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We studied the flow organization and heat transfer properties in two-dimensional and
three-dimensional Rayleigh-Bénard cells that are imposed with different types of wall
shear. The external wall shear is added with the motivation of manipulating flow mode
to control heat transfer efficiency. We imposed three types of wall shear that may facilitate
the single-roll, the horizontally stacked double-roll, and the vertically stacked double-roll
flow modes, respectively. Direct numerical simulations are performed for fixed Rayleigh
number Ra = 108 and fixed Prandtl number Pr = 5.3, while the wall-shear Reynolds
number (Rew) is in the range 60 6 Rew 6 6000. Generally, we found enhanced heat
transfer efficiency and global flow strength with the increase of Rew. However, even with
the same magnitude of global flow strength, the heat transfer efficiency varies significantly
when the cells are under different types of wall shear. An interesting finding is that by
increasing the wall-shear strength, the thermal turbulence is relaminarized, and more
surprisingly, the heat transfer efficiency in the laminar state is higher than that in the
turbulent state. We found that the enhanced heat transfer efficiency at the laminar regime
is due to the formation of more stable and stronger convection channels. We propose that
the origin of thermal turbulence laminarization is the reduced amount of thermal plumes.
Because plumes are mainly responsible for turbulent kinetic energy production, when the
detached plumes are swept away by the wall shear, the reduced number of plumes leads to
weaker turbulent kinetic energy production. We also quantify the efficiency of facilitating
heat transport via external shearing, and find that for larger Rew, the enhanced heat
transfer efficiency comes at a price of a larger expenditure of mechanical energy. †

Key words: Bénard convection, plumes/thermals, turbulent convection

1. Introduction

Thermal convection occurs ubiquitously in nature and has wide applications in in-
dustry. A paradigm for the study of thermal convection is the Rayleigh-Bénard (RB)
convection, which is a fluid layer heated from the bottom and cooled from the top
(Ahlers et al. 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013). The control
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parameters of the canonical RB system include the Rayleigh number (Ra, defined later
in the paper) that describes the strength of the buoyancy force relative to the thermal
and viscous dissipative effects, and the Prandtl number (Pr) that represents the thermo-
physical fluid properties. One of the response parameters of the RB system is the Nusselt
number (Nu), which characterizes the global heat transfer efficiency. Various approaches
have been designed to enhance the heat transfer efficiency of the convection cells,
such as adding roughness to the walls (Ciliberto & Laroche 1999; Wagner & Shishkina
2015; Jiang et al. 2018; Rusaouën et al. 2018; Zhu et al. 2019), introducing vibration
forcing (Wang et al. 2020; Yang et al. 2020a), adding a dispersed phase of particles or
bubbles (Lakkaraju et al. 2013; Guzman et al. 2016; Gvozdić et al. 2018; Wang et al.

2019; Yang et al. 2022), confinement (Huang et al. 2013; Chong et al. 2017; Zhang et al.

2022), rotation (Zhong et al. 2009; Stevens et al. 2009, 2013; Yang et al. 2020b), and the
addition of passive barriers (Liu & Huisman 2020).
Roche et al. (2002) and Chillà et al. (2004) conjectured that the internal flow structure

is correlated with global heat transfer. Sun et al. (2005) compared the Nu values in a
leveled cell and a tilted cell; correspondingly, the large-scale circulation (LSC) plane
sweeps azimuthally or is locked in a particular orientation. They showed that Nu is larger
in the levelled cell, indicating that different flow structures can result in different values of
Nu. Xi & Xia (2008) observed both the single-roll and double-roll flow structures in the
LSC. They examined the average Nu corresponding to a particular flow structure, and
found that the single-roll flow structure is more efficient for heat transfer. Weiss & Ahlers
(2011) further confirmed the occurrence of a double-roll structure in the LSC, and the
higher heat transfer efficiency of the single-roll state. van der Poel et al. (2011, 2012)
showed numerically that the coexistence of different turbulent structures also exists
in simple two-dimensional RB cells with various cell aspect ratios. They also studied
the effect of various velocity boundary conditions (i.e. no-slip, stress-free and periodic
boundary conditions) on the heat transfer and flow topology (van der Poel et al. 2014),
and they showed that either the roll-like or the zonal flow can appear under different
velocity boundary conditions. Adopting Fourier mode decompositions, Xi et al. (2016)
presented direct evidence that the first Fourier mode is more efficient for heat transfer in a
cylindrical cell. Xu et al. (2020) analysed the coherent flow structure in two-dimensional
square convection cells. Results from both Fourier mode decomposition and proper
orthogonal decomposition indicate that the single-roll flow mode and the horizontally
stacked double-roll mode are efficient for heat transfer on average; in contrast, the
vertically stacked double-roll mode is inefficient for heat transfer on average. A natural
question arises on how to manipulate flow mode to control heat transfer efficiency.
In this work, we impose various types of wall shear to control the internal flow mode,

which leads further to modification of heat transfer. Previously, Blass et al. (2020, 2021)
added a Couette-type shear (i.e. the top and bottom walls move in opposite directions
with constant speed uw) to the RB system as an attempt to trigger the transition to the
ultimate convection regime (Kraichnan 1962). With the increasing wall-shear strength,
they observed the variation of flow states from a buoyancy-dominated regime to a shear-
dominated regime. In the buoyancy-dominated regime, the flow structure is similar to
that in the canonical RB convection; in the transitional regime, the rolls are increasingly
elongated with increasing shear; in the shear-dominated regime, there are large-scale
meandering rolls. Jin et al. (2022) further added the Couette-type shear to convection
cells that have rough walls, and the moving rough plates introduce an external shear to
strengthen the LSC. As a result, the interactions between the LSC and secondary flows
within cavities are increased, and more thermal plumes are triggered. In this work, our
motivation of imposing wall shear is to facilitate various flow modes (i.e. the single-roll,
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the horizontally stacked double-roll, and the vertically stacked double-roll modes) in the
convection cell to further control heat transfer efficiency. Specifically, we will add the
(m,n) type of wall shear to the RB system, and such types of wall shear are expected to
facilitate m rolls in the horizontal direction and n rolls in the vertical direction. The use
of shear-modulated boundary conditions leads essentially to mixed convection, which has
received considerable attention due to its importance in many engineering applications,
such as cooling of electronic devices, coating, and float glass production (Hunt 1991;
Shankar & Deshpande 2000). The rest of this paper is organized as follows. In section
2, we present numerical details for the simulations. In section 3, general flow and heat
transfer features are presented, and heat transfer enhancement under various types of wall
shear is reported. An interesting finding is thermal turbulence relaminarization under the
imposed wall shear, and we then discuss the possible mechanism behind it. In addition,
we quantify the efficiency of facilitating heat transport via external shearing. In section
4, the main findings of the present work are summarized.

