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Tunable caging of excitation in decorated Lieb-ladder geometry with long range
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Controlled Aharonov-Bohm caging of wave train is reported in a quasi-one dimensional version
of Lieb geometry with next nearest neighbor hopping integral within the tight-binding framework.
This longer wavelength fluctuation is considered by incorporating periodic, quasi-periodic or fractal
kind of geometry inside the skeleton of the original network. This invites exotic eigenspectrum
displaying a distribution of flat band states. Also a subtle modulation of external magnetic flux
leads to a comprehensive control over those non-resonant modes. Real space renormalization group
method provides us an exact analytical prescription for the study of such tunable imprisonment of
excitation. The non-trivial tunability of external agent is important as well as challenging in the

context of experimental perspective.
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I. INTRODUCTION

Recent exciting headway in experimental condensed
matter physics helps us to emulate several quantum
mechanical phenomena in a quite tunable environment.
This unprecedented advancement in fabrication tech-
nique provides a scope for direct visualization of different
theoretically proposed phenomena like localization of ex-
citation in low dimensional networks [I, 2]. That is why
creation of so called artificial systems for the simulation
of complex many-body systems containing additional de-
gree of freedom has grabbed considerable scientific im-
pact [3]. Moreover, scientific communities have already
addressed the celebration of sixty years of the pioneer-
ing work of Anderson [4]. The absence of diffusion of
wave packet in the random disorder environment is well
known. In fact this now becomes a general prescription
in diverse topics of condensed matter physics starting
from optical lattice of ultra cold atoms [5] to the acous-
tics, wave guide arrays [0] or in micro cavities having
exciton-polaritons [7]. Unlike the case of Anderson lo-
calization (AL), the concept of compact localized states
(CLS) [8]-[15] in several one or two dimensional periodic
or non-periodic structures has attracted the spot light of
fundamental research. The journey started nearly thirty
years ago approximately from Sutherland [16].

This unconventional non-diffusive progress of wave has
generated significant attention because of its contribu-
tion to various novel physical phenomena in strongly
correlated system, such as unconventional Anderson
localization [17, 18], Hall ferromagnetism [19, 20],
high-temperature superconductivity [21], and superflu-
idity [22], to name a few. Moreover, this study has kept
scientists intrigued since it offers a suitable platform to
investigate several phenomena that are linked with the
information of quantum physics together with the topo-
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logical effect including fractional quantum hall effect [23]
and flat band ferromagnetism [24]. For these CLS, the
diminishing envelope of the wave train beyond finite size
characteristics trapping cell implies extremely low group
velocity due to the divergent effective mass tensor. This
means that the particle behaves like a super heavy such
that it cannot move. The vanishing curvature of the E—k
plot corresponding to such momentum independent self-
localized states are generally caused by the destructive
nature of the quantum interference occurred by multiple
quantum dots and the local spatial symmetries involved
with the underlying structure. Hence these are also called
as flat band states.

In general, occurrence of dispersionless flat band can
be classified into two categories depending on their sta-
bility with respect to the application of magnetic pertur-
bation. In particular, the type of geometries discussed
by Mielke [25] and Tasaki [19] cannot contain flat bands
for finite magnetic flux. Whereas, the other type of lat-
tices e.g., Lieb lattice [20], there exists macroscopically
degenerate flat band even in the presence of flux. In fact,
the non dispersive band is completely insensitive to the
applied external perturbation. As it is well known that
the inherent topology of the line-centered square lattice
(also known as the Lieb lattice) induces interesting spec-
tral properties such as the macroscopically degenerated
zero-energy flat band, the Dirac cone in the low- energy
spectrum, and the typical Hofstadter-type spectrum in
a magnetic field. Moreover, Lieb geometry is one of the
most prominent candidate useful for magnetism. The
spectral divergence of the zero-energy flat band provides
that platform.

In this manuscript, inspired by all the experimental re-
alizations of Aharaonov-Bohm caging, we study a quasi-
one dimensional Lieb-ladder network within the tight-
binding formalism. The phenomenon of imprisonment
of wave train is studied when the next nearest neighbor
(NNN) connection term is added to the Hamiltonian. In-
teresting modulation of self-trapping of excitation is also
studied in details when the NNN connectivity is ‘dec-
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orated’ by either magnetic flux or some quasi-periodic,
fractal kind of objects.

