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ON THE HILBERT SPACE DERIVED FROM

THE WEIL DISTRIBUTION

MASATOSHI SUZUKI

Abstract. We study the Hilbert space obtained by completing the space of all smooth
and compactly supported functions on the real line with respect to the hermitian form
arising from the Weil distribution under the Riemann hypothesis. It turns out that
this Hilbert space is isomorphic to a de Branges space by a composition of the Fourier
transform and a simple map. This result is applied to state a new equivalence condition
for the Riemann hypothesis in a series of equalities.

1. Introduction

The Weil distribution is a distribution associated with the Riemann zeta-function
ζ(s). Let

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

be the Riemann xi-function, where Γ(s) is the gamma-function. Let Γ be the set of all
zeros of ξ(1/2 − iz) without multiplicity and let mγ denote the multiplicity of γ ∈ Γ.
The Riemann hypothesis (RH, for short) claims that all nontrivial zeros of ζ(s) lie on
the critical line ℜ(s) = 1/2. It is equivalent to the assertion that all γ ∈ Γ are real.

The Weil distribution is the linear functional W : C∞
c (R) → C defined by

C∞
c (R) ∋ φ 7→ W (φ) :=

∑

γ∈Γ

mγφ̂(−γ),

where C∞
c (R) is the space of all smooth and compactly supported functions on R and

f̂(z) := (Ff)(z) :=

∫ ∞

−∞
f(x) eizx dx (1.1)

is the Fourier transform. We omit the description of the topology of C∞
c (R), since we

do not need it later. A. Weil [14] (see also the note in [11, Section 3.2]) discovered that
the RH is true if and only if the Weil distribution W is non-negative definite, that is,

W (ψ ∗ ψ̃) ≥ 0 for every ψ ∈ C∞
c (R),

where

(φ ∗ ψ)(x) :=
∫ ∞

−∞
φ(y)ψ(x − y) dy and ψ̃(x) := ψ(−x).

Further, if the RH is true, the Weil distribution is positive definite, that is,W (ψ∗ψ̃) > 0
for every nonzero ψ ∈ C∞

c (R).
Using the Weil distribution, we define the hermitian form 〈·, ·〉W on C∞

c (R) by

〈ψ1, ψ2〉W =W (ψ1 ∗ ψ̃2) =
∑

γ∈Γ

mγψ̂1(−γ)(ψ̂2)
♯(−γ), ψ1, ψ2 ∈ C∞

c (R), (1.2)

where
F ♯(z) := F (z̄)
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2 M. SUZUKI

for complex-valued functions of a complex variable. We often use this ♯ notation. We
call this the Weil hermitian form. H. Yoshida [16] has studied the Weil hermitian form
in detail by restricting it to a function space on a finite interval [−a, a] (a > 0). The
subject of the present paper is the behavior of the Weil hermitian form on the whole line
R. Yoshida proposed a method to complete a function space on a finite interval with
respect to the Weil hermitian form without assuming the RH, but it does not work on
the whole line.

Suppose that the RH is true. Then the Weil hermitian form 〈·, ·〉W is positive definite
on C∞

c (R). Therefore, the completion HW of the pre-Hilbert space C∞
c (R) with respect

to 〈·, ·〉W is defined. The first main result is an explicit description of the Hilbert space
HW . The elements of HW are equivalence classes of Cauchy sequences with respect
to 〈·, ·〉W , where two Cauchy sequences are equivalent if their difference converges to
zero with respect to 〈·, ·〉W . The representative of each class can be chosen from L2(R)
(Theorem 5.1 below). Therefore, we denote the class represented by ψ ∈ L2(R) as [ψ]
and often identify ψ with [ψ].

For the concrete description of HW , we use a de Branges space and a model space.
The entire function Eξ defined by

Eξ(z) := ξ(1/2− iz) + ξ′(1/2 − iz) (1.3)

belongs to the Hermite–Biehler class under the RH ([5, Theorem 1]) and hence it defines
the de Branges space H(Eξ), where the dash on the right-hand side of (1.3) means
differentiation of ξ(s) with respect to s. Furthermore, the meromorphic function

Θξ(z) := E♯ξ(z)/Eξ(z) (1.4)

in C is a meromorphic inner function in the upper-half plane C+ = {z | ℑ(z) > 0} under
the RH, and therefore it defines the model space K(Θξ). These two Hilbert spaces
H(Eξ) and K(Θξ) are isomorphic with ‖EξF‖H(Eξ) = ‖F‖K(Θξ) for every F ∈ K(Θ)

(see Section 2 for details on the Hermite–Biehler class, de Branges spaces, and model
spaces). Then the first result is stated as follows.

Theorem 1.1. Assume that the RH is true. Let HW , H(Eξ), and K(Θξ) be Hilbert
spaces as above. Then, the map K(Θξ) → HW defined by

F 7→ [ψF ], ψF := F
−1(F )

is an isomorphism between Hilbert spaces and satisfies

‖EξF‖2H(Eξ)
= ‖F‖2K(Θξ)

= π〈ψF , ψF 〉W = π〈[ψF ], [ψF ]〉W
for F ∈ K(Θ), where F

−1 is the Fourier inversion on L2(R).

This result is proved in Section 5. J. C. Lagarias suggested after Theorem 1 of [5]
that the norm of the de Branges space H(Eξ) and the Weil hermitian form (the spectral
side of the “explicit formula” of prime number theory) are similar. Theorem 1.1 shows
that they are naturally coincident. Hence, HW and H(Eξ) must have an “arithmetic
structure” through the Weil explicit formula (3.3) below, but we will not discuss this
further.

One of the remarkable properties of de Branges spaces is the structure of subspaces.
The set of all de Branges subspaces of a given de Branges space is totally ordered by
set-theoretical inclusion (see [15, pp. 500–506] for details). Such a structure also comes
to HW through the isomorphism of Theorem 1.1 as stated in Theorem 5.3 below.

Another notable property of de Branges spaces is the explicit description of the fam-
ily of self-adjoint extensions of the multiplication operator by an independent variable
F (z) 7→ zF (z). It enables us to interpret the set of zeros Γ as the set of eigenvalues of
a self-adjoint operator on HW . This means that one of the Hilbert–Pólya spaces is the
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Hilbert space HW naturally obtained from the Weil distribution. See Sections 2.3 and
6 for details.

As stated in Theorem 1.1, the Hilbert space HW is isomorphic to a de Branges
space under the RH. Moreover, representatives of classes in HW can be chosen from the
concrete subspace V (0) of L2(R). It is surprising that such an explicit description of
HW is possible, and interesting in itself. However, it is a matter of concern that it is not
even possible to define HW , H(Eξ), and K(Θξ) without assuming the RH. However, by
considering a screw line of the screw function attached to ζ(s), which will be explained
in Sections 2.1 and 4.2, we can unconditionally construct two special Hilbert spaces H0

and K0 isomorphic to HW and K(Θξ), respectively, under the RH (Theorem 5.2 below).
The construction of such spaces leads to an equivalence condition for the RH stated
below. That is the second main result.

Let L2(R) be the usual L2-space on the real line with respect to the Lebesgue measure.
We define

St(z) :=
i(1 + Θξ(z))

2
Pt(z) (1.5)

with

Pt(z) :=
4(et/2 − 1)

1 + 2iz
+

4(e−t/2 − 1)

1− 2iz

+
e−izt − 1

iz

ζ ′

ζ

(
1

2
− iz

)
+

∑

n≤et

Λ(n)√
n

e−iz(t−log n) − 1

iz

− 1

2iz

[
Γ′

Γ

(
1

4
− iz

2

)
− Γ′

Γ

(
1

4

)]

− 1

2iz
e−t/2

[
Φ(e−2t, 1, 12 (

1
2 − iz)) − Φ(e−2t, 1, 14)

]

(1.6)

for a non-negative real number t and a complex number z, where Λ(n) is the von
Mangoldt function defined by Λ(n) = log p if n = pk with k ∈ Z>0 and Λ(n) = 0
otherwise, and

Φ(z, s, a) =

∞∑

n=0

zn

(n + a)s

is the Hurwitz–Lerch zeta-function. For negative t, we set St(z) := S−t(z). For this
St, we first obtain the following.

