a1. The normalization condition of g′1(λ)
in the large-λ expansion can derive two relations about these two parameters, and we do not need other
conditions anymore,

(82)

O(1) : χ + 2τ<(a1)−
i

2R1(λ1)
+

i
2R1(λ

∗
1)
− ir

4nR1(i)
+

ir
4nR1(i)

= 0,

O(λ−1) :
iλ∗1

2R1(λ
∗
1)
− iλ1

2R1(λ1)
+

r
4nR1(i)

+
r

4nR1(−i)
+ 2<(a1)

2τ −=(a1)
2τ +<(a1)χ = 0.

Then we can calculate the unknown parameters numerically. In this region, h′1(λ) has real root. By choosing
proper (χ, τ) in this region, we give the sign chart of =(h1(λ)) in Fig. 6.

For (χ, τ) in the genus-zero-up region, the definition of g1(λ)-function is similar with the genus-zero-
infinity region. But in the genus-zero-up region, h′1(λ) has no real roots, thus the jump contour of =(h1(λ))

16
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FIGURE 6. The sign chart of =(h1(λ; 7
10 , 1

200 )) in the genus-zero-infinity region, where
=(h1(λ; 7

10 , 1
200 )) > 0(unshaded) and =(h1(λ; 7

10 , 1
200 )) < 0(shaded). The left one gives

the original contour for S2(λ; χ, τ), and the right panel is the corresponding jump contour
for T2(λ; χ, τ).

has a slight difference with the genus-zero-infinity region. We omit the details for the genus-zero-up region
and only give the sign chart of =(h1(λ)) by choosing one fixed (χ, τ) in Fig.7.

Im(λ)

Re(λ)

Ω+
2R+

2

L+
2

Ω−
2

R−
2

L−
2

-3

-2.25

-1.5

-0.75

0

0.75

1.5

2.25

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a1

a∗
1

•

•

•

•

Im(λ)

Re(λ)

C+
R2

C+
L2

C−
R2

C−
L2

Σg1

-3

-2.25

-1.5

-0.75

0

0.75

1.5

2.25

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a1

a∗
1

•

•

•

•

FIGURE 7. The sign chart of =(h1(λ; 1
5 , 28

100 )) in the genus-zero-up region, where
=(h1(λ; 1

5 , 28
100 )) > 0(unshaded) and =(h1(λ; 1

5 , 28
100 )) < 0(shaded). The cut Σg1 is chosen

as arbitrary segments connecting the branch points of R1(λ). The left one gives the jump
contour for S2(λ; χ, τ), and the right panel is the corresponding jump contour for
T2(λ; χ, τ).
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With the sign of =(h1(λ)) in Fig.6 and Fig.7, we can analyze the asymptotics for the genus-zero-infinity
region and genus-zero-up region together via the nonlinear steepest-descent method. Similarly, set

(83) S2(λ; χ, τ) :=

{
M[n](λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q−1

d einϑ(λ;χ,τ)σ3 , λ ∈ D0 ∩
(

D+
2 ∪ D−2

)c ,

M[n](λ; χ, τ), otherwise,

where D±2 = Ω±2 ∪ R±2 . Then the jump curves of S2(λ; χ, τ) transfer into ∂D±2 and the contour Σg1 . That is

S2,+(λ; χ, τ) = S2,−(λ; χ, τ)e−inϑ−(λ;χ,τ)σ3

[
0 ir
ir 0

]
einϑ+(λ;χ,τ)σ3 , λ ∈ Σg1 ,

S2,+(λ; χ, τ) = S2,−(λ; χ, τ)e−inϑ(λ;χ,τ)Q−1
d einϑ(λ;χ,τ), λ ∈ ∂D±2 .

(84)

In the regions Ω±2 , R±2 and L±2 , we define a similar matrix T2(λ; χ, τ) as T1(λ; χ, τ) in the regions Ω±, R±

and L± in Eq.(38) by replacing g2(λ) with g1(λ) respectively. As a result, when n is large, the primary jump
condition of T2(λ; χ, τ) changes into

(85) T2,+(λ; χ, τ) = T2,−(λ; χ, τ)

[
0 ire−inκ1

ireinκ1 0

]
, λ ∈ Σg1 .

And other jump conditions will decay to the identity matrix exponentially. Next, we will give the parametrix
construction for T2(λ; χ, τ) in the following subsection.

3.1 Parametrix construction

Similar to the analysis in the genus-two region, we first give an outer parametrix Ṫout
2 (λ; χ, τ) satisfying

the same jump conditions for λ ∈ Σg1 . By the Plemelj formula, the outer parametrix can be given as

(86) Ṫout
2 (λ; χ, τ) = e

−inκ1
2 σ3 Qd

(
λ− a1

λ− a∗1

) 1
4 rσ3

Q−1
d e

inκ1
2 σ3 , λ ∈ Σg1 .