As a second motivation we have analyzed an Aharonov-
Bohm interferometer model made in the form of a quasi-
one dimensional Lieb geometry to study the flux con-
trolled localization aspects. It is needless to mention
that this flux controlled caging is a subset of widely
used phenomena Aharonov-Bohm caging [27] and this
has been experimentally verified in recent times [, 2].
However, when an electron traverses a closed loop that
traps a finite magnetic flux ®, its wave function picks
up a phase factor. This simple sentence is at the the
core of the pioneering Aharonov-Bohm (AB) effect [28]-
[32] which has led to a substantial research in the stan-
dard AB interferometry that dominated the fundamental
physics, both theoretical and experimental perspective,
in the mesoscopic scale over the past few decades [33]-
[35]. Tt is to be noted that the current experiments by
Yamamoto et al. [36] has stimulated more experiments on
quantum transmission in AB interferometers [37]. Also
the previously mentioned theoretical model studies have
also played an important part in studying the elemen-
tary characteristics of the electronic states and coherent
conductance in quantum networks in the mesoscopic di-
mensions [35]. The recent advancement in the fabrication
and lithography processes have opened up the possibility
to make a tailor-made geometry with the aid of quan-
tum dots (QD) or Bose-Einstein condensates (BEC). It is
needless to mention that this has provoked a substantial
content of theoretical research even in model quantum
networks with a complex topological character [38, 39].

In this article, highly motivated by the ongoing sce-
nario of theory and experiments in AB interferometry,
we investigate the spectral and the transmission prop-
erties of a model quantum network in which diamond
shaped Aharonov-Bohm interferometers are arranged in
the form of a quasi-one dimensional Lieb ladder geom-
etry. Such diamond-based interferometer models have
previously been analyzed as the minimal prototypes of
bipartite networks having nodes with different coordi-
nation numbers, and representing a family of itinerant
geometrically frustrated electronic systems [40]. There
are other studies which include the problem of imprison-
ment of excitation under the influence of spin-orbit inter-
action [41], a flux-induced semiconducting behavior [412],
quantum level engineering for AB cages [13] or, as models
of spin filters [44].

In what follows we demonstrate our findings. Sec. IT
discusses the basic quasi-one dimensional Lieb ladder net-
work in respect of energy band and transmittivity. In
Sec. III we have incorporated a next nearest neighbor
connectivity by inserting a rhombic loop inside the unit
cell and discussed the flux sensitive localization. Af-
ter that in Sec. IV the NNN hopping is decorated by
a quasiperiodic Fibonacci geometry and the distribution
of self-localized states has been studied. Sec. V demon-
strates the self-similar pattern of compact localized states
as a function of magnetic flux. In Sec. VI we have stud-

ied the Lieb Aharonov-Bohm interferometer model in re-
spect of its electronic eigenspectrum. Finally in Sec. VII
we draw our conclusions.

II. MODEL SYSTEM AND HAMILTONIAN

We start our demonstration from the Fig. 1(a) where
a quasi-one dimensional version of the Lieb geometry is
shown. We make a distinction between the sites (blue col-
ored dots marked as A site and red colored dots marked
as B sites) based on their coordination numbers. The
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FIG. 1: (Color online) (a) A quasi-one dimensional Lieb lad-
der network with endless axial span and (b) the effective two-
arm ladder with renormalized parameters.
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array is modeled by the standard tight-binding Hamilto-
nian written in the Wannier basis, viz.,

H= Zejc;f—cj + Z[tjkc;ck + h.c] (1)
J (7k)

where the first term bears the potential information of
the respective quantum dot location and the second one
indicates the kinetic signature between two neighboring
lattice sites. The on-site potential of the respective sites
are marked as € 4 and ep and the nearest neighbor overlap
parameter can be assigned as t. Without any loss of
generality, numerically the site potentials are taken as
uniform (equal to zero) and the nearest neighbor hopping
is also same (equal to unity) everywhere. By virtue of real
space renormalization group (RSRG) technique one can
easily eliminate the amplitude of an appropriate subset
of nodes to caste the original system into an effective
two-strand ladder system with renormalized parameters
as cited in the Fig. 1(b). The decimation method can be
easily implemented with the help of difference equation,
the discretized form of the Schrodinger’s equation, viz.,

(B =)y =Y it (2)
!