2. Numerical method

2.1. Direct numerical simulation of incompressible thermal convection

We consider incompressible thermal convection under the Boussinesq approximation.
The temperature is treated as an active scalar, and its influence on the velocity field
is realized through the buoyancy term; all the transport coefficients are assumed to be
constants. The governing equations can be written as

∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u = − 1

ρ0
∇P + ν∇2u+ gβ(T − T0)ŷ (2.2)

∂T

∂t
+ u · ∇T = α∇2T (2.3)

where u is the fluid velocity, and P and T are the pressure and temperature of the fluid,
respectively. Here, β, ν and α are the thermal expansion coefficient, kinematic viscosity
and thermal diffusivity, respectively. The zero subscripts refer to the reference values; g
is the gravity acceleration value, and ŷ is the unit vector parallel to the gravity. Using
the non-dimensional group

x∗ = x/H, t∗ = t/
»

H/(gβ∆T ), u∗ = u/
√

gβ∆TH,

P ∗ = P/(ρ0gβ∆TH), T ∗ = (T − T0)/∆T

(2.4)

(2.1)-(2.3) can be rewritten in dimensionless form as

∇ · u∗ = 0 (2.5)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇P ∗ +

…

Pr

Ra
∇2u∗ + T ∗ŷ (2.6)

∂T ∗

∂t∗
+ u∗ · ∇T ∗ =

…

1

PrRa
∇2T ∗ (2.7)

Here, H is the cell height, and ∆T is the temperature difference between heating and
cooling walls. In the following, for convenience, we will drop the superscript star (∗) to
denote a dimensionless variable. The dimensionless parameters of the Rayleigh number
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(Ra), the Prandtl number (Pr) and the cell aspect ratio (Γ‖ in the plane parallel to the
LSC plane, and Γ⊥ in the plane perpendicular to the LSC) are defined as

Ra =
gβ∆TH

3

να
, Pr =

ν

α
, Γ‖ =

L

H
, Γ⊥ =

W

H
(2.8)

where L is cell length and W is cell width.
We adopt the spectral element method (Patera 1984) implemented in the open-

source Nek5000 solver (version v19.0) as the numerical tool for the direct numerical
simulation. In the Nek5000 solver, the effective grid number equals the product of spectral
element number and polynomial order. We set the spectral elements for the velocity
with polynomial order N , and the spectral elements for the pressure with polynomial
order N − 2 (to avoid spurious pressure modes). Similar to previous turbulent flow
simulations (Kooij et al. 2018), we fix the polynomial order as N = 8. The viscous
term is treated implicitly with the second-order backward difference scheme, while the
convection term and other terms are treated with an explicit second-order extrapolation
scheme. The discretized system is solved with preconditioned conjugate gradient (PCG)
iteration, and Jacobi preconditioning is adopted for the linear velocity system. A pressure
correction step follows the solution of the discretized system, which is also solved with
PCG iteration; and the linear pressure system is solved by the multilevel overlapping
Schwarz method. As for the energy equation (i.e. temperature governed by a convection-
diffusion type equation), the transient term is treated implicitly with the second-order
backward difference scheme, and the convection term is treated with an explicit second-
order extrapolation scheme. For the Navier-Stokes and convection-diffusion equations, the
temporal derivative applies a Courant-Friedrichs-Lewy constraint max(|u|∆t/∆x) ≈ 0.5.
More numerical details of the spectral element method and validation of the Nek5000
solver can be found in (Fischer 1997; Fischer et al. 2002; Deville et al. 2002; Kooij et al.
2018). To verify the results obtained from the Nek5000 solver, we also performed a set
of simulations at wall-shear Reynolds number (Rew, defined later in the paper) 100
using an in-house solver based on the lattice Boltzmann method (Xu et al. 2017, 2019;
Xu & Li 2023). The results from the open-source Nek5000 solver and the in-house lattice
Boltzmann solver are shown to be consistent.

2.2. Simulation settings

As illustrated in figure 1, the dimensions H , L and W correspond to y, x and z in
Cartesian coordinates. The top and bottom of the horizontal walls are kept at constant
low and high temperatures Tcold and Thot, respectively, while the vertical sidewalls are
adiabatic. For the velocity at the walls, we designed the (m,n) type wall shear to facilitate
the flow structure withm rolls in the x-direction and n rolls in the y-direction. Specifically,
we consider three types of wall-shear boundary conditions: the (1, 1) type wall shear that
may facilitate the single-roll flow mode (see figures 1a,d); the (2, 1) type wall shear that
may facilitate the horizontally stacked double-roll mode (see figures 1b,e); and the (1, 2)
type wall shear that may facilitate the vertically stacked double-roll mode (see figures
1c,f ). Under the (1, 1) type wall shear, the velocity boundary conditions are: (i) at
0 6 x 6 L and y = 0, we have u = (−uw, 0, 0); (ii) at 0 6 x 6 L and y = H , we have
u = (uw, 0, 0); (iii) at x = 0 and 0 6 y 6 H , we have u = (0, uw, 0); (iv) at x = L
and 0 6 y 6 H , we have u = (0,−uw, 0). Similar mathematical formulations for the
velocity boundary conditions under the (2, 1) type and the (1, 2) type wall shear can be
written easily (not present here for clarity). When an external wall shear is introduced, an
additional control parameter of wall-shear Reynolds number (Rew = Huw/ν) is needed.
Here, uw is the wall-shear velocity. Simulation results are provided for fixed Rayleigh
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number Ra = 108, fixed Prandtl number Pr = 5.3 [corresponds to the working fluids of
water at 31◦C (Zhang et al. 2017)] and fixed aspect ratio Γ‖ = 1. In the three-dimensional
(3-D) cases, we consider aspect ratios Γ⊥ = 1/8 and 1/4 such that the LSC is confined
in the x − y plane, enabling easy manipulation of the flow mode via wall shear. The
wall-shear Reynolds number is in the range 60 6 Rew 6 6000 for two-dimensional (2-D)
cases, and Rew = 100 and 3000 for 3-D cases.
In the simulation, after the initial transient stage, we run at least 5000 tf for 2-D

cases and 800 tf for 3-D cases to obtain the statistics. Here, tf denotes free-fall time

units: tf =
√

H/(gβ∆T ). We check whether the grid spacing ∆g and time interval ∆t

are properly resolved by comparing them with the Kolmogorov and Batchelor scales.
The Kolmogorov length scale can be estimated as ηK = (ν3/〈εu〉)1/4, the Batchelor
length scale can be estimated as ηB = ηKPr−1/2 (Batchelor 1959; Silano et al. 2010),
and the Kolmogorov time scale can be estimated as τη =