It can be seen that the outer parametrix has two singularities at λ = a1, λ = a∗1 , thus we should consider the
local analysis at these two points. Set the inner parametrices as

(87)
Ṫa1

2 (λ; χ, τ), λ ∈ Da1(δ),

Ṫa∗1
2 (λ; χ, τ), λ ∈ Da∗1

(δ),

based on the result in [8], in the neighbourhood of λ = a1 and λ = a∗1 , the inner parametrices Ṫa1
2 (λ; χ, τ)

and Ṫa∗1
2 (λ; χ, τ) are related to the Airy function, and we have an error estimation of Ṫa1

2 (λ; χ, τ), Ṫa∗1
2 (λ; χ, τ)

and Ṫout
2 (λ; χ, τ)

(88)
‖Ṫa1

2 (λ; χ, τ)
(
Ṫout

2 (λ; χ, τ)
)−1 ‖ = O(n−1),

‖Ṫa∗1
2 (λ; χ, τ)

(
Ṫout

2 (λ; χ, τ)
)−1 ‖ = O(n−1).

Then the global parametrix can be defined by

(89) Ṫ2(λ; χ, τ) :=


Ṫa1

2 (λ; χ, τ), λ ∈ Da1(δ),

Ṫa∗1
2 (λ; χ, τ), λ ∈ Da∗1

(δ),

Ṫout
2 (λ; χ, τ), λ ∈ C \

(
Da1(δ) ∪ Da∗1

(δ) ∪ Σg1

)
.

Next, we can give the error analysis between T2(λ; χ, τ) and its parametrix Ṫ2(λ; χ, τ), define

(90) E2(λ; χ, τ) := T2(λ; χ, τ)
(
Ṫ2(λ; χ, τ)

)−1 ,

then the solution q[n](nχ, nτ) can be given in Eq.(91)

(91) q[n](nχ, nτ) = =(a1)e−inκ1 +O(n−1).
18



Remark 3. In the genus-zero-infinity and genus-zero-up regions, if the branch point a1 is close to i, the asymptotic
expression Eq.(91) will tend to the background solution q = eit. Indeed, this result can also be obtained from the jump
condition (73) in the RHP4. With the Plemelj formula, we have

(92) g1(λ) =
R1(λ)

2πi

∫
Σg1

κ1 − ϑ+(ξ; χ, τ)− ϑ−(ξ; χ, τ)

R1(ξ)(ξ − λ)
dξ.

From the normalization of g1(λ) as λ→ ∞, we get an identity,

(93)
∫

Σg1

κ1

R1(ξ)
dξ =

∫
Σg1

ϑ+(ξ; χ, τ) + ϑ−(ξ; χ, τ)

R1(ξ)
dξ.

With the aid of the generalized residue theorem, the integration constant κ1 can be represented by

(94) κ1 = (2<(a1)
2 −=(a1)

2)τ + 2<(a1)χ + i
∫ a∗1

−2i

1
R1(ξ)

dξ + i
∫ 2i

a1

1
R1(ξ)

dξ.

If a1 → i, the last two integrals in Eq.(94) vanish, then κ1 → −τ. Plugging it into the asymptotic expression (91),
we get q[n](nχ, nτ)→ einτ = eit.

By choosing proper parameters in these two regions, we compare the exact and the asymptotic solutions
in Fig.8 and Fig.9.
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FIGURE 8. The comparison between the exact solution (20-th order KMBs) and its asymp-
totic solution in the algebraic-decay region(as show by the alphabet A) and the genus-zero-
infinity region(as shown by g∞

0 ) by choosing τ = 1
200 (as shown by the green dashed line in

the middle panel in Fig. 2), c1 = −c2 = 1. The left one is the modulus of q[n](nχ, nτ), the
middle and right panels show the real and imaginary parts of q[n](nχ, nτ) respectively.

4 Genus-zero-down region
In this section, we continue to study the asymptotics in the genus-zero-down region. For the asymptotics

of KMBs, we present three types of genus-zero regions, the genus-zero-infinity region, the genus-zero-up
region and the genus-zero-down region. In the last section, we have studied two of them. Now we give the
analysis for the genus-zero-down region. Similar with the asymptotics in the other two genus-zero regions,
we also need an auxiliary g-function(this g-function is set as g0(λ) := g0(λ; χ, τ)), which has a similar
formula with g1(λ) in RHP 4. But the jump contour of =(h0(λ) ≡ h0(λ; χ, τ) := g0(λ) + ϑ(λ; χ, τ)) in this
region is very different. In the above discussion, the branch cut [−i, i] contains two parts, one coincides with
the cut of g1(λ)-function, and the other one connects the branch point a1 and i as well as a∗1 and −i. But in
this region, the branch cut [−i, i] is in a closed region and the cut for the corresponding g0(λ)-function is
independent of the cut [−i, i]. Thus the RHP for g0(λ)-function is the same as g1(λ)-function by replacing
ϑ±(λ; χ, τ) with ϑ(λ; χ, τ), the integration constant κ1 is replaced with κ0. Moreover, we introduce the root

function R0(λ) ≡ R0(λ; χ, τ) :=
√
(λ− a0)(λ− a∗0) to replace R1(λ). By choosing one proper χ and τ in

this region, we give the sign chart of =(h0(λ)) in Fig.10.
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FIGURE 9. The comparison between the exact solution (20-th order KMBs) and the asymp-
totics in the genus-zero-up region by choosing τ = 28

100 (as shown by the green dashed line
in the middle panel in Fig. 2), c1 = −c2 = 1. The left one is the modulus of q[n](nχ, nτ),
the middle and right panels show the real and imaginary parts of q[n](nχ, nτ) respectively.

