
ON RESTRICTED AVERAGES OF DEDEKIND SUMS

PAOLO MINELLI, ATHANASIOS SOURMELIDIS, AND MARC TECHNAU

Abstract. We investigate the averages of Dedekind sums over rational numbers
in the set Fα(Q) := { v/w ∈ Q : 0 < w ≤ Q } ∩ [0, α) for fixed α ≤ 1/2. In
previous work, we obtained asymptotics for α = 1/2, confirming a conjecture of
Ito in a quantitative form. In the present article we extend our former results,
first to all fixed rational α and then to almost all irrational α. As an intermediate
step we obtain a result quantifying the bias occurring in the second term of the
asymptotic for the average running time of the by-excess Euclidean algorithm,
which is of independent interest.

1. Introduction and main results

In this work we are concerned with distributional questions regarding Dedekind
sums and related questions in connexion with continued fraction expansions of
rational numbers.

1.1. Dedekind sums. Dedekind sums have their genesis in the multiplier system
for Dedekind’s η function with respect to the modular group SL2(Z)/{±(1

1)}, first
appearing in Dedekind’s supplements to Riemann’s collected works [6]. A quick
way of introducing them proceeds as follows. Let bxc denote the integer part of
x ∈ R. If we denote by (( · )) the saw-tooth function,

((x)) =

x− bxc −
1
2 if x ∈ R \ Z,

0 if x ∈ Z,

then, for any pair (a, b) ∈ Z2, b 6= 0, the Dedekind sum s(a, b) is defined by

s(a, b) =
b∑

n=1

((
n

b

))((
na

b

))
.
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It can be verified that s(a, b) = s(ka, kb) for any non-zero integer k. Hence,
s(a/b) := s(a, b) yields a well-defined function on Q≥0.

Here we are concerned with averages of Dedekind sums. Using the symmetry
property s(1− x) = −s(x), it is easy to see that

(1.1)
∑
x

s(x) = 0,

when x ranges over the fractions in [0, 1] with fixed denominator. The same
holds true, when the sum is extended over all fractions in [0, 1] with bounded
denominator. On the other hand, when restricting to the fractions in [0, 1/2], then
Ito [13] conjectured on the basis of numerical evidence that the above sum, divided
by the number of terms, diverges to +∞. The main result of [16] is a proof of a
quantitative version of this conjecture. To state it, let

F(Q) :=
{
v

w
∈ Q ∩ [0, 1] : w ≤ Q

}
denote the set of Farey fractions of order Q. Moreover, for any α ∈ (0, 1), let

Fα(Q) := F(Q) ∩ [0, α), Fc
α(Q) := F(Q) ∩ (1− α, 1].

The main result of [16] then states that

1
]F(Q)

∑
x∈F1/2(Q)

s(x) = 1
16 logQ+O(1).(1.2)

Our main goal here is to prove the following generalisation of (1.2), allowing for
arbitrary cuts α in place of 1/2. For rational α we have the following result:

Theorem 1.1. Let α = v/w be a reduced rational number in (0, 1/2]. Then

1
]F(Q)

∑
x∈Fα(Q)

s(x) = 1
12

(
1− 1

w2

)
logQ+Oα(1).

The shape of the leading term in (1.2) raises the question as to how the corres-
ponding results for irrational α might look. We do not resolve this here in full
generality, as irrational α which are well approximable by rationals cause problems
in our analysis. Nevertheless, we can prove the following partial result:

Theorem 1.2. There is a subset S⊆ [0, 1/2] of full Lebesgue measure such that
for every α ∈ S one has the asymptotic formula

1
]F(Q)

∑
x∈Fα(Q)

s(x) = 1
12 logQ+ oα(logQ) (as Q→∞).
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1.2. Asymptotics for the number of steps of Euclidean algorithms. There
is a well-known link between Dedekind sums, continued fraction expansions and
Euclidean algorithms. To sketch this, we require some notation. Any rational
number x ∈ [0, 1) admits a continued fraction expansion

(1.3) x = [0; a1, a2, . . . , an] := 0 +
1

a1 +
1

a2 + . . .

. . .+
1
an

with partial quotients a1, a2, . . . , an ∈ N. When requiring that an 6= 1, which we
shall do throughout the sequel, it is well known that n and the partial quotients
are uniquely determined by x. The number n, for which we also write L(x), admits
an interpretation as the number of steps of a certain variant of the Euclidean
algorithm, whereas the sum a1 + a2 + . . . + an of partial quotients has a similar
interpretation. We also let

Σodd(x) =
n∑
j=1
j odd

aj, Σeven(x) =
n∑
j=2
j even

aj, Σ±(x) = Σodd(x)− Σeven(x).

The link between Dedekind sums and continued fraction expansions is furnished by
a formula due to Barkan [2] and Hickerson [12]:

(1.4) s(x) = (−1)n − 1
8 + x− (−1)n[0; an, . . . , a2, a1] +Σ±(x)

12 .

Consequently, the study of sums such as (1.1) is intimately linked with distribution
properties of continued fractions or statistical properties of the number of steps of
certain Euclidean algorithms.

