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The paper presents ab initio calculation results on the structural phase stability of beryllium and magnesium crystals under high
and ultrahigh pressures (multi-terapascal regime). Magnesium is shown to undergo a number of structural transformations which
markedly reduce the crystal packing factor. As for beryllium, its high-pressure body-centered cubic phase remains stable even under
ultrahigh pressures. Changes in the electronic structure of Be and Mg crystals under compression are analyzed and some interesting
effects are revealed. Specifically, a narrow band gap appears in the electronic structure of magnesium under pressures above 2.5 TPa.
For the metals of interest, PT -diagrams are constructed and compared with available experimental and theoretical results from other
investigations.

1 Introduction

Advances in experimental methods for the shock loading of materials allow researchers to get informa-
tion on their structure and dynamic properties under pressures to 1 TPa and above in laboratory con-
ditions [1, 2, 3, 4]. Of special interest here are quasi-isentropic (ramp) compression experiments which
allow determination of the crystal structure of compressed material [1, 2, 3]. With this information it
becomes possible, for example, to judge the state of material inside massive planets within our Solar
system and beyond. Knowledge of the processes that occur under such extreme conditions allows re-
searchers to correctly simulate and predict the state of matter at high pressures and temperatures.
In this paper we consider structural changes in the light alkaline-earth metals beryllium and magnesium
under high and ultrahigh pressures. Beryllium, the second lightest metal in the periodic table, exhibits
a number of unique properties. Its electronic density of states (DOS) greatly differs from the nearly-free-
electron DOS and has a pseudogap near the Fermi level [5]. Under ambient conditions Be has the hcp
structure, a very high Debye temperature, a small Poisson’s ratio, and a lattice ratio, c/a, much smaller
than the ideal value. Beryllium is particularly intriguing due to its hardly observable polymorphism un-
der high pressures and temperatures. So, at the atmospheric pressure and a temperature above 1.5 kK,
its structural transition to the bcc phase before melting was observed in early X-ray experiments [6, 7].
It was later shown [8] that under the increasing pressure the hcp-bcc boundary on the PT -diagram had
a negative slope. New theoretical studies [9, 10] based on calculations from first principles, suggest that
at high temperatures (T>1 kK) and moderate pressures (≤10 GPa), the phase diagram of beryllium ex-
hibits the so-called bcc pocket that originates at P=0 and lies between the hcp stability region and the
melting curve. But recent experiments on Be compression on the diamond anvil cell [11] did not find
any signs of this cubic structure on the phase diagram. Moreover, results of ab initio calculations [9,
12, 13, 14, 15] clearly show that the bcc structure should also be most energetically preferable at high
pressures, above 100 GPa, where another hcp-bcc boundary exists. This boundary has a negative slope
giving at P∼180 GPa and T∼4.5 kK the triple hcp-bcc-liquid point [12]. However the efforts taken to
prove the presence of the hcp-bcc boundary at high pressures and temperatures have been a success nei-
ther in static [11] nor in dynamic [16] experiments. Calculations from first principles [14, 17] show that
no other structural transformation occurs in beryllium up to 1 TPa.
Unlike beryllium, magnesium does not exhibit such peculiar physical properties at low pressures. Under
ambient conditions it also has the hcp structure. Its electronic density of states is similar to the nearly-
free-electron DOS for simple metals [5, 18]. Its compression results in an hcp-bcc structural transforma-
tion at P≈50 GPa and T=300 K well detectable in experiment [19, 20] and convincingly reproducible
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2 DETAILS OF CALCULATIONS