Im(λ)

Re(λ)

L+
3,Σ R+

3,Σ Ω+
3

R+
3,Γ

L+
3,Γ

L−
3,Σ R−

3,Σ Ω−
3

R−
3,Γ L−

3,Γ

a0

a∗
0

b0 c0

-3

-2.25

-1.5

-0.75

0

0.75

1.5

2.25

3

-3 -2.25 -1.5 -0.75 0 0.75 1.5 2.25 3

•
•

•
•

Im(λ)

Re(λ)

C+
L3,Σ

Σ+
g0

C+
R3,Σ

C+
R3,Γ

C+
L3,Γ

I

C−
L3,Σ

Σ−
g0

C−
R3,Σ

C−
R3,Γ C−

L3,Γ

a0

a∗
0

b0 c0

-3

-2.25

-1.5

-0.75

0

0.75

1.5

2.25

3

-3 -2.25 -1.5 -0.75 0 0.75 1.5 2.25 3

•
•

•
•

FIGURE 10. The sign chart of =(h0(λ; 1
5 , 1

10 )) in the genus-zero-down region, where
=(h0(λ; 1

5 , 1
10 )) > 0(unshaded) and =(h0(λ; 1

5 , 1
10 )) < 0(shaded). The left one gives the

original jump contour for S3(λ; χ, τ), and the right one is the corresponding jump contour
after deformation.

Then we can define a similar sectional holomorphic function S3(λ; χ, τ) as Eq.(36),

(95) S3(λ; χ, τ) :=

{
M[n](λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q−1

d einϑ(λ;χ,τ)σ3 , λ ∈ D0 ∩
(

D+
3 ∪ D−3

)c ,

M[n](λ; χ, τ), otherwise,

where D±3 = R±3,Σ ∪Ω±3 ∪ R±3,Γ. Since ϑ(λ) has no cut at Σ±g0
, the jump conditions between S3(λ; χ, τ) and

S2(λ; χ, τ) have a little difference, in this case, we have

(96) S3,+(λ; χ, τ) = S3,−(λ; χ, τ)e−inϑ(λ;χ,τ)Q−1
d einϑ(λ;χ,τ), λ ∈ ∂D±3 .

Next, in the regions L±3,Σ, R±3,Σ, Ω±3 , R±3,Γ, L±3,Γ, define a similar matrix T3(λ; χ, τ) as T1(λ; χ, τ) in Eq.(38) in
the corresponding regions L±1,Σ, R±1,Σ, Ω±1 , R±1,Γ, L±1,Γ by replacing g2(λ) with g0(λ). Then the primary jump
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conditions for T3(λ; χ, τ) are,

(97)
T3,+(λ; χ, τ) = T3,−(λ; χ, τ)

[
0 e−inκ0

−einκ0 0

]
, λ ∈ Σ±g0

,

T3,+(λ; χ, τ) = T3,−(λ; χ, τ)2σ3 , λ ∈ I.

Next we will give the parametrix construction for T3(λ; χ, τ).

4.1 Parametrix construction for T3(λ; χ, τ)

In our previous work [19], we analyzed the large-order asymptotics of breathers for the NLS equation,
which is constructed from two solitons on the vanishing background with the same velocity. The phase
terms between these two breathers are different, but for this genus-zero region, the jump contour of the
=(h0(λ)) is very similar because the singularities appearing in the phase terms are all in a closed contour.
As a result, after the deformation of contours, the jump conditions given in Eq. (97) are similar to the last
jump conditions in the reference [19] Eq.(77). Therefore, the parametrix construction will also be similar. In
the work [19], we presented a detailed analysis for the parametrix construction. Thus we only give a brief
statement in this work,. From the constant jump matrices when λ ∈ Σ±g0

and λ ∈ I, the outer parametrix
Ṫout

3 (λ; χ, τ) can be given as

(98) Ṫout
3 (λ) := K3(λ)

(
λ− b0

λ− c0

)ipσ3

, p =
log (2)

2π
, λ ∈ C \

(
Σ±g0
∪ I
)

,

where K3(λ) ≡ K3(λ; χ, τ) equals to

(99) K3(λ) = e−
iπ
4 σ3e

2ik3(∞)−inκ0
2 σ3 Qd

(
λ− a0

λ− a∗0

) 1
4 σ3

Q−1
d e

inκ0−2ik3(∞)
2 σ3e

iπ
4 σ3e−(ik3(λ)−ik3(∞))σ3 ,

and k3(λ) is defined as

(100) k3(λ) = pR0(λ)
∫ c0

b0

1
R0(ξ)(ξ − λ)

dξ + p log
(

λ− b0

λ− c0

)
,

then k3(∞) can be calculated directly,

(101) k3(∞) = lim
λ→∞

k3(λ) = −p
∫ c0

b0

1
R0(ξ)

dξ.