The study of such properties has a long history and dates back to the seminal
work of Lochs [15] and Heilbronn [10], who identified the principal term of the
asymptotics for the average number of steps of the classical Euclidean algorithm

1
ϕ(b)

∑
a≤b

gcd(a,b)=1

L
(
a

b

)
= A1 log b+O

(
(log log b)4

)
(as b→∞);

here ϕ(n) is the Euler totient function, A1 is an explicitly given non-zero constant
and the error term is absolute. For the same average, an asymptotic formula with
two significant terms was obtained later by Porter [18]. These results are with
respect to averages over numerators and fixed denominator.

Concerning averages over both numerators and denominators, an asymptotic
formula with power-law fall-off in the error term was obtained by Vallée [23]. This
was improved by Ustinov [22], who obtained an asymptotic formula with better
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fall-off in the error term than the one that can be derived from Porter’s result
1

]F(Q)
∑

x∈F(Q)
L(x) = B1 logQ+B2 +O

(
(logQ)5/Q

)
,

where B1 and B2 are explicitly given non-zero constants. While examining the
statistical properties of different variants of the Euclidean algorithm, Vallée [24]
obtained also the leading term of the asymptotic formula for the expectation of
the number of steps of the so-called by-excess Euclidean algorithm which generates
for a given rational number a/b ∈ (0, 1] the minus continued fraction expansion

a

b
= J1; b1, b2, . . . , bnK := 1−

1

b1 −
1

b2 − . . .
. . .−

1
bn

.

Zhabitskaya [25] improved upon Vallée’s result by showing that if `(a/b) = m
denotes the number of partial quotients in the minus continued fraction expansion
of a/b, then

1
]F(Q)

∑
x∈F(Q)

`(x) = C1(logQ)2 + C2 logQ+ C3 +O
(
(logQ)6/Q

)
;

here C1, C2, C3 are explicitly given non-zero constants, the first two being given by

(1.5) C1 = 1
2ζ(2) , C2 = 1

ζ(2)

(
2γ − 3

2 − 2ζ
′(2)
ζ(2)

)
and γ denoting the Euler–Mascheroni constant. For more results regarding the
expectation and the variance of the number of steps of the classical and by-excess
Euclidean algorithm, we also refer to the work of Baladi and Vallée [1], Bykovskĭı [4],
Dixon [7, 8], Hensley [11] and Ustinov [20, 21].

The approach to Ito’s conjecture pursued in [16] rests crucially on the observation
of Myerson [17, Lemma 5] that
(1.6) `(x) = Σodd(x)− ε(x) and `(1− x) = Σeven(x) + ε(x)
for some1 ε(x) ∈ {0, 1}, and on establishing the asymptotic formula∑

x∈F1/2(Q)
`(x) = c1Q

2(logQ)2 + c2Q
2 logQ+O

(
Q2
)
,

where 2c1 = C1 and 2c2 = C2 + 3/4 with the constants C1 and C2 given by (1.5).
Consequently, obtaining asymptotic formulas similar to the one above is a crucial
step in proving Theorem 1.1 and Theorem 1.2.

1Here ε is some correction term which is related to our way of forcing uniqueness in the
continued fraction expansion (1.3).
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To state our next theorem we introduce for a reduced rational number α = v/w
in (0, 1] the quantity

F (α) := 1
αw2

∑
r<w

(1− {αr})ζ(2, r/w),

where
ζ(s, x) :=

∑
n≥0

1
(n+ x)s (<s > 1, x ∈ (0, 1]),

denotes the Hurwitz zeta-function.

Theorem 1.3. Let Q be a positive integer and α = v/w be a reduced rational
number in (0, 1] with w < Q1/2. Let also E(α) := `(α) + (logw)2. Then

1
]F(Q)

∑
x∈Fα(Q)

`(x) = α(logQ)2

2ζ(2) + α logQ
ζ(2)

(
2γ − 2ζ

′(2)
ζ(2) + F (α)− 3

2

)
+O(E(α)).

Moreover, if α < 1, then
1

]F(Q)
∑

x∈Fc
α(Q)

`(x) = 1
]F(Q)

∑
x∈Fα(Q)

`(x)−
(

1− 1
w2

)
logQ+O(E(1− α)).

1.3. Structure of the paper. In § 2 we collect several technical lemmas. In § 3
we prove our results assuming Proposition 3.1, whose proof is given right after in
§ 4. Lastly, in § 5 we conclude with some remarks on Theorem 1.2.

1.4. Notation. We use the Landau notation f(x) = O(g(x)) and the Vinogradov
notation f(x) � g(x) to mean that there exists some constant C > 0 such that
|f(x)| ≤ Cg(x) holds for all admissible values of x (where the meaning of ‘admissible’
will be clear from the context). Unless otherwise indicated, any dependence of C on
other parameters is specified using subscripts. Similarly, we write ‘f(x) = o(g(x))
as x → ∞’ if g(x) is positive for all sufficiently large values of x and f(x)/g(x)
tends to zero as x→∞.

Given two coprime integers a and q 6= 0 we write invq(a) for the least positive
integer in the residue class (a mod q)−1.

A sum with a star (
∑∗) is understood to involve the additional summation

condition ‘gcd(p, q) = 1’. Sums like
∑
n≤x

are understood to range over all n = 1, 2, . . .

not exceeding x.