Proposition 1.1. For any fixed t ∈ R, St(z) belongs to L2(R) as a function of z.

Proof. See Section 3.2. �

From this result, the mapping t 7→ St(z) from R to L2(R) is defined. By the unifor-
mity of the L2-norm of St(z) on a compact set of t obtained in the proof of Proposition
1.1 and Minkowski’s integral inequality, the following holds.

Proposition 1.2. For φ ∈ C∞
c (R), we define

P̂φ(z) :=
∫ ∞

−∞
S
♯
t(z)φ(t) dt

(
=

∫ ∞

−∞
St(z̄)φ(t) dt

)
(1.7)

using (1.5). Then P̂φ(z) belongs to L2(R).

Using the image of the composition P̂D := P̂ ◦D of the integral operator P̂ and the
differential operator

(Dψ)(t) := iψ′(t), (1.8)

we obtain the following equivalence condition for the RH.
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Theorem 1.2. The RH is true if and only if the equality

‖P̂Dψ‖2L2(R) = π〈ψ,ψ〉W (1.9)

holds for all ψ ∈ C∞
c (R).

Proof. See Section 4.3. �

Equation (1.9) is reformulated to the following simpler form.

Corollary 1.1. Define the subspace V ◦(0) of L2(R) by

V ◦(0) :=
{
F
−1P̂Dψ

∣∣∣ψ ∈ C∞
c (R)

}
.

Then the RH is true if and only if the equality

2‖ψ‖2L2(R) = 〈ψ,ψ〉W (1.10)

holds for all ψ ∈ V ◦(0).

Proof. See Section 4.3 and Theorem 5.2. �

The advantage of Theorem 1.2 and Corollary 1.1 is that it has turned the criterion
of the RH from a set of inequalities like Weil’s criterion into a set of equalities. It
should also be noted that equations (1.9) and (1.10) can be expressed without zeros
of ξ(1/2 − iz) by (1.5) and (1.6). Furthermore, equations (1.9) and (1.10) claim that
the non-negativity of Weil’s hermitian form is explained by the non-negativity of the
L2-norm.

In the following sections, first, in Section 2, we briefly review necessary notions such
as screw functions, screw lines, the Hermite–Biehler class, de Branges spaces, and model
spaces. Then, in Section 3, we state and prove unconditional results that we need to
prove the main results. Moreover, we unconditionally define two Hilbert spaces H0 and
K0 that agree with the Hilbert spaces HW and K(Θ), respectively, under the RH.

In Section 4, we show that St(z) in (1.5) gives a screw line of the screw function
corresponding to the Riemann zeta-function under the RH (Theorem 4.1). Furthermore,
we prove Theorem 1.2 and Corollary 1.1. The strategy of the proof of Theorem 4.1
is similar to [12], however the computational details change. In [12], the analytic or
geometric meaning of the functions that give the norms is unknown, but in this paper
the functions that give the norms have the meaning as a screw line. Furthermore, as an
advantage of using the screw line St, we obtain Theorem 1.2, whose analogue was not
obtained in [12].

In Section 5, we prove Theorem 1.1 in a more detailed form. In addition, we prove
that H0 = HW and K0 = K(Θ) under the RH. Afterwards, we explain that the Hilbert
space HW is one of the Hilbert–Pólya spaces in Section 6. Finally, we mention two
special values of St(z) in Section 7 as an appendix.

2. Review on necessary notions

2.1. Screw functions and screw lines. In this and the next part, we refer to [4,
Sections 5 and 12]. See also its references for details. Following M. G. Krĕın, we denote

by G∞ the space of all continuous functions g(t) on R such that g(−t) = g(t) and the
kernel

Gg(t, u) := g(t− u)− g(t)− g(−u) + g(0) (2.1)

is non-negative definite on R, that is,
∑n

i,j=1Gg(ti, tj) ξiξj ≥ 0 for all n ∈ N, ti ∈ R,

and ξi ∈ C (i = 1, 2, ..., n). Functions belonging to G∞ are called screw functions on R.
If an (even) real-valued function g(t) is a screw function, there exists a Hilbert space

H and a continuous mapping t 7→ x(t) from R into H such that

〈x(t+ v)− x(v), x(u + v)− x(v)〉H
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is independent of v ∈ R for all t, u ∈ R and the equality 〈x(t) − x(0), x(u) − x(0)〉H =
Gg(t, u) holds. Therefore, ‖x(t) − x(0)‖2H = −2g(t) if g(0) = 0. A mapping x : R → H
endowed with the translation-invariance described above is called a screw line for g(t).

2.2. Hilbert spaces associated with screw functions. Each g ∈ G∞ defines a non-
negative definite hermitian form on R by

〈φ1, φ2〉Gg :=

∫ ∞

−∞

∫ ∞

−∞
Gg(t, u)φ1(u)φ2(t) dudt. (2.2)

According to [4, Section 5], we denote by L(Gg) the space C0(R) of all continuous and

compactly supported functions φ on R such that φ̂(0) = 0 equipped with the hermitian
inner product 〈·, ·〉Gg . We also denote by H(Gg) the completion of the factor space
L(Gg)/L◦(Gg), where L◦(Gg) = {φ ∈ L(Gg) | 〈φ, φ〉Gg = 0}. Note that even if 〈·, ·〉Gg is
positive definite on L(Gg), that is, L◦(Gg) = {0}, there possibly exists a sequence (φn)n
of L(Gg) such that φn → 0 as n→ ∞ with respect to 〈·, ·〉Gg . The completion H(Gg) is
a space of equivalence classes of Cauchy sequences with respect to 〈·, ·〉Gg . Two Cauchy
sequences are equivalent if their difference converges to zero with respect to 〈·, ·〉Gg . We
denote by [φ] ∈ H(Gg) the equivalence class represented by φ. In general, elements of
H(Gg) are not necessarily represented by functions unlike HW (cf. [4, Section 4.3]).

Every g ∈ G∞ admits a representation

g(t) = g(0) + ibt+

∫ ∞

−∞

(
eiλt − 1− iλt

1 + λ2

)
dτ(λ)

λ2
(2.3)

with b ∈ R and a measure τ on R such that
∫∞
−∞ dτ(λ)/(1 + λ2) <∞ and vice versa. If

g(t) is real-valued, b = 0. Without loss of generality, we suppose that g(0) = 0.
We define

Φ1(φ, λ) :=

∫ ∞

−∞

eiλx − 1

λ
φ(x) dx =

φ̂(λ)− φ̂(0)

λ
=
φ̂(λ)

λ

for φ ∈ L(Gg). Then, 〈φ1, φ2〉Gg = 〈Φ1(φ1),Φ1(φ2)〉L2(τ) for φ1, φ2 ∈ L(Gg) and Φ1

establishes an isomorphism between H(Gg) and L
2(τ).

2.3. De Branges spaces. In this part, we refer to [9, 15]. See also those references for
details. Let H2 := H2(C+) = F(L2(0,∞)) be the Hardy space in the upper half-plane.
As usual, we identify H2 with a closed subspace of L2(R) via boundary values. Then,
the inner product of H2 coincides with the standard inner product of L2(R).

The Hermite–Biehler class consists of entire functions E satisfying |E♯(z)| < |E(z)|
for all z ∈ C+. For each entire function E belonging to the Hermite–Biehler class, the
de Branges space H(E) is defined as a Hilbert space consisting of entire functions F (z)
such that both F (z)/E(z) and F ♯(z)/E(z) belong to H2 and have the norm

‖F‖H(E) := ‖F/E‖L2(R). (2.4)

The multiplication operator M by an independent variable is defined by D(M) =
{F (z) ∈ H(E) | zF (z) ∈ H(E)} and (MF )(z) = zF (z) for F ∈ D(M). The domain
D(M) is dense in H(E) if and only if

Sθ(z) :=
i

2
(eiθE(z) − e−iθE♯(z))

does not belong to H(E) for all θ ∈ [0, π) ([9, Theorem 11]). The particular two θ cases
are often written as A(z) := −Sπ/2(z) and B(z) := S0(z).