This decimation provides the renormalized uniform two-
leg ladder network with different parameters. After this
renormalization procedure, all the atomic sites carry
identical on-site energy € and the intra-arm hopping 7.
The inter-arm vertical connectivity is marked as v as
cited in the Fig. 1(b). This decimation produces a next
nearest neighbor hopping, denoted by &, which generates
overlap between the wave functions of the two diagonally



opposite atomic sites. The detailed forms of those pa-
rameters are given by,
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where €; = e +t2/(E —¢),t1 =t2/(E—¢) and 6 = [(E —
€1)? — t3]. With the above renormalized parameters and
by virtue of RSRG approach, one can trivially compute
the electronic density of states (DOS) p(E) for this quasi-
one dimensional Lieb strip as a function of the energy of
the incoming projectile by using the standard expression,

viz.,

8) =~ (55 ) ImiTeG(E) (@)

Here G(E) = [E— H+iA]~! is the usual green’s function
and A is the imaginary part of the energy, reasonably
small enough, added for the numerical evaluation of DOS.
N denotes the total number of atomic sites present in the
system and “Tr’ is the trace of the green’s function.

A. Density of eigenstates and transport

In Fig. 2(a) the variation of DOS is presented as a func-
tion of energy where we see the presence of the absolutely
continuous Bloch bands populated by extended eigen-
functions. We have checked that for any energy belong-
ing to the resonant band, the overlap parameter keeps
on non-decaying behavior and that is a signature of the
state being delocalized. At the band center (E = 0), the
central spike confirms the existence of momentum inde-
pendent flat band state which is an inherent signature of
the Lieb geometry. The spectral divergence correspond-
ing to the zero energy mode comes from the vanishing
group velocity of the wave packet as p o [ vg_ldk. With
the aid of difference equation one can obtain the distribu-
tion of amplitude for such self-localized eigenstate. The
non-vanishing amplitudes are pinned at the intermediate
sites as shown in Fig. 2(b) and one such characteristic
trapping island is isolated from the other by a distinct
physical boundary formed by the sites with zero ampli-
tude as a result of destructive quantum interference. The
dispersionless nature of the central band is responsible for
anomalous behavior in the transport and optical prop-
erties. The construction of this state definitely resem-
bles the essence of a molecular state which is spatially
quenched within a finite size cluster of atomic sites. The
analogous wave function does not present any evolution
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FIG. 2: (Color online) (a) Plot of density of eigenstates as
a function of energy E for quasi-one dimensional Lieb-ladder
geometry, (b) denotes the amplitude distribution profile for
E =0 and (c)variation of transmittance with energy.

dynamics beyond the trapping cell. Extremely low mo-
bility of the wave train is the key factor for the disper-
sionless signature of the state. But here we should point
out that since the compact localized state, thus formed,
lies inside the continuum zone of extended states, here
the hopping integral never dies out for £ = 0. Hence,
one should observe non-zero transport for that particu-
lar mode. The localization character can be prominently
viewed in presence of any perturbation when the spec-
trum shows central gap around E = 0, if any.

To corroborate the above findings related to the spec-
tral landscape we now present a precise discussion to
elucidate the electronic transmission characteristics for
this quasi-one dimensional system. For this analysis we
have considered a finite-sized underlying network. Now
the ladder-like system needs to be clamped in between
two pairs of semi-infinite periodic leads with the corre-
sponding parameters. One can then adopt the standard
green’s function approach [45, 46] and compute the same
for the composite system (lead-system-lead). The trans-
mission probability [47]-[51] can be written in terms of
this green’s function including the self-energy term as,

7ij = Tr[0GiT; G ()



Here the terms I'; and I'; respectively denote the con-
nection of the network with the i-th and j-th leads and
G’s are the retarded and advanced Green’s functions of
the system. The result is demonstrated in the Fig. 2(c).
It describes a wide resonant window for which we have
obtained ballistic transport. The existence of Bloch-
like eigenfunctions for this wide range of Fermi energy
is solely responsible for this high transmission behavior.
The conducting nature of the spectral density is basically
reflected in this transmission plot.

B. Band dispersion

To study the energy-momentum relation of this peri-
odic system we will cast the original Hamiltonian in terms
of wave vector k by virtue of the following expression,

H=Y"u[Hk)r (6)
k

Using this relation, the Hamiltonian matrix in k-space
reads as,

€ t 0 t(1 + e~ ika) 0
t € t 0 0
H(k) = 0 t € 0 t(1 4 e tka)
t(1 +e*) 0 0 € 0
0 0 t(1+ e'a) 0 €
(7)

The straightforward diagonalization of the above matrix
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FIG. 3: (Color online) Band dispersion diagram of a quasi-
one dimensional Lieb-ladder network showing the central flat
band and other two pairs of dispersive bands.

reveals the entire band picture of the Lieb-ladder network
as presented in Fig. 3. It clearly shows one momentum
insensitive non-dispersive band at £ = 0 with absolutely
zero curvature and two pairs of Bloch bands carrying
dispersive signature at £ = ++/2(1 + coska) and E =
+4/2(2 + coska). The central flat band state confirms
the existence of robust type of molecular state.
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FIG. 4: (Color online) A quasi-one dimensional array of Lieb-
ladder geometry with next nearest neighbor (NNN) hopping

term incorporated by a diamond loop threaded by uniform
magnetic flux .