in ab initio calculations [21, 22, 23]. It was a surprise to detect in experiment its transition to the dhcp
structure under moderate pressures about 10 GPa and temperatures above 1 kK [24]. But the authors of
later experiments [20] could not identify the observed structure surely. The region of this phase on the
PT -diagram seems to be limited by a narrow area (5-10 GPa) along the melting curve; above 12 GPa
it is no longer detectable. Mg compression to 211 GPa at room temperature did not reveal any other
structural transformations in static experiments [20].
Ab initio calculations predict a more interesting, compared to beryllium, structural behavior of mag-
nesium at pressures above 200 GPa. As suggested in early papers [25, 26], at least one more structural
transformation is expected to occur at a pressure of several hundred GPa. More precise evidence of struc-
tural transformations in Mg was reported in recent works [22, 27] where some transformations at pres-
sures to 1 TPa and slightly above were predicted with random structure search algorithms. So, a transi-
tion to the fcc structure is expected to occur in Mg under pressures to about 0.46 TPa. The further in-
crease of pressure indicates that the simple hexagonal (sh) packing of atoms becomes energetically most
favourable (at P≈0.75 TPa), and the simple cubic (sc) one does at pressures about 1 TPa [27]. The au-
thors of paper [22] calculated hcp, bcc, fcc and sh phase boundaries at elevated temperatures but they
limited themselves by a maximum of 2 kK and did not try to calculate the melting curve. It is also said
in Refs. [22, 27] that the high-pressure fcc, sh, and sc phases are the so-called electride structures with
electron ’blobs’ in the interstitial region, i.e., they have non-nuclear maxima in the electronic density. All
of this makes magnesium resemble another alkaline-earth metal, calcium, which also has a high-pressure
electride simple cubic phase [28, 29, 30]. From all the above we can see that under high pressures mag-
nesium becomes anything but a trivial metal and demonstrates some exotic features. Note that ab initio

calculations [31] show that non-nuclear maxima are also present in the electronic density of beryllium at
the normal specific volume.
In the present work we study the structural behavior of beryllium and magnesium crystals under pres-
sure. Unlike previous works [22, 23, 27] where the pseudopotential method was employed, here the full-
potential method (FP-LMTO) is used for structural stability analysis. Changes in the band structure of
beryllium and magnesium under compression are compared and their effects are discussed. Some par-
allels are drawn with other alkaline-earth metals and not only with them. The calculated phase bound-
aries of beryllium and magnesium are presented in PT -coordinates. The position of melting curves is de-
termined and calculated results are compared with other theoretical works and experiments.

2 Details of Calculations

In this work, calculations were done with the full-potential all-electron linear muffin-tin orbital method
FP-LMTO implemented in the LmtART code [32]. Phonon spectra calculations for the metals of in-
terest are based on linear response theory. The valence electrons for beryllium are its all 4 electrons,
and 2s, 2p, and 3s for magnesium. Our test calculations for Mg show that the taken number of valence
electrons is quite enough to ensure a good accuracy of calculation to maximal compressions considered
(V /V0=0.07). In our case, the 1s Mg state can be ascribed to core states. The crystal structures under
study include not only experimentally observed hcp and bcc, but also face-centered cubic (fcc), double
hexagonal closed-packed (dhcp), simple hexagonal, simple cubic, and tetragonal β-tin (β-Sn) ones. The
last phase was included because it is experimentally observed in compressed calcium at low temperatures
[33] and can potentially compete with the other phases of Be and Mg.
In order to achieve high accuracy of first-principles calculations, a careful selection of the internal pa-
rameters of the method was carried out. An improved tetrahedron method [34] was used for integration

over the Brillouin zone. The ~k-meshes were as follows: 30×30×30 for all cubic structures, 30×30×24 for
hcp, 30×30×20 for dhcp, and 24×24×30 for sh and β-Sn. The cutoff energy for representing the basis
functions as a set of plane waves in the interstitial region depended on the magnitude of compression.
At the equilibrium specific volume V=V0 it was 850 eV. The basis set included MT-orbitals with mo-
ments to lb

max
=2. Potential and charge density expansions in terms of spherical harmonics were done

to lw
max

=6. The c/a ratios of tetragonal and hexagonal structures were always optimized. The internal
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Figure 1: Phonon spectra of hcp Be (upper panel) and hcp Mg (lower panel) from calculation (V /V0=1) and experiment
[41]. Phonon frequencies in different directions of the Brillouin zone are shown for Be, and the phonon density of states
for magnesium. The red line shows calculation at T=0 K, and the line with black dots shows experimental results at room
temperature.
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3 RESULTS AND DISCUSSIONS