2. Auxiliary Results

2.1. Lemmas on modular inversion. We require information on the distribution
of modular inverses. The next lemma, itself a special case of a more general
distribution result (see [19, Theorem 13]), which follows from Weil’s bound on
exponential sums, contains what we need.
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Lemma 2.1. Let p be a positive integer, α ∈ (0, 1], X2 > X1 ≥ 0. Then, for any
ε > 0, both sums ∑∗

X1≤q≤X2
invp(q)≤αp

1 and
∑∗

X1≤q≤X2
invp(q)>(1−α)p

1

are asymptotically equal to

α
ϕ(p)
p

(X2 −X1) +Oε

(
X2 −X1 + p

p1/2−ε

)
.

Proof. The proof is identical to that of [16, Lemma A.1] where the special case
α = 1/2 is considered. We omit the details. �

The next result allows one to pass from invp(q) to invq(p). A special case of this
was already used in [16, Lemma 4.1].

Lemma 2.2. Let p, q ≥ 2 be coprime integers and α = v/w be a reduced rational
number in (0, 1] with w ≤ p or w ≤ q. Then

invp(q) ≤ αp if and only if invq(p) > (1− α)q.

Proof. We start with the well-known identity
q invp(q) + p invq(p) = 1 + pq

(cf. [16, proof of Lemma 4.1]). From this, by rearranging terms, we infer that

invp(q) ≤ αp if and only if invq(p) ≥ (1− α)q + 1
p
.

Similarly,

invq(p) > (1− α)q if and only if invp(q) < αp+ 1
q
.

The result now easily follows by appealing to either of the two assumptions w ≤ p
or w ≤ q. �

Lemma 2.3. Let α = v/w be a reduced rational number in (0, 1]. Suppose that

δα(q) =
∑∗

(1−α)q<p≤q
1 and κα(q) =

∑
r<w

(1− {αr})
∑
d|q

d≡r mod w

µ
(
q

d

)
.

Then, one has that δα(q) = αϕ(q) + κα(q) for every integer q ≥ 1.

Proof. We begin by rewriting the summation condition gcd(p, q) = 1 implicit in∑∗ using Möbius inversion. Hence,

δα(q) =
∑

(1−α)q<p≤q

∑
d|gcd(p,q)

µ(d) =
∑
d|q
µ(d)]{ p ∈ N : (1− α)q < p ≤ q, d | p }.
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The sets on the right hand side have cardinality αq/d+ {(1− α)q/d}. Hence,

δα(q) = α
∑
d|q
µ(d)q

d
+
∑
d|q
µ(d)

{
(1− α)q

d

}
.

The first sum on the right hand side equals ϕ(q). Upon grouping the terms of the
second sum by the residue d mod w, we obtain the function κα(q). �

2.2. Continued fractions. The key step in the approach of Lochs [15] and Heil-
bronn [10] to statistics of lengths of (ordinary) continued fraction expansions is
the transference of the problem to a problem of counting solutions to certain
Diophantine inequalities. Here we require a version for minus continued fraction
expansions. Such a version was initially given by Zhabitskaya [25, Lemma 2]. In [16,
Lemma 4.3] the authors employed a restricted variant of this, which we generalize
below in the case of arbitrary rational cuts.

Lemma 2.4. Let α be a rational number in (0, 1] and Q be a positive integer. If
Nα(Q) denotes the sum of the lengths of the minus continued fraction expansions
of the numbers a/b with 1 ≤ a < αb, q ≤ Q, and Tα(Q) denotes the number of
solutions (a1, q1, a2, q2,m, n, a, b) ∈ N8 of the following system of equalities and
inequalitites 

a1q2 − a2q1 = 1, 1 ≤ a1 ≤ αq1, 1 ≤ a2 ≤ q2,
na2 −ma1 = a, nq2 −mq1 = b, 1 ≤ a < b ≤ Q,
1 ≤ m < n, 1 ≤ q1 < q2,

(2.1)

then
Nα(Q) = Tα(Q) +O

(
`(α)Q2

)
.

Proof. Following [25, Lemma 2] we know that Nα(Q) is, apart from an error O(Q2),
equal to the number of solutions of

a1q2 − a2q1 = 1, 1 ≤ a1 ≤ q1, 1 ≤ a2 ≤ q2,
na2 −ma1 = a, nq2 −mq1 = b, 1 ≤ a < αb ≤ αQ,
1 ≤ m < n, 1 ≤ q1 < q2.

(2.2)

In particular, the pairs (p1, q1) and (p2, q2) generated from each solution of the above
system are successive convergents of the minus continued fraction expansion of a/b
other than a/b itself [25, Lemma 1]. Moreover, the sequence of these convergents is
monotonically decreasing to a/b. Therefore, if a1 ≤ αq1 then a/b < a1/q1 ≤ α.

It is not generally true that if a/b is less than α then so is the case for its
convergents. However, if `(a/b) ≥ `(α), then the `(α)-th convergent of a/b will
be less than or equal to α, and so will be the succeeding convergents since they
form a strictly decreasing sequence. Indeed, if α = J1; t1, . . . , tuK and a/b =
J1; s1 . . . , svK < α with u ≤ v, then J1; s1, . . . , suK ≤ α. For if J1; s1K ≤ α then we
are done. Otherwise, the inequalities a/b < α < J1; s1K imply that s1 = t1. If now
J1; t1, s2K ≤ α then we are done. Otherwise, the inequalities a/b < α < J1; t1, s2K
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imply that s2 = t2. Repeating these steps at most `(α) times, we obtain the desired
inequality.

