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We demonstrate the way to derive the second Painlevé equation P2 and its Bäcklund transforma-
tions from the deformations of the Nonlinear Schrödinger equation (NLS), all the while preserving
the strict invariance with respect to the Schlesinger transformations. The proposed algorithm allows
for a construction of Jordan algebra-based completely integrable multiple-field generalizations of P2

while also producing the corresponding Bäcklund transformations. We suggest calling such models
the JP-systems. For example, a Jordan algebra J

Mat(N,N)
with the Jordan product in the form of

a semi-anticommutator is shown to generate an integrable matrix generalization of P2, whereas the
VN algebra produces a different JP-system that serves as a generalization of the Sokolov’s form of
a vectorial NLS.

I. INTRODUCTION

The triumphant emergence of the Painlevé equations dates back to the very end of the nineteenth century, when
Emile Picard posed the following question [1]: what kind of second order O.D.E.s contain no movable singularities
except for poles? By 1910, Paul Panilevé and his student Bertrand Gambier [2–4] proved that there are 50 types of
second order O.D.E.s with such a property. Six of them were shown to be irreducible to either elementary or classical
special functions. These interesting solutions have been dubbed the Painlevé transcendents, and the corresponding
six equations, the Painlevé equations I–VI. The Painlevé equations have been extensively studied as isomonodromic
deformations of linear systems [5–9], and to this day, they remain one of the most important ingredients of the
integrable systems theory and the one most shrouded in mystery. The equations arise in the problems that involve
self-similar solutions of integrable hierarchies [10, 11]; they helped establish a (to this day not sufficiently understood)
relationship between the integrability and the problems of preservation of O.D.E.s’ monodromy [12, 13]; and they
positively proliferate when one studies the dressing chains of discrete symmetries [14]. Additionally, besides the
multitude of articles that are dedicated to the equations themselves, there are also many works on the various
generalizations of said equations, running the gamut from discrete to multiple-fields matrix models.

However, the importance of the Painlevé equations is not limited to the field of mathematics, since many of them
arise in a number of interesting physical problems. For example, the solutions of Painlevé III emerge in the studies of
the spin–spin correlation function in the 2D Ising model [15] and occur in the scaling functions for two-dimensional
polymers [16, 17]; Painlevé IV is a feature in generalizations of odd superpotentials when one studies the exact
nonsingular cosmological solutions on a 3D brain that interacts with five-dimensional gravity and the bulk scalar
field [18]; Painlevé V is necessary in the descriptions of a density matrix of an impenetrable Bose gas [19]; and the
conformal field theory was even shown to be intimately connected to Painlevé VI [20], as well as to V and III [21] (see
also [22]).

In this article, we will concentrate on Painlevé II, which for brevity we will henceforth call P2:

w′′(x, α) = 2w3(x, α) + xw(x, α) + α. (1)

It, too, has a plethora of interesting applications, appearing, for instance, in the long time asymptotics for the
Kardar–Parisi–Zhang equation [23, 24] and in the descriptions of the one-dimensional asymmetric simple exclusion
process (ASEP) on the integer lattice [25]. In addition, the P2 equation arises in various physical problems: for
example, during the capture into resonance of two weakly connected nonlinear oscillators [26] and in the framework
of the electrostatic probe theory [27]. Thanks in part to all these applications, ever since its inception in [2], P2 has
been in a spotlight of many research projects, including ones that concerned themselves with the task of constructing
the exact solutions for (1). It is known, in particular, that (1) has rational solutions as long as the parameter α
remains an integer [28, 29]. It is also known that each of these solutions is represented by a logarithmic derivative
of a pair of certain polynomials, known in the literature as the Yablonskii–Vorob’ev polynomials [30–33]. In [34],
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these polynomials were shown to crop up in general solutions of soliton P.D.E.s, from the Korteweg–De Vries (KdV)
equation and NLS to Kadomtsev–Petviashvili (KP) equations (see also [33]), while in [29], it has been demonstrated
that any rational solution of P2 can be constructed via the Bäcklund transformations (23)–(25) (we will proceed to
explicitly derive these transformations later in the article) from the solution to the homogeneous version of (1), i.e.,
the one with α = 0.

