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A long-standing and difficult problem in, e.g., condensed matter physics is how to find the ground
state of a complex many-body system where the potential energy surface has a large number of
local minima. Spin systems containing complex and/or topological textures, for example spin
spirals or magnetic skyrmions, are prime examples of such systems. We propose here a genetic-
tunneling-driven variance-controlled optimization approach, and apply it to two-dimensional mag-
netic skyrmionic systems. The approach combines a local energy-minimizer backend and a meta-
heuristic global search frontend. The algorithm is naturally concurrent, resulting in short user
execution time. We find that the method performs significantly better than simulated annealing
(SA). Specifically, we demonstrate that for the Pd/Fe/Ir(111) system, our method correctly and effi-
ciently identifies the experimentally observed spin spiral, skyrmion lattice and ferromagnetic ground
states as a function of external magnetic field. To our knowledge, no other optimization method
has until now succeeded to do this. We envision that our findings will pave the way for evolutionary
computing in mapping out phase diagrams for spin systems in general.

I. MAIN

Optimization algorithms are central in many areas of
physics, for instance whenever one is dealing with com-
plex systems such as the many-body problem. A com-
mon challenge is to find the global minimum in the po-
tential energy surface (PES) describing the system. The
PES is often extremely complicated with numerous local
minima, making it very hard to identify the global mini-
mum. Interestingly, these types of systems can often be
described using the language of spin models. Therefore,
spin models have found wide use in areas not directly
connected to magnetism, e.g., percolation theory, protein
folding, and stock market trading models [1].

In this work, we specifically focus on the important
class of two-dimensional (2D) spin systems with com-
plex magnetic interactions – interactions that give rise to
frustration or convoluted magnetic textures, such as for
instance skyrmions or other magnetic topological struc-
tures [2–4]. For such systems, a number of optimization
algorithms have been developed, e.g., gradient-descent
based methods, Monte Carlo approaches, and methods
based on spin dynamics[5–7]. A recurring problem how-
ever is the tendency to get trapped into one of the
many local energy minima in the PES (the freezing prob-
lem) rather than converging toward the global minimum
within a reasonable amount of time.

To attempt to improve on this situation, a viable
route is to explore meta-heuristic optimization methods,
aimed at efficiently exploring the search space in order to
find near–optimal solutions. In particular, Markov chain
Monte Carlo (MCMC) based heat-bath methods – a

group of non-gradient sampling algorithms – have proven
themselves to be both effective and robust as regards
searching for low-energy states at finite temperature[8, 9].
Unfortunately, in their current implementations[10, 11],
there is still a great deal of prior knowledge needed –
e.g., appropriate initial guesses and manual convergence
analysis – in order to achieve acceptable results.

In order to remedy these shortcomings, several hybrid
approaches based on the idea of combining metaheuristic
algorithms and typical optimization approaches, e.g., hy-
brid Monte Carlo[12], neural annealing optimization[13]
or neural evolutionary methods have been proposed[14,
15]. However, these approaches have mainly been de-
signed for the Ising model and may not be ideal when
handling realistic magnetic materials with long-range in-
teractions.

Here, inspired by the idea of stochastic tunneling [16]
hybrid metaheuristic approaches[17, 18], and evolution-
ary approaches [14, 15, 19] a metaheuristic energy min-
imization approach is proposed and tested for magnetic
systems with topological magnetic textures. Specifically,
it combines an evolutionary algorithm with a local op-
timizer. The evolutionary algorithm provides a way to
select which new regions of the PES to explore, and the
local optimizer finds the nearest local minima in the se-
lected regions. We have selected to name our method ”ge-
netic tunneling optimizer” (GTO) to highlight its abil-
ity to tunnel energetically inaccessible regions [16] of the
PES using not only mutations but also cross-over oper-
ators i.e., a ”genetic” approach. We analyze the per-
formance of our proposed algorithm, which is designed
to have a high ability to escape from local traps during
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energy minimization. In particular, we investigate the
efficiency of our algorithm by performing simulations of
a 2D monolayer with model exchange parameters that
give rise to Bloch-type skyrmions as well as the exper-
imentally well-studied Pd/Fe/Ir(111) system, which ex-
hibits a Néel-type skyrmionic phase. Our results show
that the proposed approach is indeed highly efficient in
finding the global minimum in each of these test systems.

A. Spin system parameterization

Searching for the ground state of a spin system at zero
kelvin can be reformulated as finding the global minimum
of the PES defined by a many-body Hamiltonian describ-
ing the magnetic interactions between the constituents of
the system. In the present work, we use a Heisenberg-
type classical atomistic spin Hamiltonian of the form

H = −
∑
i 6=j

JijSi · Sj −
∑
i 6=j

Dij · (Si × Sj)

−
∑
i

Bext · Si −
∑
i

KU (Si · ez)
2
,

(1)

where Si is the spin moment at site i. Jij , Dij ,
KU, ez and Bext are Heisenberg exchange interactions,
Dzyaloshinskii–Moriya interactions, uniaxial anisotropy,
the easy axis vector, and the applied field, respectively.
Typically, these four Hamiltonian terms are sufficient for
a good description of the system one wishes to analyze
(see, e.g., Ref.[6]). Note that for some magnetic systems,
additional terms may be relevant to include, e.g., the bi-
quadratic exchange coupling or the four-ring-interaction
[6].

In this work, we test our algorithm by studying two
different systems – an artificial model system, and a
system with realistic materials-specific magnetic inter-
action parameters. In the artificial model system, we
use only nearest-neighbor interactions and the parame-
ters are chosen to generate Bloch-type skyrmions. The
second system is the Pd/Fe/Ir(111) system. Here, we
used more than thirty neighbor-interactions and all pa-
rameters were calculated by means of ab-initio density
functional theory (DFT)[20, 21]. In the present work, we
have considered spin configurations of 100 × 100 atomic
spins, but this number can naturally change, depending
on the studied system. All interaction data for both sys-
tems can be found in the GitHub repository (See data
availability section).