Hence, for each pair (a, b), the number of solutions of the systems (2.1) and (2.2)
differ by at most `(α). Since we count O(Q2) pairs (a, b), the lemma follows. �

The eight variables in Lemma 2.4 can be reduced to four. This is the contents of
the next lemma.

Lemma 2.5. Let α be a rational number in (0, 1] and Q be a positive integer. If
Rα(Q) denotes the number of solutions (p, q, n,m) ∈ N4 of the following system of
inequalities 

gcd(p, q) = 1, p ≥ 2, q ≥ 1,
2 ≤ nq + kp ≤ Q, 1 ≤ k < n,
invp(q) ≤ αp,

(2.3)

then
Nα(Q) = Rα(Q) +O

(
`(α)Q2

)
.

Proof. As in [16, Lemma 4.4], one shows that Tα(Q) = Rα(Q) +O(Q2). �

2.3. Auxiliary asymptotic formulae. We conclude this section with a list of
formulae which will be employed in the succeeding proofs.

Lemma 2.6. Let Ψ(Q) = aQ2(logQ)2 + bQ2 logQ+O(Q2). Then∑
d≤Q

µ(d)Ψ
(
Q

d

)
= a

ζ(2)Q
2(logQ)2 + 1

ζ(2)

(
b− 2aζ

′(2)
ζ(2)

)
Q2 logQ+O(Q2).

Proof. For a proof see, e.g., [25, Corollary 3]. �

Lemma 2.7. The following asymptotic formulae hold for any x ≥ 2:

(1)
∑
q<x

ϕ(q) = x2

2ζ(2) +O(x log x),

(2)
∑
q<x

ϕ(q)
q

= x

ζ(2) +O(log x),

(3)
∑
q<x

ϕ(q)
q2 = 1

ζ(2)

(
log x+ γ − ζ ′(2)

ζ(2)

)
+O

(
log x
x

)
,

(4)
∑
q<x

ϕ(q)
q2 log q = (log x)2

2ζ(2) +O(1).

If in addition α := v/w is a reduced rational in the unit interval and κα is defined
as in Lemma 2.3, then for x > w∑

q<x

κα(q)
q2 =

∑
r<w

(1− {αr})ζ(2, r/w)
w2ζ(2) +O

(
log x
x

)
.
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Proof. The first two formulae are well known and the proof of the third one can be
found in [3, Corollary 4.5]. Formula (4) can be deduced easily from (3) and partial
summation. The last formula follows directly from the definitions of κα(q) and
ζ(s, x), and computations of well-known harmonic sums via the Euler-Maclaurin
summation formula. �

Lemma 2.8. The following asymptotic formulae hold for any U ≥ 2:

(1)
∑
k

∑
q

k+q<U

ϕ(q)
kq2 = (logU)2

ζ(2) + logU
ζ(2)

(
2γ − ζ ′(2)

ζ(2)

)
+O(1),

(2)
∑
k

∑
q

k+q<U

ϕ(q)
q2 = U logU

ζ(2) +O(U) =
∑
k

∑
q

k+q<U

ϕ(q)
qk

,

(3)
∑
k

∑
q

k+q<U

ϕ(q)k
q2 = U2 logU

2ζ(2) +O
(
U2
)

=
∑
k

∑
q

k+q<U

ϕ(q)
k

.

Proof. They follow directly from the formulae of the previous lemma. �

3. Proofs of the main results

In this section we state our main technical result (Proposition 3.1 below) and
show how to deduce Theorem 1.3 from it. We then proceed on proving Theorem 1.1
and Theorem 1.2. The proof of Proposition 3.1 is given in § 4.

The main step is counting the number of solutions to the systems (2.3) asymptot-
ically. For technical reasons, it turns out to be convenient to group these solutions
according to the size of their components and count the number of solutions in
each group individually. To fix the relevant notation, let U = Q1/2, and consider
the following five cases:

• p ≤ q ≤ U ; (‘Case 1’)
• p ≤ q, U < q; (‘Case 2’)
• q < p ≤ U ; (‘Case 3’)
• q < p, U < p, n ≤ U ; (‘Case 4’)
• q < p, U < p, U < n. (‘Case 5’)

Proposition 3.1. Let α = v/w be a reduced rational number in (0, 1] and Q ≥ 1
be real. For i = 1, 2, 3, 4, 5, let Ri,α(U) denote the number of solutions (p, q, n,m)
to the systems (2.3) subject to the additional constraint that ‘Case i’ be satisfied.
Then we have the following asymptotic formulae:

(1) R1,α(U) = α log 2
2ζ(2) U

4 logU +O(U4),

(2) R2,α(U) = α log 2
2ζ(2) U

4 logU +O(U4),
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(3) R3,α(U)
U4 = α(logU)2

4ζ(2) + α logU
2ζ(2)

(
γ − ζ ′(2)

ζ(2) + F (α)− log 2
)

+O((logw)2),

(4) R4,α(U) = αU4(logU)2

4ζ(2) + αU4 logU
2ζ(2) (γ − log 2) +O(U4),

(5) R5,α(U) = αU4(logU)2

2ζ(2) + αU4 logU
2ζ(2)

(
2γ − ζ ′(2)

ζ(2) + F (α)− 3
)

+O(U4).

Assuming the conclusion of Proposition 3.1 for the moment, we are now in
position to prove our main results.