III. DIAMOND-LIEB NETWORK

In the previous description presented so far, the off-
diagonal element, i.e., the hopping parameter is taken to
be restricted within the nearest neighboring atomic sites
only within the tight-binding formulation. We now con-
sider the same quasi-one dimensional Lieb-ladder geom-
etry with next nearest neighbor (NNN) hopping integral
taken into consideration between the A types of sites as
cited in the Fig. 4. With the inclusion of longer range
connectivity the entire periodic geometry turns out to
be quasi-one dimensional Lieb ladder with a rhombic ge-
ometry embedded inside the skeleton. This additional
overlap parameter introduces another closed loop within
each unit cell where the impact of application of magnetic
perturbation may be examined in details.
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FIG. 5: (Color online) (a) Presentation of allowed eigenspec-
trum as a function of magnetic flux for diamond-Lieb net-
work and (b) amplitude profile corresponding to the energy
E =¢€—2tcos©O.
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Before presenting the numerical results and discussion
it is necessary to mention that uniform magnetic pertur-
bation may also be applied within each rhombic plaque-
tte. This can be feasible by an appropriate choice of the
gauge. This can introduce additional externally tunable
parameter which may lead to interesting band engineer-
ing. This flux tunable localization of excitation will be
discussed in the subsequent subsection.



A. Allowed eigenspectrum as a function of flux

Now we analyze the impact of uniform magnetic per-
turbation on the sustainability of the self-localized states.
The magnetic flux is applied inside each embedded rhom-
bic plaquette. As a result of this application of magnetic
flux, the time reversal symmetry is broken (at least lo-
cally) along the arm of the rhombic plaquette. This is
considered by introducing a Peierls’ phase factor associ-
ated with the hopping integral, viz., t — te’®, where,
O = 279/49y and &y = hc/e is termed as funda-
mental flux quantum. The resultant nature of quan-
tum interference happened due to multiple quantum dots
is the ultimate determining factor for the sustainability
of the self-localized modes after applying the perturba-
tion. Here we have evaluated the allowed eigenspectrum
(Fig. 5(a)) with respect to the applied flux for this flux
included quasi-one dimensional diamond-Lieb geometry.
The spectrum is inevitably flux periodic. Multiple band
crossings, formation of several minibands and thus merg-
ing of each other are seen in this quasi-continuous pat-
tern.

Here we should give emphasis on a pertinent issue.
Fig. 5(b) shows a consistent demonstration of ampli-
tude profile (satisfying the difference equation) for en-
ergy E = € — 2tcos®, € being the uniform potential
energy everywhere. One non-vanishing cluster is again
isolated from the other by a physical barrier formed by
the sites with zero amplitude as a direct consequence of
phase cancellation at those nodes. This immediately tells
us that the incoming electron coming with this particu-
lar value of energy will be localized inside the trapping
island. But now the energy eigenvalue is sensible to the
applied flux which is an external agency. The central mo-
tivation behind the application of this external parameter
is that if possible, we may invite a comprehensive tun-
ability of such bound states solely by manipulating the
applied flux. We do not need to disturb any internal pa-
rameter of the system, instead one can, in principle, con-
trol the band engineering externally by a suitable choice
of flux. The external perturbation can be tuned contin-
uwously satisfying the eigenvalue equation to control the
position of the caged state.

B. Density of states profile

For the completeness of the analysis, we have com-
puted the variation of density of states profile as a func-
tion of energy of the incoming projectile for this quasi-one
dimensional lattice with longer wavelength fluctuation
using the standard green’s function technique both in
the absence and presence of external perturbation. The
variation with respect to the energy of the incoming pro-
jectile for different values of magnetic flux is shown in the
Fig. 6. The applied flux values are respectively ® = 0,
O = Py/4 and & = Py/2. All the variations are plot-
ted for system size N = 753. As it is evident from the

plots that there are different absolutely continuous sub-
bands populated by extended kind of eigenfunctions. The
existence of such dispersive modes is expected because
of the inherent translational periodicity of the geometry.
We have examined that for any mode belonging to the
continuum zones the hopping integral shows oscillatory
behavior which confirms the signature of the resonant
modes. It is needless to say that the intricate nature of
the DOS is highly sensitive on the external perturbation.
Also the density of states plots as well as the allowed
eigenspectrum support the existence of flux dependent
caged state as discussed in the previous section.