IfD(M) is dense inH(E), all self-adjoint extensions ofM are parametrized by θ ∈ [0, π)
and are described as follows. The domain of Mθ is

D(Mθ) =

{
G(z) =

Sθ(w0)F (z) − Sθ(z)F (w0)

z −w0

∣∣∣∣ F (z) ∈ H(E)

}
,
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and the operation is defined by

MθG(z) = z G(z) + F (w0)Sθ(z),

where w0 is a fixed complex number with Sθ(w0) 6= 0 ([9, Theorem 12]). The domain
D(Mθ) is independent of the choice of the number w0. For a fixed θ ∈ [0, π), we confirm
that G(z) = Sθ(z)/(z − γ) belongs to D(Mθ) by taking

F (z) =
Sθ(z)

Sθ(w0)

γ − w0

z − γ

for every zero γ of Sθ(z) and is an eigenfunction of Mθ with the eigenvalue γ. Further,
{Sθ(z)/(z − γ) |Sθ(γ) = 0} forms an orthogonal basis of H(E) ([9, Theorem 8]).

2.4. Model subspaces. In this part, we refer to [6, Section 2], [10, Section 3.5] and
[12, Section 3.1]. See also those references for details.

Let H∞ = H∞(C+) be the space of all bounded analytic functions in C+. A function
Θ ∈ H∞ is called an inner function in C+ if limy→0+ |Θ(x+iy)| = 1 for almost all x ∈ R.
For an inner function Θ, a model space K(Θ) is defined as the orthogonal complement
K(Θ) = H2 ⊖ΘH2 and has the alternative representation

K(Θ) = H2 ∩Θ H̄2, (2.5)

where ΘH2 = {Θ(z)F (z) |F ∈ H2} and H̄2 = H2(C−) is the Hardy space in the
lower half-plane. The model space K(Θ) is a subspace of L2(R) as a Hilbert space. In
particular, the inner product of K(Θ) matches that of L2(R) on the real line.

If an inner function Θ in C+ extends to a meromorphic function in C, it is called
a meromorphic inner function in C+. For any meromorphic inner function Θ, there
exists E of the Hermite–Biehler class such that Θ = E♯/E. The de Branges space
H(E) is isometrically isomorphic to K(Θ) by F (z) 7→ E(z)F (z). In particular, H(E) =
EH2 ∩ E♯ H̄2

For a meromorphic inner function Θ, let µΘ be the positive discrete measure on R

supported on σ(Θ) = {x ∈ R |Θ(x) = −1} and

µΘ(x) =
2π

|Θ′(x)| . (2.6)

Then the restriction map F 7→ F |σ(Θ) is an isometric operator from K(Θ) to L2(µΘ) ([6,
Theorem 2.1]). The isometric property of the map implies that the family of functions

fγ(z) =

√
2

π|Θ′(γ)|
1 + Θ(z)

2(z − γ)
=

√
2

π|Θ′(γ)|
A(z)

(z − γ)E(z)
(2.7)

parametrized by all zeros γ of A(z) = −Sπ/2(z) forms an orthonormal basis of K(Θ) if
D(M) is dense in H(E).

3. Unconditional results

Throughout this and later sections, we denote E = Eξ and Θ = Θξ = E♯ξ/Eξ for

functions defined in (1.3) and (1.4), respectively. Otherwise, it is mentioned.

3.1. Expansion of Pt(z) over the zeros. For the basic properties of the Riemann
zeta-function, we refer to [13]. By two functional equations ξ(s) = ξ(1 − s) and ξ(s) =
ξ♯(s), if γ belongs to the set of zeros Γ, then both −γ and γ also belong to Γ with the
same multiplicity. On the other hand, |ℑ(γ)| < 1/2 for every γ ∈ Γ, since all zeros of
ξ(s) lie in the strip 0 < ℜ(s) < 1. For E(z) of (1.3), we define

A(z) := (E(z) +E♯(z))/2 (3.1)
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as in Section 2.3. Then A(z) = ξ(1/2 − iz), because E♯(z) = E(z̄) = ξ(1/2 − iz) −
ξ′(1/2 − iz) by functional equations of ξ(s). Therefore, the set Γ coincides with the set
of all zeros of both A(z) and 1 + Θ(z). We define

Pt(z) :=
∑

γ∈Γ

mγ
e−iγt − 1

γ
· 1

z − γ
(3.2)

for non-negative t. For negative t, we set Pt(z) := P−t(z). The series on the right-hand
side of (3.2) converges absolutely and uniformly on every compact subset of C \Γ, since∑

γ∈Γmγ |γ|−1−δ < ∞ for any δ > 0, because A(z) is an entire function of order one.

Therefore, Pt(z) is a meromorphic function on C with Γ as the set of all poles.

Proposition 3.1. Let Pt(z) and Pt(z) be meromorphic functions defined by (1.6) and
(3.2), respectively. Then, both coincide.

Proof. For t ≥ 0 and z ∈ C+, we define

φz,t(x) =

{
(iz)−1 eizx(e−izt − 1), t < x,

(iz)−1 eizx(e−izx − 1), 0 ≤ x ≤ t.

The main tool for the proof is the Weil explicit formula

lim
X→∞

∑

γ∈Γ

|γ|≤X

mγ

∫ ∞

−∞
φ(x) e−iγx dx

=

∫ ∞

−∞
φ(x)(ex/2 + e−x/2)dx−

∞∑

n=1

Λ(n)√
n
φ(log n)−

∞∑

n=1

Λ(n)√
n
φ(− log n)

− (log 4π + γ0)φ(0) −
∫ ∞

0

{
φ(x) + φ(−x)− 2e−x/2φ(0)

} ex/2dx

ex − e−x

(3.3)

which is obtained from the explicit formula in [1, p. 186] by taking φ(x) = ex/2f(ex) for
test functions f(t) in that formula with the conditions for f(t) in [2, Section 3], where γ0
is the Euler–Mascheroni constant. (Note that the formula in [2] has two typographical
errors in the second line of the right-hand side.)

As is easily seen, Weil’s explicit formula can be applied to φ(x) = φz,t(x). We have
∫ ∞

−∞
φz,t(x) e

−iγx dx =
e−iγt − 1

γ
· 1

z − γ
when ℑ(z) > ℑ(γ).

Therefore, the left-hand side of Weil’s explicit formula for φz,t(x) gives Pt(z) of (3.2)
when ℑ(z) > 1/2. Hence, if it is shown that the right-hand side is equal to Pt(z) for
ℑ(z) > 1/2, then the conclusion of the proposition follows by analytic continuation.

It is easy to verify
∫ ∞

−∞
φz,t(x)(e

x/2 + e−x/2)dx =
4(et/2 − 1)

1 + 2iz
+

4(e−t/2 − 1)

1− 2iz

and
∞∑

n=1

Λ(n)√
n
φz,t(log n) =

1

iz

∑

n≤et

Λ(n)√
n

(1− niz) +
e−izt − 1

iz

∑

t<logn

Λ(n)

n1/2−iz

= −
∑

n≤et

Λ(n)√
n

e−iz(t−log n) − 1

iz
− e−izt − 1

iz

ζ ′

ζ

(
1

2
− iz

)
,

∞∑

n=1

Λ(n)√
n
φz,t(− log n) = 0, φz,t(0) = 0

for ℑ(z) > 1/2 by direct calculation.
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Therefore, the remaining task is to calculate the fifth term on the right-hand side.

We split it into
∫∞
t and

∫ t
0 . For the first integral,

∫ ∞

t

{
φz,t(x) + φz,t(−x)− 2e−x/2φz,t(0)

} ex/2dx

ex − e−x

=
e−izt − 1

iz

∫ ∞

t
eizx

ex/2dx

ex − e−x
=
e−izt − 1

iz

∫ ∞

t
eizx e−x/2

∞∑

n=0

e−2nx dx

=
e−izt − 1

2iz
e−t(

1

2
−iz)

∞∑

n=0

e−2nt

n+ 1
2(

1
2 − iz)

=
e−izt − 1

2iz
e−t(

1

2
−iz)Φ(e−2t, 1, 12(

1
2 − iz)).