Proof of Theorem 1.3. LetQ ≥ 1 be an integer and put U = Q1/2. From Lemma 2.5
and Proposition 3.1 we know that

Nα(Q) =
∑
i≤5

Ri,α(U) +O(`(α)Q2)

= αQ2(logQ)2

4ζ(2) + αQ2 logQ
2ζ(2)

(
2γ − ζ ′(2)

ζ(2) + F (α)− 3
2

)
+O

(
E(α)Q2

)
.

Moreover, by Möbius inversion,∑
x∈Fα(Q)

`(x) =
∑
d≤Q

µ(d)Nα

(
Q

d

)
.

The first formula of the theorem follows now from the above, Lemma 2.6 and the
well-known formula ]F(Q) = Q2/(2ζ(2)) +O(Q).

The second formula of the theorem follows from the first one by observing that

1
]F(Q)

∑
x∈Fc

α(Q)
`(x) = 1

]F(Q)

 ∑
x∈F1(Q)

`(x)−
∑

x∈F1−α(Q)
`(x) +O(`(1− α))


and that

F (1)− (1− α)F (1− α) = −(1− α)F (1− α) = αF (α)− ζ(2)
(

1− 1
w2

)
. �

Proof of Theorem 1.1. If x has continued fraction expansion x = [0; a1, . . . , an],
then, by (1.4), s(x) = Σ±(x)/12 +O(1), where the implied constant is absolute. In
view of (1.6) we obtain that

12
∑

x∈Fα(Q)
s(x) +O

(
Q2
)

=
∑

x∈Fα(Q)
(`(x)− `(1− x)) =

∑
x∈Fα(Q)

`(x)−
∑

x∈Fcα(Q)
`(x).

The theorem follows now from Theorem 1.3. �

Proof of Theorem 1.2. Let

S :=

α = [0; a1, a2, . . . ] ∈ [0, 1] \Q :
∑
m≤M

am �α φ
M/2

,
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where φ is the golden ratio. One can easily show by standard techniques from the
metric theory of continued fractions (see for example [14]), that the set S is of full
Lebesgue measure.

Let α ∈ S and f(Q) be a monotonically increasing positive function such that
f(Q) = o(logQ) as Q→∞. If pn/qn := [0; a1, . . . , an] denotes the n-th convergent
of α, then we know that

lim inf
n→∞

log qn
n
≥ log φ.

We employ this property and the one describing the set S to prove Theorem 1.2.
Indeed, let Q be any sufficiently large positive integer. There is a positive integer

N = N(Q), which we assume w.l.o.g. that is even, such that

φN−1 < (f(Q) logQ)1/2 ≤ φN ≤ qN .(3.1)

Observe that in view of (1.6)

`

(
pN
qN

)
+ `

(
1− pN

qN

)
< `

(
pN+1

qN+1

)
+ `

(
1− pN+1

qN+1

)
=

∑
m≤N+1

am �α φ
N/2

and
log qN < log qN+1 ≤ log

∏
m≤N+1

(an + 1)�α φ
N/2.

Therefore, the error terms appearing in Theorem 1.3 for the case of β := pN/qN
and β′ := pN+1/qN+1 are all bounded from above by Oα

(
(f(Q) logQ)1/2

)
.

Since β and β′ are successive convergents of α, we know that β′−β = 1/(qNqN+1).
In addition to relation (3.1) and Theorem 1.3 we obtain that

∆(β′, β) := 1
]F(Q)

 ∑
x∈Fβ′ (Q)

`(x)−
∑

x∈Fc
β

(Q)
`(x)


=
(

1 + β′F (β′)− βF (β)
ζ(2)

)
logQ+Oα

(
logQ
f(Q) + (f(Q) logQ)1/2

)
.

However,

β′F (β′)− βF (β) =
∑

r<qN+1

(1− {β′r})
q2
N+1

(
q2
N+1
r2 +O(1)

)
+

−
∑
r<qN

(1− {βr})
q2
N

(
q2
N

r2 +O(1)
)

=
∑
r<qN

{βr} − {β′r}
r2 +O

(
1
qN

)
,

where the last sum is also O(1/qN) as can be seen from {βr}−{β′r} = −r/(qNqN+1).
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In conclusion, we deduce that

∆(β′, β) = logQ+Oα

(
logQ
f(Q) + (f(Q) logQ)1/2

)
.

A similar computation shows that ∆(β, β′) has the same asymptotics as ∆(β′, β).
The theorem follows now from relation

12
]F(Q)

∑
x∈Fα(Q)

s(x) = ∆(α, α′)

and the inequalities β < α < β′ and ∆(β, β′) ≤ ∆(α, α) ≤ ∆(β′, β). �

4. Proof of Proposition 3.1

This section is devoted to the proof of Proposition 3.1, where we follow the same
procedure as in [16]. Therefore, we heavily refer to [16] to shorten certain parts of
the proof.

Case 1. We count the number of solutions R1,α(U) of
gcd(p, q) = 1, 2 ≤ p ≤ q ≤ U,
2 ≤ nq + kp ≤ U2, 1 ≤ k < n,
invp(q) ≤ αp.

Following [16, § 5, Case 1] with αp in place of p/2, we find that

R1,α(U) = U4

2
∑

2≤p≤U

∑∗

p≤q≤U
invp(q)≤αp

1
q(p+ q) +O

(
U3
)

= α log 2
2ζ(2) U

4 logU +O
(
U4
)
.