C. Band engineering

In presence of uniform magnetic flux one can easily ex-
press the Hamiltonian in the k-space language. The di-
agonalization of this matrix will give the band dispersion
as a function of flux. In this quasi-one dimensional dia-
mond Lieb geometry we have got that, there are two flux
independent dispersive bands E = +4/2(1 4 cos ka) and
three other flux sensible resonant bands. Therefore we
should highlight a very pertinent issue here. For the last
three flux dependent bands, one can easily control the
group velocity of the wave train as well as the effective
mass (equivalently the mobility) of the particle by tuning
the external source of perturbation. This non-trivial ma-
nipulation of the internal parameters of the system with
the aid of flux makes this aspect of band engineering more
challenging as well as interesting indeed.

Before going to detailed discussion, it is important to
be noted that, when an electron moves around a closed
loop that traps a magnetic flux, the wave function picks
up a phase related to the magnetic vector potential, viz.,
P = woeif A-dr - The magnetic flux here plays an equiva-
lent role as the wave vector [55]. One can thus think of a
k—®/®, diagram which is equivalent to a typical k, — k,
diagram for electrons traveling in a two-dimensional pe-
riodic lattice. The “Brillouin zone” equivalents are ex-
pected to show up, across which variations of the group
velocity will take place. This is precisely shown in the
Fig. 7. In this plot, every contour presented corresponds
to a definite value (positive or negative) of the group
velocity of the wave packet. The red lines are the con-
tours with zero mobility. Hence they are the equivalents
of the boundaries of the Brillouin zone across which the
group velocity reverts its sign if one moves parallel to
the ®-axis at any fixed value of the wave vector k, or vice
versa. This essentially signifies that, we can, in principle,
make an electron accelerate (or retard) without manipu-
lating its energy by changing the applied magnetic flux
only. The vanishing group velocity contours (marked by
red) indicate that the associated wavefunctions are self-
localized around finite size islands of atomic sites, making
the eigenmode a non-dispersive one. As the curvature of
the band is related to the mobility of the wave packet one
can conclude from the Fig. 7 that tuning of the curva-
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FIG. 6: (Color online) Variation of density of states p(F) as a function of energy E of the excitation. The external magnetic

flux values are respectively (a) ® =0, (b) ® = $¢/4 and (c) ¢ =
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FIG. 7: (Color online) k — ® diagram showing different group
velocity contours for electron moving in diamond embedded
Lieb geometry. The red lines mark the zero group velocity
of the wave packet. These red contours act as border lines
showing a continuous change of v, with respect to flux.

ture of the dispersive band is also possible with the help
of external perturbation.

IV. LIEB LADDER WITH QUASIPERIODIC
NEXT NEAREST NEIGHBOR INTERACTION

In the previous case the amplitude for £ = 0 will be
pinned at the top and down vertices of the diamond em-
bedded. From this standpoint we now decorate each arm
of the rhombic plaquette by a finite generation quasiperi-
oidic fibonacci kind of geometry with two different hop-
pings t, and t, respectively. The generation sequence for
this quasiperiodic structure follows the standard inflation
rule X — XY and Y — X. Based on this prescription
regarding the anisotropy in off-diagonal term, there ex-
ists three different types of atomic sites o (flanked by
two X-bonds),  (in between X — Y pair) and v (in be-
tween Y — X pair). Here we should mention that we
consider the generations with X type of bond at their
extremities, i.e., Gap41, (n being integer). This is only
for convenience and does not alter the result Physics-wise

Do /2.

as we go for thermodynamic limit.
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FIG. 8: (Color online) Distribution of self-localized modes
showing a typical three-subband pattern for large enough gen-
eration.