B. Outline of the genetic tunneling procedure

Finding the global minimum in a complex PES of a
spin system such as the one described above is com-
monly a non-deterministic polynomial-time hard (NP-
hard) problem [13]. These problems are very challenging,

which has prompted the development of various heuris-
tic methods, for example simulated annealing (SA). To
solve this global energy optimization problem, we pro-
pose a genetic tunneling algorithm. The complete de-
tails are described in the Method section, here we out-
line the most salient features. The procedure is illus-
trated schematically in Figure 1, where, in particular,
a flow chart of the method can be found in panel (d).
Our approach builds on genetic algorithms that serve as
an optimisation scheme by mimicking the flow of genetic
material through generations with an evolutionary ten-
dency for finding better solutions. In our method, seg-
ments of spin configurations are conceptually represented
as genes, each assigned a quality tag in terms of the un-
derlying energy. In this way, following the logic of genetic
algorithm-based optimisation, our method aims at find-
ing the global minimum. Importantly, the overall aim of
the genetic algorithm is to allow us to reach the global
minimum with minimal numerical effort, while we avoid
becoming trapped in metastable configurations (i.e., lo-
cal minima).

The workflow used here can be summarized into two
parts: finding spin configurations corresponding to local
mimina in the PES and using these spin configurations
to perform ”genetic tunneling” over the PES.

The very first step in the procedure is of course to
provide basic information about the system to the al-
gorithm – input which consists of physical information
such as crystal lattice, system size, atomic positions, and
magnetic interactions. An initial set of preliminary spin
configurations is then created. These spin configurations
serve as a first coarse guess and are typically far from any
energy minimum. For each of these preliminary configu-
rations, a local optimization module is invoked, relaxing
all magnetic orientations so as to reach, for each of them,
the closest local minimum. A selection also takes place,
so that the spin configurations that become members of
the first parent generation are not too similar to each
other. The end result of this step is a diverse set of
initial-generation spin configurations representing local
minima in the PES.

Then follows the metaheuristic search. Here, the set
of initial-generation spin configurations representing lo-
cal minima are segmented into pieces. The pieces are
then combined together in new ways and also subjected
to some ”mutation” by adding random noise, see Fig-
ure 1(b). This allows us to reach new, unexplored, parts
of the PES. The process is then repeated until conver-
gence, i.e., new local minima are identified, segments of
the corresponding spin configurations are combined, and
yet new parts of the PES are reached, with the aim of
identifying spin configurations with still lower energies
than the ones in the previous generations. Additional
details on the various parts making up the genetic tun-
neling method can be found in the Method section.
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FIG. 1. (a) Conceptual illustration of the variance-threshold controlled localized optimization process to find low energy spin
configurations. The contour map in the middle shows an example of a PES. The darker zones in the contour map represent lower
energy areas. The arrows connect the local optimization process and the configuration point in the PES. At the top of the figure,
five colored blocks, i.e., Early, Rough, Medium, Fine, and Precise, denote different converge levels of the local search algorithm.
The ”Early” level means the lowest convergence, and the ”Precise” level represents the highest convergence. (b) Conceptual
illustration of how the genetic operators are applied to the spin system. The whole process involves three subprocesses, i.e.,
spin-configuration segmentation, crossover, and perturbation-based mutation (for details, see the Method section). In the spin
configuration segmentation part, different from conventional binary-based genetic representation, the configuration-space spin
textures are viewed as information carriers conceptually similar to chromosomes in biological systems. The spin textures are
divided into several segments that can be used in the same way as gene segments. Examples of the square-crossover and
mutation operators are shown in the top of Figure (b) (for details about these genetic tunneling operators, see the Method
section). (c) Conceptual illustration of how the genetic tunnelling operators tunnel through the energy barriers and enable a
heuristic search for spin configurations with lower energy, with the ultimate aim of finding the global minimum. The curve
represents the PES, and the colored stars represent optimized spin configurations corresponding to local minima of the PES
at temperature T . The height of the shadow-colored region equals kBT . (d) Flowchart of the entire procedure. The dark
yellow boxes at the top represent input data that need to be prepared before execution, and the light yellow boxes represent
generated spin configurations. The light yellow box with a dashed boundary represents an optional choice. The gray rounded
rectangles represent operations. The white diamond-shaped boxes represent conditional statements. Notation in the flow chart:
H (C0

r ) and H (C0
i ) represent the energy of a generated spin configuration corresponding to a local minimum in the PES and

the energy of any spin configuration that has already been selected as part of the initial parent generation, respectively. ∆E
is a threshold energy difference set so that spin configurations that are too similar to the already selected ones are discarded –
see Eq.8 for more details. C0 is the initial sets of selected spin configurations, constituting the first parent generation. Finally,
CLOPT and COPT are the sets of local and final optimized spin configurations, respectively.
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FIG. 2. (a) Performance benchmark of the genetic tunneling optimizer at 0.1 mK. The simulation system is Pd/Fe/Ir(111) with
an external magnetic field of 2.7 T directed out of the plane. Here MCMC-R, MCMC-RW, and MCMC-T represent Markov
chain Monte Carlo local optimizers with Rank (R), Roulette Wheel (RW), and Tournament (T) genetic selection, respectively
(for details, see the Method section). The SLLG-R, SLLG-RW, and SLLG-T represent spin-dynamics based optimizers that
solve the stochastic Landau–Lifshitz–Gilbert (SLLG) equation with an artificial damping value of 0.4 combined with Rank(R),
Roulette Wheel(RW) and Tournament(T) genetic selection, respectively. The abbreviation SA stands for simulated annealing,
the results of which is used as reference energy. For better comparison, the results from SLLG R, SLLG RW, and SLLG T
are shown from generation 12 of the algorithm (see the Method section). (b) The time consumption in units of node-hours for
each optimizer. All of the simulations are performed on an Intel Xeon Gold 6130 CPU node with 32 cores without concurrent
processes. (c)-(k) Visualization of the final spin configurations from each optimizer. Here, blue color means that the spin
points downwards away from the reader, whereas red color means that the spin points upward, toward the reader. White color
indicates that the spin direction is parallel to the plane.