FP-LMTO parameters such as the linearization energy, tail energies, etc. were chosen using an approach
similar to that one used in Ref. [35]. Calculation parameters including the exchange-correlation func-
tional were selected so as to reproduce best the ground state properties and phonon spectra of the two
metals under study. The PBE functional [36] was taken for both metals. The equilibrium specific vol-
ume of Be and Mg under ambient conditions was reproduced no worse than 1% compared to experiment.
Pressure versus volume was determined by differentiating an analytical expression that approximates the
calculated dependence of E on V . The dependence E(V ) was approximated with a formula by Parsafar
and Mason [37]. Crystal internal energy versus relative specific volume V/V0 was calculated for values
within intervals from 1.05 to 0.04 for Be and to 0.07 for Mg. Phonon spectra were calculated in the same
intervals. Phonon frequencies were determined using meshes of ~q-points which measured 10×10×10 for
cubic structures, 10×10×6 for close-packed hexagonal phases, and 8×8×10 for sh. The contribution of
lattice vibrations to free energy was determined in a quasiharmonic approximation (QHA) [38] with use
of the calculated phonon spectra. The well-known Lindemann criterion was used to evaluate the melting
curve. The procedure of its calculation is described in Ref. [39]. It should be noted that the Lindemann
criterion is a rather rough estimate for determining melting curves of materials. The main drawback of
this criterion is that it treats the melting process as a lattice instability which occurs at a certain value
of the displacement of atoms from equilibrium positions. But this approximation is not always to work
well. Although for some materials with simple structures [35, 39] the Lindemann criterion helps estimate
the melting curve quite accurately, for more complex crystals it fails to adequately reproduce it [40]. In
our calculations, for beryllium the Lindemann constant is equal to 0.109, and for magnesium it is 0.117.
The accuracy of calculated phonon frequencies is demonstrated in Figure 1 that shows the correspond-
ing spectra of beryllium and magnesium calculated in this work in comparison with experimental data.
They are seen to agree well.

3 Results and Discussions

Consider first the relative stability of beryllium and magnesium structures of interest at T=0 K. Fig-
ure 2 presents results obtained in this work for beryllium. Hereafter Gibbs thermodynamic potentials
versus pressure are presented relative to the bcc potential. As seen from the figure, hcp beryllium is ther-
modynamically most favorable at P below 0.4 TPa which agrees well with other calculations [9, 14] and
experiments [11, 42]. At higher pressures the bcc structure becomes energetically more favorable. It can
be seen that further compression does not lead to any other structural changes. Our studies show the
situation to remain unchanged at least up to P∼250 TPa. Calculations also show the bcc phase to re-
main dynamically stable. It is well seen from Figure 2 that above about 20 TPa the slope of the curves
∆G weakly changes with the increasing pressure - all curves are almost parallel; the electron spectrum
of Be stops changing significantly, demonstrating no fundamental changes under further compression.
This can be seen in Figure 3 that shows the evolution of the electronic density of states of beryllium at
high pressures. At V /V0=0.35, a pseudogap (a large depression in the electron density of states near EF )
is seen to be still present in the electronic spectrum of Be. As mentioned in paper [5], s-p hybridization
changes the electronic structure of Be so that the density of s-states on the Fermi level becomes virtually
zero and the small number of the Fermi level crossing bands are mostly p-bands. It is however seen from
Fig. 3 that the pseudogap gradually disappears under higher compression and the DOS becomes more
and more similar to the nearly-free-electron density of states. This means that the above effect stops to
manifest itself.
As mentioned earlier, ab initio results show magnesium is more diverse in structural changes under pres-
sure than beryllium. Figure 4 shows the relative difference of thermodynamic potentials calculated for
magnesium structures of interest at T=0 K. The hcp phase is thermodynamically most favorable up to
pressures about 0.05 TPa which agrees with available experimental data [20, 43]. Then the structural
transformations bcc-fcc-sh-sc are seen to occur at pressures about 0.48, 0.76, and 1.1 TPa, respectively.
These values agree quite well with other ab initio calculations [22, 27]. Our calculations suggest that
the simple cubic structure of Mg remains thermodynamically most favourable and dynamically stable
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Figure 2: Gibbs energy difference for different beryllium phases at high pressures and zero temperature. The inset shows
the pressure region below 1 TPa.
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Figure 4: Gibbs energy difference for different magnesium phases under high pressures and zero temperature. The inset
shows the region of low pressures below 0.1 TPa.