Hence if we start with a odd generation Fibonacci seg-
ment that decorates each arm of the diamond, then one
can decimate the chain n-times by employing the RSRG
method to get back the original diamond structure with
renormalized parameters. The recursive flows of the pa-
rameters are governed by the following equations, viz.,

caln 1) = caln) + FI2E ~ (eslm) + o)
BB | )
plet ) = @l =50 T E-am)
o (E—am)Em B0
bl = a3 - ()
ccln+1) = coln) + ZEVRE~ (es(n) + € ()]

to(n+1) = =W
1) = Lz )

where A(n) = [(E — es(n))(E — e4(n))] — £ (n)
Obviously after decimation if we want to explore the
same compact localized state (at £ = ¢) in this renor-
malized lattice, then due to the iterative procedure, on-
site potential is now a complicated function of energy.



And if we now extract roots from the eigenvalue equa-
tion (EF—e¢,) = 0, all the roots will produce a multifractal
distribution of the set of compact localized states. Obvi-
ously as we increase the generation of the fibonacci struc-
ture, in the thermodynamic limit, all the self-localized
modes exhibit a global three subband structure. The pat-
tern is already prominent in Fig. 8. Each subband can be
fine scanned in the energy scale to bring out the inherent
self-similarity and multifractality, the hallmark of the Fi-
bonacci quasicrystals [56]. The self-similarity of the spec-
trum have been checked by going over to higher enough
generations, though we refrain from showing these data
to save space here.

V. LIEB LADDER WITH FRACTAL TYPE OF
LONG RANGE CONNECTION

FIG. 9: (Color online) An infinite array of Lieb strip with
long range connectivity decorated by fractal object.

We start this demonstration from the Fig. 9 where a fi-
nite generation of self-similar Vicsek geometry [57, 58] is
grafted inside the basic Lieb motif. The longer range con-
nection is here established through the aperiodic object.
Also a uniform magnetic flux ® may be applied in each
small plaquette of the fractal structure. It should be ap-
preciated that while a Lieb geometry in its basic skeleton
is known to support a robust type of central self-localized
state, the inclusion of fractal structure of a finite genera-
tion in each unit cell disturbs the translational ordering
locally (though it is maintained on a global scale in the
horizontal direction) in the transverse direction. This
non-trivial competitive scenario makes the conventional
methods of obtaining the self-localized states impossi-
ble to be implemented, especially in the thermodynamic
limit. We take the help of RSRG technique to bypass this
issue and present an analytical formalism from which one
can exactly determine the localized modes as a function
of external flux. Starting from a finite generation of scale
invariant fractal network, after suitable steps of decima-
tion [57, 58] one can produce a Lieb ladder geometry
with a diamond plaquette embedded into it (as discussed
in the previous discussion). The renormalized potential
of the top vertex of the diamond is now a complicated
function of energy and flux. Therefore straightforward
solving of the equation [E — €4 (E, ®)] = 0 gives us a in-
teresting distribution of compact localized states in the
FE — ® space.

This non-trivial distribution of eigenvalues as a func-
tion of flux may be considered an equivalent dispersion
relation since for an electron moving round a closed path,
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FIG. 10: (Color online) Distribution of self-localized states
with applied flux.

the magnetic flux behaves the similar physical role as
that of the wave vector [55]. The distribution of eigen-
modes compose an interesting miniband-like structure as
a function of external perturbation. The competition be-
tween the global periodicity and the local fractal entity
has a crucial impact on this spectrum. We can continu-
ously engineer the magnetic flux to engineer the impris-
onment of wave train with high selectivity. Moreover,
there are a number of inter-twined band overlap, and a
quite densely packed distribution of allowed modes, form-
ing quasi-continuous £ — ® band structure. Close obser-
vation of this eigenspectrum reveals the formation of in-
teresting variants of the Hofstadter butterflies [59]. The
spectral landscape is a quantum fractal, and encoding
the gaps with appropriate topological quantum numbers
remains an open problem for such deterministic fractals.

Before ending this section we should put emphasis on
a very pertinent point. An aperiodic fractal object is
inserted in the unit cell of the periodic geometry. The
self-similar pattern of the fractal entity will have the in-
fluence on the spectrum. All such self-localized modes
are the consequences of destructive quantum interfer-
ence and the geometrical configuration of the underly-
ing system. For this class of energy eigenvalue, the spa-
tial span of the cluster of atomic sites containing non-
vanishing amplitudes increases with the generation of the
fractal geometry incorporated. Hence with an appropri-
ate choice of the RSRG index n, the onset of localization
and hence the spread of trapping island can be staggered,
in space. This tunable delay of the extent of localization
has already been studied for a wide varieties of fractal
geometries [57, 58, 60, 61]. This comprehensive discus-
sion regarding the manipulation of the geometry-induced
localization makes the phenomenon of Aharonov-Bohm
caging more interesting as well as challenging from the
experimental point of view.