The article [35] has introduced a powerful new way to derive the Painlevé equations from integrable evolution
equations. Its gist was to utilize the deformations of NLS. First, one introduces an auxiliary linear evolution equation
and one auxiliary spectral problem, in which the potential depends on the spectral parameter as a polynomial of
either the first or second order. While the former polynomial leads to KdV, the latter one produces NLS, which is
natural, since a quadratic dependence upon the spectral parameter is but a linear Zakharov–Shabat problem, albeit
written in some special gauge [36]. In the next step, one performs a deformation of both the spectral problem and
of the compatibility equation. Finally, one looks for the travelling wave solutions of the resulting equations, only to
end up with the sought after Painlevé equation. It is a very attractive method, but it is also admittedly somewhat
overwrought. And as we shall see below, it is quite possible to derive P2 from the (trivially) deformed NLS system
in a more direct and natural way; it appears that the key to this lies not in the auxiliary spectral problem, but
in the famous symmetries of NLS known as Schlesinger transformations (a term we use following the seminal work
[37]). Furthermore, it is these very transformations that end up serving as the Bäcklund transformations for P2. Even
better, this approach is versatile enough to be easily generalizable to multiple-fields models. To be more precise, recall
that all multiple-fields integrable NLS generalizations can be embedded into one general formalism, associated with a
unital Jordan algebra [38]. For example, if one starts with a Jordan algebra J

Mat(N,N)
with the Jordan product in the

form of an anticommutator divided by two, it will lead to a system of matrix-valued NLS equations. Such systems
are called the JS-systems (where JS stands for Jordan–Shrödinger), and since we shall soon demonstrate that our
approach naturally leads to a matrix-valued analogue of P2 (and to its Bäcklund transformations), we think it natural
to introduce the term JP-systems for such equations (JP here stands for Jordan–Painlevé). While the matrix-valued
Painlevés themselves have been a subject of many research papers, our method clearly delineates them as but the
first and simplest exhibit in a larger JP-systems menagerie. Other types of Jordan algebras will instead produce their
own distinct JP-systems.

Before we continue, let us briefly discuss the structure of this paper. Section II is dedicated to a discussion of
relevant symmetries, known as the Schlesinger transformations for NLS, and to their relationship with the Toda chain
equations. We delve deeper in Section III, where we study the NLS deformations, prove the invariance of the trivial
deformations with respect to the Schlesinger transformations, and then derive the system of homogeneous split P2

equations. This system is equivalent to a single fourth order O.D.E., but its order can be lowered, and it is exactly
what we will do in Section IV. There, we derive the complete P2 equation along with the corresponding Bäcklund
transformations and show a simple way to generalize the results for the matrix-valued analogue of P2. While we
are at it, we also demonstrate how a number of this equation’s properties, originally proven only via rather difficult
calculations, turn out to be essentially self-evident when viewed through the lens of our approach. Similarly, deriving
the Bäcklund transformations for the matrix-valued P2 is very easy and is accomplished at the end of that Section.
After that, we move on to Section V, where we describe a new JP-system which serves as a generalization of a vectorial
Sokolov model. In Section VI, we take a small step out of the confines of the discussion focused on Painlevé II and
very briefly describe the first few steps in a possible application of our method to the task of Jordan generalizations of
Painlevé IV (P4). Finally, we conclude this paper in Section VII by briefly discussing some of the most straightforward
and potentially interesting steps to further the subsequent development of this rich topic.

II. SCHLESINGER TRANSFORMATION

Consider a split Nonlinear Schrödinger equation (NLS):

ut = uxx + 2u2v,

−vt = vxx + 2v2u,
(2)

where u = u(x, t), v = v(x, t). A Schlesinger transformation (ST) for (2) has the form

u→ u1 =
1

v
, v → v1 = v (uv + (log v)xx) , (3)

and

u→ u−1 = u (uv + (log u)xx) , v → v−1 =
1

u
. (4)
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It is easy to see that

(u1)−1 = (u−1)1 = u, (v1)−1 = (v−1)1 = v, (5)

Hence (3) and (4) are explicitly invertible Bäcklund auto-transformations for (2).

Remark 1 The article [39] has introduced the concept of the so-called Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy
of nonlinear integrable P.D.E.s. The hierarchy starts with a (split) NLS, then goes to the coupled modified Korteweg–
de Vries (cmKdV) system, and the third entry is the Lakshmanan–Porsezian–Daniel (LPD) equations. (For a detailed
description of the AKNS hierarchy, see [40].) It is possible to prove by induction that all nonlinear equations belonging
to the AKNS hierarchy are invariant with respect to the Schlesinger transformations (3) and (4). However, the proof
is quite cumbersome and lies out of scope of this work and, as such, will be the subject of a follow-up article.