For the second integral,

∫ t

0

{
φz,t(x) + φz,t(−x)− 2e−x/2φz,t(0)

} ex/2dx

ex − e−x

= − 1

iz

∫ t

0
(eizx − 1)

ex/2dx

ex − e−x
= − 1

iz

∫ t

0
(eizx − 1) e−x/2

∞∑

n=0

e−2nx dx.

To handle the right-hand side, we calculate as

∫ t

0
(eizx − 1) e−x/2

N∑

n=0

e−2nx dx

=
1

2

N∑

n=0

[
1− e−2t(n+ 1

2
( 1
2
−iz))

n+ 1
2 (

1
2 − iz)

− 1− e−2t(n+ 1

4
)

n+ 1
4

]

= −1

2
e−t(

1

2
−iz)

N∑

n=0

e−2tn

n+ 1
2(

1
2 − iz)

+
1

2
e−t/2

N∑

n=0

e−2tn

n+ 1
4

+
1

2

N∑

n=0

[
1

n+ 1
2 (

1
2 − iz)

− 1

n+ 1
4

]

= −1

2
e−t(

1

2
−iz)Φ(e−2t, 1, 12 (

1
2 − iz)) +

1

2
e−t/2Φ(e−2t, 1, 14)

− 1

2

[
Γ′

Γ

(
1

4
− iz

2

)
− Γ′

Γ

(
1

4

)]
+O(e−2Nt) +O(N−1)

using the well-known series expansion

Γ′

Γ
(w) = −γ0 −

∞∑

n=0

(
1

w + n
− 1

n+ 1

)
, (3.4)

where the implied constant depends on t and z. Therefore, we obtain

∫ t

0

{
φz,t(x) + φz,t(−x)− 2e−x/2φz,t(0)

} ex/2dx

ex − e−x

=
1

2iz
e−t(

1

2
−iz)Φ(e−2t, 1, 12 (

1
2 − iz)) − 1

2iz
e−t/2Φ(e−2t, 1, 14 )

+
1

2iz

[
Γ′

Γ

(
1

4
− iz

2

)
− Γ′

Γ

(
1

4

)]
.
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Combining the results for
∫∞
t and

∫ t
0 ,

∫ ∞

0

{
φz,t(x) + φz,t(−x)− 2e−x/2φz,t(0)

} ex/2dx

ex − e−x

=
1

2iz
e−t/2

[
Φ(e−2t, 1, 12 (

1
2 − iz)) − Φ(e−2t, 1, 14)

]

+
1

2iz

[
Γ′

Γ

(
1

4
− iz

2

)
− Γ′

Γ

(
1

4

)]
.

From the calculation of the five terms on the right-hand side above, we conclude that
the right-hand side of Weil’s explicit formula for φz,t(x) is equal to (1.6). �

3.2. Proof of Proposition 1.1. We have |Θ(z)| = 1 for every z ∈ R by definition.
In fact, zeros of E(z) in the denominator cancel out in the numerator E♯(z), even if
they exist. Further, Pt(z) has poles of order one at γ ∈ Γ, but St(z) is holomorphic
there, since (1+Θ(z))/2 = A(z)/E(z) = A(z)/(A(z) + iA′(z)) = (z− γ)(−i/mγ + o(1))
near z = γ by direct calculation. Hence, St(z) is bounded and holomorphic on the real
line by (1.5), (3.2), and Proposition 3.1. On the other hand, in the horizontal strip
|ℑ(z)| ≤ 1/2, we have the well-known estimate (Γ′/Γ)(1/4 + iz/2) ≪ log |z| and

ζ ′

ζ

(
1

2
− iz

)
=

∑

|ℜ(z)−γ|≤1

i

z − γ
+O(log |z|)

by [13, Theorem 9.6 (A)]. In both estimates, implied constants are uniform in |ℑ(z)| ≤
1/2. The number of zeros γ ∈ Γ satisfying |ℜ(z) − γ| ≤ 1 is O(log |z|) counting with
multiplicity by [13, Theorem 9.2]. Therefore, St(z) ≪ |z|−1 log |z| as |z| → ∞ with
an implied constant depending on a compact set of t by (1.6). Hence St(z) belongs to
L2(R) and the norm is uniformly bounded on a compact set of t. �

3.3. Two special Hilbert spaces. We first introduce the set of meromorphic functions

Fγ(z) :=

√
mγ

π

i(1 + Θ(z))

2(z − γ)
, γ ∈ Γ. (3.5)

Then, we have

St(z) =
∑

γ∈Γ

√
πmγ

e−iγt − 1

γ
Fγ(z) (3.6)

by Proposition 3.1. Therefore,

P̂φ(z) =
∑

γ∈Γ

√
πmγ

φ̂(γ)− φ̂(0)

γ
Fγ(z) (3.7)

for any φ ∈ C∞
c (R) by definition (1.7) and the symmetry γ 7→ γ̄ of Γ with mγ = mγ̄ .

This implies

P̂Dψ(z) =
∑

γ∈Γ

√
πmγ ψ̂(γ)Fγ(z) (3.8)

for any ψ ∈ C∞
c (R), since (D̂ψ(z)− D̂ψ(0))/z = D̂ψ(z)/z = ψ̂(z) for D in (1.8).

On the other hand, we define the norm ‖ ‖0 on C∞
c (R) by

‖ψ‖0 :=
1√
π
‖P̂Dψ‖L2(R), ψ ∈ C∞

c (R) (3.9)

based on Proposition 1.2. Then, we have:

Lemma 3.1. Equation (3.9) defines a norm on C∞
c (R).
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Proof. We obtain ‖ψ1 + ψ2‖0 ≤ ‖ψ1‖0 + ‖ψ2‖0 and ‖kψ‖0 = |k|‖ψ‖0 for ψ1, ψ2, ψ ∈
C∞
c (R) and k ∈ C by the obvious linearity of P̂D. Therefore, the proof is completed if

it is shown that ‖ψ‖0 = 0 implies ψ = 0. If ‖ψ‖0 = 0, the image P̂Dψ(z) is identically

zero. The latter means that ψ̂(γ) = 0 for all γ ∈ Γ, because, if not, there must exist a
sequence (cγ)γ∈Γ such that

∑
γ∈Γ cγ(z− γ)−1 is identically zero on C by (3.5) and (3.8),

but it is impossible. If ψ̂(γ) = 0 for all γ ∈ Γ, it implies that ψ is identically zero by
[11, Lemma 2.1]. �

By Lemma 3.1, we can complete the space C∞
c (R) with respect to ‖ ‖0. We denote the

completion byH0. On the other hand, we denote the L2-closure of the image P̂D(C∞
c (R))

in L2(R) by K0. Then, two Hilbert spaces H0 and K0 are isometrically isomorphic up

to a constant multiple. The map P̂D from C∞
c (R) to P̂D(C∞

c (R)) ⊂ L2(R) extends to
the map from H0 to K0 by (3.9). As proved in Theorem 5.2 below, H0 = HW and
K0 = K(Θ) under the RH.

4. A screw line of the Riemann zeta-function

4.1. A special orthonormal basis. Assuming the RH is true, E = Eξ belongs to
the Hermite–Biehler class ([5, Theorem 1]), and thus Θ = Θξ is a meromorphic innber
function. Therefore, they define the de Branges space H(E) and the model space K(Θ),
respectively. We need the following result for the later discussion.

Proposition 4.1. Assume that the RH is true. Then, the family (3.5) forms an or-
thonormal basis of the Hilbert space K(Θ). Furthermore,

Θ′(γ)

2
= − i

mγ
(4.1)

and

Fγ(γ) =
1

√
mγπ

, Fγ(γ
′) = 0 for every γ ∈ Γ, γ′ ∈ Γ \ {γ}. (4.2)

Proof. See [12, Proposition 3.2] and its proof. �

4.2. Screw line of the Riemann zeta-function. We define the even real-valued
function gξ(t) on the real line by

gξ(t) := −4(et/2 + e−t/2 − 2) +
∑

n≤et

Λ(n)√
n

(t− log n)

− t

2

[
Γ′

Γ

(
1

4

)
− log π

]
− 1

4

(
Φ(1, 2, 1/4) − e−t/2Φ(e−2t, 2, 1/4)

) (4.3)

for non-negative t. We easily obtain gξ(0) = 0. Then, gξ(t) is a screw function on R

under the RH as stated in [11, Theorem 1.2]. One of the screw lines corresponding to
gξ(t) can be constructed as follows.