FIG. 11: (Color online) (a) Schematic diagram of elementary
diamond-Lieb interferometer and (b) demonstrates the deco-
ration of basic unit.

VI. DIAMOND-LIEB INTERFEROMETER

In this section we investigate the spectral character-
istics of a quantum network in which each arm of the
Lieb-ladder geometry is ‘decorated’ by diamond-shaped
Aharonov-Bohm (AB) interferometer [37]. Each elemen-
tary interferometer is pierced by a invariable magnetic
perturbation applied perpendicular to the plane of the in-
terferometer, and traps a flux ® (in unit of ®y = hc/e).
This type of diamond based interferometers have been
formerly studied as the minimal prototypes of bipartite
structures having nodes with different coordination num-
bers, and representing a family of itinerant geometri-
cally frustrated electronic systems [52]-[54]. We refer to
Fig. 11(a). A standard diamond-Lieb AB interferome-
ter is shown pictorially there whereas Fig. 11(b) demon-
strates that each diamond loop can take a shape of a
quantum ring consisting of multiple lattice points. Each
arm of the diamond may be decorated by N number of
atomic scatterers between the vertices, such that the to-
tal number of single level quantum dots contained in a
single interferometer is 4(N + 1). An uniform magnetic
flux ® may be allocated within each loop, and the elec-
tron hopping is restricted to take the non-vanishing value
for the nearest neighboring nodes only.

To study the systematic spectral analysis we take the
help of RSRG approach. Each elementary loop of the
interferometer is properly renormalized to transform it
into a simple diamond having just four sites. Due to
this decimation process we will get three types of sites
A, B and C (respectively marked by black, red and blue
colored atomic sites in the Fig. 11(a)) with corresponding
parameters given by

. Un-1(z)
— N1
€A €+ 6 Un ()
_ Un-1(z)
— oy a1\
€EB €+ UN(x)
. Un-1(z)
= 2t———=
€c €+ Un (@)
trpy = teF VTV U (2) (9)

Here, Uy (z) is the N-th order Chebyshev polynomial of

second kind, and x = (E —¢€)/2t. The ‘effective’ diamond
loops are then renormalized in a proper way (C types of
sites are being decimated out) such that we will get back
the Lieb ladder with renormalized on-site potential and
overlap integral respectively given by

- - dtplp

€4 = 6B+(E—Gc)

- - 6trip

€g = 6A+(E*€C)

~ 2tptp

t = ———— 10
(E—ec) ( )

We will now exploit all the above equations to extract the
detailed information about the electronic spectrum and
the nature of the eigenstates provided by such a model
interferometer.

A. Spectral landscape and inverse participation
ratio

To analyze we first put N = 0 here so that the quan-
tum ring of elementary interferometer takes the form of a
diamond (Fig. 11(a)). The density of states with energy
for different values of magnetic flux enclosed within each
elementary interferometer is shown in the upper panel of
the Fig. 12. From the plot, we see that in absence of
magnetic flux the density of states reflects the periodic
nature of the geometry. It consists of absolutely contin-
uous zones populated by resonant eigenstates with sharp
spikes at ¥ = 0 and £2. But here it is to be noted
that the localized character of those modes cannot be
distinctly revealed because of its position within the con-
tinuum of extended modes. But when we apply quarter
flux quantum the central localized mode becomes iso-
lated and prominent. It is also seen from the plots that
with the gradual increment of flux value the window of
resonant modes in the DOS profile shrinks along the en-
ergy scale and ultimately leads to extreme localization of
eigenstates for half flux quantum. Actually, the effec-
tive overlap parameter between the two axial extremities
of the interferometer vanishes for this special flux value
and this makes the complete absence of resonant modes
to be possible. This is the basic physical background of
extreme localization of excitation. We should appreciate
that this typical flux induced localization of wave train
inside a charateristic trapping island is a subset of the
usual Aharonov-Bohm caging [27]

For the sake of completeness of the discussion related
to the spectral property of such quantum interferometer
model, we have also calculated the inverse participation
ratio (IPR) to certify the above density of states plots.
To formulate the localization of a normalized eigenstate
the inverse participation ratio is defined as

L
1= Jl! (11)
i=1
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FIG. 12: (Color online) (Upper panel) Variation of density of states p(E) as a function of energy E of the excitation and
(lower panel) indicates the variation of inversion participation ratio (IPR) wth energy. The external magnetic flux values are

respectively (a) ® =0, (b) ® = ®g/4 and (c¢) ® = Dy/2.