It is easy to see that the outer parametrix Ṫout
3 (λ; χ, τ) has singularities at the points λ = b0, λ = c0, λ =

a0, λ = a∗0 . Thus we should consider the inner parametrices at the neighbourhood of these points. Similar
as [8, 19], the inner parametrices at the neighbourhood of these points λ = b0 and λ = c0 can be defined as

(102) Ṫc0
3 (λ; χ, τ) = K3(λ)nipσ3/2e−inh0(c0)σ3 Hc0(λ)Uc0(ζc0)e

inh0(c0)σ3 , λ ∈ Dc0(δ),

Hc0(λ) ≡ Hc0(λ; χ, τ) := (λ− b0)
ipσ3

(
fc0(λ)

λ− c0

)ipσ3

,

(103) Ṫb0
3 (λ; χ, τ):=



K3(λ)Hb0(λ)n
ipσ3/2einh0(b0)σ3 i−σ3 Ub0(ζb0)(−iσ2)i−σ3einh0(b0)σ3 , λ ∈ Db0,−(δ),

K3(λ)Hb0(λ)n
ipσ3/2einh0(b0)σ3 i−σ3 Ub0(ζb0)(−iσ2)i−σ3einh0(b0)σ3

× e
−inκ0

2 σ3(iσ2)e
inκ0

2 σ3 , λ ∈ Db0,+(δ),

Hb0(λ) ≡ Hb0(λ; χ, τ) :=
(

b0 − λ

fb0(λ)

)ipσ3

(c0 − λ)−ipσ3 (iσ2),

where fc0(λ) := fc0(λ; χ, τ), fb0(λ) := fb0(λ; χ, τ) are two conformal mappings defined at the neighbour-
hood of λ = b0 and λ = c0 respectively,

(104) f 2
b0
(λ) = 2 (h0(b0)− h0(λ)) , f 2

c0
(λ) = 2 (h0(λ)− h0(c0)) .
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For convenience, we suppose f ′b0
(b0) = −

√
−h′′0 (b0) < 0, f ′c0

(c0) =
√

h′′0 (c0) > 0. It should be noticed

that h0(λ) is discontinuous at the point λ = b0, and in this case, we choose the right value of the cut Σ±g0

in the later analysis, that is h0(b0) := h0,−(b0). The variables ζb0 , ζc0 are defined as ζb0 = n1/2 fb0(λ), ζc0 =

n1/2 fc0(λ), and the solution to U(ζ) can be given with the parabolic cylinder function. The large-ζ asymp-
totics is

(105) U(ζ)ζipσ3 = I +
1

2iζ

[
0 α
−β 0

]
+

[O(ζ−2) O(ζ−3)
O(ζ−3) O(ζ−2)

]
, ζ → ∞,

where

(106) α = 2
3
4
√

2πΓ
(

i ln(2)
2π

)−1

eiπ/4ei(ln(2))2/(2π), β = −α∗.

The inner parametrices at the local points λ = a0 and λ = a∗0 are related to the Airy function [8, 19], which

can be defined as Ṫa0
3 (λ; χ, τ) and Ṫa∗0

3 (λ; χ, τ) respectively. Then the global parametrix for T3(λ; χ, τ) can
be defined by

(107) Ṫ3(λ; χ, τ) :=



Ṫb0
3 (λ; χ, τ), λ ∈ Db0(δ),

Ṫc0
3 (λ; χ, τ), λ ∈ Dc0(δ),

Ṫa0
3 (λ; χ, τ), λ ∈ Da0(δ),

Ṫa∗0
3 (λ; χ, τ) λ ∈ Da∗0 (δ),

Ṫout
3 (λ; χ, τ), λ ∈ C \

(
Db0(δ) ∪ Dc0(δ) ∪ Da0(δ) ∪ Da∗0 (δ) ∪ Σ±g0

∪ I
)

.

Next,we will analyze the error between T3(λ; χ, τ) and Ṫ3(λ; χ, τ).

4.2 Error analysis

Set the error function between T3(λ; χ, τ) and Ṫ3(λ; χ, τ) as

(108) E3(λ; χ, τ) := T3(λ; χ, τ)
(
Ṫ3(λ; χ, τ)

)−1 .