√

ν/〈ε〉. In the canonical RB
convection, we adopted spectral elements of 64 × 64 for 2-D cases, 32 × 32 × 5 for 3-D
cases with Γ⊥ = 1/8, and 32 × 32 × 9 for 3-D cases with Γ⊥ = 1/4; the corresponding
effective grid numbers are listed in table 1. In the wall-sheared thermal convection, we
adopted a finer distributed spectral element of 96× 96 for 2-D cases, 44× 44× 7 for 3-D
cases with Γ⊥ = 1/8, and 44 × 44 × 13 for 3-D cases with Γ⊥ = 1/4. We estimate the
global kinetic energy dissipation rate as 〈εu〉 = RaPr−2(Nu− 1)ν3/H4 in the canonical
RB convection (Shraiman & Siggia 1990), and 〈εu〉 =

√

Pr/Ra〈(∂ju′
i)〉V,t in the wall-

sheared convection (Pope 2000). Here, the subscripts i and j are dummy indices, and
〈·〉V,t denotes the spatial and temporal average. As shown in table 1, the maximum grid
spacing (∆g)max is less than (or comparable) to the Kolmogorov and Batchelor length
scales for 2-D cases (or 3-D cases); the maximum time interval (∆t)max is far less than the
Kolmogorov time scale for all the cases. Thus adequate spatial and temporal resolution is
guaranteed. Each simulation was conducted with 48 message passing interface processes
on an in-house cluster that required around 12 000 core hours for 2-D cases and 50 000
core hours for 3-D cases.

3. Results and discussion

3.1. Global flow and heat transfer features

Typical snapshots of temperature field and flow field under the three types of wall shear
are shown in figures 2, and the corresponding video can be viewed in supplementary movie
1 available at https://doi.org/10.1017/jfm.2023.173. Here, Ra is fixed as Ra = 108 and
Pr is fixed as Pr = 5.3. At small wall-shear strength Rew = 100, the convection is still
buoyancy-dominated, and plumes detach from thermal boundary layers and further self-
organize into the LSC; meanwhile, the flow structure in the convection cell is influenced by
the imposed wall shear. For the convenience of comparison, we also provide the flow and
heat transfer patterns in the canonical RB convection without wall shear (see Appendix
A). The single-roll flow structure appears under the (1, 1) type wall shear (see figures
2a,g), whilst the corner rolls are suppressed compared to that without wall shear; the
horizontally stacked double-roll flow structure appears under the (2, 1) type wall shear
(see figures 2b,h); and the vertically stacked double-roll flow structure appears under the
(1, 2) type wall shear (see figures 2c,i). At large wall-shear strength Rew = 4000 in two-
dimensions and Rew = 3000 in three-dimensions, the convection is shear-dominated, and
the flow structures inside the convection cell are completely influenced by the external
wall shear. For example, under the (1, 1) type wall shear (see figures 2d,j ), the hot (or
cold) fluids near the bottom (or top) wall are swept away by the LSC in the clockwise
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(a) (b) (c)

(d) (e) (f )

Y
X

Figure 1. Schematic illustration of the shear convection cells in (a-c) two-dimensions and (d-f )
three-dimensions, for (a, d) the (1, 1) type wall shear, (b, e) the (2, 1) type wall shear, and (c,
f ) the (1, 2) type wall shear boundary conditions.

direction, and rise (or fall) along the left (or right) vertical wall, while the fluids in the
bulk region are well-mixed. Similar observations can be found for the flow structure under
the (2, 1) type wall shear (see figures 2e,k), while the cold fluids also fall along the vertical
mid-plane of the cell. As for the flow structure under the (1, 2) type wall shear, in the
2-D case (see figure 2f ), the top and bottom subregions are completed separated without
heat transfer between them, acting as a ’thermal barrier’ exists at the half-height of the
cell; however, in the 3-D case (see figure 2l), we did not observe a complete separation
of hot and cold fluids. We infer that the differences in flow structure between 2-D and
3-D configurations are due to the flow state: in the steady laminar flow (as in the 2-D
case), the rising hot fluids and falling cold fluids can remain stable boundaries; while in
the turbulent flow (as in the 3-D case), the hot and cold fluids are more mixed. We also
checked the flow field within the Γ⊥ = 1/8 cell, where the flow is in a laminar state, and
we indeed found a separation of hot and cold fluids.

With simulations of three different types of wall shear in the range 60 6 Rew 6 6000,
we can obtain the phase diagram of whether the flow is in the turbulent state or laminar
state, as shown in figure 3(a) for 2-D cases. Here, we placed numerical probers in the cell
and analysed the time recordings of local velocity and temperature series to determine
the flow states (Heslot et al. 1987; Silano et al. 2010). We determined that the flow is
in the laminar state if the time recordings do not vary with time (i.e. steady laminar
state) or the power spectral density (PSD) of the time recordings exhibits characteristic
peaks (i.e. unsteady laminar state); otherwise, if the PSD of the time recordings exhibits
continuous spectra, then the flow is in the turbulent state. In Appendix B, we give
examples of temperature series and the corresponding PSD at the location (0.25, 0.5) in
the 2-D convection cell under (1, 1) type wall shear. The phase diagram of the flow states
can be understood in terms of competition between buoyancy and shear effects, which
can be quantified by the Richardson number as Ri = Ra/(Re2wPr). In figure 3(b), we
redraw the phase diagram of the flow states at different Ri. For lower Rew (i.e. higher
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(a) (b) (c)

(d) (e) (f )

Temperature
0.2 0.3 0.4 0.5 0.6 0.7 0.8

(g) (h) (i)

(j) (k) (l)

Figure 2. Typical instantaneous temperature field (contours in two dimensions and volume
rendering in three dimensions) and flow field (streamlines in two dimensions) at (a-c)Rew = 100,
(d -f ) Rew = 4000, (g-i) Rew = 100 and Γ⊥ = 1/4, (j -l) Rew = 3000 and Γ⊥ = 1/4,
under (left-column) the (1, 1) type wall shear, (middle-column) the (2, 1) type wall shear,
and (right-column) the (1, 2) type wall shear.
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Wall shear type Rew Γ⊥ Effective grid number (∆g)max/ηK (∆g)max/ηB (∆t)max/τη

- 0 - 512 × 512 0.26 0.60 0.0019
0 1/8 256× 256× 40 0.51 1.17 0.0068
0 1/4 256× 256× 72 0.52 1.17 0.0054

(1, 1) type 60 - 768 × 768 0.13 0.30 0.0009
100 - 768 × 768 0.13 0.30 0.0008
200 - 768 × 768 0.13 0.30 0.0008
500 - 768 × 768 0.12 0.28 0.0007
800 - 768 × 768 0.11 0.24 0.0005
100 1/8 352× 352× 56 0.34 0.77 0.0046
100 1/4 352× 352× 104 0.35 0.80 0.0032

(2, 1) type 60 - 768 × 768 0.15 0.35 0.0012
100 - 768 × 768 0.14 0.33 0.0010
200 - 768 × 768 0.14 0.32 0.0009
500 - 768 × 768 0.13 0.31 0.0006
100 1/8 352× 352× 56 0.32 0.74 0.0041
100 1/4 352× 352× 104 0.34 0.78 0.0032
3000 1/4 352× 352× 104 0.55 1.26 0.0017