C. Algorithm performance comparisons and
optimization

Each different part of our method can be implemented
in various ways. In order to optimize the performance
of our method we have therefore systematically com-
bined a number of possible implementations of each part
and compared the resulting performance. Specifically,
we combine three typical genetic selection operators, i.e.,
Rank (R), Tournament (T), and Roulette Wheel (RW),
with two different local optimizer backends – the MCMC-
based optimizer and an optimizer based on the stochastic
Landau–Lifshitz–Gilbert (SLLG) equation. Finally, for
the purpose of analyzing the impact of starting from a
pre-optimized initial spin configuration, an initial spin
configuration generated with SA was tested as initial
guess, in addition to simply using a randomly generated
initial spin configuration.

We have set the temperature to a very low value,
0.1 mK, in order to obtain highly converged energies and
spin configurations of the local minima. This enables a
more fair comparison of the performance of the various
implementations, since random noise in the optimization
process is reduced. For an explanation of the role of
temperature in the algorithms and how we use the term
”ground state” in relation to that, see the Method sec-
tion. The simulations are performed for a spin Hamilto-
nian describing the two-dimensional Pd/Fe/Ir(111) sys-
tem.

The results are presented in Figure 2. To facilitate
comparison, a classical MCMC-based SA optimization
with a fine temperature mesh and 2.5× 106 steps is used
as baseline. These baseline results are denoted SA in
Figure 2. For more details on the SA setup we have
used, see the Method section. A clear trend in Fig-
ure 2(a) is that all tested combinations indeed manage to
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FIG. 3. Performance analysis of the genetic tunneling algorithm at low temperature on the Fe/Pd/Ir (111) system with
different system sizes and applied fields. Due to limited space in the figures, we use the label ”GTO” to refer to GTO-MCMC-
R computations. SA stands for simulated annealing. (a) Predicted ground-state energy and simulation execution time as a
function of system size. (b) Total energy and topological charge as a function of applied magnetic field. The size of the simulated
system is 100 × 100, and the temperature is set to 0.1 mK. SS, SkL, and FM represent the spin spiral, skyrmion lattice, and
ferromagnetic states, respectively. The cyan- and purple-coloured blocks indicate transition zones between the states. (c) First-
generation simulation user execution time (green symbols) and core execution time (blue symbols), and predicted ground-state
energy (yellow symbols) as a function of the number of CPU cores for a 100 × 100 spin system. The lines are guides for the
eye. (d) Same as in (c), but for a 200 × 200 spin system. Each point in (c) and (d) represents 5 simulations. The time error
bars in (c) and (d) show the highest, lowest, and average first-generation execution time. The energy error bars in (c) and (d)
indicate the highest and lowest predicted ground state energies.

find spin configurations with gradually lower energy with
each iteration. However, there is a significant difference
in performance between the MCMC-based implementa-
tions and the spin-dynamics based ones. Specifically, we
find that with a finite number of local optimization steps
and global searching epochs, all spin-dynamics based op-
timizers may not achieve convergence. In general, the
implementations with an MCMC-based backend perform
significantly better, yielding consistently lower energies
for the same number of iterations. In fact, all tested
genetic tunneling operators combined with the MCMC
backend invariably reach convergence and find solutions
with lower energy compared to the other tested methods,
including the baseline reference energy obtained by SA.
We also measured and compared the computing time for
all implementations, and found that the ones with the
MCMC backend were faster on average, see Figure 2(b).

The Figures 2(d)-(k) show the spin configurations after
60 iterations for each tested implementation. All imple-

mentations with the MCMC backend (Figures 2(d)-(g))
find a hexagonal skyrmion lattice, with a unit cell size
in good agreement with previous studies[22, 23]. In con-
trast, none of the implementations based on the spin-
dynamics backend (Figures 2(h)-(k)) manage to identify
a stable hexagonal skyrmion lattice within 60 iterations.

All in all, we find that the Rank selection genetic oper-
ator algorithm in combination with the MCMC backend
appears to be the best choice. Furthermore, we find that
starting from a completely random spin configuration is
a good choice, since no significant gain could be identified
in the tests where we instead started from an initial con-
figuration found using SA. Thus, in the remainder of this
work, we use the algorithm corresponding to option (d)
in Figure 2, i.e., MCMC with Rank selection and random
initial input, and refer to it as GTO-MCMC-R.
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FIG. 4. Searches for the ground state in an artificial Bloch-type skyrmion system and a Néel-type skyrmion system
Pd/Fe/Ir(111) that are described in section A, using a simulation temperature of 8 K. Due to limited space in the figures, we
use the label ”GTO” to refer to GTO-MCMC-R computations. SA stands for simulated annealing. Panels (a), (b), and (c)
show the simulation results for the artificial Bloch-type skyrmion system with 40 T, 150 T, and 400 T applied field, respectively.
Panels (d), (e), and (f) show the simulation results for the Pd/Fe/Ir(111) system with 1.0 T, 2.7 T, and 4.4 T applied field,
respectively. The ground states in (a)-(b), (c)-(d), and (e)-(f) are a spin spiral, a skyrmion lattice, and the ferromagnetic
state, respectively. In each panel, the red line represents the energy of the best individual of each generation, the yellow band
represents the energy distribution of elite individuals [24, 25] in each generation, and the green line represents the energy of the
spin configuration predicted using SA. To show the optimization process in detail, we set the convergence limit to an extremely
low value. Based on this, all optimizations will run up to the preset maximum iteration threshold of 50 in this section. The
real-space spin configurations found by GTO-MCMC-R and SA are visualized in the middle of each panel. Here, blue color
means that the spin points downwards away from the reader, whereas red color means that the spin points upward, toward the
reader. White color indicates that the spin direction is parallel to the plane.
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D. Effect of system size and applied field on
performance