For convenience, denote VE3(λ; χ, τ) as the jump matrix for E3(λ; χ, τ) and ΣE3 as the jump contours. From
the definition of Ṫ3(λ; χ, τ), the jump matrices VE3(λ; χ, τ) at the boundary of Db0(δ), Dc0(δ), Da0(δ), Da∗0 (δ)

equal to

(109) VE3(λ; χ, τ) = Ṫb0,c0,a0,a∗0
3 (λ; χ, τ)

(
Ṫout

3 (λ; χ, τ)
)−1 , λ ∈ ∂Db0,c0,a0,a∗0 (δ).

If λ ∈ ∂Db0(δ) and λ ∈ ∂Dc0(δ), VE3(λ; χ, τ) are written as

(110) VE3(λ; χ, τ) =HHHb0(λ; χ, τ)Ub0(ζb0)ζ
ipσ3
b0
HHHb0(λ; χ, τ)−1, λ ∈ ∂Db0(δ),

HHHb0(λ; χ, τ) := K3(λ)Hb0(λ)n
ipσ3/2einh0(b0)σ3 i−σ3 ,

and

(111) VE3(λ; χ, τ) =HHHc0(λ; χ, τ)Uc0(ζc0)ζ
ipσ3
c0 HHHc0(λ; χ, τ)−1, λ ∈ ∂Dc0(δ),

HHHc0(λ; χ, τ) := K3(λ)Hc0(λ)n
ipσ3/2e−inh0(c0)σ3 .

If λ ∈ ∂Da0(δ) ∪ ∂Da∗0 (δ), VE3(λ; χ, τ) can be given in a similar formula with our previous article(Eq.(101)
in [19]). From the asymptotic expression of U(ζ) in Eq.(105) and the estimation for λ ∈ ∂Da0(δ) ∪ ∂Da∗0 (δ)

in [19], the jump matrices VE3(λ; χ, τ) satisfies the following estimation,

(112)

‖VE3(λ; χ, τ)− I‖ = O
(
e−µ3n) (µ3 > 0), λ ∈ C±L3,Σ

∪ C±R3,Σ
∪ C±R3,Γ

∪ C±L3,Γ
,

‖VE3(λ; χ, τ)− I‖ = O(n−1), λ ∈ ∂Da0,a∗0 (δ),

‖VE3(λ; χ, τ)− I‖ = O(n−1/2), λ ∈ ∂Db0,c0(δ).
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Under this case, the solution q[n](nχ, nτ) can be recovered by

(113)
q[n](nχ, nτ) = 2ir lim

λ→∞
λT3(λ; χ, τ)12

= 2ir lim
λ→∞

λ
(
E3,11(λ; χ, τ)Ṫout

3,12(λ; χ, τ) + E3,12(λ; χ, τ)Ṫout
3,22(λ; χ, τ)

)
.

Moreover, we can simplify Eq.(113) into

(114) q[n](nχ, nτ) = 2ir lim
λ→∞

λ
(
Ṫout

3,12(λ; χ, τ) + E3,12(λ; χ, τ)
)

.

Next, we will calculate the entry of E3,12(λ; χ, τ) and then give the leading-order term for q[n](nχ, nτ).
From the error estimations in Eq.(112), we only calculate it for λ ∈ ∂Db0(δ) and λ ∈ ∂Dc0(δ). In other
contours, we omit the calculations. When λ ∈ ∂Db0(δ) ∪ ∂Dc0(δ), with the Plemelj formula, the solution to
E3(λ; χ, τ) is

(115) E3(λ; χ, τ) = I +
1

2πi

∫
∂Db0

(δ)∪∂Dc0 (δ)

E3,−(ξ; χ, τ)(VE3(ξ; χ, τ)− I)

ξ − λ
dξ +O

(
n−1

)
.

When λ→ ∞, the asymptotic expansion is given by,
(116)

E3(λ; χ, τ) = I− 1
2πi

∞

∑
j=1

λ−j
∫

∂Db0
(δ)∪∂Dc0 (δ)

E3,−(ξ; χ, τ)(VE3(ξ; χ, τ)− I)ξ j−1dξ +O
(

n−1
)

, |λ| → ∞.

Then we further have

(117) lim
λ→∞

λE3,12(λ; χ, τ) = − 1
2πi

[ ∫
∂Db0

(δ)∪∂Dc0 (δ)
E3,11,−(ξ; χ, τ)VE3,12(ξ; χ, τ)dξ

+
∫

∂Db0
(δ)∪∂Dc0 (δ)

E3,12,−(ξ; χ, τ)
(
VE3,22(ξ; χ, τ)− 1

)
dξ
]
+O

(
n−1

)
.

From the definition of VE3(λ; χ, τ) in Eq.(110) and Eq.(111), we simplify the potential q[n](nχ, nτ) as

(118) q[n](nχ, nτ) = 2ir lim
λ→∞

λṪout
3,12(λ; χ, τ)− r

π

∫
∂Db0

(δ)∪∂Dc0 (δ)
VE3,12(ξ; χ, τ)dξ +O

(
n−1

)
.