(1, 2) type 60 - 768 × 768 0.17 0.39 0.0012
100 - 768 × 768 0.14 0.33 0.0009
200 - 768 × 768 0.13 0.30 0.0007
500 - 768 × 768 0.12 0.27 0.0007
800 - 768 × 768 0.11 0.25 0.0004
1000 - 768 × 768 0.10 0.23 0.0003
100 1/8 352× 352× 56 0.34 0.79 0.0038
100 1/4 352× 352× 104 0.38 0.87 0.0039
3000 1/4 352× 352× 104 0.53 1.22 0.0016

Table 1. A posteriori check of spatial and temporal resolutions of the simulations. The columns
from left to right indicate the following: imposed wall shear type (’-’ denotes convection without
wall shear), the wall shear Reynolds number Rew, cell aspect ratio Γ⊥ in the plane perpendicular
to the LSC (’-’ denotes 2-D cases), effective grid number (i.e., the product of spectral element
number and polynomial order), the ratio of maximum grid spacing over the Kolmogorov length
scale, the ratio of maximum grid spacing over the Batchelor length scale, the ratio of maximum
time interval over the Kolmogorov time scale. Note that not all the simulations in this work are
listed in the table.

Ri at fixed Ra and Pr), the flow is buoyancy-dominated and possesses the key features
of turbulent convection; for higher Rew (i.e. lower Ri), the flow is shear-dominated and
enters a laminar state. Turbulent laminarization is counterintuitive and is found in pipe
flow by amplifying wall shear (Kühnen et al. 2018; Scarselli et al. 2019). It should also be
noted that when Rew increases further, the wall shear would introduce flow instability
and the flow would transit to a turbulent state again. However, our numerical tests
show that the flow can remain laminar for a wide range of Rew in 2-D cases; a further
transition to shear turbulence may occur at a much higher Rew. We also found that
the shear instability is prominent in 3-D cases, particularly when Γ⊥ is larger, thus the
flow remains laminar in a smaller range of wall-shear Reynolds number. For example,
at Rew = 3000, the flow is laminar in convection cells with Γ⊥ = 1/8 under all three
types of wall shear, while the flow is laminar only under the (1, 1) type wall shear in the
Γ⊥ = 1/4 cell.
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Figure 3. Phase diagram of the flow states (a) at different Rew, and (b) at different Ri, in
2-D cases.

We then examine the global response parameters of Nusselt number (Nu) and Reynolds
number (Re) on the control parameterRew. Here, the heat transfer efficiency is calculated
as Nu =

√
RaPr〈vT 〉V,t + 1, and the global flow strength is calculated as Re =

√

〈‖u‖2〉V,tH/ν. The measured Nu and Re as functions of Rew for various types of
wall shear in 2-D cells are shown in figures 4(a) and 4(b), respectively. Generally, with
the increase of Rew, we can observe enhanced heat transfer efficiency and global flow
strength for all three types of wall shear. However, at Rew 6 200 for the (1, 2) type wall
shear, the flow structure gradually changes from an LSC that spans the whole cell to the
vertically stacked double-roll mode, leading to a decreased Nu value (Xu et al. 2020).
To clearly visualize the relative changes of Nu and Re after imposing the wall shear, we
further plot (Nu − Nu0)/Nu0 and (Re − Re0)/Re0 as functions of Rew in figures 4(c)
and 4(d), respectively. Here, Nu0 and Re0 are the Nusselt and Reynolds numbers in the
absence of wall shear, respectively. Among the three types of wall shear, at the same Rew,
the (2, 1) type wall shear results in the largest magnitude of heat transfer efficiency up
to 568%; and the (1, 2) type wall shear results in the smallest one, approximately 179%.
The trend is consistent with our expectation that facilitating the horizontally stacked
double-roll flow modes is efficient for heat transfer, yet facilitating the vertically stacked
double-roll is inefficient for heat transfer (Xu et al. 2020). On the other hand, as Rew
increases, all three types of wall shear exhibit a similar trend of increasing global flow
strength. The results indicate that in even with the same magnitude of flow strength, the
heat transfer efficiency of the convection cell still varies significantly under different types
of wall shear. In addition, we provide tabulated value of Nusselt and Reynolds numbers
for 3-D cases in table 2. We can conclude that heat transfer enhancement can also be
found in 3-D configurations.
Figure 5 shows the scaling of the global quantities in 2-D cells, such as Nu and Re,

on one of the control parameters Ra (for 106 6 Ra 6 109), whilst the control parameter
Rew is fixed as Rew = 100, and Pr is fixed as Pr = 5.3. We also provide Nu and Re
in the canonical RB convection without shear. Previously, Zhang et al. (2017) provided
tabulated values of Nu and Re versus Ra at Pr = 5.3. Our simulation results on the
canonical RB convection are in good agreement with those reported by Zhang et al.

(2017). The data shown in figure 5 indicate that in the buoyancy-dominated regime (i.e.
when Ra is larger at fixed Rew), the increase of Nu and Re gradually approaches the
power-law relations Nu ∝ Ra0.30 and Re ∝ Ra0.59, consistent with previous results
reported in the canonical RB convection (Ciliberto et al. 1996; van der Poel et al. 2012;
Huang & Xia 2016; Zhang et al. 2017; Xu et al. 2021). Overall, the global heat transfer
and momentum quantities reveal that the simulated system possesses the key features of
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Figure 4. (a) Nusselt number, (b) Reynolds number, (c) values of Nu/Nu0 − 1, and (d) values
of Re/Re0 − 1, as functions of Rew for various types of wall shear in the 2-D cases. Here, Nu0

and Re0 are the Nusselt and Reynolds numbers in the absence of wall shear, respectively. The
insets magnify Rew in the range 100 6 Rew 6 500.