In Figure 3, we summarize how our method performs
as a function of system size and applied magnetic field,
and compare with the corresponding performance of SA.
In all these simulations the temperature was set to a
low value – 0.1 mK and the tests were done for the
Fe/Pd/Ir(111) system. Figure 3(a) shows total energy
(left y-scale) and execution time (right y-scale) as a func-
tion of system size. Here, the magnetic field was set to
2.7 T and all simulations were performed on a single node
with 32 CPU cores. We find that GTO-MCMC-R consis-
tently identifies lower energy states compared to SA for
all tested system sizes. GTO-MCMC-R converges faster
than SA for system sizes up to about 160x160 but scales
less well than SA for larger system sizes. We also evalu-
ated the performance of the GTO-MCMC-R as a function
of applied field, see Figure 3(b). The left y-scale shows
the total energy of the system, and the right y-scale the
total topological charge (or skyrmion number). Just as
before, we see that GTO-MCMC-R consistently identifies
lower energy states compared to SA.

The most remarkable result here is however how GTO-
MCMC-R very successfully can be used to distinctly
identify the three different phases of the system and
their regions of stability with respect to the magnetic
field. This is because the method predicts the topolog-
ical charge with excellent precision. Below 1.5 T the
spin-spiral state is the ground state and above 3.3 T the
ground state is ferromagnetic, both with zero topological
charge. From about 1.6 T to around 3 T, a hexagonal
skyrmion lattice phase is predicted, with a constant topo-
logical charge of 36 (corresponding to a 6 × 6 skyrmion
lattice) for the investigated system size. In contrast, the
SA simulations predict nonzero topological charge over
the entire investigated magnetic field interval. Moreover,
the topological charge computed with SA oscillates visi-
bly in the region where there should be a stable hexago-
nal skyrmion lattice. In the regions where the topological
charge should be zero, SA predicts a topological charge
only slightly different compared to the skyrmion-lattice
region.

Our GTO-MCMC-R simulations predict that the zone
where the skyrmion lattice is the ground state is some-
what wider than what was found in Ref. [20]. The blue
and gray areas indicate transition zones in the GTO-
MCMC-R simulations, in which the topological charge
changes as the system changes its ground state. Energy
differences between configurations with various topolog-
ical charges in the second transition zone can be found
in the Supplementary section. Finally, in Figures 3(c)
and (d), we show how the GTO-MCMC-R execution
time scales with the number of CPU cores used. As
already mentioned, our method lends itself well to con-
current computing, which becomes increasingly impor-
tant the larger the addressed system is. In both figures,
the left y-scale is execution time and the right y-scale is

the computed total energy of the system. We show user
execution time (the dark green circles) as well as core
execution time, i.e. the user execution time multiplied
with the used number of cores (dark blue circles). In
Figure 3(c), the size of the tested system is 100 × 100,
whereas in Figure 3(d) it is four times larger – 200×200.
As regards the computed total energy per atom (the light
green circles), it is found to be effectively constant, as ex-
pected. From the core execution time data, we see that
the method scales very well with the number of cores. For
the 100 × 100 system in Figure 3(c), the core execution
time is smallest for 64 cores, but user execution time can
still be gained up to 256 cores. For the 200×200 system,
the corresponding numbers are 256 and 512.

E. Computed ground state as a function of applied
magnetic field with constant temperature

In this section, we present results from investigations
on how the genetic tunneling algorithm performs at a
temperature of 8 K for different applied fields. Results
for two simulated systems are shown in Figure 4. The
left column (Figure 4 (a/c/e)), shows simulations on an
artificial frustrated spin system that exhibits a spin spiral
state (a), a Bloch-type skyrmion state (c), and ferromag-
netic state (e) at low, medium, and high applied field,
respectively. The simulated system in the right column
in Figure 4 (b/d/f) is a Pd/Fe/Ir(111) monolayer, which
also has three states at different fields, but instead of
Bloch skyrmions, it contains Néel-type skyrmions.

As shown in Figure 4 (a/c/e), both the GTO-MCMC-
R and SA can find the ground state of the artificial sys-
tem with different applied fields, but as regards the en-
ergy itself, the genetic tunneling algorithm is more suc-
cessful in finding spin configurations with lower energy.
This result is also reflected in the real-space spin con-
figuration visualization, especially in Figure 4 (c). Ev-
idently, while magnetic moments in both systems fol-
low the Boltzmann distribution at 8 K, the hexagonal
skyrmion lattice found with the genetic tunneling algo-
rithm is more stable.