at least to a pressure of 12 TPa. It is seen from Figure 4 that in energy the β-Sn structure is quite close
to the simple hexagonal phase but it does not become energetically more favorable anywhere in the pres-
sure range under study.
Structural transformations in magnesium are accompanied by significant changes in the electronic spec-
trum. Figure 5 presents the evolution of the electronic DOS at zero temperature for different compres-
sions, and a band structure of Mg at V /V0=0.12. It is seen from the figure that at V/V0=0.3 the elec-
tron density of states looks very much like the DOS of nearly-free electrons but further compression re-
sults in the appearance of a pseudogap that increases as P grows. Finally, at a pressure of about 2.7
TPa, a narrow band gap (<0.1 eV) appears in the spectrum of valence electrons of the most stable cubic
structure and magnesium becomes a semiconductor (see V/V0=0.12). This is seen clearly in the Fig. 5
(the right panel) demonstrating the band structure of magnesium. It should be noted here that in theo-
retical paper [22], one can notice a pseudogap in the electronic DOS for compressed magnesium but the
authors did not consider pressures above 1 TPa and failed to detect the formation of the small energy
gap. Note that the conventional density functional methods are known to underestimate the width of
the band gap; it can be determined more accurately with the Green’s-function theory (GW calculations)
[44].
Ab initio calculations [45, 46] show a narrow band gap to also form in the electronic spectra of calcium
and strontium under compression at zero temperature but much lower pressures. In fcc and sc Ca, it
appears at P≈30 GPa. However this state only exists at pressures between about 30 and 40 GPa. In
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the electronic spectrum of fcc strontium, the gap forms at P below 3.5 GPa and disappears as the pres-
sure slightly increases. Experiments show that the electrical resistivity of calcium and strontium signifi-
cantly grows in the corresponding pressure ranges [45]. Under these pressures they both are semimetals
with a very low concentration of charge carriers. Our calculations show that for magnesium, the pressure
of transition into a semiconducting state is much higher and the interval of its existence is significantly
larger, from ∼2.7 to 8.6 TPa, than in other alkaline-earth metals. Worthy of noting is one more simi-
larity to calcium. A band gap also appears in fcc Mg but this structure is not thermodynamically most
favorable in the above pressure range.
Experimental data [44] show that the magnesium’s neighbor in the periodic table, sodium, becomes an
optically transparent insulator at P∼0.2 TPa. For a band gap to form in sodium, 5-fold compression
is required [44], while the semiconducting state of magnesium is reached at about 7.5-fold compression.
Sodium has a dhcp structure at P≥0.2 TPa with an unexpectedly low c/a ratio ≈1.4 which is much smaller
than the ideal value, 3.266. The dhcp structure of magnesium is not thermodynamically most favorable,
but if we note how its energy depends on c/a at different compressions, we can easily see analogies with
sodium. Figure 6 presents internal energy versus c/a for several compressions of dhcp magnesium. It is
seen that at V/V0=0.2 the curve E(c/a) has only one energy minimum rather close to the ideal value of
c/a (the vertical dotted line). However, another minimum corresponding to low c/a<3 appears on the
curve as compression increases. At V/V0=0.1 the minima correspond to c/a≈2 and ≈4.4. On whole, the
behavior of E(c/a) under growing compression is very much similar to what is observed for sodium (see
Supplemental Material of Ref. [44]). But for magnesium, the appearance of the band gap is not observed
for either of the two minima of the dhcp structure.
It can thus be stated that only beryllium under high and ultrahigh pressures behaves very much dif-
ferently from other alkaline-earth metals. Exhibiting some unique features under ambient conditions,
it becomes more and more similar to an ordinary simple metal as compression increases, whereas the
behavior of magnesium under pressure looks like that of the heavy alkaline-earth metals. At pressures
above 0.7 TPa, transformations into open structures occur in Mg, the crystal packing factor markedly
decreases (∼50% for the sh phase), the electride structure appears [22, 27], and the spectrum of valence
electrons eventually change so that a narrow band gap forms in it at P>2.5 TPa.
Consider further the compression isotherms of beryllium and magnesium. Figure 7 shows calculated de-
pendencies of pressure versus specific volume at room temperature in comparison with available exper-
imental data. The curves calculated for both metals are seen to agree well with experiment. The inset
shows the cold pressure of some magnesium structures in the higher compression region. As seen from
the inset of Fig. 7, the curves almost coincide at V/V0>0.3, but with growing compression the difference
in P between the fcc, bcc structures and the open phases sh, sc of Mg markedly increases. This behavior
is caused by electronic band rearrangement which makes the energy and pressure of the sh and sc struc-
tures lower compared to the other phases. Compressibility of open structures noticeably increases. A
similar situation is observed in light alkali metals [47], whose open structures also become energetically
most favorable as compression increases.
Now consider shock wave compression of beryllium and magnesium. Additional experimental data [16,
50, 51, 52] which help better understand their behavior under these conditions have recently appeared.
Figure 8 compares the shock Hugoniots of Be and Mg from our calculations with data from different ex-
periments. The horizontal lines mark the approximate pressures of the hcp→bcc transition and melting.
It should be noted that the presence of this transition in shock compressed beryllium remains debatable.
It is seen that the calculations reproduce the shock compression of the two metals very well. The change
of volume due to the transition is small and not seen in the pictures.
Earlier in paper [21] we calculated the elastic constants of several magnesium structures for different
compressions at T=0 K. With these monocrystal constants we calculated longitudinal, shear and bulk
sound velocities as functions of applied pressure for magnesium polycrystals using Hill averaging [53].
Figure 9 compares our calculations with recent measurements of sound velocities of Mg on the Hugoniot
[51, 52]. The calculated and experimental data are seen to agree well. The hcp→bcc transition results in
a small jump of sound velocities which can hardly be detected in experiment with the available measure-
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ment accuracy. Since our calculations were done for zero temperature, they do not reproduce the soften-
ing of longitudinal and shear sound velocities while approaching melting.
Figure 10 presents a PT -diagram of beryllium calculated in this work in comparison with other ab ini-