The STs are intimately related to the Toda chain equations. If we define

sn = log un, n = −1, 0, 1, u0 = u.

then the transformation

u→ u−1 = u (uv + (log u)xx) ,

coupled with the fact that

v = u−11 = e−s1

leads to a welcome surprise in the shape of Toda lattice:

s′′0 = exp (s−1 − s0)− exp (s0 − s1) , (6)

where the prime denotes the derivative with respect to the variable x. It is safe to say that the relationship between
Equations (3) and (4), on the one hand, and the Toda chain (6), on the other hand, is truly one of most peculiar
properties of ST.

There are many known ways to generalize the Schlesinger’s approach. For example, one might jump from the
(1 + 1) NLS (2) to the (1 + 2) Davey–Stewartson (DS) equations [41]. Alternatively, one might instead utilize the
Jordan generalizations of NLS, introduced by Svinolupov and Yamilov [38]; this approach is known to produce a
number of non-trivial structures known as JS-systems and JT-systems. However, in this article we will concentrate on
the third avenue of research that couples ST with P2. In particular, we will demonstrate that the famous Bäcklund
transformations for P2 are exactly the Schlesinger transformations (3) and (4). We will perform it by starting out
with the NLS deformations.

III. THE NLS DEFORMATIONS

The NLS deformation can be written in the following form [35]:

ut =c1
[
x
(
uxx + 2u2v

)
+ 2ux + 2uD−1x (uv)

]
+ c2

(
uxx + 2u2v

)
+

+ c3(xu)x + c4xu+ c5ux,
(7)

vt =− c1
[
x
(
vxx + 2v2u

)
+ 2vx + 2vD−1x (uv)

]
− c2

(
vxx + 2v2u

)
+

+ c3(xv)x − c4xv + c5vx,
(8)

where D−1x denotes an indefinite integral with respect to the variable x. As has been noticed by Shabat and Yamilov,
these equations are related to four of the Painlevé equations: P2, P3, P4, and P5.

Let c1 = 0, c2 6= 0. Then the deformations (7) and (8) are trivial and reducible to the split NLS (via the shift- and
Galilean point transformations). In this case, (7) and (8) are invariant with respect to ST, coupled with the point
transformations. The latter can be taken care of by setting c3 = 0. This yields the following:

Proposition 1 Equations (7) and (8) with c1 = c3 = 0 are invariant with respect to ST (3), (4), regardless of
coefficients c2, c4, and c5.
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Consider a travelling wave solution of (7) and (8):

u = u(x+ c5t), v = v(x+ c5t),

which abides by the following conditions:

c4 = −c2, c5 = 0,

in accordance with Proposition 1 (keep in mind that c1 = c3 = 0). After the point transformation u → −u and
assuming that c2 6= 0, systems (7) and (8) reduce to

u′′ = (2uv + x)u, v′′ = (2uv + x) v, (9)

which can be called a split homogeneous P2 equation, because when u = v = w(x, 0) ≡ w, it further reduces to a
special case of (1) with α = 0.

Of course, the new split P2

u′′ = (2uv + x)u, v′′ = (2uv + x) v,

is invariant with respect to ST (3) and (4), which, for this case, take the form

u→ u1 =
1

v
, v → v1 =

v′2

v
− (uv + x)v, (10)

u→ u−1 =
u′2

u
− (uv + x)u, v → v−1 =

1

u
, (11)

and, naturally, log un, log vn still satisfy the Toda chain (6).
At first glance, the results we have gained are less than spectacular. First of all, it is easy to see that the new

STs (10) and (11) do not preserve the reduction u = v, thus creating the impression that the equation P2 (1) might,
after all, be unrelated to both (10) and (11) and the corresponding Toda chain. Secondly, the r.h.s. of (9) bears no
constant terms and thus might at best be reducible to a homogeneous P2 with α = 0. All of this is exacerbated by
the fact that, in general, the equation we end up with will be of a fourth order:

L[u] ≡ u2u′′′′ − 4uu′u′′′ − 3u(u′′)2 + 2u′′(3u′2 + xu2) + 2uu′(u− xu′) = 0. (12)

However, as we shall see below, the order of (12) can be reduced. Before we do that, though, we shall point out a
number of very interesting properties it possess.

Property 1 Equation (12) is invariant with respect to transformation u→ βu, with β = const:

L[βu] = β3L[u] = 0.