From Figure 4 (b/d/e), we find that also for a more
complex, real system, the GTO-MCMC-R still performs
better than SA. When the applied field is 1 T, the ground
state predicted by the genetic tunneling optimizer is a
twisty spin spiral state which is in remarkably good agree-
ment with the experimental data in [23]. However, SA
gives a hybrid phase that contains both spin spirals and
bubbles. At 2.7 T, GTO-MCMC-R finds a more rea-
sonable hexagonal skyrmion lattice compared to SA. Fi-
nally, at 4.4 T, the GTO-MCMC-R correctly finds the
ferromagnetic state (with some fluctuations due to finite
temperature) whereas in the SA solution there are sev-
eral complex structures (bubbles or skyrmions). To sum-
marize, the final system energy that we obtain from the
genetic tunneling optimizer is lower than what we obtain
using SA in both systems addressed. Thus, we conclude
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FIG. 5. Ground-state search for the Pd/Fe/Ir (111) system as a function of temperature. The applied magnetic field is set to
2.7 T. Due to limited space in the figures, we use the label ”GTO” to refer to GTO-MCMC-R computations. SA stands for
simulated annealing. (a) The ground state energy (left y-axis) and topological charge (right y-axis). (b)-(e) Real-space plots
of ground-state spin configurations identified using GTO-MCMC-R for four different temperatures. (f)-(i) Real-space plots of
ground-state spin configurations identified using SA for four different temperatures.. The green dashed lines point out patterns
with hexagonal ordering of skyrmions. The color scheme in the plots (b)-(e) is the same as in Figure 2(c)-(k).

that our algorithm works well for a range of magnetic
fields in the presence of thermal fluctuations.

F. Computed ground state as a function of
temperature with constant applied magnetic field

Next, we analyzed the performance of our algorithm
as a function of temperature. In all these simulations the
applied magnetic field was set to 2.7 T (i.e., in the middle
of the interval where the skyrmion lattice is the ground
state) and the tests were done for the Fe/Pd/Ir(111)
system. The results are shown in Figure 5. In this
case, we find that the ground state energies predicted
by GTO-MCMC-R (yellow symbols) and SA (green sym-
bols) are broadly similar. However, as the temperature
increases, the difference increases, with GTO-MCMC-R
consistently finding slightly lower energy states, see Fig-
ure 5(a). We also computed the topological charge of the
predicted ground states. In the GTO-MCMC-R simula-
tions, the topological charge decreases with temperature,
which is consistent with experimental results[23, 26] and
also what one would expect. In contrast, SA does not re-

produce this trend. Additional data in the form of spin
configurations are shown in Figure 5 (b)-(i), where the
top row are the GTO-MCMC-R spin configuration re-
sults and the bottom row the corresponding SA results.
In the GTO-MCMC-R images, remnants of the ground-
state hexagonal skyrmion crystal pattern can be seen up
to 32 K, whereas such patterns are absent in the SA re-
sults above 8 K. It is reasonable to expect that the zero
kelvin hexagonal skyrmion lattice breaks up gradually
with increasing temperature, and therefore we believe
that these images further strengthen the conclusion that
GTO-MCMC-R has superior performance compared to
SA.

II. DISCUSSION AND CONCLUSIONS

To the best of our knowledge, this is the first study es-
tablishing a genetic-tunneling optimization protocol for
complex spin systems with long-range interactions. The
algorithm presented in this work has general applicability
to spin systems, and is here shown to successfully find the
ground state for monolayer spin systems at finite temper-
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atures and at a variety of applied magnetic fields. The
approach contains two essential parts: (1) a variance-
threshold controlled local optimizer, which includes a
MCMC optimizer and a spin-dynamic optimizer and (2)
a spin-configuration space genetic tunneling metaheuris-
tic search module. The algorithm is designed to be able
to escape from a local minimum through the use of ge-
netic tunneling operators and find the global minimum
for a given system without any initial guess. The effi-
ciency of our genetic tunneling protocol is investigated
on both a simple artificial system with magnetic frustra-
tion and a Pd/Fe/Ir(111) monolayer that includes com-
plex Heisenberg and Dzyaloshinskii–Moriya interactions,
as calculated from DFT. The results indicate that the
GTO-MCMC-R has better performance than SA when
it comes to finding stable spin configurations as a func-
tion of external parameters like temperature and ap-
plied magnetic field. Most noteworthy, we here consid-
ered the spiral structure, the skyrmion lattice, and the
ferromagnetic state. Our method successfully finds all
three ground states as a function of magnetic field, and
also correctly identifies the transition regions in between.
To our knowledge, no other theoretical method has yet
demonstrated such an ability. It can also be concluded
that the performance of the algorithm is limited neither
by the system size, geometry, nature of the magnetic in-
teractions, temperature, nor the applied field strength.

In practice, for optimal performance of the protocol,
the various hyperparameters will of course need to be
fine-tuned depending on the system under consideration.
For example, a non-optimal variance threshold may in-
crease the risk of premature convergence.

In conclusion, we have explored a genetic tunnel-
ing protocol, which is designed to predict the magnetic
ground state of a classical spin Hamiltonian at finite tem-
perature. We demonstrate that our method is robust
for two-dimensional systems, both for a simpler model
systems and for the more complex Pd/Fe/Ir(111) sys-
tem. We envision that our findings will pave the way
for evolutionary computing in finding the ground state
of magnetic systems, e.g., for magnets with non-trivial
topology and spin glass systems. Since complex systems
in a very general sense can be cast into the language of
spin Hamiltonians, it also appears possible that the here
suggested protocols will find applications in other areas
of solid-state science, or even in fields outside the natural
sciences.

III. METHOD

A metaheuristic algorithm can interactively guide and
modify the operations of subordinate heuristics, to ef-
ficiently produce preferable solutions within a high-
dimensional search space[27, 28]. Representative meta-
heuristic algorithms include Simulated Annealing (SA),
Particle Swarm Optimization (PSO)[29] and Genetic Al-
gorithms (GA)[30]. It has been shown that a hybrid al-

gorithm that combines the algorithms mentioned above
with a local optimizer, e.g., gradient descent, can be an
efficient way to solve the global optimization problem
within a complex configuration space[31].