Let τξ be the non-negative measure representing gξ(t) as in (2.3) under the RH. Then
the Hilbert space H = L2(τξ) and the mapping t 7→ x(t) := (eitγ − 1)/γ provide a screw
line satisfying ‖x(t)−x(0)‖2H = −2gξ(t) ([4, Section 12]). This spectral construction for
a screw line is important and useful in analysis, but it is not very useful for studying
the nontrivial zeros of ζ(s) without assuming the RH. In the following, we show that St

gives a screw line of gξ(t). In contrast to the above spectral screw line, this screw line
will be used later to study HW .

Theorem 4.1. Assume the RH is true and let g(t) = gξ(t). Then, the mapping t 7→
π−1/2St(z) from R to L2(R) is a screw line of g(t). That is,

1

π
〈St,Su〉L2(R) = Gg(t, u) (4.4)
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holds for t, u ∈ R.

Proof. The sum of coefficients on the right-hand side of (3.6) is convergent in L2-sense:

∑

γ∈Γ

∣∣∣∣
√
πmγ

e−iγt − 1

γ

∣∣∣∣
2

≤ π
∑

γ∈Γ

mγ

|γ|2 <∞.

Therefore, applying Proposition 4.1 to St(z) via formula (3.6), we find that it belongs
to the subspace K(Θ) of L2(R) and

1

π
〈St+v −Sv,Su+v −Sv〉L2(R) =

∑

γ∈Γ

mγ
e−iγt − 1

γ
· e

iγu − 1

γ
(4.5)

holds. The right-hand side is equal to Gg(t, u) by

Gg(t, u) =
∑

γ∈Γ

(eiγt − 1)(e−iγu − 1)

γ2
(4.6)

in [11, (1.9)] and the symmetry γ 7→ −γ of Γ with mγ = m−γ . Hence, π−1/2St : R →
L2(R) is a screw line of g(t) under the RH.

We find that S0(z) is identically zero by (1.5) and (1.6), since

lim
t→0

(
Φ(e−2t, 1, 14)− Φ(e−2t, 1, 12(

1
2 − iz))

)
= −Γ′

Γ

(
1

4

)
+

Γ′

Γ

(
1

2

(
1

2
− iz

))

by (2.6). Therefore, by taking v = 0 in (4.5), we obtain (4.4). �

The following immediately follows from Theorem 4.1.

Corollary 4.1. The RH is true if and only if the equality

1

2π
‖St‖2L2(R) = −g(t) (4.7)

holds for all t ≥ t0 for some t0 ≥ 0.

Proof. Assuming the RH, we obtain (4.7) by taking u = t in (4.4), since Gg(t, t) =
−2g(t) by (2.1) and g(0) = 0. Conversely, we suppose that equality (4.7) holds for all
t ≥ t0. Then −g(t) is non-negative on [t0,∞), which implies that the RH is true by [11,
Theorems 1.7 and 11.1]. �

4.3. Proof of Theorem 1.2. Theorem 1.2 is a corollary of the following result.

Theorem 4.2. Let g(t) = gξ(t). The RH is true if and only if the equality

‖P̂φ‖2L2(R) = π〈φ, φ〉Gg (4.8)

holds for all φ ∈ C∞
c (R) satisfying φ̂(0) = 0. If the RH is true, equality (4.8) holds for

all φ ∈ C∞
c (R).

Proof. First, we prove equation (4.8) assuming that the RH is true. We have

‖P̂φ‖2L2(R) = π
∑

γ∈Γ

mγ

∣∣∣∣∣
φ̂(γ)− φ̂(0)

γ

∣∣∣∣∣

2

(4.9)

by (3.7) and Proposition 4.1. Applying (4.6) to (2.2) and noting the symmetry γ 7→ −γ
of Γ with mγ = m−γ , we find that the right-hand side of (4.9) is equal to π〈φ, φ〉Gg .

Conversely, we prove that the RH is true assuming equality (4.8). We show that a
contradiction arises if the RH is false. We take a non-real γ0 ∈ Γ. For any ǫ > 0, there

exists ψ1, ψ2 ∈ C∞
c (R) such that ψ̂1(−γ0) = i, ψ̂2(−γ0) = −i, |ψ̂1(−γ)| ≤ ǫ|γ0 − γ|−1−δ

for every γ ∈ Γ\{γ0}, and |ψ̂2(−γ)| ≤ ǫ|γ0−γ|−1−δ for every γ ∈ Γ\{γ0} by [16, Lemma
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1]. We define ψ := ψ1 + ψ2 (6= 0) and set φ := Dψ. Then, φ̂(0) = 0 by definition, and
〈φ, φ〉Gg = 〈ψ,ψ〉W holds by the relation

〈Dψ1,Dψ2〉Gg = 〈ψ1, ψ2〉W (4.10)

in [11, Proposition 3.1]. The right-hand side is equal to
∑

γ∈Γmγψ̂(−γ)(ψ̂)♯(−γ) =

−mγ0 + O(ǫ), since
∑

γ∈Γmγ |γ|−1−δ < ∞. Therefore, 〈φ, φ〉Gg is negative for a suffi-

ciently small ǫ > 0, but it contradicts the non-negativity that follows from (4.8). �

Proof of Theorem 1.2. The conclusion follows from Theorem 4.2 and the relation (4.10)
of hermitian forms, since the differential operator D in (1.8) gives a bijection from

C∞
c (R) to the subspace of C∞

c (R) consisting of φ with φ̂(0) = 0. �

Proof of Corollary 1.1. The RH is true if (1.10) holds by the same argument as the
second half of the proof of Theorem 4.2. Therefore, we prove (1.10) assuming the RH.

Let ψ ∈ V ◦(0). Then ψ̂(z) = P̂Dψ0
(z) for some ψ0 ∈ C∞

c (R) by definition. Therefore,

ψ̂(z) =
∑

γ∈Γ
√
πmγ ψ̂0(γ)Fγ(z) by (3.8). The equality shows that ψ̂(z) is a continuous

function of z ∈ R by the uniform convergence of the right-hand side on a compact

set of z. Taking z = γ in this equality, we have ψ̂(γ) = ψ̂0(γ) by (4.2). Therefore,
〈ψ,ψ〉W is defined and satisfies 〈ψ,ψ〉W = 〈ψ0, ψ0〉W . The right-hand side is equal to

‖ψ̂0‖2L2(R) = 2π‖ψ0‖2L2(R) by (1.9) and Plancherel’s identity. The same argument works

if we start with ψ0 ∈ C∞
c (R). Hence, we obtain (1.10). �

5. Proof of Theorem 1.1 and its refinement

Throughout this section, we assume that the RH is true and denote E = Eξ, Θ =

Θξ = E♯ξ/Eξ as before, and denote g = gξ. Therefore, E belongs to the Hermite–Biehler
class, Θ is a meromorphic inner function in C+, and g belongs to G∞.

For use in the proof of Theorem 1.1 and its refinement, we introduce the operator K
acting on L2(R) by

K := F
−1

MΘJF (5.1)

with

(MΘF )(z) := Θ(z)F (z) and (JF )(z) := F ♯(z).

The Fourier transform F, the multiplication operator MΘ, and the involution J are
defined for functions of a complex variable and all isometries on L2(R). Therefore, K is
isometric on L2(R). Further, K is invertible by K

2 = id. By definition, K is not C-linear
but R-linear and conjugate linear. Using the isometric operator K, we define

V (t) := L2(t,∞) ∩ KL2(t,∞) (5.2)

and

HW (t) := { [ψ] | ψ ∈ V (t) }
for t ≥ 0. The set of subspaces V (t) of L2(R) are clearly totally ordered by the set-
theoretical inclusion.

First, Theorem 1.1 is shown using V (t) for t = 0, and it is refined using general t ≥ 0.

Lemma 5.1. Let V (0) = L2(0,∞) ∩ KL2(0,∞). Then, we have K(Θ) = F(V (0)), and

therefore H(E) = EF(V (0)) = {E(z)ψ̂(z) |ψ ∈ V (0)}.
Proof. It is sufficient to show that K(Θ) = F(V (0)), since H(E) = EK(Θ). The proof
below is essentially the same as the proof in [10, Lemma 4.1].