Wall shear type Γ⊥ Rew Nu Re (Nu−Nu0)/Nu0 (Re−Re0)/Re0

- 1/8 0 34.80 258.39 - -
1/4 0 32.38 282.32 - -

(1, 1) type 1/8 100 35.18 280.65 1.1% 8.6%
1/8 3000 82.44 741.02 136.9% 186.8%
1/4 100 34.32 357.81 6.0% 26.7%
1/4 3000 86.39 854.66 166.8% 202.7%

(2, 1) type 1/8 100 35.86 273.78 3.0% 6.0%
1/8 3000 112.15 761.90 222.2% 194.9%
1/4 100 36.05 351.58 11.3% 24.5%
1/4 3000 113.75 910.96 251.3% 222.7%

(1, 2) type 1/8 100 34.62 265.11 -0.5% 2.6%
1/8 3000 68.83 784.14 97.8% 203.5%
1/4 100 33.16 298.15 2.4% 5.6%
1/4 3000 67.95 935.05 109.9% 231.2%

Table 2. Heat transfer efficiency and global flow strength in the 3-D cases. The columns from
left to right indicate the following: imposed wall shear type (’-’ denotes convection without wall
shear), cell aspect ratio (Γ⊥) in the plane perpendicular to the LSC, wall shear strength (Rew),
Nusselt number (Nu), Reynolds number (Re), heat transfer enhancement (Nu − Nu0)/Nu0,
global flow strength enhancement (Re − Re0)/Re0. Here, Nu0 and Re0 are the Nusselt and
Reynolds numbers in the absence of wall shear at the same Γ⊥, respectively.
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Figure 5. (a) Nusselt number, (b) Reynolds number as functions of Rayleigh number for various
types of wall shear in the 2-D cases, when the wall-shear Reynolds number is fixed as Rew = 100.

turbulent convection in the buoyancy-dominated regime. In the shear-dominated regime
(i.e. when Ra is smaller at fixed Rew), the scaling behaviour of Nu and Re with Ra
deviates significantly from that of the canonical RB convection, suggesting that heat
transfer and momentum exchange are not governed solely by the boundary layer.
We further investigate quantitatively the influence of different types of wall shear on

the temperature distribution. Figure 6 shows the probability density functions (p.d.f.s)
of the normalized temperature (T − µT )/σT in the bulk region of the 2-D cell (i.e.
0.4L 6 x 6 0.6L and 0.4H 6 y 6 0.6H), where µT and σT are the mean and standard
deviation of the temperature. In the absence of wall shear, the p.d.f.s of temperature in
the bulk show a stretched exponential behaviour. Under the (1, 1) type wall shear, the
temperature in the bulk is well-mixed, and the p.d.f.s are symmetric at different Rew
(see figure 6a). With imposed external wall shear, the p.d.f.s at different Rew collapse,
and they deviate significantly from that in the absence of wall shear. The narrowed
p.d.f. tails imply that fewer plumes pass through the bulk region and the temperature
fluctuation is suppressed. Under the (2, 1) type wall shear, the p.d.f. is negatively skewed
at smaller Rew (see figure 6b), which is due to cold plumes descending through the central
region. However, as Rew increases, the skewness of the temperature p.d.f.s decreases, and
their tails become narrower, implying that temperature is better mixed and fewer cold
fluids pass through the central region. Under the (1, 2) type wall shear, the p.d.f.s are
symmetric (see figure 6c) due to the top-down symmetry of the convection cell, both
hot and cold plumes passing through the central region. As the strength of the wall
shear increases, the heads of the p.d.f.s gradually exhibit a bi-modal shape (e.g. the inset
shown in figure 6c), suggesting that the top cold and bottom hot subregions are gradually
separated; meanwhile, all the tails of the p.d.f.s exhibit Gaussian shape, and their profiles
collapse for different Rew. The collapse of the p.d.f. indicates a similar flow pattern in
the bulk region because the functional form of the temperature p.d.f. is determined by
the coherence of plumes (Solomon & Gollub 1990; Xia & Lui 1997).
We now investigate how the local heat transfer properties are influenced by different

types of wall shear. In figure 7, we show the vertical convective heat flux field vδT ,
where the temperature fluctuation is δT = T − (Thot + Tcold)/2. At small wall-shear
strength Rew = 100 (see figures 7(a-c) for 2-D cases, and 7(g-i) for 3-D cases), the heat
is transported mainly by the moving thermal plumes, and the magnitudes of vertical
convective heat flux are relatively weak. Under the (1, 1) type wall shear (see figures
7a,g), plumes that carry heat mainly go up and down near the sidewalls; under the (2,
1) type wall shear (see figures 7b,h), plumes can also penetrate vertically in the bulk
region of the cell, thus forming additional convection channels between the cold top wall



12 A. Xu, B.-R. Xu and H.-D. Xi

P
D

F

-10 0 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(a)

(c)

(b)

P
D

F

-10 0 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

P
D

F

-10 0 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

 /T TT

-2 0 2

10
-1

10
0

Rew = 0

Rew = 100

Rew = 200

Rew = 500

Rew = 0

Rew = 100

Rew = 200

Rew = 500

Rew = 0

Rew = 100

Rew = 200

Rew = 500

Figure 6. The probability density functions (p.d.f.s) of the temperature measured in the bulk
region of the 2-D cells (i.e. 0.4L 6 x 6 0.6L and 0.4H 6 y 6 0.6H) under (a) the (1, 1) type
wall shear, (b) the (2, 1) type wall shear, and (c) the (1, 2) type wall shear, when the flow
is in turbulent state. The dot-dashed line represents a Gaussian distribution. The inset in (c)
magnifies the head of the p.d.f. at Rew = 500.

and the hot bottom wall; under the (1, 2) type wall shear (see figures 7c,i), plumes
that penetrate the bulk region of the cell exhibit horizontal motion at the mid-height
of the cell. At large wall-shear strength Rew = 4000 (see figures 7(d -f ) for 2-D cases)
and Rew = 3000 (see figures 7(j -l) for 3-D cases), the vertical convective heat flux
forms much more stable and regular convection channels, and their magnitudes are much
stronger. It should be noted that there are small regions of negative convective heat flux
immediately adjacent to the regions of large positive convective heat flux, which is known
as counter-gradient local heat transport (Gasteuil et al. 2007; Huang & Zhou 2013). The
counter-gradient local heat transport essentially describes that both the LSC and the
corner flows may contribute to heat transport in the ’wrong’ direction: hot (or cold)
plumes can be brought back to the hot (or cold) plate by either the corner flows or the
LSC. The counter-gradient local heat transport is ubiquitous and can be found in 2-D and
3-D systems, either turbulent or laminar states. An interesting finding is that under the
(1, 2) type wall shear in the 2-D case (see figures 7f ), there exists strong negative vertical
convective heat flux along the right vertical wall, which is opposite to the temperature
gradient of the system. Under the external wall shear, hot (or cold) fluids are forced
to form a circulation in the bottom (or top) subregion of the cell. When the hot (or
cold) fluids fall (or rise) along the right vertical wall, they do not exchange heat with
the other and do not lose their thermal energy at all, thus hot (or cold) fluids are swept
back to the hot (or cold) walls and exhibit counter-gradient heat transport behaviour.
Previously, Blass et al. (2020, 2021) observed that by adding the Couette-type shear, the
increase of heat transfer efficiency is due to elongated streaks generating vertical cross-
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Figure 7. Snapshots of vertical convective heat flux field at (a-c) Rew = 100, (d -f ) Rew = 4000,
(g-i) Rew = 100 and Γ⊥ = 1/4, (j -l) Rew = 3000 and Γ⊥ = 1/4, under (left column) the (1, 1)
type, (middle-column) the (2, 1) type and (right-column) the (1, 2) type wall shear.
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the flow is in turbulent state.

stream motion, while in our work, adding the (m,n) type wall shear mainly facilitates
a more coherent flow structure and forms more stable and stronger convection channels,
particularly in the cases of laminar flows when the wall-shear strength is strong.