Property 2 Equation (12) is invariant with respect to three discrete transformations, generated by the nonlinear
operators P0, P1, P2:

P0u =
1

u
, (13)

P1u =
u′′ − xu

2u2
, (14)

P2u =
2u

2u′2 − uu′′ − xu2
, (15)

where u is a solution of 4th order Equation (12).

Property 3 The operators P0, P1, and P2 have the following properties:

P0
2 = P1

2 = P2
2 = E, (16)

where Eu = u and

P1P0 = P0P2,
P0P1 = P2P0.

(17)
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Remark 2 The interweaving relations (17) are nontrivial because

[P0,P1,2] 6= 0.

For example,

[P1,P0] =
2u′2(u′′ − xu)− u(u′′

2
+ 4u2 − x2u2)

2u(u′′ − xu)
.

Using these properties one can construct an infinite set of exact solutions of (12), building upon some simple seminal
solution.

Example 1 Let us begin by adopting a trivial solution u0 = 1 of (12). We obtain an infinite set of progressively more
complex solutions from it. Let us list some of them:

u1 = P1u0 = −
x

2
,

u2 = P2P1u0 =
4x

x3 − 2
,

u3 = P1P2P1u0 = −
x6 − 10x3 − 20

8(x3 − 2)
,

u4 = (P2P1)
2 u0 =

16(x6 − 10x3 − 20)

x(x9 − 30x6 − 1400)
,

u5 = P1u4 = −
x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000

32x(x9 − 30x6 − 1400)
,

u6 = (P2P1)
3 u0 =

64(x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000)

x21 − 140x18 + 4620x15 − 78400x12 − 1078000x9 − 45276000x6 + 301840000x3 + 301840000
,

(18)

and so on.

Remark 3 If λ is constant, then

P0 (λu) =
1

λ
P0u,

P1 (λu) =
1

λ
P1u,

P2 (λu) =
1

λ
P2u,

(19)

therefore

P0P1,2(λu) = λP0P1,2u.

IV. MATRIX P2 RELOADED

Now, let us explain how to lower the power of differential Equation (12). We begin by noticing that the first integral
of (9) would be its Wrońskian, i.e.,

W2(u, v) = C. (20)

After we remove function v from (20), we end up with a new third order equation:

u′′′ =
3u′u′′

u
− 2xu′ + (1− 2C)u (21)

and it is straightforward to show that any solution of (21) will serve as such for (12) as well.
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We are not finished. The 3rd order equation is homogeneous with respect to combination {u, u′, u′′, u′′′}, which
implies that the Cole–Hopf transformation q = (log u)′ will further reduce it to a second order O.D.E.:

q′′ = 2q3 − 2xq − 2α, (22)

where α = C − 1/2. It is this equation which we will subsequently call P2, and for a good reason: it is reducible to
the canonic form (1) via two simple substitutions:

x→ −2−1/3x, q → −21/3w.

However, in order to prevent an unnecessary cluttering of our formulas by throwaway coefficients, for now we will
continue working with (22) under the assumption q = q(x, α).

It is both important and interesting to note that the Pi symmetries are in fact the famous Bäcklund transformations
for P2. Since we have chosen to embrace a non-canonical form of P2, it is instructive to show these transformations.
Here they are:

q(x, α)→ P0q(x, α) ≡ q0(x,−α) = −q(x, α), (23)

q(x, α)→ P1q(x, α) ≡ q1(x, α+ 1) = −q(x, α) +
2α+ 1

q′(x, α) + q2(x, α)− x
, (24)

q(x, α)→ P2q(x, α) ≡ q2(x, α− 1) = −q(x, α)− 2α− 1

q′(x, α)− q2(x, α)− x
. (25)

The transformations (23)–(25) are well-known and well-studied, although they are usually derived from the Bäcklund
transformations for KdV equations with the aid of a self-similar change of variables. We can see now that (23)–(25)
serve as discrete symmetries for P2, i.e., the explicitly invertible Bäclund transformations for (9), which are, in turn,
nothing but ST for the trivial NLS deformation. Additionally, their connection with the Toda chain becomes very
straightforward.