Case 2. We count the number of solutions R2,α(U) of
gcd(p, q) = 1, 2 ≤ p ≤ q, U < q,
2 ≤ nq + kp ≤ U2, 1 ≤ k < n,
invp(q) ≤ αp.

.(4.1)

Observe that in this case the inequalities n ≤ U2/q < U hold as well.
Consider the pairs (n, k) ∈ N2 for which 1 ≤ k < n and n + k > U . In that

case the number of solutions of the above system is smaller than the number of
solutions of the same system without the restrictions on coprimality and modular
inversion. This number has been estimated in [25, (54)–(56)] to be O(U4).

Let C := { (p, q) ∈ Z2 : gcd(p, q) = 1 }. It suffices to consider the number of
solutions of the system (4.1) with the additional restriction n+ k ≤ U . If we fix
such a pair (n, k), then the domain of solutions of (4.1) can be expressed as the
lattice

L1,α(n, k) =
{

(p, q) ∈ C : 2 ≤ p ≤ U2

n+ k
, U < q ≤ U2 − kp

n
, invp(q) ≤ αp

}
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without the lattice

L2,α(n, k) =
{

(p, q) ∈ C : U < p ≤ U2

n+ k
, U < q ≤ p, invp(q) ≤ αp

}
.

The number of integer points of L1(n, k) and L2(n, k) is equal to

S1,α(n, k) :=
∑

p≤U2/(n+k)
A(p,α)

(
U,
U2 − kp

n

)
,

and
S2,α(n, k) :=

∑
U<p≤U2/(n+k)

A(p,α)(U, p),

respectively, where A(p,α)(x, y) is defined as in Lemma 2.1. By following [16, § 5,
Case 2] with A(p,α) in place of A(p,1/2), we obtain that

R2,α(U) = α
log 2
2ζ(2)U

4 logU +O
(
U4
)
.

Case 3. We count the number of solutions R3,α(U) of
gcd(p, q) = 1, 1 ≤ q < p ≤ U,
2 ≤ nq + kp ≤ Q, 1 ≤ k < n,
invp(q) ≤ αp,

.

Similar to Case 1 (see also [25, (58)–(60)]), the number of solutions of the above
systems are, up to an error term of order O(U3 logU), equal to

U4

2
∑
p≤U

∑∗

q<p

invp(q)≤αp

1
q(p+ q) .(4.2)

We rewrite the first double sum above as∑
w<p≤U

∑∗

p1/2≤q<p
invp(q)≤αp

1
pq

+
∑

w<p≤U

∑∗

q<p1/2

invp(q)≤αp

1
pq

+
∑
p≤w

∑∗

q<p

invp(q)≤αp

1
pq
−
∑
p≤U

∑∗

q<p

invp(q)≤αp

1
p(p+ q)

=: S1(U) + S2(U) + S(α)− S4(U).

By partial summation and Lemma 2.1 we obtain for fixed ε ∈ (0, 1/2) that

S4(U) =
∑
p≤U

1
p

[
A(p,α)(1, p)

2p +
∫ p

1

A(p,α)(1, u)du
(u+ p)2

]
= α log 2 logU

ζ(2) +O(1).(4.3)

To estimate S1(U) we will first apply Lemma 2.2, obtaining

S1(U) =
∑

w1/2<q<U

1
q

∑∗

vq<p≤Vq
invq(p)>(1−α)q

1
p
,
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where vq := max{w, q} and Vq := min{U, q2}. Then partial summation and
Lemma 2.1 yield that

∑∗

vq<p≤Vq
invq(p)>(1−α)q

1
p

= B(q,α)(vq, Vq)
Vq

+
∫ Vq

vq

B(q,α)(vq, u)du
u2

= αϕ(q)
q

log Vq
vq

+Oε

(
q−1/2+2ε

)
Therefore, for fixed ε ∈ (0, 1/4), we deduce that

S1(U) =
∑

w1/2<q≤w

αϕ(q)
q2 log q

2

w
+

∑
w<q≤U1/2

αϕ(q)
q2 log q +

+
∑

U1/2<q<U

αϕ(q)
q2 log U

q
+O(1)

=
∑

q≤U1/2

αϕ(q)
q2 log q +

∑
U1/2<q<U

αϕ(q)
q2 log U

q
+O

(
(logw)2

)
.

For S(α) we have the trivial bound O((logw)2).
It remains to estimate S2(U) to which we will apply first Lemma 2.2. Observe

here that to do so we will have to remove from S2(U) the sum corresponding to
q = 1. This sum is always included in S2(U) since p > w. Therefore,

S2(U) =
∑

w<p≤U

1
p

+
∑

2≤q<U1/2

1
q

∑∗

uq<p≤U
invq(p)>(1−α)q

1
p
,

where uq := max{w, q2}. Since

]{ p ≤ x : p ≡ invp(b) mod q } = x

q
+O(1)

for any coprime integers 1 ≤ b ≤ q, we obtain from partial summation that
∑

uq<p≤U
p≡invq(b)

1
p

= 1
q

log U
uq

+O
(
q−2

)
.