tio calculations and experiment. The issue of whether a pocket of the bcc phase exists at low pressures
and high temperatures [9, 10] remained beyond the scope of this work. Circles in Fig. 10 mark the pos-
sible boundary of the region where the hcp phase of beryllium exists according to static experiment data
[11]. Look first at the melting curve. For more correct comparison, the melting curve obtained for beryl-
lium from the Lindemann criterion was calculated with the Debye temperature determined by the log-
arithmic phonon moment, as it is done in paper [55]. As seen from Fig. 10, our curve underestimates
the melting point with the increasing pressure compared to QMD calculations. Also, the hcp existence
region from experiment [11] extends in temperature a bit higher than our curve runs. However it unex-
pectedly well agrees with the estimated melting point of Be on the Hugoniot from experiment [16]. It
must be noted here that the authors of paper [54] suggested that prior to melting on the Hugoniot beryl-
lium possibly transforms into the amorphous state which could explain some differences seen in Fig. 10
between the melting curves from MD calculations and experiment [16]. Despite that the Lindemann cri-
terion and phonon spectra at zero temperature often give quite good melting curves [35, 39] that agree
with experiment and MD calculations, here we are having some discrepancies. As shown in paper [55],
the melting temperature of beryllium from the Lindemann criterion at P=300 GPa is underestimated
by 24% compared to QMD calculations. Our calculations for this pressure give a smaller difference, 12%
only. Multiphase EOS calculations [56] where the melting curve is determined in the same way as we do,
give a line close to ours (the gray line in Fig. 10). Nevertheless, in further discussion of the PT -diagram
of beryllium, we will rely on the melting curves of works [12, 55], which are obtained more correctly from
the physical point of view and agree very well with each other.
Consider the hcp-bcc boundary of Be. Fig. 10 presents these boundaries from calculations of two types.
Results of the first type are obtained with the phonon spectra calculated at T=0 K and quasiharmonic
approximation. The second type is QMD calculations which include all anharmonic effects. So, in paper
[15], the thermodynamic integration (TDI) method was used, while in Ref. [14], phonon spectra were de-
termined with account for temperature, using velocity autocorrelation functions. Most interesting here
are results from [14] where the hcp-bcc phase boundary of Be was obtained in a unified manner for both
types of calculations, QHA and QMD (magenta lines in Fig. 10). They show that the contribution of an-
harmonic effects grows quite fast with the increasing temperature and at T>2 kK becomes essential for
the determination of hcp-bcc boundary. An ’anharmonic curve’ calculated in paper [14] agrees quite well
with result from TDI calculations [15] (open triangles in Fig. 10).
The situation with quasiharmonic calculations looks more intricate. Their results fall into two groups:
with smaller [9, 14] and larger [12] (our work too) stability region of the hcp structure at high temper-
atures (magenta and blue dashes versus green and red ones). Our hcp-bcc boundary of Be (red dashed
line) is steeper at high temperatures and at T>3 kK agrees well with results by Benedict et al [12]. Note
that an analysis performed in Ref. [12] for the influence of anharmonicity effects on hcp and bcc phase
stability, did not find them to contribute significantly which obviously disagrees with results from pa-
per [14]. Data from our work and from [12] do not also contradict to static experiment [11] despite the
use of quasiharmonic approximation in distinction from similar calculations presented in Refs. [9, 14].
It is quite challenging to understand what caused these discrepancies. The calculations were done with
different codes but with one and the same exchange correlation functional PBE. Therefore the choice of
functional is not a cause. There is a difference in approaches to quasiharmonic phonon spectra calcula-
tion for Be, specifically, supercells were used in Refs. [9, 14], while the linear response method was used
in our work and in paper [12].
Now turn to the possibility of observing the hcp→bcc transition in beryllium under shock compression.
It is seen from Fig. 10 that the shock Hugoniot curves from our calculations and from [12] agree excel-
lently. These calculations predict that the Hugoniot should be expected to cross the hcp-bcc boundary
at P≈191 GPa, T≈4250 K. There is however a probability that the anharmonic effects will change the
transition pressure at high temperatures and shift the boundary to higher pressures, as it was demon-
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Figure 10: PT -diagram of beryllium. Red lines show calculations of this work (QHA): the dashed one is the hcp-bcc
boundary; the dash-dotted one is the Hugoniot, and the dotted line is the melting curve. The hcp-bcc boundaries from
other calculations are shown by the dashed blue line for calculated data from [9] (QHA); the dashed green line for data
from [12] (QHA); the dashed and dash-dot-dotted magenta lines for calculations from [14] in QHA approximation and
with full anharmonicity, respectively; open triangles for calculations with full anharmonicity from [15]. Melting curves
from QMD calculations are shown by the blue line [9], stars [12], closed inverse triangles [54], and the black line [55]. The
gray line shows the melting curve obtained with a multiphase EOS [56]. The circles show data from static experiment
[11], marking the boundary of the region where the hcp phase exists. The square shows the estimation of the experimental
melting point on the Hugoniot [16]. The principal isentrope was taken from the SESAME 2010 EOS [57].