In this study we introduce a genetic tunneling strategy
in the form of a hybrid algorithm – connecting the local
minimization approach shown in Figure 1(a) to a meta-
heuristic genetic-tunneling module – with the aim of find-
ing the global energy minimum of the spin system. For
an overview of the procedure, see the flow chart in Fig-
ure 1(d). In the following sections, we describe the main
implemented algorithms and how they interact. In the
current code, there are a number of additional optional
functionalities implemented, which are not discussed here
since they are not of central importance for the overall
performance, e.g., the Elite selection protocol[24, 25].

A. Selection and genetic-tunneling operators

Below, we describe the evolutionary parts of our hybrid
algorithm. Each generation consists of Np spin configu-
rations, i.e., for the kth generation we have

Ck =
{
Ck

i | i = 1, 2, · · · , Np

}
, (2)

where Ck is the set of all spin configurations in genera-
tion k, and Ck

i is one spin configuration. Starting from
the kth generation of Np spin configurations, each cor-
responding to a local minimum in the PES, generation
k + 1 is produced in the following way. The first step is
to select spin configurations in generation k that will be
used as parents for a new spin configuration in genera-
tion k+1. We have implemented three different selection
operators – Roulette Wheel (RW), Rank (R), and Tour-
nament (T). With the Roulette Wheel selection operator,
the probability of choosing a candidate spin configuration
Ck

i to become a member of the breeding pool is equal to

P (Ck
i ) =

Hi∑Np

i=1 Hi

, (3)

where Hi is the Hamiltonian (i.e., the energy) of spin
configuration Ck

i . The Rank and Tournament selection
operators are described as algorithms in the Supplemen-
tary section. In the present implementation, Np is set to
64 and we select a total of four spin configurations out of
these to breed one new spin configuration.

The next step is to create the new spin configuration
from the selected parents. To perform this step, we in-
voke three tunneling operators – square crossover, linear
crossover and mutation. The pseudocode for the quared-
crossover and linear-crossover operators can be found
in the Supplementary section. In the square-crossover
scheme, we first generate two random split ratios, and use
them to split each parent spin configurations along the
x- and y-directions into four rectangles, see Figure 1(b).
Then, we combine these generated parts using a random-
ized procedure to create a new spin configuration with
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the same dimensions as the spin configurations in the par-
ent generation. Finally, the mutation operator is added.
This operator consists of adding a Gaussian random noise
to all spins in the new configuration, using the Rodrigues
rotation formula[32]. Thus, the square-crossover scheme
consists of two operators – the square-crossover operator
and the mutation operator. The linear-crossover scheme
is very similar to the square-crossover scheme, with the
difference that we instead split each parent spin config-
uration along only one direction. These steps are then
repeated until we have Np new spin configurations. As
a side note, we mention that the square-crossover and
linear-crossover tunneling operators we introduce here
are especially well suited for systems with clearly con-
tained spin textures, such as skyrmions and spin spirals.

Before the new generation of spin configurations can
be used as parents, a local energy optimizer is invoked,
to guarantee that all spin configurations in the new gen-
eration correspond to local minima in the PES. The local
energy optimizers we have used for this step are described
next.

B. Variance-controlled local energy optimizer at
finite temperature

A local optimization of a spin configuration involves
finding a local minimum starting from a given initial
guess. We have implemented two different types of local
optimizers: an MCMC-based optimizer and one based on
SLLG. These two methods have been proven to be robust
and efficient in describing complex spin systems[6, 33].
We describe both in some detail below.

The MCMC optimizer is of Metropolis type and per-
forms energy minimization under finite temperature by
using the transition probability Pt between two spin con-
figurations in the Markov chain:

Pt =

{
exp

(
− ∆E

kBT

)
, if ∆E > 0

1, otherwise
(4)

where ∆E, kB , and T are the energy difference between
spin configurations, the Boltzmann constant, and the
temperature of the system. For a given initial spin config-
uration, the method will iteratively minimize the energy
of the system.

The second approach we use to optimize spin configu-
rations is the spin-dynamics based optimizer, which uses
the SLLG equation to simulate the time evolution of
atomic magnetic moments. This method is able to reach
a spin configuration near a local energy minimum from
a given initial state, since – when Gilbert damping[33]
is included in the simulations – energy is allowed to dis-
sipate from the system. The atomistic SLLG equation
reads

dmi

dt
=− γLmi ×

(
Bi + Bf

i

)
− γL

α

mi
mi ×

[
mi ×

(
Bi + Bf

i

)]
,

(5)

where Bi the effective magnetic field at site i and Bf
i is

the stochastic magnetic field corresponding to the ther-
mal fluctuations present in a heat bath with temperature
T . In this equation, the first term represents the preces-
sional motion of the atomic magnetic moments, while
the second term describes the damping motion. In the
expression above, γL is the renormalized gyromagnetic
ratio, which is calculated from

γL =
γ

(1 + α2)
, (6)

where γ is the gyromagnetic ratio and α is the isotropic
Gilbert damping constant. In the present work, we use
both the Metropolis MCMC and the SLLG local opti-
mization schemes as implemented in the Uppsala Atom-
istic Spin Dynamics (UppASD) package[10].

In order to automatically stop the minimization pro-
cess when a desirable convergence level has been reached,
we use a variance threshold Var(H ). For the spin Hamil-
tonian used here, this threshold is defined as

Var(H ) =
1

n

n∑
i=1

(Hi − 〈H 〉)2
, (7)

where 〈H 〉 stands for the expectation value of the spin
Hamiltonian, and the sum is over the n last iteration
steps. In the present work, we typically set n between 10
and 100.