The (24) and (25) are well-studied in the literature, so we can now safely leave them and move on to the Jordan
generalizations. As a particular example, consider the following matrix equation P2:

W ′′ = 2W 3 + xW + α, (26)

where W (x, α) and α = const are N ×N matrices. Our goal is to derive (26) in the same manner as (22) before that.
To this end, we write a matrix equivalent of (9):

U ′′ = 2UV U + xU, V ′′ = 2V UV + xV, (27)

where U and V are, again, N × N square matrices. The sought after analogue of ST Equations (10) and (11) (the
analogous symmetries for the Davey–Stewartson equation have been studied in [41] by one of the authors) will be

U → U1 = V −1,

V → V1 = V ′V −1V ′ − V UV − xV,
(28)

U → U−1 = U ′U−1U ′ − UV U − xU,
V → V−1 = U−1.

(29)

Note that the symmetries (28) and (29) are mutually inverse:

(U1)−1 = (U−1)1 = U, (V1)−1 = (V−1)1 = V.

By removing V , we end up with a matrix analogue of (12):

U ′′′′ − 3U ′′U−1U ′′ + 2U ′U−1U ′U−1U ′′ + 2U ′′U−1U ′U−1U ′ − 2U ′U−1U ′′′−
− 2U ′′′U−1U ′ + 2U ′U−1U ′′U−1U ′ + 2U ′ − 2xU ′U−1U ′ + 2xU ′′ = 0,

(30)

whose order is reducible via the first integral

V U ′ − V ′U = A = const. (31)
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Remark 4 One can also pick an alternative integral: U ′V − UV ′ = B. However, since the system (27) is invariant
with respect to inversion U ↔ V , this option simply means that B = −A.

Now, we define the matrix-valued function q as

q ≡ U ′U−1. (32)

such that it satisfies the condition

V = (2U)−1
(
q′ + q2 − xE

)
,

so after a few simple calculations (31), we obtain

q′′ = 2q3 − 2xq + E − 2UAU−1. (33)

Of course, if A is proportional to a unitary matrix A = cE, then (33) will be identical to (22), except that q will
be an N ×N matrix, whereas 2α = 2c − 1 will be equal to a product of E and a number. The equation then turns
into (26) via the same point transformation as the one used in the scalar case.

It has been previously pointed out by Balandin in [42] that the diagonality of A might be a necessary condition for
the integrability of matrix P2. We now see that the non-diagonality actually leads to the integrability (for our purposes,
the integrability of a nonlinear equation means the existence of an explicitly invertible Bäcklund transformation—an
analogue of the Schlesinger transformations) of some non-local integro-differential matrix analogue of P2. However,
this equation might be rewritten in a completely local form via a different substitution:

Q ≡ U−1U ′.

which results in a different, and rather elegant, matrix O.D.E.:

Q′′ = 2Q3 − 2xQ+ [Q′, Q] + E − 2A. (34)

In a scalar case, the commutator vanishes, delivering us P2.

Remark 5 This work was reaching its conclusion when we learned of a paper by Adler and Sokolov [43], published
in 2021. There, the authors introduced three matrix-valued integrable generalizations of P2, denoted by Adler and
Sokolov as P 0

2 , P 1
2 , and P 1

2 . Out of these three, the first one was (34) exactly, whereas the second generalization can
be derived from (34) via a specific matrix shift of an independent variable. Interestingly, the authors of [43] have
introduced their versions of equations mostly voluntarily (essentially acting on the principle of “in a scalar case a
term with the commutator vanishes; let’s add it to the mix!”), while in our approach, (34) is a necessary outcome
of previous calculations. Nevertheless, we admit that we cannot claim the honour of discovering (34); it rightfully
belongs to Adler and Sokolov.

To conclude our discussion of Jordan generalizations, let us jot down the Bäcklund transform for (34). Let

J ≡ Q2 +Q′ − xE,

Then, the direct Bäcklund transformation will have the form

Q→ Q1 = JQJ−1 − J ′J−1, A→ A1 = A+ E, (35)

while its inverse

Q→ Q−11 = I−1QI + I−1I ′, A→ A−1 = A− E, (36)

where

I = Q2 −Q′ − xE = J − 2Q′.
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V. THE VECTORIAL PAINLEVÉ EQUATION

Now, let us take one more step and attempt to tackle a vectorial generalization of P2. In order to do this, we will
use the model of vector NLS originally introduced by Sokolov (and studied in [38]). Let U = {u1(x), u2(x), .., u

N
(x)}T

and V = {v1(x), v2(x), .., v
N

(x)}T be two N -dimensional vectors with a standard Euclidean scalar product

(UV) =

N∑
i=1

uivi.