In figure 8, we further plot the p.d.f.s of the vertical convective heat flux vδT in the
whole cell for 2-D cases. All the p.d.f.s have longer positive tails and shorter negative
tails, implying strong upward convective heat transfer, yet there exists counter-gradient
convective heat transfer (Huang & Zhou 2013). Under the wall shear, the strength of the
upward convective heat transfer is enhanced with the increase of wall-shear strength in
the whole cell; meanwhile, we checked the p.d.f.s of convective heat flux in the bulk region
(not shown here for clarity), and found that their shapes are much narrower, implying
that heat exchange is weak in the bulk region, and hotter (or colder) fluids tend to flow
upwards (or downwards) along the sidewalls. Such strong counter-gradient convective
heat transfer is consistent with our qualitative observation shown in figure 7.

In this work, we designed the (m,n) type wall shear to facilitate the flow structure with
m rolls in the x-direction and n rolls in the y-direction. Under the imposed wall shear,
to evaluate quantitatively whether the expected flow structure is dominated or not, we
perform Fourier mode decomposition on the velocity field. Fourier mode decomposition
is a powerful tool to extract coherent structure in turbulent convection (Petschel et al.
2011; Chandra & Verma 2011, 2013; Chong et al. 2018; Wang et al. 2018). Specifically,
the instantaneous velocity field (u, v) is projected onto the Fourier basis (ûm,n, v̂m,n) as

u(x, y, t) =
∑

m,n

Am,n
x (t)ûm,n(x, y) (3.1)
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Figure 9. Time-averaged energy contained in the first four Fourier modes as functions of Rew
under (a) the (1, 1) type wall shear, (b) the (2, 1) type wall shear, (c) the (1, 2) type wall shear.
Note that the Fourier mode decomposition is applied only when the flow is in a turbulent state
for 2-D cases (refer to the phase diagram of flow states in figure 3).

v(x, y, t) =
∑

m,n

Am,n
y (t)v̂m,n(x, y) (3.2)

Here, the Fourier basis (ûm,n, v̂m,n) is chosen as

ûm,n(x, y) = 2 sin(mπx) cos(nπy) (3.3)

v̂m,n(x, y) = −2 cos(mπx) sin(nπy) (3.4)

The instantaneous amplitude of the Fourier mode is then calculated as

Am,n
x (t) = 〈u(x, y, t), ûm,n(x, y)〉 =

∑

i

∑

j

u(xi, yi, t)û
m,n(xi, yi) (3.5)

Am,n
y (t) = 〈v(x, y, t), v̂m,n(x, y)〉 =

∑

i

∑

j

v(xi, yi, t)v̂
m,n(xi, yi) (3.6)

where 〈u, û〉 and 〈v, v̂〉 denote the inner products of u and û, v and v̂, respectively. The
energy in each Fourier mode is calculated as Em,n(t) =

√

[Am,n
x (t)]2 + [Am,n

y (t)]2, the
total energy is calculated as Etotal =

∑

m,n〈Em,n〉, and 〈·〉 denotes the time average. In
figure 9, we plot the time-averaged energy as functions of Rew for various types of wall
shear when the flow is in the turbulent state for 2-D cases. Here, we consider m = 1, 2
and n = 1, 2, namely the first four Fourier modes. From figure 9(a), we can see that
under the (1, 1) type wall shear, the (1, 1) Fourier mode is indeed dominant. Similarly,
under the (1, 2) type wall shear, the (1, 2) Fourier mode is the dominant flow mode (see
figure 9c). However, under the (2, 1) type wall shear, despite the energy percentage in
the (2, 1) mode being much larger compared to that in the absence of wall shear, the (2,
1) mode does not contain the highest percentage of energy. We can see from figure 9(b)
that the (1, 1) Fourier mode contains more energy than the expected (2, 1) mode. To
explain the discrepancy, we check the snapshots of the flow fields and the heat flux fields
(see figures 2(b) and 7(b)), and observe that some hot (or cold) plumes lose their energy
before reaching the cold top (or hot bottom) wall. The plumes then fall (or turn back up)
to form small rolls, thus substructures emerge inside the left-side big roll (Chen et al.

2019). When the unstable small rolls inside the left-side big roll shrink their size, the
Fourier mode decomposition that captures flows in the bulk region implies that the (1,
1) mode (i.e. one big roll in the whole cell) prevails.

3.2. Stabilizing thermal turbulence via wall movement

The original objective of imposing the (m,n) type wall shear is to adjust the internal
flow mode and control heat transfer properties, while we found that by increasing the
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wall-shear strength, the thermal turbulence is relaminarized, and more surprisingly, the
heat transfer efficiency of the convection cell in the laminar state is higher than that in
the turbulent state. In the previous subsection, we have explained that the enhancement
of heat transfer efficiency at the laminar regime is due to the formation of more stable and
stronger convection channels. Below, we discuss further the origin of thermal turbulence
laminarization. We start by examining the turbulent kinetic energy (TKE) equation of
incompressible thermal convection, which is written as

∂k

∂t
+ uj∂jk = −u′

iu
′
j∂jui

+ ∂j

Ç

−p′u′
j +

…

Pr

Ra
∂jk− 1

2
u′
iu

′
iu

′
j

å

−
…

Pr

Ra
(∂ju′

i)
2
+ T ′v′

(3.7)

Here, the subscripts i and j are dummy indices, k = u′
iu

′
i/2 denotes the TKE, and

the superscript (′) denotes the fluctuation part of an instantaneous flow variable. The
term −u′

iu
′
j∂jui represents shear-produced TKE, and the term T ′v′ represents buoyancy-

produced TKE. Because the flow remains laminar in a smaller range of Rew for 3-D
cases, we discuss mainly the results for 2-D cases below. In figure 10, we show the shear-
produced, buoyancy-produced and the total TKE production under the (1, 1) type wall
shear as an example. With increasing wall-shear strength, the shear-produced TKE is
increasingly concentrated near the top left and bottom right corners of the convection
cells (see figures 10a,d), where rising hot (or falling cold) plumes impact the cold (or
hot) boundary layers. Compared to the shear-produced TKE, the buoyancy-produced
TKE is more intense (see figures 10b,e) and contributes a dominant part of the total
TKE production (see figures 10c,f ); meanwhile, with increasing wall-shear strength,
the buoyancy-produced TKE becomes weaker. Previously, in the absence of wall shear,
Xia et al. (2003) described quantitatively that the TKE comes largely from the buoyant
motions of thermal plumes based on the particle image velocimetry results. With the aid
of direct numerical simulation, T ′v′ is obtained directly in the whole convection cell, and
we now provide direct evidence that thermal plumes are mainly responsible for the TKE
production.
After analysing the TKE production, we now turn to the TKE dissipation. In figures