We end this subsection with a note on nomenclature:
as is evident from the above, in our simulation method
the temperature must always be set to a finite value, it
cannot be zero. Therefore, in this work, the term ”ground
state” should be taken to mean the lowest lying minimum
at the set simulation temperature, see Figure 1(c).

C. Initialization and termination

Initialization The algorithm starts from an initial par-
ent generation C0 of spin configurations (generation
zero). We have implemented two ways of producing these
initial configurations. The first method starts by sim-
ply producing random spin configurations using random
numbers together with the crystal information and mag-
netic interactions defining the studied spin system. The
generated spin configurations are subsequently relaxed
to the closest lying local minimum, using one of the lo-
cal energy optimizers described above.We select Np spin
configurations by using the criterion that any two config-
urations must not be too close in energy, i.e.,

H
(
C0

r

)
−H

(
C0

i

)
) > ∆E. (8)

Here, ∆E is a threshold energy difference, that guar-
antees that configurations C0

r and C0
i are not too sim-

ilar. In this work, we use values ranging from 10−4 to
10−6 mRy/atom for ∆E. In practice, this implies that
the number of random spin configurations generated will
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typically be much larger than Np, in order to be able to
select Np spin configurations fulfilling the selection cri-
terion above. The Np selected spin configurations con-
stitute C0. The second method is based on simulated
annealing (SA). Here, we use a relatively coarse temper-
ature mesh so that the SA-based initialization does not
become too time consuming. Just as in the first method,
a large number of spin configurations are generated, a lo-
cal minimizer is invoked to find the corresponding local
minima, and Np spin configurations are selected using
the criterion in Eq. 8. Specifically, in the present work,
the SA simulations were performed using a temperature
mesh of only four points (the simulated temperature, and
then 20 K, 50 K, and 200 K added to the simulated
temperature). At each temperature, we performed 2000
Metropolis steps.

Termination There are two stop criteria set for the
search process in this work – a maximum number of al-
lowed iterations (i.e., number of produced generations)
and a convergence criterion. In this work we have set the
maximum number of iterations to around 60. However,
our optimization algorithm often finds a converged solu-
tion (according to the convergence criterion explained be-
low) within a significantly smaller number of iterations.
Our convergence criterion is designed in the following
way. For each generation, the variance over the set of
spin configurations is computed. Thus, for each genera-
tion, we compute

Var(H ) =
1

Np

Np∑
i=1

(Hi − 〈H 〉)2
, (9)

where 〈H 〉 stands for the expectation value of the spin
Hamiltonians over all spin configurations in the set. As
the optimization proceeds, the spin configurations within
each generation will become more and more similar to
each other, as they approach the ground state. Therefore,

when the variance in Eq. 9 decreases below a predefined
threshold, the procedure is deemed to have converged,
and is stopped. At this point, the final spin configuration
or configurations COPT representing the best solution
can be extracted (see the flowchart in Figure 1(d)).

IV. DATA AVAILABILITY

All data needed for reproducing the results can be
found in the GitHub repository https://github.com/
MXJK851/GTO-2D

V. CODE AVAILABILITY

All code of GTO-2D is available at https://github.
com/MXJK851/GTO-2D under the GPL-3.0 license.
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A. Bagrov, D. Iuşan, L. Nordström, M. I. Katsnelson,
D. Wegner, O. Eriksson, et al., Nature Physics 18, 905
(2022).

[12] W. Wang, J. Machta, and H. G. Katzgraber, Physical
Review E 92, 013303 (2015).

[13] M. Hibat-Allah, E. M. Inack, R. Wiersema, R. G. Melko,
and J. Carrasquilla, Nature Machine Intelligence 3, 952
(2021).

[14] A. Chen, K. Choo, N. Astrakhantsev, and T. Neupert,
Physical Review Research 4, L022026 (2022).

https://github.com/MXJK851/GTO-2D
https://github.com/MXJK851/GTO-2D
https://github.com/MXJK851/GTO-2D
https://github.com/MXJK851/GTO-2D
https://doi.org/10.1126/science.aab3326
https://doi.org/10.1126/science.aab3326
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/s41586-018-0745-3
https://doi.org/10.1038/s41586-018-0745-3
https://doi.org/10.1103/PhysRevLett.95.197204
https://doi.org/10.1103/PhysRevLett.95.197204


12

[15] S. Whitelam and I. Tamblyn, Physical review letters 127,
018003 (2021).

[16] W. Wenzel and K. Hamacher, Physical Review Letters
82, 3003 (1999).

[17] G. D’Angelo and F. Palmieri, Information Sciences 547,
136 (2021).

[18] A. Kapoor, E. Nukala, and R. Chandra, Applied Soft
Computing 129, 109528 (2022).

[19] G. L. Hart, V. Blum, M. J. Walorski, and A. Zunger,
Nature materials 4, 391 (2005).

[20] I. P. Miranda, A. B. Klautau, A. Bergman, and H. M.
Petrilli, Phys. Rev. B 105, 224413 (2022).

[21] P. F. Bessarab, G. P. Müller, I. S. Lobanov, F. N. Ry-
bakov, N. S. Kiselev, H. Jónsson, V. M. Uzdin, S. Blügel,
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VI. SUPPLEMENTARY

A. Implementation details of selection and genetic
tunneling operators

The pseudocode corresponding to the tournament se-
lection, rank selection, square crossover, and linear
crossover algorithms used in this work are provided in
algorithm 1, 2, 3, and 4, respectively.