15



3 RESULTS AND DISCUSSIONS

strated in Ref. [14]. In this case the Hugoniot may not cross the hcp-bcc line. Then it becomes clear
why no signs of a structural transformation are observed in dynamic experiment [16]. This is also in ac-
cordance with data from static experiment [11] where the bcc structure of Be was not detected.
Let us now turn to the PT -diagram of magnesium. Figure 11 shows its phase diagram at relatively low
pressures along with data from other calculations and experiments. Here all hcp→bcc boundaries for Mg
are from calculations in quasiharmonic approximation. Like in beryllium, the boundary has a negative
slope. Our calculations agree well with calculations [59] at high temperatures, about 1 kK and above,
and a bit worse at lower T . But they all are within the experimental error obtained in the determina-
tion of the transition pressure in experiment [19]. The curve calculated in work [58] underestimates the
hcp phase stability region at high temperatures. At the same time static experiment [20] gives the steep-
est hcp-bcc boundary (the black dashed line in Fig. 11) among all results. This may be indicative of
the necessity to consider full anharmonicity in order to reproduce the slope of the phase boundary cor-
rectly. But shock-wave experiments [50, 51], including those where the X-ray diffraction method is used
for crystal structure analysis, give somewhat other results. So, the calculated Hugoniot shown in Fig. 11
is seen to cross the hcp-bcc boundary determined in static experiments [20] at P≈37 GPa, while esti-
mates from Ref. [51] give 28.4 GPa. Note here that our Hugoniot agrees very well with experimental
points [50] determined with the Mie-Gruneisen EOS (green triangles in Fig. 11). The value 28.4 GPa is
close to the transition pressure from our calculations, 29.8 GPa. That is, theoretical studies here agree
quite well with dynamic experiments but certain disagreement with static experiments is present.
The solid red line in Fig. 11 shows the melting curve Tm(P ) of Mg calculated in this work. It agrees quite
well with data from static experiment [20] and shock experiment [60]. But the material of samples used
in work [60] was not pure magnesium; that was an alloy with a magnesium content of 96%. In more re-
cent dynamic experiments [50, 51] where pure magnesium was studied, the onset of melting under shock
conditions was detected at about 55.5 GPa. In Fig. 11 this pressure is pointed to by an arrow. The au-
thors of paper [51] estimate the temperature at which shocked magnesium starts to melt to be about 3
kK which is somewhat lower than our estimate 3.4 kK. Since we use the Lindemann criterion, the trend
of our melting curve is strongly dependent on the position of the hcp-bcc-liquid triple point from which
it runs after the hcp-bcc transition. At this point calculations give a pressure of about 15 GPa. Estima-
tion of experiment [51] gives ∼20 GPa (the vertical dashed line in Fig. 11). By analogy with beryllium,
it seems reasonable to suppose that the anharmonic effects may slightly shift the triple point to the high
pressure region. In Fig. 11 we added a melting curve corresponding to a triple point at P=20 GPa (red
dots). On the one hand, the new line does not contradict to static experiment [20] within its accuracy,
and on the other hand, it moves us closer to the result obtained in paper [51], taking into account also
the finite error of these measurement. Our Hugoniot crosses this line at P=56 GPa and T=3.2 kK.
Figure 12 presents a phase diagram of magnesium obtained in this work for higher pressures up to 1.6