What kind of equation are we going to call an N -component vector P2? It will be a system of 2N equations, with
the following vector representation:

U′′ = 4(UV)U− 2(UU)V + xU,

V′′ = 4(UV)V − 2(VV)U + xV.
(37)

One might at first hesitate calling (37) the P2 equation, but it is in fact a literal generalization of P2. For example,
in the case of N = 2, (37) has the form

u′′1 = 4(u1v1 + u2v2)u1 − 2(u21 + u22)v1 + xu1,

u′′2 = 4(u1v1 + u2v2)u2 − 2(u21 + u22)v2 + xu2,

v′′1 = 4(u1v1 + u2v2)v1 − 2(v21 + v22)u1 + xv1,

v′′2 = 4(u1v1 + u2v2)v2 − 2(v21 + v22)u2 + xv2,

(38)

and for N = 3,

u′′1 = 4(u1v1 + u2v2 + u3v3)u1 − 2(u21 + u22 + u23)v1 + xu1,

u′′2 = 4(u1v1 + u2v2 + u3v3)u2 − 2(u21 + u22 + u23)v2 + xu2,

u′′3 = 4(u1v1 + u2v2 + u3v3)u3 − 2(u21 + u22 + u23)v3 + xu3,

v′′1 = 4(u1v1 + u2v2 + u3v3)v1 − 2(v21 + v22 + v23)u1 + xv1,

v′′2 = 4(u1v1 + u2v2 + u3v3)v2 − 2(v21 + v22 + v23)u2 + xv2,

v′′3 = 4(u1v1 + u2v2 + u3v3)v3 − 2(v21 + v22 + v23)u3 + xv3.

(39)

Consider (38). Solve the first two equations for v1, v2 and substitute them into the remaining equation. The result
will be a system of two equations of fourth order for u1 and u2 that we will omit here owing to its cumbersomeness.
However, if we assume that u1 = u2 = u, both of these equations will be reducible to (12), which is just another form
of P2. In a similar vein, the system (39) can be coaxed into producing a system of three equations of fourth order
with a total of 92 terms in each; they are tamed by the conditions u1 = u2 = u3 = u, contracting down to a single
Equation (12).

The vector form of P2 permits an explicit self-transformation of the kind

U→ U(1) = − (UU)′

(UU)
U′ +

(UU)′′

2(UU)
U− (UU)V,

V→ V(1) = − U

(UU)
,

(40)

U→ U(−1) = − V

(VV)
,

V→ V(−1) = − (VV)′

(VV)
V′ +

(VV)′′

2(VV)
V − (VV)U.

(41)

which allows us to construct infinitely diverse families of exact solutions for (37) based on the initial trivial offering.
For example, if we take an arbitrary constant N -vector

w = {w1, w2, w3, ..., wN
}T ,
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then the simplest solutions of (37) will be of the form

V = w, U = − wx

2|w|2
, (42)

Applying to them our transformation (40), after the n-th iteration, we will gather the following solution:

V(n) = wv(n), U(n) = u(n)
w

|w|2
, (43)

where the scalar functions v(n) = v(n)(x), u(n) = u(n)(x) are derived with the aid of the Schlesinger transformation:

u(n+1) = u(n)
(

log u(n)
)′′
−
(
u(n)

)2
v(n),

v(n+1) = − 1

u(n)
.

(44)

Here are the fruits of our labours. Applying (44) for (42) yields

u(1) =
2− x3

4x
, v(1) =

2

x
,

u(2) =
x6 − 10x3 − 20

8(2− x3)
, v(2) =

2x

x3 − 2
,

u(3) = −
x(x9 − 30x6 − 1400)

16(x6 − 10x3 − 20)
, v(3) =

8(x3 − 2)

x6 − 10x3 − 20
,

u(4) = −
x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000

32x(x9 − 30x6 − 1400)
,

v(4) =
16(x6 − 103 − 20)

x(x9 − 30x6 − 1400)
,

u(5) = −
x21 − 140x18 + 4620x15 − 78400x12 − 1078000x9 − 45276000x6 + 301840000(x3 + 1)

64(x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000)
,

v(5) =
32x(x9 − 30x6 − 1400)

x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000
,

(45)

etc. Thus, we obtain a chain of exact solutions u(k), k ∈ N, which we shall recognize straight away, because we have
seen them before. In fact, they are almost identical to the uk solutions (18) we procured in Section III. A closer
examination reveals the following relationship between the old solutions uk and the new one:

v(k) = (−1)k · u
(−1)k

k
, u(k) = (−1)k · u

(−1)k

k+1
.