For λ ∈ ∂Db0(δ) ∪ ∂Dc0(δ), VE3,12(λ; χ, τ) equals to

(119) VE3,12(λ; χ, τ) = −i
nip (Hc0,11(λ)

)2
(K3,11(λ))

2 e−2inh0(c0)α

2n1/2 fc0(λ)

− i
n−ip (Hc0,22(λ)

)2
(K3,12(λ))

2 e2inh0(c0)β

2n1/2 fc0(λ)
+O(n−1), λ ∈ ∂Dc0(δ),

and

(120) VE3,12(λ; χ, τ) = i
nip (Hb0,12,−(λ)

)−2
(K3,12,−(λ))

2 e2inh0,−(b0)α

2n1/2 fb0,−(λ)

+ i
n−ip (Hb0,12,−(λ)

)2
(K3,11,−(λ))

2 e−2inh0,−(b0)β

2n1/2 fb0,−(λ)
+O(n−1), λ ∈ ∂Db0(δ),
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where α and β are defined as in Eq. (106). By the residue theorem, we have

(121) − 1
π

∫
∂Db0

(δ)∪∂Dc0 (δ)
VE3,12(ξ; χ, τ)dξ

=
nip (Hb0,12,−(b0)

)−2
(K3,12,−(b0))

2 e2inh0,−(b0)α

n1/2
√
−h′′0,−(b0)

+
n−ip (Hb0,12,−(b0)

)2
(K3,−,11(b0))

2 e−2inh0,−(b0)β

n1/2
√
−h′′0,−(b0)

+
nip (Hc0,11(c0)

)2
(K3,11(c0))

2 e−2inh0(c0)α

n1/2
√

h′′0 (c0)
+

n−ip (Hc0,22(c0)
)2

(K3,12(c0))
2 e2inh0(c0)β

n1/2
√

h′′0 (c0)
+O(n−1).

Substituting the entries of Hb0,c0(λ) and K3(λ) into Eq.(121), we can get the asymptotic expression in the
genus-zero-down region as Eq.(122),

(122) q[n](nχ, nτ) = re2ik3(∞)−inκ0

[ √
2p

n1/2
√
−h′′0,−(b0)

(
mb0
−eiφb0 −mb0

+e−iφb0

)

+

√
2p

n1/2
√

h′′0 (c0)

(
mc0

+eiφc0 −mc0
−e−iφc0

)
− i=(a0)

]
+O(n−1),

where

(123)

φb0=
π

4
+ log(2)p− arg (Γ (ip)) +2k3,−(b0)+2nh0,−(b0)+p log

(
−nh′′0,−(b0)(c0 − b0)

2
)
−nκ0,

φc0=
π

4
+ log(2)p− arg (Γ (ip))−2k3(c0)−2nh0(c0)+p log

(
nh′′0 (c0)(c0 − b0)

2
)
+nκ0,

mb0
+=

1
2
+

1
4

√ b0−a0

b0−a∗0
+

(√
b0−a0

b0−a∗0

)−1
 , mb0

−=
1
2
−1

4

√ b0−a0

b0−a∗0
+

(√
b0−a0

b0−a∗0

)−1
 ,

mc0
+=

1
2
+

1
4

√ c0−a0

c0−a∗0
+

(√
c0−a0

c0−a∗0

)−1
 , mc0

−=
1
2
−1

4

√ c0−a0

c0−a∗0
+

(√
c0−a0

c0−a∗0

)−1
 .

Similarly, by choosing one fixed τ in this region, we numerically verify the consistency between the exact
solution and the asymptotic solution in Fig.11.
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FIGURE 11. The comparison between the exact solution (20-th order KMBs) and its as-
ymptotic solution in the genus-zero-down region by choosing τ = 1

10 (as shown by the
green dashed line in the middle panel in Fig. 2), c1 = −c2 = 1. The left one is the mod-
ulus of q[n](nχ, nτ), and the middle and right panels are the real and imaginary parts of
q[n](nχ, nτ) respectively.
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In the next section, we will analyze the asymptotics in the algebraic-decay region.

5 The algebraic-decay region
In the above discussion, we studied the large-order asymptotics for four different regions. To give the

leading-order term, we introduce four kinds of g-functions and modify the original phase term ϑ(λ; χ, τ)
into a new one. In the algebraic-decay region, the original phase term ϑ(λ; χ, τ) has three real critical points,
which can be used as the controlling phase term. By choosing one fixed χ and τ, we give the sign chart of
=(ϑ(λ; χ, τ)) in Fig.12.
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FIGURE 12. The sign chart of =
(

ϑ
(

λ; 1
2 , 1

200

))
in the algebraic-decay region, where

=
(

ϑ
(

λ; 1
2 , 0
))

< 0 (shaded) and =
(

ϑ
(

λ; 1
2 , 1

200

))
> 0 (unshaded). The left one gives

the original jump contour for S4(λ; χ, τ), and the right one is the corresponding jump con-
tour after deformation.