11(a) and 11(b), we show the TKE dissipation under the (1, 1) type wall shear as
an example. We can see that intense TKE dissipation occurs in the top right and
bottom left corners, namely, in the regions of plumes detachment. Meanwhile, with
increasing wall-shear strength, the TKE dissipation becomes weaker. It should be noted
that here we considered the dissipation term of

√

Pr/Ra(∂ju′
i)

2 in the TKE equation,
which is known as pseudo-dissipation by Pope (2000). Previously, Zhang et al. (2017)
and Bhattacharya et al. (2018) analysed the statistics of TKE dissipation in terms of
1

2

√

Pr/Ra(∂ju′
i + ∂iu′

j)
2 in the canonical RB convection without wall shear. We checked

that the numerical differences between
√

Pr/Ra(∂ju′
i)

2 and 1

2

√

Pr/Ra(∂ju′
i + ∂iu′

j)
2

are indeed very small. We then plot the volume-averaged TKE and the volume-averaged
TKE dissipation as functions of Rew for various types of wall shear in figures 11(c)
and 11(d). With the increase of wall-shear strength, the volume-averaged TKE is indeed
decreasing, eventually, the TKE vanishes, and the thermal turbulence is relaminarized.
However, the decreased TKE and the corresponding thermal turbulence laminarization
are not caused by the viscous dissipation, and it is evident from figure 11(d) that the
volume-averaged TKE dissipation is also decreasing.
The above analysis suggests that the plume plays a key role in thermal turbulence

production and dissipation. To identify the mechanism responsible for the thermal
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Figure 10. (a,d) The shear-produced turbulent kinetic energy (TKE), (b,e) the
buoyancy-produced TKE, and (c,f ) the total TKE production, under the (1, 1) type wall shear,
for (a-c) Rew = 200, (d -f ) Rew = 500.
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Figure 12. Typical snapshots of plume field at Rew = 100 for (a) the (1, 1) type wall shear,
(b) the (2, 1) type wall shear, and (c) the (1, 2) type wall shear. (d) Time-averaged plume area
in the cell as functions of Rew under the three types of wall shear.

turbulence laminarization, we then analyse the spatial and temporal distributions of
plumes. In figures 12(a-c), we show typical snapshots of the instantaneous plume field
under the three types of wall shear. Here, the criteria to identify thermal plumes
quantitatively are similar to those used in Huang et al. (2013), van der Poel et al. (2015)
and Zhang et al. (2017), namely

|T (x, t)− 〈T (x)〉| > c〈Trms(x)〉,
√
PrRa|v(x, t)T (x, t)| > cNu (3.8)

Here, c is an empirical constant whose value can be chosen as 0.8 6 c 6 1.2, and we
adopt the value c = 1. This criterion assumes that plumes occur in regions of local
temperature maximum (or minimum), as well as regions where local convective heat flux
is larger than the spatial and temporal averaged one. We can see from figures 12(a-c) that
this empirical criterion can extract the plume structures reasonably well in the sheared
convection. We also calculate the time-averaged plume area in the cell, and plot the
plume areas as functions of Rew. From figure 12(d), we can see that with the increase of
wall-shear strength, plume areas generally decrease under all three types of wall shear.
Because thermal plumes are mainly responsible for TKE production, a reduced number
of plumes indicates reduced TKE production.
We then examine the flow field during the laminarization process, as shown in figure

13, and the corresponding video can be viewed in supplementary movie 2. Initially, an
instantaneous flow field obtained at Rew = 200 for the 2-D case, and Rew = 100 for the
3-D case (i.e. the turbulent state), is used to start the simulation, in which the shear
effects are relatively weak and the flow is buoyancy-dominated. We can see plumes self-
organize into the LSC, and large magnitudes of velocity vectors appear near the region
where plumes erupt (see figure 13(a) for the 2-D case). When the wall-shear strength
increases to Rew = 2000 for the 2-D case, the plumes have less chance to detach from
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the boundary layers near the top and bottom walls, and they will be swept along the
walls (see figure 13b). Because the organization of plume motions leads to the LSC in the
turbulent RB convection cell (Xi et al. 2004), suppressing plume detachment will weaken
the LSC. In addition, hot (or cold) plumes are forced to sweep to the cold top (or hot
bottom) wall (see figures 13c,d), and thermal plumes exchange heat near the walls, while
the temperature in the bulk region of the cell is more uniform and well-mixed (see figure
13e). Eventually, one regular big roll is formed, and hot and cold fluids flow along the
wall, which is completely influenced by the external wall shear (see figure 13f ). We can
also see from figures 13(g-l) that the turbulence relaminarization process is similar for
both 2-D and 3-D cases; however, it is noteworthy that due to prominent shear instability
effects in 3-D, the turbulence relaminarization is rare and occurs in a smaller range of
wall-shear Reynolds number for 3-D cases.

3.3. Expenditure of mechanical energy due to external wall shear

We manipulated the internal flow modes via imposing external wall shear, and the cor-
responding heat transfer efficiency enhancement requires the expenditure of mechanical
energy. To evaluate whether such mechanical energy expenditure is worth it or not, we
calculate the ratio between the enhanced heat flux δQ (which is further normalized by
heat flux Q0 in the absence of wall shear) and the required mechanical energy Ws due
to wall shear (which is further normalized by energy dissipation due to viscosity W0 in
the absence of wall shear) as

η =
δQ/Q0

Ws/W0

(3.9)

Here, δQ = Quw
−Q0. Generally, the heat flux Quw

is calculated as

Quw
=

Æ

∫ L

0

Å

−κ
∂T

∂n

ã

dx

∏

t

(3.10)

In the above, κ denotes thermal conductivity of the fluids, and 〈·〉t denotes the time
average. To impose the wall shear, an additional external mechanical energy Ws is
required, which is calculated as

Ws =

≠∮

l

∣

∣

∣

∣

µ
duw

dn
· uw

∣

∣

∣

∣

dl

∑

t

(3.11)

Here, the integration
∮

l
(·) is performed along all the shear wall. In the absence of wall

shear, the energy dissipation due to viscosity in the convection cell is

W0 =

∞

∫

V

µ

2

∑

i,j

Å

∂ui

∂xj
+

∂uj

∂xi

ã

dV

∫

t

(3.12)