TPa. What draws attention here is the shape of the melting curve. It has small maxima at melting from
bcc and fcc phases. The presence of a maximum on the bcc-liquid equilibrium curve for Mg is also con-
firmed by first-principles molecular dynamics calculations [61]. At pressures from ∼0.2 to ∼0.8 TPa, the
melting curve changes weakly, but for the open structures sh and sc, Tm is seen to steadily increase as
pressure grows. This shape of the curve is similar to the Tm(P ) dependencies determined for calcium
and strontium in experiment [62] where transition to open structures was accompanied by a noticeable
growth of the melting curve after its more flattened previous part.
Characteristic maxima are known to be also present on the Tm(P ) curves of alkali metals (for example,
see [63, 64]). As shown in our calculations, transition to a negative slope of the melting curve is caused
by softening of some phonon modes in bcc and fcc magnesium as it happens, for example, in sodium and
potassium [65]. So, for the bcc phase of Mg, the transverse modes T2 and T1 in the ΓN direction of the
Brillouin zone sequentially undergo softening with increasing compression. This eventually leads to dy-
namic instability of the lattice and negative elastic constants C ′=(C11-C12)/2 and C44. While for the
fcc phase, only the transverse phonon mode in the ΓX direction softens and only the constant C44 takes
negative values.
Figure 12 also shows the principal isentrope of Mg calculated in this work. To calculate the principal
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Figure 11: PT -diagram of magnesium. Red lines show results of this work (QHA): the dashed line shows the hcp-bcc
boundary, the dash-dotted one is the Hugoniot, the solid line is the melting curve, and the dotted line is the melting curve
for the hcp-bcc-liquid triple point at 20 GPa (the vertical gray dashed line, see the text). The orange dashed curve shows
the principal isentrope from our calculations. Magenta and blue dashed lines show hcp-bcc boundaries calculated in Refs.
[58] and [59] (GGA calculation), respectively. The black lines show data from static experiment [20]: the dashed line is the
hcp-bcc boundary and the solid one is the melting curve. Triangles show points along the Hugoniot from experiment [50],
obtained with the Mie-Gruneisen EOS. The arrow points to the pressure corresponding to the onset of melting by data
from [50]. The circles are points along the melting curve from dynamic experiments [60]. The gray dash-dot-dotted line is
the melting curve from QMD calculation [61].
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isentrope, we determined the value of entropy TS(300 K)=E-F under ambient conditions. The corre-
sponding isentrope curve was determined from the condition S[V (P ,T ),T ]=S(300 K) for specified V and
T . The calculations were done in quasiharmonic approximation. Our calculations predict the isentrope
to cross bcc-fcc, fcc-sh, and sh-sc boundaries at pressures ∼0.5, 0.76, and 1.08 TPa, respectively. It is
worth noting that magnesium under pressure demonstrates quite a wide diversity of structural trans-
formations and exhibits nonstandard physical properties for metal. State-of-the-art experimental ramp
compression techniques [1, 2, 3] make it quite possible to detect the structural transition of interest even
at very high pressures. So, very recent ramp experiments have confirmed the presence of simple hexago-
nal and cubic phases in magnesium at pressures above 0.8 TPa [66].