Similarly, introduce the matrix S4(λ; χ, τ) defined by

(124) S4(λ; χ, τ) :=

{
M[n](λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q−1

d einϑ(λ;χ,τ)σ3 , λ ∈ D0 ∩
(

D+
4 ∪ D−4

)c ,

M[n](λ; χ, τ), otherwise,

where D±4 = Ω±4 ∪ R±4 . Next, set the sectional analytic matrices T4(λ; χ, τ) as follows,

(125)

T4(λ; χ, τ) : = S4(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[2]
R

)−1
einϑ(λ;χ,τ)σ3 , λ ∈ L+

4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ)Q[2]
L e−inϑ(λ;χ,τ)σ3 Q[2]

C einϑ(λ;χ,τ)σ3 , λ ∈ R+
4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ)Q[2]
L , λ ∈ Ω+

4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ)e−inϑ(λ;χ,τ)σ3
(

Q[1]
R

)−1
einϑ(λ;χ,τ)σ3 , λ ∈ L−4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ)Q[1]
L e−inϑ(λ;χ,τ)σ3 Q[1]

C einϑ(λ;χ,τ)σ3 , λ ∈ R−4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ)Q[1]
L , λ ∈ Ω−4 ,

T4(λ; χ, τ) : = S4(λ; χ, τ), otherwise.
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By a direct calculation, the jump conditions of T4(λ; χ, τ) change into,

(126)

T4,+(λ; χ, τ) = T4,−(λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q[2]
R einϑ(λ;χ,τ)σ3 , λ ∈ C+

L4
,

T4,+(λ; χ, τ) = T4,−(λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q[2]
C einϑ(λ;χ,τ)σ3 , λ ∈ C+

R4
,

T4,+(λ; χ, τ) = T4,−(λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q[1]
R einϑ(λ;χ,τ)σ3 , λ ∈ C−L4

,

T4,+(λ; χ, τ) = T4,−(λ; χ, τ)e−inϑ(λ;χ,τ)σ3 Q[1]
C einϑ(λ;χ,τ)σ3 , λ ∈ C−R4

,

T4,+(λ; χ, τ) = T4,−(λ; χ, τ)2σ3 , λ ∈ I.

From the sign chart of =(ϑ(λ; χ, τ)) in Fig.12, when n is large, the jump conditions will exponentially decay
into the identity matrix except for the contour I = [b4, c4]. In the next subsection, we will construct the
parametrix for T4(λ; χ, τ).

5.1 Parametrix construction for T4(λ; χ, τ)

From the jump matrix in the contour I = [b4, c4], we directly give the outer parametrix Ṫout
4 (λ; χ, τ) as

(127) Ṫout
4 (λ; χ, τ) =

(
λ− b4

λ− c4

)ipσ3

, p =
log (2)

2π
, λ ∈ C \ I.

Following the calculation in the genus-zero-down region, the inner parametrices at the neighborhood of b4
and c4 can be constructed as

(128)
Ṫb4

4 (λ; χ, τ) :=n−ipσ3/2e−inϑ(b4;χ,τ)σ3 Hb4(λ; χ, τ)Ub4(ζb4)(−iσ2)einϑ(b4;χ,τ)σ3 , λ ∈ Db4(δ),

Ṫc4
4 (λ; χ, τ) : = nipσ3/2e−inϑ(c4;χ,τ)σ3 Hc4(λ; χ, τ)Uc4(ζc4)e

inϑ(c4;χ,τ)σ3 , λ ∈ Dc4(δ),

where
(129)

Hb4(λ; χ, τ) :=
(

b4 − λ

fb4(λ; χ, τ)

)ipσ3

(c4 − λ)−ipσ3 (iσ2) , Hc4(λ; χ, τ) := (λ− b4)
ipσ3

(
fc4(λ; χ, τ)

λ− c4

)ipσ3

,

and fb4(λ; χ, τ) and fc4(λ; χ, τ) are two conformal mappings defined as

(130) fb4(λ; χ, τ)2 = 2 [ϑ(b4, χ, τ)− ϑ(λ; χ, τ)] , fc4(λ; χ, τ)2 = 2 [ϑ(λ; χ, τ)− ϑ(c4; χ, τ)] .

In this case, we still choose the root such that f ′b4
(b4; χ, τ) = −

√
−ϑ′′(b4; χ, τ) < 0, f ′c4

(c4; χ, τ) =
√

ϑ′′(c4; χ, τ) >

0. ζb4 and ζc4 are two variables defined by ζb4 = n1/2 fb4(λ; χ, τ), ζc4 = n1/2 fc4(λ; χ, τ).
Here U(ζ) is the same as the definition in the genus-zero-down region, and its asymptotics also satisfies

Eq.(105).
Then the global parametrix of T4(λ; χ, τ) is

(131) Ṫ4(λ; χ, τ) :=


Ṫb4

4 (λ; χ, τ), λ ∈ Db4(δ),

Ṫc4
4 (λ; χ, τ), λ ∈ Dc4(δ),

Ṫout
4 (λ; χ, τ), λ ∈ C \

(
I ∪ Db4(δ) ∪ Dc4(δ)

)
.