If ψ ∈ V (0), both Fψ and FKψ belong to the Hardy space H2 by definition (5.1) and
H2 = F(L2(0,∞)). On the other hand, we have (FKψ)(z) = Θ(z)(Fψ)♯(z) by definition
(5.1) again. This implies (Fψ)(z) = Θ(z)(FKψ)♯(z), since Θ(z)Θ♯(z) = 1 by definition
(1.4). Therefore, Fψ belongs to K(Θ) by (2.5).
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Conversely, if F ∈ K(Θ), there exists f ∈ L2(0,∞) and g ∈ L2(−∞, 0) such that

F (z) = (Ff)(z) = Θ(z)(Fg)(z).

We have (Fg)♯(z) = Θ(z)(Ff)♯(z) by using Θ(z)Θ♯(z) = 1 again. Here (Fg)♯(z) = (Fg)(z)

for g̃(x) = g(−x) ∈ L2(0,∞), and Θ(z)(Ff)♯(z) = (FKf)(z) as above. Hence Kf belongs
to L2(0,∞), and thus f ∈ V (0). �

By Lemma 5.1, it is concluded that the RH is false if V (0) = {0} is shown, since
A(z)/(z − γ) = ξ(1/2 − iz)/(z − γ) belongs to H(E) for all γ ∈ Γ if the RH is true.
Therefore, it is interesting to prove or disprove V (0) 6= {0} unconditionally, but we do
not discuss that issue further in this paper.

Let τ = τξ be the measure on R determined from the screw function g = gξ by (2.3).
Then, we have g(0) = 0, b = 0, and

dτ(λ) =
∑

γ∈Γ

mγδ(λ− γ) dλ, λ ∈ R, (5.3)

since

g(t) =
∑

γ∈Γ

mγ
eiγt − 1

γ2

by [11, Theorem 1.1 (2)], where δ is the Dirac mass at λ = 0, We understand that the
Hilbert space L2(τ) is the space of sequences S = (S(γ))γ∈Γ with

‖S‖2L2(τ) =
∑

γ∈Γ

mγ |S(γ)|2. (5.4)

Then, we prove two isomorphisms for L2(τ) necessary for the proof of Theorem 1.1.

Lemma 5.2. Hilbert spaces V (0) and L2(τ) are isomorphic by the linear map

V (0) ∋ ψ 7→ Sψ :=
(
ψ̂(γ)

)
γ∈Γ

∈ L2(τ)

with

2‖ψ‖2L2(R) = ‖Sψ‖2L2(τ). (5.5)

Proof. Let µΘ be the measure on R determined from Θ = Θξ by (2.6). Then, the linear

map K(Θ) → L2(µΘ) given by ψ̂ 7→ Sψ is an isometric isomorphism as reviewed in
Section 2.4. On the other hand, L2(µΘ) = L2(τ) with ‖S‖2L2(µΘ) = π‖S‖2L2(τ) by (2.6),

(4.1), and (5.3). Therefore, by composing the maps V (0) → K(Θ) = F(V (0)) and

K(Θ) → L2(µΘ), we get the conclusion of the lemma, since 2π‖ψ‖2L2(R) = ‖ψ̂‖2L2(R). �

Lemma 5.3. For ψ = lim
n→∞

ψn ∈ HW with {ψn}n≥1 ⊂ C∞
c (R), we define Sψ ∈ L2(τ) by

Sψ := lim
n→∞

(
ψ̂n(γ)

)
γ∈Γ

in L2(τ).

Then, it is well-defined and provides an isomorphism between HW and L2(τ) through
the mapping

HW ∋ ψ 7→ Sψ ∈ L2(τ)

with

〈ψ,ψ〉W = ‖Sψ‖2L2(τ). (5.6)

Proof. We consider C∞
0 (R) = {φ ∈ C∞

c (R) | φ̂(0) = 0}, since we obtain the same com-
pletion H(Gg) even if starting from this space instead of C0(R). Then differentiation
ψ 7→ ψ′ gives a bijection from C∞

c (R) to C∞
0 (R). The inverse map is φ 7→

∫ x
−∞ φ(y) dy.
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The Weil hermitian form and the hermitian form 〈·, ·〉Gg defined by (2.2) for the screw
function g are related as in (4.10), which is written as

〈φ, φ〉Gg = 〈ψ,ψ〉W , ψ(x) =

∫ x

−∞
φ(y) dy, ψ ∈ C∞

c (R). (5.7)

(Although not necessary for the proof, 〈φ, φ〉Gg and 〈ψ,ψ〉W are positive definite on
C∞
0 (R) and C∞

c (R), respectively, by [11, Lemma 2.1].) Relation (5.7) extends to the com-
pleted Hilbert spaces. Therefore, HW is isometrically isomorphic to the Hilbert space
H(Gg) by H(Gg) → HW : [φ] 7→ [ψ] with ψ = limn→∞ ψn and ψn(x) =

∫ x
−∞ φn(y) dy

for φ = limn→∞ φn (φn ∈ C∞
c (R)).

We define H(Gg) → L2(τ) as follows. For [φ] ∈ H(Gg), we define Sφ = (Sφ(γ))γ∈Γ
∈ L2(τ) by

lim
n→∞

(
φ̂n(γ)/γ

)
γ∈Γ

in L2(τ)

using a sequence (φn)n in C∞
0 (R) satisfying φ = limn→∞ φn. Then, the map is well-

defined and 〈[φ], [φ]〉Gg = 〈φ, φ〉Gg = ‖Sφ‖L2(τ) by (2.2), (4.6), and (5.4). Therefore,

it establishes the isomorphic isomorphism H(Gg) → L2(τ) : [φ] 7→ Sφ ([4, Sections 5.3

and 12.5]). Using H(Gg) → HW and noting φ̂(λ)/λ = iψ̂(λ) for φ ∈ C∞
0 (R), we define

HW → L2(τ) by [ψ] 7→ Sψ with

Sψ = (Sψ(γ))γ∈Γ = lim
n→∞

(
ψ̂n(γ)

)
γ∈Γ

= lim
n→∞

(
−iφ̂n(γ)/γ

)
γ∈Γ

in L2(τ),

where (φn)n is a sequence in C∞
0 (R) such that ψ = limn→∞ ψn with φn = ψ′

n. Then,
the map is well-defined and

〈[ψ], [ψ]〉W = 〈ψ,ψ〉W = ‖Sψ‖L2(τ) = ‖Sφ‖L2(τ) = 〈φ, φ〉Gg = 〈[φ], [φ]〉Gg

holds, where φ = limn→∞ φn and the second equality follows from (1.2) and (5.4). Hence,
it establishes an isometric isomorphism HW → L2(τ) by [ψ] 7→ Sψ. As a result, the

mapping HW → L2(τ) is directly defined by Sψ = limn→∞

(
ψ̂n(γ)

)
γ∈Γ

and [ψ] 7→ Sψ

for ψ = limn→∞ ψn with the desired equality for norms. �

Theorem 5.1. Assume that the RH is true. Let HW , H(E), and K(Θ) be as above.
Let V (t) be the spaces defined in (5.2). Then the following hold:

(1) ‖Eψ̂‖2H(E) = ‖ψ̂‖2L2(R) = 2π‖ψ‖2L2(R) = π〈ψ,ψ〉W for ψ ∈ V (0).

(2) The map from K(Θ) to HW obtained by the composition of the inverse of

V (0) → K(Θ) : ψ 7→ ψ̂(z), 2π‖ψ‖2L2(R) = ‖ψ̂‖2L2(R) (5.8)

and

V (0) → HW : ψ 7→ [ψ], 2‖ψ‖2L2(R) = 〈[ψ], [ψ]〉W = 〈ψ,ψ〉W (5.9)

agrees with the isomorphism F 7→ ψF in Theorem 1.1. In particular, (5.9) is an
isometric isomorphism up to a constant multiple.