The ratio between enhanced heat flux and imposed mechanical energy can be regarded as
a metric that describes the efficiency of facilitating heat transport via external shearing.
From figure 14, we can see that for the (1, 1) and (2, 1) types of wall shear, the efficiency η
decreases monotonically with the increase of Rew. Recall that from figures 4(a) and 4(c),
we found that Nu increases monotonically with the increase of Rew, thus the enhanced
Nu requires a larger expenditure of mechanical energy at a larger Rew. For the (1, 2)
type wall shear, the efficiency η is negative at Rew 6 200, which can be attributed to a
shift in the flow structure from the LSC to the vertically stacked double-roll mode. This
transition in the flow mode results in a weakened Nu within this range (Xu et al. 2020),
as shown in figures 4(a) and 4(c). At larger Rew, the efficiency η is positive, yet it does
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Figure 13. Turbulence relaminarization process: time evolution of instantaneous flow fields
(temperature contours and velocity vectors in 2-D, volume rendering of temperature field in
3-D). (a-f ) Snapshots for the the 2-D case at t = 0, 2, 4, 8, 22 and 354 tf , respectively, with
wall-shear strength Rew = 2000. (g-l) Snapshots for the 3-D case at t = 0, 2, 4, 8, 11 and 158
tf , respectively, with Rew = 3000. Initially, an instantaneous flow field obtained at Rew = 200
for the 2-D case, and Rew = 100 for the 3-D case, is used to start the simulation.
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Figure 14. The ratio between enhanced heat flux and imposed mechanical energy as a
function of shear Reynolds number for various types of wall shear in the 2-D cases.

not exhibit monotonic behavior with the increase of Rew. Among the three types of wall
shear, the (2, 1) type results in the highest efficiency η, because the flow is more coherent
in the corresponding (2, 1) flow mode. At the largest Rew, all three types of wall shear
exhibit very small values of efficiency η, implying that heat transfer enhancement comes
at a very high price. We deduce that with further increase in the wall-shear strength,
the efficiency η would approach the limit zero (but non-negative) value because the heat
transfer increases monotonically at large Rew.

4. Conclusions

In this work, we have performed direct numerical simulations of thermal convection
under three different (m,n) types of wall shear. The (m,n) type wall shear is imposed to
facilitate m rolls in the horizontal direction and n rolls in the vertical direction. Under
the (1, 1) type, the (2, 1) type and the (1, 2) type wall shears, we can observe that
the single-roll, the horizontally stacked double-roll, and the vertically stacked double-roll
flow modes, respectively, are generally the prevailing flow modes in the convection cell.
With the increase of Rew, we generally found enhanced heat transfer efficiency and global
flow strength for all three types of wall shear. However, even with the same magnitude
of flow strength, the heat transfer efficiency of the convection cell varies significantly
under different types of wall shear. Specifically, the (2, 1) type wall shear results in the
largest magnitude of heat transfer efficiency, and the (1, 2) type wall shear results in
the smallest, which is consistent with our expectation that facilitating the horizontally
stacked double-roll flow modes is efficient for heat transfer, yet facilitating the vertically
stacked double-roll is inefficient for heat transfer.
The original objective of imposing the wall shear was to manipulate flow mode to

control heat transfer efficiency, while it is found that by increasing the wall-shear strength,
the thermal turbulence is relaminarized, and more surprisingly, the heat transfer efficiency
of the convection in the laminar state is higher than that in the turbulent state. By
examining the flow field and the convective heat flux field, we found that the enhancement
of heat transfer efficiency at the laminar regime is due to the formation of more stable
and stronger convection channels.
We explained the origin of thermal turbulence laminarization in the sheared convection

cell. Analysis of the shear-produced TKE (i.e. −u′
iu

′
j∂jui) and the buoyancy-produced

TKE (i.e. T ′v′) provides direct evidence that thermal plumes are mainly responsible for
the TKE production. We then quantitatively measured the changes in plume areas under
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the wall shear, and found that plumes are swept away by the wall shear once they are
detached from the top cold and bottom hot walls, and such a reduced number of thermal
plumes decreases the TKE production in the bulk cell.

We evaluated whether the mechanical energy expenditure by wall shear is worth it
or not. We used the ratio between the enhanced heat flux and the required mechanical
energy to quantify the efficiency of facilitating heat transport via external shearing. We
found that at a larger Rew, although the heat transfer efficiency increases, it comes at a
price of a larger expenditure of mechanical energy.

Finally, we emphasize that in mixed thermal convection, the heat transfer may not
always monotonically increase with increasing shear. For example, in the RB system
with a Couette-type wall shear, Blass et al. (2020, 2021) found that with increasing wall
shear, the heat transfer first decreases (due to the breakup of the thermal convection rolls)
and then increases. Another example is that in the RB system with an imposed constant
horizontal pressure gradient, Scagliarini et al. (2014, 2015) found that with increasing
longitudinal wind strength, the heat transfer also first decreases (due to plume sweeping)
and then increases. In our study, the heat transfer enhancement is a consequence of the
moving adiabatic sidewalls advecting fluid in the vertical direction, thus facilitating the
formation of stable and strong convection channels between the top cold wall and the
bottom hot wall.
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8. Appendix A. Flow and heat transfer patterns in the canonical RB

convection

In figure 15, we show the typical instantaneous temperature and flow fields, as well as
the vertical convective heat flux field for the canonical RB convection in the absence of
wall shear. In the 2-D case, we can see that there exists a well-defined LSC, together with
counter-rotating corner rolls (figure 15a). The LSC is in the form of a tilted ellipse sitting
along a diagonal of the flow cell, with two secondary corner vortices that exist along the
other diagonal. Strong positive heat flux occurs in regions of rising hot (or falling cold)
plumes (see figure 15d). In the 3-D case, the very confined cell with Γ⊥ = 1/8 exhibits
similar flow and heat transfer patterns to those of the 2-D case, with persistent LSC (see
figures 15b,e). When the cell aspect ratio Γ⊥ increases to 1/4, the LSC is less stable and
its shape becomes distorted (see figures 15c,f ).
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Figure 15. Typical instantaneous (a-c) temperature field, and (d -f ) vertical convective heat
flux field, for the canonical RB convection at Ra = 108 and Pr = 5.3: (a,d) 2-D case, (b,e) 3-D
case at Γ⊥ = 1/8, (c,f ) 3-D case at Γ⊥ = 1/4.

9. Appendix B. Determination of flow states via time recordings and

power spectral density

In figure 16, we give examples of temperature series at the location (0.25, 0.5) in
the 2-D convection cell under (1, 1) type wall shear. We also show the power spectral
density (PSD) of the corresponding temperature series. At Rew = 100 and 500, the
temperature fluctuates randomly around 0.5 (see figure 16a,c), and the corresponding
PSD (see figure 16b,d) exhibit continuous spectra; thus we determine the flow states as
the turbulent state. At Rew = 1000, the fluctuation of the temperature series is within
a smaller range (see figure 16e and its inset), and the corresponding PSD (see figure 16f
exhibits characteristic peaks, suggesting that the flow is quasi-periodic; thus we determine
the flow states as the laminar state. At Rew = 4000, the temperature series gradually
approaches a steady value of 0.5 (see figure 16g), thus we also determine the flow states
as the laminar state.
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