B. Relative energies of different phases in the
Pd/Fe/Ir (111) system at 0.1 mK in the transition

zone from the skyrmion lattice phase to the
ferromagnetic phase

In Table I, we list the calculated average relative
energies per atom for four different phases in the
Pd/Fe/Ir (111) system: the ferromagnetic phase (FM),
the isolated skyrmion phase (Sk) and the 6× 5 and 6× 6
skyrmion lattice phase (SkL). The applied magnetic
field is varied from 3.1 to 3.4 T. Zero energy denotes the
found ground state in each case. This table proves that
the algorithm we propose in this paper indeed correctly
identifies the transition state in Figure 3(b).

Algorithm1 Tournament selection for local optimized
spin configuration

Choose the tournament size K
Choose the parent group set size O
for i = 1 to O do

Choose K spin configurations from the parent genera-
tion at random

Calculate the energies of these K spin configurations
Choose the best spin configuration with the lowest en-

ergy from the tournament
end for
Output selected O spin configurations

Algorithm2 Rank selection for local optimized spin
configuration

Choose the parent group set size O
for i = 1 to O do

Calculate the energies of all spin configurations from the
parent generation

Choose and remove the best spin configuration with the
lowest energy from the parent generation
end for
Output selected O spin configurations

Algorithm3 Square crossover with 4 spin
configurations

Choose 4 spin configurations in size of N ×N : S1,S2,S3,S4
Choose 2 random numbers i and j that allow i + j = N
for S1 to S4 do

Split the spin configuration into 4 spin segments with
the size of i× i, i× j, j × i, and j × j
end for
Choose 4 different spin segments with size of i × i, i × j,
j × i, and j × j randomly from all spin segments.
Combine those 4 spin segments into one offspring configu-
ration in size of N ×N
Output the offspring spin configuration

https://doi.org/10.1103/PhysRevB.105.224413
https://doi.org/10.1038/s41598-018-21623-3
https://doi.org/10.1038/s41598-018-21623-3
https://doi.org/ 10.1103/PhysRevB.101.214445
https://doi.org/ 10.1103/PhysRevB.101.214445
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Algorithm4 Linear crossover with four spin
configurations

Choose 4 spin configurations in size of N ×N : S1,S2,S3,S4
Choose 4 random numbers i, j, k, and l that allow i + j +
k + l = N
for S1 to S4 do

Split the spin configuration into 4 spin segments with
the size of i×N , j ×N , k ×N , and l ×N
end for
Choose 4 different spin segments with size of i×N , j ×N ,
k ×N , and l ×N randomly from all spin segments.
Combine those 4 spin segments into one offspring configu-
ration in size of N ×N
Output the offspring spin configuration

C. Details of the simulated-annealing baseline
simulation

Simulated annealing was used as baseline in the analy-
sis of our method, to facilitate comparison. In these base-

line simulations, we used a temperature mesh starting at
900 K and going down to to the target temperature. The
temperature step size is adaptive and becomes increas-
ingly dense with lower temperature. We used between
10 000 and 15 000 Metropolis steps at each temperature,
with the larger number of steps for lower temperatures.
The typical number of temperature steps were around
15. We also tried more dense temperature meshes, but
they turned out to be significantly more time consuming
and did not produce better results.

D. Support movies

The evolutionary process of predicting ground state of
Pd/Fe/Ir(111) system at 0.1 mK with 0.7T, 2.7T and
3.7T are shown in support movie 1, 2 and 3, respectively
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TABLE I. Relative energies of relevant different phases in the Pd/Fe/Ir (111) system (in mRy/atom) as a function of magnetic
field B. FM stands for ferromagnetic, Sk stands for skyrmion. 6 × 5 SkL stands for a 6 × 5 skyrmion lattice, and 6 × 6 SkL
stands for a 6 × 5 skyrmion lattice. The system size is 100 × 100 atomic spins

B (T) FM Isolated Sk 6 × 5 SkL 6 × 6 SkL

3.10 4.0845E−04 3.9266E−04 0.0000E+00 1.2199E−04
3.11 3.6309E−04 3.4878E−04 0.0000E+00 1.3504E−04
3.12 3.1772E−04 3.0488E−04 0.0000E+00 1.4808E−04
3.13 2.7236E−04 2.6099E−04 0.0000E+00 1.6113E−04
3.14 2.2699E−04 2.1710E−04 0.0000E+00 1.7417E−04
3.15 1.8163E−04 1.7320E−04 0.0000E+00 1.8721E−04
3.16 1.3626E−04 1.2931E−04 0.0000E+00 2.0025E−04
3.17 9.0900E−05 8.5420E−05 0.0000E+00 2.1329E−04
3.18 4.5540E−05 4.1530E−05 0.0000E+00 2.2634E−04
3.19 2.5300E−06 0.0000E+00 2.3700E−06 2.4175E−04
3.20 1.0500E−06 0.0000E+00 4.6250E−05 2.9868E−04
3.21 0.0000E+00 4.1000E−07 9.0560E−05 3.5603E−04
3.22 0.0000E+00 1.8900E−06 1.3592E−04 4.1444E−04
3.23 0.0000E+00 3.3600E−06 1.8129E−04 4.7285E−04
3.24 0.0000E+00 4.8400E−06 2.2666E−04 5.3126E−04
3.25 0.0000E+00 6.3100E−06 2.7202E−04 5.8966E−04
3.26 0.0000E+00 7.7900E−06 3.1739E−04 6.4808E−04
3.27 0.0000E+00 9.2500E−06 3.6275E−04 7.0648E−04
3.28 0.0000E+00 1.0730E−05 4.0812E−04 7.6489E−04
3.29 0.0000E+00 1.2200E−05 4.5348E−04 8.2330E−04
3.30 0.0000E+00 1.3670E−05 4.9885E−04 8.8171E−04
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