Another interesting starting point for generating new solutions would be the null-vector V ≡ 0. This choice not
only converts the system (37) into a linear equation, but it also implies that every component uk of vector U satisfies
the Airy equation:

u′′k = x uk. (46)

Two linearly independent solutions of (46) are the so-called Airy functions Ai(x) and Bi(x), which for x ∈ R can
be written as [44]

Ai(x) =
1√
π

∞∫
0

cos

(
t3

3
+ xt

)
dt

Bi(x) =
1√
π

∞∫
0

[
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt.

(47)

One can therefore write general solutions of Equation (46) as a linear combination of Ai(x) and Bi(x):

uk = akAi(x) + bkBi(x), ak, bk ∈ R, (48)
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and applying the transformations (40) and (41) to (48) (keeping in mind that vk ≡ 0), we will end up with a rather
different family of exact solutions that not only contains 2N arbitrary parameters {ak}Nk=1, {bk}Nk=1, but is also
completely entirely determined via the Airy functions and their derivatives. (This is but one of many examples where
the solutions of the integrable nonlinear differential equations can be written in terms of the Airy functions; for
instance, in [45], the Airy functions are shown to be an important ingredient in the solution of the Cauchy problem
for the Novikov–Veselov equation.)

Before the conclusion, let us emphasize the fact that (37) is a JP-system, whose Jordan algebra V
N

is determined
by the Jordan product

(e,x)y + (e,y)x− (x,y)e,

where e, x, and y are the elements of N -dimensional vector space; ( . , . ) is the scalar product; and e = (1, 0, 0, ..)T

is a unit in the V
N

algebra.

VI. ON A WAY TO THE PAINLEVÉ IV

In the previous sections, we have succeeded in developing a technique for the construction of solutions for the P2

equation, thus completing the main goal of this article. Nevertheless, the success motivates us to at least take a short
glance at the possibility of extending our technique for the remaining five Panilevé equations. Thus, in this section we
will briefly explain how to do that for Painlevé IV. First of all, we have to point our that NLS, whose deformations
acted as a sort of a launchpad for our investigation, is tightly related to yet another famous integrable equation
known as the Kadomtsev–Petviashvili equation (KP). This relationship, discovered and used in [46, 47] to generate
new rogue wave soliton solutions (i.e., the solutions that are localized in both space and time; originally discovered
by Howell Peregrine in 1983 for NLS [48], the rogue wave solutions have been steadily cropping up in almost every
field of mathematical physics, from the collapse of intrathermocline eddies in the ocean [49] to a magnetic “impacton”
arising during a collision of two positon solutions in ferromagnetic nanowires [50]), can only be properly understood
in the framework of the AKNS hierarchy (see Remark 1 and article [40]). For our purposes, it is important to single
out the existence of an explicit relationship between the solutions of (split) NLS and KP. The latter equation can be
written as a compatibility condition of two different linear equations; their shapes determine two types of dressing
chains of discrete symmetries. Say we choose a first one [51]:

α(s− f)y + (s+ f)xx + s2x − f2x = 0, (49)

with α2 = ±1. Let us add a periodic boundary condition

fn+N = fn + c(y),

where f = fn, s = fn+1. For a period N = 3, choose c = −2y/α and introduce new field variables gn, n = 1, 2, 3 as
follows:

f1 =
1

2
(g1 − g2 + g3 + c) , f2 =

1

2
(g1 + g2 − g3 − c) , f3 =

1

2
(−g1 + g2 + g3 + c) .

This will result in three equations for our new functions gn; their forms have been previously explicitly derived in
[52]. Excluding g3 and using the compatibility condition ∂y∂

2
x g2 = ∂2x∂y g2 will produce for us the nonlinear equation,

which, after some simple transformations, can be written as

zxx =
1

2

z2x
z

+
3

2
z3 + 4xz2 + 2(x2 − 2)z +

β

z
+

+
3α2q2

2z
− 3αqz +

α

z
D−1x

(
z3 + 2xz2 − 3αqz

)
y
, zy = qx.

(50)

where z = g1 x and q = g1 y. In a one-dimensional limit, the dependence on y vanishes along with all the terms
containing q and the derivatives with respect to y, so Equation (50) ends up being the sought after P4.