Hence,

S2(U) = log U
w

+O(1) +
∑

2≤q<U1/2

1
q

∑∗

(1−α)q<b≤q

(
1
q

log U
uq

+O
(
q−2

))

= log U
w

+
∑

2≤q≤w1/2

δα(q)
q2 log U

w
+

∑
w1/2<q<U1/2

δα(q)
q2 log U

q2 +O(1).
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where δα(q) ≤ q was defined in Lemma 2.3. In view of the aforementioned lemma,
we conclude that

S2(U) = logU
∑

q≤U1/2

δα(q)
q2 − 2

∑
q<U1/2

δα(q)
q2 log q +O

(
(logw)2

)

= logU
∑

q≤U1/2

αϕ(q)
q2 − 2

∑
q<U1/2

αϕ(q)
q2 log q +

+ logU
∑

q≤U1/2

κα(q)
q2 − 2

∑
q<U1/2

κα(q)
q2 log q +O

(
(logw)2

)
.

Observe that κα(q) ≤ d(q), where d(n) denotes the number of divisors of n.
Therefore, the last sum in the last line above is O(1) and, thus,

S1(U) + S2(U) =
∑
q≤U

αϕ(q)
q2 log U

q
+ logU

∑
q≤U1/2

κα(q)
q2 +O

(
(logw)2

)
.

It follows now from Lemma 2.7 and relations (4.2) and (4.3) that

R3,α(U) = αU4(logU)2

4ζ(2) + αU4 logU
2ζ(2)

(
γ − ζ ′(2)

ζ(2) + F (α)− log 2
)

+O
(
U4(logw)2

)
.

Case 4. We count the number of solutions R4,α(U) of
gcd(p, q) = 1, 1 ≤ q < p, U < p,
2 ≤ nq + kp ≤ U2, 1 ≤ k < n ≤ U,
invp(q) ≤ αp.

(4.4)

Similar to Case 2, we fix k and n, and count the number of solutions of the above
system, when n+ k ≤ U , and when n+ k > U .

If n+ k > U , then the number of solutions of (4.4) is smaller than the number of
solutions of the same system without the restrictions on coprimality and modular
inversion. This number has been computed in [25, (64)–(65)] to be O(U4).

If now n+ k ≤ U , then the domain of solutions of (4.4) can be expressed as the
union of lattices

L1,α(n, k) =
{

(p, q) ∈ C : U < p ≤ U2

n+ k
, 1 ≤ q < p, invp(q) ≤ αp

}

and

L2,α(n, k) =
{

(p, q) ∈ C : U2

n+ k
< p ≤ U2

k
, 2 ≤ q ≤ U2 − kp

n
, invp(q) ≤ αp

}

=
{

(p, q) ∈ C : 2 ≤ q ≤ U2

n+ k
− θ, U2

n+ k
< p ≤ U2 − nq

k
, invq(p) > (1− α)q

}
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without the lattice of integer points

L3,α(n, k) =
{

(p, 1) : U2

n+ k
< p ≤ U2

k

}
,

where we have also applied Lemma 2.2 inL2,α(n, k) and have introduced a parameter
θ ∈ [0, 1] which may vary. The number of points of L1(n, k), L3(n, k) and L2(n, k)
is equal to

S1,α(n, k) :=
∑

U<p≤U2/(n+k)
A(p,α)(1, p), S3,α(n, k) :=

∑
U2/(n+k)<p≤U2/k

1,

and

S2,α(n, k) :=
∑

2≤q≤U2/(n+k)−θ
B(q,α)

(
U2

n+ k

U2 − nq
k

)
.

respectively. Working as in [16, § 5, Case 4], and using Lemma 2.1, we obtain that

S1,α(n, k) =
∑

U<p≤U2/(n+k)

αϕ(p)
2 +Oε

 U2

n+ k

∑
U<p≤U2/(n+k)

1
p1/2−ε


= αU4

2ζ(2)(n+ k)2 +Oε

(
U2 + U2

n+ k
log U2

n+ k
+ U3+2ε

(n+ k)3/2+ε

)
,

S2,α(n, k) = αnU4

2ζ(2)k(n+ k)2 +Oε

(
nU2

k(n+ k) log U2

n+ k
+ nU3+2ε

k(n+ k)3/2+ε

)

and

S3,α(n, k)� nU2

k(n+ k) .

Therefore, by fixing ε ∈ (0, 1/4), we conclude that

R4,α(U) = α

4ζ(2)U
4(logU)2 + α

2ζ(2)(γ − log 2)U4 logU +O
(
U4
)
.

Case 5. We count the number of solutions R5,α(U) of
gcd(p, q) = 1, 1 ≤ q < p, U < p,
2 ≤ nq + kp ≤ U2, 1 ≤ k < n, U < n,
invp(q) ≤ αp,

which, apart from the number of solutions corresponding to q = 1, is equivalent to

(4.5)


gcd(p, q) = 1, 2 ≤ q < p, U < p,
2 ≤ nq + kp ≤ U2, 1 ≤ k < n, U < n,
invq(p) > (1− α)q,
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as can be seen from Lemma 2.2. We may restrict ourselves to the case k + q < U
for, otherwise, the system (4.5) has no solution. If S(k, q) denotes the number of
solutions of (4.5) for fixed k and q, then

(4.6) R5,α(U) =
∑

k<U−1

∑
U<n≤U2−kdUe

∑
U<p≤(U2−n)/k

1 +
∑
k

∑
q≥2

k+q<U

S(k, q),

where dxe is the ceiling function.
A straightforward computation yields

(4.7)
∑

k<U−1

∑
U<n≤U2−kdUe

∑
U<p≤(U2−n)/k

1 = U4

2k +O
(
U3
)
.