It is known that for an extended mode IPR goes as 1/L,
but it approaches to unity for a localized state. The lower
panel of Fig. 12 describes the variation of IPR with the
energy of the injected projectile for different flux values.
It is evident from the plots that the IPR supports the
spectral profile cited in the upper panel of Fig. 12. As
we see that with nominal strength of perturbation the
central gap opens up around E = 0, clearly indicating
the central localized mode. The shrinking of resonant
window with the gradual increment of flux is also ap-
parent from the IPR plots. It is also interesting to ap-
preciate that for half flux quantum IPR plot (Fig. 12f)
also demonstrates the AB-caging leading to the extreme
localization of eigenstates.

B. Flux dependent eigenspectrum

/0,

FIG. 13: (Color online) Flux dependent allowed eigenspec-
trum for the diamond-Lieb AB-interferometer model. The
pattern is flux periodic.

Fig. 13 represents the essential graphical variation of
allowed eigenspectrum for a diamond-Lieb AB interfer-

ometer with N = 0 with respect to the external magnetic
flux. With the increment of N, the number of scatterers
in each elementary interferometer, the spectrum will be
densely packed with several band crossings. The present
variation is seen to be flux periodic of periodicity equal
to one flux quantum. It is needless to say that the eigen-
spectrum is inevitably sensitive to the numerical values
of the parameters of the Hamiltonian. However, the pe-
riodicity retains for such spectrum after every single flux
quantum change of the external perturbation.

It is observed that there is a tendency of clustering of
the allowed eigenvalues towards the edges of the eigen-
spectrum as is clear from the above-mentioned diagram.
A number of band crossings are noticed and the spec-
trum cites kind of a zero band gap semiconductor like
behavior, mimicking Dirac point as observed in case of
graphene, at ®/®y = =i, i being an integer including
zero. As we increase the complexity in each interferom-
eter by increasing N, the central gap gets consequently
filled up by more eigenstates, and the E — ® contours get
more flattened up forming a quasi-continuous spectrum,
exotic in nature. The central eigenstate corresponding to
eigenvalue E = 0 is a robust kind of mode irrespective of
the application of perturbation, i.e., the existence of that
state is insensitive to the value of the external flux. More-
over, when the magnetic flux is set as ® = (i+1/2)®g, we
observe a spectral collapse. In that case one can easily
identify the localization character of the central state.

Most importantly, it is evident from the spectral land-
scape that the it consists of a set of discrete points (eigen-
values) for half flux quantum. This is the canonical case
of extreme localization. For such special flux value the
vanishing overlap parameter makes the geometry equiv-
alent to discrete set of lattice points with zero connectiv-
ity between them. This makes the excitation to be caged



within the trapping island. Further it is to be noted that
this AB-caging [27] may happen for any value of N, the
number of eigenvalues in the discrete set depends on the
choice of N.

VII. CLOSING REMARKS

A methodical analysis of the flux induced tunable
caging of excitation in a quasi-one dimensional Lieb net-
work with long range connectivity is reported in this
manuscript within the tight-binding framework. With
the inclusion of second neighbor overlap integral in a dec-
orated way, external source of perturbation can act as an
important role for the selective caging of wave packet.
Flux dependent band engineering and hence the com-
prehensive control over the group velocity of the wave
train as well as the band curvature are studied in de-
tails. Decoration of the next nearest neighbor hopping
in certain quasiperiodic fashion or by some determinis-
tic fractal object is also demonstrated analytically. Real
space renormalization group approach provides us a suit-
able platform to obtain an exact prescription for the de-
termination of self-localized modes induced by destruc-
tive quantum interference effect. As we have seen that
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in the quasiperiodic Fibonacci variation the distribution
of eigenstates shows a standard three-subband pattern
while in case of fractal entity countably infinite number
of localized modes cite an interesting quasi-continuous
distribution against flux. We have also critically studied
the spectral properties of a diamond Lieb interferome-
ter. The energy spectrum shows an exotic feature com-
prising extended, staggered and edge-localized eigenfunc-
tions. The number of such states depend on the number
of quantum dots present in each arm of the elementary
diamond interferometer, and can populate the spectral
landscape as densely as desired by the experimentalists.
A constant magnetic perturbation can be utilized to con-
trol the positions of all such states. Moreover at special
flux value the spectrum describes the Aharonov-Bohm
caging of eigenstates leading to an interesting spectral
collapse.
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