If we repeat all these calculations, this time starting out from the Jordan generalization of NLS, we shall arrive at
the Jordan generalizations of P4, i.e., at the JP-systems. We will return to this problem in a subsequent paper.
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VII. CONCLUSIONS

In this article, we have demonstrated how the coupling of NLS deformations with the Schlesinger transformation
naturally produces the Second Painlevé equation P2 and its Bäcklund transformations. The resulting scheme is
versatile enough to help generalize the JS-system formalism for the JP-systems, by which we understand the multiple-
fields integrable generalization of P2, based upon the unital Jordan algebras. This opens up a number of very promising
avenues of research, including the ultimate goal of classification and description of JP-systems. Another interesting
possibility lies in applying the new results to the task of constructing new discrete analogues of P2 (cf. [53]), associated
with the Jordan algebras. The novel approach developed herein is based on the invertible Bäcklund transformations,
which serve as a crucial part of the JP-systems theory. This further reinforces our opinion that the process of the
discretization of the JP-system will see no substantial difficulties.

Now let us summarize the main results.

1. We have demonstrated how the trivial deformations of NLS, invariant with respect to the Schlesinger transfor-
mations, can be reduced to a system of two split O.D.E.s of second order that inherits this symmetry.

2. The resulting system is shown to be equivalent to a single fourth order O.D.E.; its order can be reduced,
producing a familiar equation: P2.

3. Inherent Schlesinger symmetries appear to be nothing more but well-known explicitly invertible Bäcklund trans-
formations for P2. Thus, we obtain a very simple and concise method for the derivation of both P2 and its
Bäcklund autotransformations.

4. The simplicity of the method paves the way for its generalization for multiple fields models—a problem which
is traditionally considered a difficult one. We demonstrate how the new approach dispels the difficulties in
establishing multicomponent P2 generalizations associated with arbitrary unital Jordan algebras. This implies
that the multicomponent integrable (in the sense of having an analogue of the Schlesinger transformation) P2

generalizations can actually be classified, for example, by a set of structural constants of a corresponding Jordan
algebra. We have called such models JP-systems.

5. Another interesting observation that needs to be emphasized is that existence of explicitly invertible Bäcklund
transformations opens a way to generalize the proposed method to the discrete Painlevé equations. Taking into
account the rapid growth of interest in the discretization of Painlevé equations (see [53–56]), it would not be
unreasonable to expect the said method to be useful to the research.

One last question must be addressed before we wrap up. In this article, we have developed a method of generalization
for the Second Painlevé equation. What about the remaining five? In the last Section, we briefly touched upon Painlevé
IV and how it can be naturally introduced into our considerations via the fascinating relationship between NLS and
KP equations. As for the rest, at this stage we can only surmise that it might be possible to construct a similar
scheme for at last some of them, since these equations also posses the Schlesinger symmetries and the chains of
discrete symmetries [52]. This, however, is of course a matter for another time and another article. For now, let us
simply conclude by stating out humble hope that the approach developed in this article might be of use in both the
theory of Painlevé equations and in mathematical physics in general.
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Ann. Sci. Ecole Norm. Sup. 1917, 34, 239–353.

[10] Ablowitz, M.J.; Ramani, A.; Segur, H. A connection between nonlinear evolution equations and ordinary differential
equations of P-type. I. J. Math. Phys. 1980, 21, 715–721.

[11] Ablowitz, M.J.; Ramani, A.; Segur, H. A connection between nonlinear evolution equations and ordinary differential
equations of P-type. II. J. Math. Phys. 1980, 21, 1000–1015.

[12] Jimbo, M.; Miwa, T.; Ueno, K. Monodromy preserving deformation of linear ordinary differential equations with rational
coefficients: I. General theory and τ -function. Phys. D Nonlinear Phenom. 1981, 2, 306–352.

[13] Flaschka, H.; Newell, A.C. Monodromy- and spectrum-preserving deformations I. Commun. Math. Phys. 1980, 76, 65–116.
[14] Veselov, A.P.; Shabat, A.B. Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Its Appl.

1993, 27, 81–96.
[15] Wu, T.T.; McCoy, B.M.; Tracy, C.A.; Barouch, E. Spin-spin correlation functions for the two-dimensional Ising model:

exact theory in the scaling region. Phys. Rev. 1976, B13, 316–374.
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Theor. Math. Phys. 2000, 122, 1–16.
[54] Tamizhmani, K.M.; Tamizhmani, T.; Grammaticos, B.; Ramani, A. Special solutions for discrete Painlevé equations.
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