On the other hand

S(k, q) =
∑

U<n≤(U2−kdUe)/q

∑
(1−α)q<b≤q
gcd(b,q)=1

∑
U<p≤(U2−nq/k)

p≡invq(b)

1

=
∑

U<n≤(U2−kdUe)/q

∑
(1−α)q<b≤q
gcd(b,q)=1

(
1
q

(
U2 − nq

k
− U

)
+O(1)

)

=
∑

U<n≤(U2−kdUe)/q

(
δα(q)
q

(
U2 − nq

k
− U

)
+O(q)

)
.

Recall that κα(q) ≤ d(q). We then have in view of Lemma 2.3 that, for q > 1,

S(k, q) = αϕ(q)
q

∑
U<n≤(U2−kdUe)/q

(
U2 − nq

k
− U

)
+ κα(q)

kq

∑
n≤(U2−kdUe)/q

(
U2 − nq

)
+

+O

(
U2 + U3d(q)

q2 + U3d(q)
kq

)

=: Σ(k, q) + κα(q)U4

2kq2 +O

(
U2 + U3d(q)

q2 + U3d(q)
kq

)
.

Similarly as in [16, § 5, Case 5] with α instead of 1/2, we obtain for q > 1

Σ(k, q) = αϕ(q)U4

2kq2 − αϕ(q)U3

q2 − αϕ(q)U3

kq
+ αϕ(q)kU2

2q2 + αϕ(q)U2

2k +O
(
U2
)
.
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From (4.6) and (4.7), we infer that

R5,α(U) =
∑

k<U−1

(
U4

2k −
αU4

2k −
U4(1− α)

2k

)
+ αU4

2
∑
k

∑
q

k+q<U

ϕ(q)
kq2 +

+ U4

2
∑
k

∑
q

k+q<U

κα(q)
kq2 − αU

3∑
k

∑
q

k+q<U

(
ϕ(q)
q2 + ϕ(q)

kq

)
+

+ αU2

2
∑
k

∑
q

k+q<U

(
ϕ(q)k
q2 + ϕ(q)

q

)
+O

(
U4
)
.

Each of the above sums is computed in Lemma 2.7 and Lemma 2.8. Thus, we
conclude that

R5,α(U) = αU4(logU)2

2ζ(2) + αU4 logU
2ζ(2)

(
2γ − ζ ′(2)

ζ(2) − 3 + F (α)
)

+O
(
U4
)
.

5. Remarks and some heuristics

In this final section we discuss briefly the result we obtained. In particular,
we want to formalize the intuition that the main contribution to the sample at
irrational cuts is carried by the points which are ‘arbitrarily’ close to 0. To this
end, we borrow an elementary argument from [5].

Lemma 5.1. Let g : R→ R be a monotonically increasing function with lim
x→∞

g(x) =
∞ and define the set

S(g,Q) =
{
a

b
∈ Q : b ≤ Q and a

b
≤ 1
g(Q)

}
.

Then we have that ∑
a
b
∈S(g,Q)

s(b, a)� Q2

g(Q)2 log2(Q).

Proof. We start by writing∑
a
b
∈S(g,Q)

s(b, a) =
∑

a<Q/g(Q)

∑
ag(Q)<b<Q

s(b, a)

Since s(b, a) = s
(
b̄, a

)
, where b̄ denotes the reduction of b modulo a, relation (1.1)

implies that ∑
ag(Q)<b<Q

s(b, a)� max
S

∣∣∣∣ ∑
k∈S

s(k, a)
∣∣∣∣,
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where the maximum ranges over all subsets S of the set of the residue classes
modulo a. Moreover, it is known (see for example the introduction of [9]) that∑∗

k<a

|s(k, a)| � a log2 a.

Using the above facts we conclude that∑
a<Q/g(Q)

∑
ag(Q)<b<Q

s(b, a)�
∑

a<Q/g(Q)
a log2 a� Q2

g(Q)2 log2(Q). �

Lemma 5.2. Let g(x) = log x and S(g,Q) be as in Lemma 5.1. Then
1

F(Q)
∑

a
b
∈S(g,Q)

s(a, b) = 1
12 logQ+O (log logQ) .

Proof. By the reciprocity law for Dedekind sums

s(a, b) + s(b, a) = 1
12

(
b

a
+ a

b
+ 1
ab

)
− 1

4
and Lemma 5.1 we obtain that∑

a
b
∈S(g,Q)

s(a, b) = 1
12

∑
a
b
∈S(g,Q)

(
b

a
+ a

b
+ 1
ab

)
+O

(
Q2
)

= 1
12

∑
a
b
∈S(g,Q)

b

a
+O

(
Q2
)
.

The lemma follows by Möbius inversion and computing the resulting double sum. �

References

[1] V. Baladi and B. Vallée. Euclidean algorithms are Gaussian. J. Number
Theory, 110(2):331–386, 2005. doi: 10.1016/j.jnt.2004.08.008.

[2] Ph. Barkan. Sur les sommes de Dedekind et les fractions continues finies.
C. R. Acad. Sci. Paris Sér. A-B, 284(16):A923–A926, 1977.

[3] F. P. Boca. Products of matrices [ 1 1
0 1 ] and [ 1 0

1 1 ] and the distribution of
reduced quadratic irrationals. J. reine angew. Math., 606:149–165, 2007. doi:
10.1515/crelle.2007.038.
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