Proof. (1) It suffices to show that the equality

‖ψ‖2L2(R) =
1

2
〈ψ,ψ〉W , (5.10)

holds, since ‖Eψ̂‖H(E) = ‖ψ̂‖L2(R) by (2.4) and ‖ψ̂‖2L2(R) = 2π‖ψ‖2L2(R) by (1.1). For

each γ ∈ Γ, we define ψγ ∈ L2(R) by

Fγ = ψ̂γ . (5.11)
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Then, each ψγ belongs to V (0) and {ψγ}γ∈Γ forms an orthogonal basis satisfying 2π‖ψγ‖2L2(R) =

‖ψ̂γ‖2K(Θ) = ‖Fγ‖2K(Θ) = 1 by Proposition 4.1 and Lemma 5.1, since the orthogonality of

Fγ ’s is inherited via the Fourier transform. For ψ =
∑

γ cγψγ ∈ V (0), we have

‖ψ‖2L2(R) =
1

2π

∑

γ∈Γ

|cγ |2

by the orthogonality and

ψ̂(γ) =
1

√
mγπ

cγ ,

by applying (4.2) to ψ̂ =
∑

γ cγFγ . From these two and (1.2), we get (5.10).

(2) It is clear that the composition of the inverse of (5.8) and (5.9) agrees with the map
F 7→ ψF of Theorem 1.1 including the equality for norms, and we observed in the proof
of Lemma 5.2 that the map (5.8) is an isometric isomorphism up to the multiple

√
2π.

Therefore, it suffices to show that the map (5.9) gives an isometric isomorphism up to

the multiple
√
2.

For ψ ∈ V (0), Sψ ∈ L2(τ) is defined and satisfy 2‖ψ‖2L2(R) = ‖Sψ‖2L2(τ) by Lemma

5.2. Then, there exists a sequence (ψ∗
n)n in C∞

c (R) such that converges to ψ∗ with
respect to 〈·, ·〉W and Sψ = Sψ∗ by Lemma 5.3. The later implies 〈ψ − ψ∗

n, ψ − ψ∗
n〉W =

〈ψ∗ − ψ∗
n, ψ

∗ − ψ∗
n〉W → 0 (n → ∞). Therefore, ψ = ψ∗ and hence V (0) → HW is

directly defined by ψ 7→ [ψ]. Furthermore, we obtain 2‖ψ‖2L2(R) = 〈ψ,ψ〉W from (5.5)

and (5.6). Hence, this map is nothing but (5.9). �

The equality ‖ψ‖L2(R) = 2−1〈ψ,ψ〉W in Theorem 5.1 (1) shows that the L2-structure

induced from L2(R) and an “arithmetic structure” (or a “local structure”) coming from
the geometric side of the Weil explicit formula (3.3) are coincident on a dense subspace
of V (0) consisting of functions such that the Weil explicit formula holds.

Theorem 5.2. Assume that the RH is true. Then, H0 = HW and K0 = K(Θ) and the

extended map P̂D : HW → K(Θ) provides the inverse of the map in Theorem 5.1 (2).
In particular, V (0) is the L2-closure of V ◦(0) in Corollary 1.1.

Proof. For ψ ∈ C∞
c (R), we have

‖P̂Dψ‖2L2(R) = π
∑

γ∈Γ

mγ |ψ̂(γ)|2 = π〈ψ,ψ〉W

by (1.2), (3.8), and Proposition 4.1. Hence, H0 coincides with HW by definition (3.9).

Formula (3.8) shows that the image P̂Dψ is defined independent of the representatives
of HW . On the other hand, K0 is a subspace of K(Θ) by Proposition 4.1 again.

We denote F = P̂Dψ for [ψ] ∈ HW and set ψF = F
−1(F ) as in Theorem 1.1. Then,

F (γ) = ψ̂(γ) by (3.8) and (4.2). Therefore, ψ̂F (γ) = ψ(γ) for all γ ∈ Γ, and hence

[ψ] = [ψF ] in HW . On the other hand, P̂DψF
(z) = F by (3.8), since ψ̂F = F by

definition and F (γ) = ψ̂(γ). Hence, we obtain the desired conclusion. �

The totally ordered structure of the subspaces of the de Branges space H(E) is de-
scribed by V (t) as follows.

Theorem 5.3. Assume that the RH is true. Then, E F(V (t)) is a de Branges subspaces
of H(E) for every t ≥ 0 and is isometrically isomorphic to HW (t) up to a constant
multiple by the map of Theorem 1.1.

Proof. It is sufficient to prove the first half of the theorem, since the second half follows
from Theorem 5.1 (2). We prove the claim for positive t such that V (t) 6= {0}, since
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the case of t = 0 was proved in Lemma 5.1 and the claim is trivial if V (t) = {0}. The
following is essentially the same as the proof of [10, Lemma 4.3].

We show that H := E(z)F(V (t)) is a Hilbert space consisting of entire functions and
satisfies the axiom of the de Branges spaces:

(dB1) For each z ∈ C\R the point evaluation Φ 7→ Φ(z) is a continuous linear functional
on H;

(dB2) If Φ ∈ H, Φ♯ belongs to H and ‖Φ‖H = ‖Φ♯‖H;
(dB3) If w ∈ C \ R, Φ ∈ H and Φ(w) = 0,

z − w̄

z − w
Φ(z) ∈ H and

∥∥∥∥
z − w̄

z − w
Φ(z)

∥∥∥∥
H

= ‖Φ‖H,

where the Hilbert space structure is the one induced from V (t) that is equivalent to

〈F,G〉H =
∫
R
F (z)G(z)|E(z)|−2dz for F,G ∈ H.

Let Φ(z) = E(z)(Ff)(z) ∈ H with f ∈ V (t). First, we prove that H consists of
entire functions. We see that Φ(z) is holomorphic in C+ by f ∈ L2(t,∞). If we write

(J♯f)(x) := f(−x), the commutative relation JF = FJ♯ holds. Therefore, using (5.1)

and K
2 = 1, we have Φ(z) = E(z)(Ff)(z) = E♯(z)(FJ♯Kf)(z). This shows that Φ(z)

is also holomorphic in C−. Furthermore, J♯Kf ∈ L2(−∞,−t), because the tempered
distribution kernel k := F

−1Θ of K has support in [0,∞) by [7, Theorems 1.1 and 1.2].
On the real line, limz→x(Ff)(z) = (Ff)(x) and limz→x(FJ♯Kf)(z) = limz→x(FKf)

♯(z) =

u♯(x)(Ff)(x) for almost all x ∈ R, where z is allowed to tends to x non-tangentially
from C+ and C−, respectively. Hence, (Ff)(z) is also holomorphic in a neighborhood of
each point of R. By the above, Φ(z) is an entire function.

We confirm (dB1). For z ∈ C+, Φ 7→ Φ(z) = E(z)
∫∞
t f(x)eizxdx is a continuous

linear form. On the other hand, for z ∈ C−, Φ 7→ Φ(z) = E♯(z)
∫ −t
−∞ (Kf)(−x)eizx dx

is a continuous linear functional. Finally, for z ∈ R, the continuity follows by the
Banach-Steinhaus theorem.

We confirm (dB2). We have Φ♯(z) = E(z)(FKf)(z). Since Kf ∈ V (t), Φ♯ belongs to
H. Since K is isometric, the equality of norms in (dB2) holds.

We confirm (dB3). The equality of norms in (dB3) is trivial by the definition of the
norm of H. From (dB2), it is sufficient to show only the case of w ∈ C+. Suppose that
Φ(w) = 0 for some w ∈ C+. Then (Ff)(w) = 0, since E(z) has no zeros on C+. We put

fw(x) := f(x)− i(w− w̄)
∫ x−t
0 f(x− y)e−iwydy. Then we easily find that fw ∈ L2(t,∞)

and (Ffw)(z) = ((z − w̄)/(z −w))(Ff)(z) for z ∈ C+. Hence we complete the proof if it
is shown that Kfw has support in [t,∞), since Kfw ∈ L2(R) by fw ∈ L2(t,∞). We put

gw(x) := (Kf)(x) − i(w̄ − w)
∫ x−t
0 (Kf)(x − y)e−iw̄ydy. Then gw has support in [t,∞)

by Kf ∈ L2(t,∞) and (Fgw)(z) = ((z − w)/(z − w̄))(FKf)(z) = (FKfw)(z) for z ∈ C+.
Hence gw = Kfw and the proof is completed. �

We expect V (t) 6= {0} to hold for all t ≥ 0, but we do not discuss it in this paper.
However, there exists 0 < t0 ≤ ∞ (possibly t0 = ∞) such that V (t) 6= {0} holds for all
0 ≤ t < t0, since V (t1) ⊂ V (t2) if t1 ≥ t2 by definition (5.2).