Next we will analyze the error between T4(λ; χ, τ) and the parametrix Ṫ4(λ; χ, τ).

5.2 Error analysis

Without loss of generality, set the error function between T4(λ; χ, τ) and Ṫ4(λ; χ, τ) as E4(λ; χ, τ), that is

(132) E4(λ; χ, τ) := T4(λ; χ, τ)
(
Ṫ4(λ; χ, τ)

)−1 ,
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the jump matrix of E4(λ; χ, τ) can be set as VE4(λ; χ, τ), the corresponding contours are set as ΣE4 . From
the definition of Ṫ4(λ; χ, τ), we have the following estimation for the jump matrix VE4(λ; χ, τ),

(133)
‖VE4(λ; χ, τ)− I‖ = O(e−µ4n)(µ4 > 0), λ ∈

(
C±L4
∪ C±R4

)
∩ ΣE4 ,

‖VE4(λ; χ, τ)− I‖ = O(n−1/2), λ ∈ ∂Db4(δ) ∪ ∂Dc4(δ).

Similar to the genus-zero-down region, the potential q[n](nχ, nτ) can be recovered from T4(λ; χ, τ) by
the following formula,

(134)
q[n](nχ, nτ) = 2ir lim

λ→∞
λT4(λ; χ, τ)12

= 2ir lim
λ→∞

λ
(
E4,11(λ; χ, τ)Ṫout

4,12(λ; χ, τ) + E4,12(λ; χ, τ)Ṫout
4,22(λ; χ, τ)

)
.

Moreover, we have

(135) q[n](nχ, nτ) = −r
1
π

∫
∂Db4

(δ)∪∂Dc4 (δ)
VE4,12(ξ; χ, τ)dξ +O(n−3/2).

Through a similar calculation with the genus-zero-down region, the asymptotic expression in the algebraic-
decay region is given by,

(136) q[n](nχ, nτ)=r
√

2p
n1/2

[
e−2inϑ(b4;χ,τ) (−ϑ′′(b4; χ, τ))−ip√

−ϑ′′(b4; χ, τ)
eiϕ(χ,τ)+

e−2inϑ(c4;χ,τ)ϑ′′(c4; χ, τ)ip√
ϑ′′(c4; χ, τ)

e−iϕ(χ,τ)

]
+O(n−3/2),

where

ϕ(χ, τ) = −p ln(n)− 2p ln (c4 − b4)− p log(2)− 1
4

π + arg (Γ (ip)) .

In this case, we choose τ = 1
200 and give the comparison between the exact solution and the asymptotic

solution with the genus-zero-infinity region together, which is shown in Fig. 8. It is seen that they are
fitting very well.

6 Conclusions and Discussions
In this paper, we analyze the large-order asymptotics for KMBs of the NLS equation under two con-

straints to the vector constant c = [c1, c2]
T, one of which is c1 = c2 and the other case is c1 = −c2. In

the far-field regime, the (χ, τ) space-time plane can be partitioned into five distinct regions. Compared to
the large-order asymptotics of solitons, the phase term appearing in the RHP for the KMBs involves an
additional factor ir

4n log
(

λ−i
λ+i

)
, which produces a new cut on [−i, i] and brings new difficulties to study the

asymptotics. Due to this new term, a genus-two region appears under the large-order asymptotics, which
was not reported in the previous studies of high-order solitons and rogue waves [5, 8, 19].

Up to now, through the known results in the literature [5, 8, 19], we can obtain uniform insights for
large-order localized waves in both the zero and non-zero backgrounds. In the far-field regime, under the
zero background, the single high-order solitons have four distinct asymptotic regions and the high-order
breathers have five asymptotic regions, where the new additional region is the genus-three. Similarly, under
the non-zero background, compared to the high-order rogue waves there appears a new genus-two region
for the large-order KMBs. In our previous studies [19], we conjectured that, under the zero background, if
there are l spectral parameters with the same real part, we will get a genus-2l − 1 region under the large-
order limit. We guess that for the high-order KMBs, if we construct the general high-order KMBs with two
distinct spectra, namely, the phase term ϑ(λ; χ, τ) will be modified as follows,

(137) ϑ̂(λ; χ, τ) = λχ + λ2τ +
i
2

log
(

λ− λ1

λ− λ∗1

)
+

i
2

log
(

λ− λ2

λ− λ∗2

)
+

i
4n

log
(

λ− i
λ + i

)
,

where λ1 = α1i, λ2 = α2i, α1, α2 > 1, α1 6= α2, and then we can get six asymptotic regions which involve a
genus-four region.
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In future work, we would like to give a detailed asymptotic analysis of the corresponding RHP with the
modified phase term Eq.(137). Moreover, we will generalize the analysis to the general l spectral param-
eters for the high-order KMBs. As we conjectured, a genus-2l region maybe appear in the center part of
asymptotic regions.
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