4 Conclusion

In this work we have studied the structural properties of beryllium and magnesium under high and ul-
trahigh pressures using the FP-LMTO method for calculations. It is shown that magnesium under pres-
sure demonstrate a wider diversity of structural transformations than beryllium. Besides the hcp→bcc
transition, three more transitions occur in Mg in the interval of pressures from 0.45 to 1.1 TPa. As a re-
sult of structural transformations in this metal, open phases, simple hexagonal and cubic, appear. The
electronic spectrum of Mg changes strongly during compression, first a pseudogap forms in it, and then
a narrow band gap appears at P>2.5 TPa, which indicates the onset of a semiconducting state. Mag-
nesium under pressure behaves more similarly to heavier alkaline-earth metals, calcium and strontium.
Beryllium under compression, on the contrary, gradually ceases to demonstrate unique properties. Its
electronic spectrum becomes more and more similar to the spectrum of nearly-free electrons. After the
hcp→bcc transition at P∼0.4 TPa and T=0 K, its structure remains unchanged up to very high pres-
sures, at least to ∼250 TPa. The neighbors of beryllium and magnesium in the periodic table, lithium,
sodium and aluminum, also demonstrate a large structural diversity under compression [27, 63, 64]. Thus,
we can state here that beryllium as a crystal has one more peculiarity: it is very resistant to structural
changes during compression in comparison with the other metals surrounding it in the periodic table.
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