5.1. A weaker variant of Corollary 1.1. Since the space V (0) can be constructed
unconditionally as well as V ◦(0) in Corollary 1.1, it can be used to state an equivalence
condition for the RH. However, since the construction of V (0) is simpler than that of
V ◦(0), more conditions are required for the equivalence condition.

Proposition 5.1. Let V (0) = L2(0,∞) ∩ KL2(0,∞) be as above. Then the RH is true
if and only if the following two conditions hold:

(1) ‖ψ‖2L2(R) = 2−1〈ψ,ψ〉W for every ψ ∈ V (0).
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(2) For a given γ ∈ Γ and any ǫ > 0, there exists ψ ∈ V (0) such that

ψ̂(γ) = 1, |ψ̂(−γ′)| ≤ ǫ

|γ − γ′|1+δ for every γ′ ∈ Γ \ {γ}

for some δ > 0 independent of γ, ǫ, and ψ.

Proof. Assuming the RH, (1) follows from Theorem 5.1 (1). Also, (2) holds, since ψγ =

F
−1(Fγ) in V (0) satisfies ψ̂γ(γ) 6= 0 and ψ̂γ(γ

′) = 0 for γ′ ∈ Γ \ {γ}.
Conversely, we assume that (1) and (2) are satisfied. Then, we show that a contra-

diction arises if the RH is false. We take a non-real γ0 ∈ Γ. For any ǫ > 0, there exists

ψ1, ψ2 ∈ V (0) such that ψ̂1(−γ0) = i, ψ̂2(−γ0) = −i, |ψ̂1(−γ)| ≤ ǫ|γ0 − γ|−1−δ for every

γ ∈ Γ \ {γ0}, and |ψ̂2(−γ)| ≤ ǫ|γ0 − γ|−1−δ for every γ ∈ Γ \ {γ0} by (2). Then, for

ψ := ψ1 + ψ2 (6= 0), we have 〈ψ,ψ〉W =
∑

γ∈Γmγψ̂(−γ)(ψ̂)♯(−γ) = −mγ0 +O(ǫ), since∑
γ∈Γ |γ|−1−δ < ∞. Therefore, 〈ψ,ψ〉W is negative for a sufficiently small ǫ > 0, but it

contradicts (1). Hence the RH holds. �

6. Hilbert–Pólya space

One of attractive strategies for proving the RH is the construction of a Hilbert–Pólya
space, which is a pair of a Hilbert space and a self-adjoint operator acting on it such
that all non-trivial zeros of the Riemann zeta-function are eigenvalues of the self-adjoint
operator. In this section, we state that HW is one of Hilbert–Pólya spaces. Note that
HW is unconditionally defined as H0 by Theorem 5.2.

We assume the RH and denote E = Eξ as in Section 5. In this case, the domain D(M)
of the multiplication operator M on H(E) is dense in H(E), because Sθ(z) does not
belongs to H(E) for all θ ∈ [0, π) by the estimate |Sθ(iy)/E(iy)| ≫ (log y)−1 (y → +∞)
obtained by the Stirling formula for the gamma-function and [8, Proposition 2.1]. Using
M, we define the operator A := F

−1
MF on V (0) with the domain D(A) = F

−1(D(M)).
If ψ ∈ V (0) is differentiable and ψ′ also belongs to V (0), then Aψ = iψ′. Further, we
define the operator AW on HW as follows.

By Theorem 5.2, the inverse of (5.9) from HW to V (0) is given by [ψ] 7→ F
−1P̂Dψ.

Further, if we choose the representative of ψ from V (0), it is possible and uniquely

determined by Theorem 5.1 (2), and therefore ψ = F
−1P̂Dψ. By choosing representatives

in this way, we define AW onHW by AW [ψ] = [Aψ]. By the same procedure as above, the
family of self-adjoint extensions Mθ of M determines the corresponding families of self-
adjoint extensions of A and AW . By this correspondence, the orthogonal basis {[ψγ ]}γ∈Γ
of HW consists of eigenvectors [ψγ ] of AW,π/2 with eigenvalues γ ∈ Γ, since {EFγ}γ∈Γ for
(3.5) is an orthogonal basis of H(E) consists of eigenfunctions of Mπ/2 with eigenvalues
Γ (see Seciton 2.3). Therefore, the pair (HW , AW,π/2) is a Hilbert–Pólya space.

7. Special values of the screw line St(z)

The screw line St(z) has the following unconditional relations with the screw function
g(t). It is interesting that they are not a special case of equations obtained from the
general theory of screw functions.

Theorem 7.1. Let gξ(t) and Pt(z) be functions of (4.3) and (1.6), respectively. Then
the following equations hold independently of the truth of the RH:

Pt(0) = −gξ(t), (7.1)

lim
y→+∞

[
yBt(−iy)−

1

2

Γ′

Γ

(
1

4
+
y

2

)
+

1

2
log π

]
= −g′ξ(t), (7.2)

where we assume t 6= log n for any n ∈ N in (7.2).
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Proof. Equality (7.1) follows from (3.2), Proposition 3.1, and [11, Theorem 1.1 (2)], but
it follows directly from (4.3) and (1.6) as follows. By Φ(z, s, a) =

∑∞
n=0 z

n(n+a)−s and
(2.6),

lim
z→0

1

iz

[
Φ(e−2t, 1, 12(

1
2 − iz)) − Φ(e−2t, 1, 1/4)

]
= −1

2
Φ(e−2t, 2, 1/4),

lim
z→0

1

iz

[
Γ′

Γ

(
1

4
− iz

2

)
− Γ′

Γ

(
1

4

)]
=

1

2
ψ1

(
1

4

)
,

where ψ1(z) is the polygamma function of order one. The expansion ψ1(w) =
∑∞

n=0(w+
n)−2 gives ψ1(1/4) = Φ(1, 2, 1/4). Taking s = 1/2 in the logarithmic derivative of
ξ(s) = ξ(1− s) and using

Γ′

Γ

(
1

4

)
= −γ0 − 3 log 2− π

2
,

we have
ζ ′

ζ

(
1

2

)
=

1

2

(
γ0 + 3 log 2 + log π +

π

2

)
.

Hence, by taking the limit z → 0 in (1.6), we obtain the minus of (4.3).
To show (7.2), we multiply (1.6) by y and substitute −iy for z:

yPt(−iy) :=
4y(et/2 − 1)

1 + 2y
+

4y(e−t/2 − 1)

1− 2y

+ (e−yt − 1)
ζ ′

ζ

(
1

2
− y

)
+

∑

n≤et

Λ(n)√
n

(e−y(t−log n) − 1)

+
1

2

[
Γ′

Γ

(
1

4

)
− Γ′

Γ

(
1

4
− y

2

)]

+
1

2
e−t/2

[
Φ(e−2t, 1, 1/4) −Φ(e−2t, 1, 12(

1
2 − y))

]

Therefore, for positive t > 0,

lim
y→+∞

[
yBt(−iy)−

1

2

Γ′

Γ

(
1

4
+
y

2

)
+

1

2
log π

]

= 2(et/2 − e−t/2)−
∑

n≤et

Λ(n)√
n

+
1

2

[
Γ′

Γ

(
1

4

)
− log π

]
+

1

2
e−t/2Φ(e−2t, 1, 1/4)

by using the logarithmic derivative of ξ(s) = ξ(1 − s) at s = 1/2 − y. The right-
hand side equals to −g′(t) if t 6= log n by (4.3) and (d/dt)(e−t/2Φ(e−2t, 2, 1/4)) =

−2e−t/2Φ(e−2t, 2, 1/4) follows form Φ(z, s, a) =
∑∞

n=0 z
n(n+ a)−s. �
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