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Edelstein and spin Hall effect response functions for a two-dimensional (2D) system of pseudospin-
1 particles is investigated. These two response functions denoted by σSH and σEE have been
analyzed in a pseudospin-1 particle system in the presence of the Rashba-type spin-orbit interaction
using the Kubo-Streda technique and vertex corrections with non-magnetic impurities. Then, for a
given range of the Rashba coupling, response functions of the spin Hall effect (SHE) and Edelstein
effect (EE) have been estimated at various energy gaps and Fermi energies. Results indicate that
in this type of the two-dimensional materials, SHE and EE are essentially induced by the vertex
corrections and without considering these corrections the amount of these effects are really negligible.
It has also been realized that SHE and EE conductivities can be modulated by the Rashba coupling
strength at low and intermediate level of this spin-orbit type interaction.

I. INTRODUCTION

Pseudospin-1 particle compounds have recently at-
tracted a lot of interest in condensed matter physics.
Low-energy gapless pseudospin-1 fermions have an en-
ergy spectrum that is linear in momentum, except for a
flat band at zero energy, just like electrons in graphene.
One of the most prevalent two-dimensional realizations
of pseudospin-1 fermions (2D) is the T3 lattice. Atoms
at the centers and vertices of the hexagonal lattice could
be used to create a simple tight-binding model for this
type of materials. Due to the placement of three sites per
unit cell, the electron states in this model are given by
three-component fermions with three bands of the energy
spectrum. Such a system is shown schematically in Fig.
1.

The spin Hall effect (SHE) has received much attention
because of its prospective applications in spintronic tech-
nologies. Hirsch [1] explored the spin Hall effect (SHE),
which Dyakonov and Perel [2, 3] studied in 1971. The
spin Hall effect (SHE) and the inverse spin Hall effect
(ISHE) [4], a group of transport phenomena [5, 6], greatly
aided the development of experimental spintronic devices
[1, 3, 7]. One may list examples of its use in memory,
logic, and sensing devices. Kane and Mele discovered the
quantum spin Hall effect in graphene in 2005 [8]. The
low-energy electronic structure of a single layer graphene
with spin-orbit interactions was investigated. They found
that graphene changes from its ideal two-dimensional
semimetallic state at low temperatures to a quantum spin
Hall insulator due to the symmetry-enabled spin-orbit
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FIG. 1. A schematic representation of the T3 lattice for
pseudospin-1 fermion sample in the xy plane. Translation
vectors are V1 = (3/2;−

√
3/2)a and V2 = (3/2;

√
3/2)a,

with lattice constant a. Sites A and B that showed by solid
circles and squares, making a hexagonal lattice, respectively.
whereas, solid circles mark the hub sites C making a triangu-
lar lattice.

potential.

After initial findings about these phenomena in semi-
conductors and metals, it was known that the spin Hall
effect might offer a new strategy for the interconversion
of spin and charge indications [5, 6, 9, 10]. SHE, which
results from strong spin-orbit coupling (SOC), may pave
the way for generating pure spin current from charge cur-
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FIG. 2. Schematic representation of the SHE in a two-
dimensional material. Both the charge and spin Hall currents
are driven by an external electrical field.

rent. In the spin Hall regime, a spin current is generated
perpendicular to an applied electric field. Additionally,
unlike SHE within the inverse SHE regime, spin currents
can be converted into electric signals [11, 12].

Meanwhile, spin Seebeck effect [13–15] demonstrates
that the temperature gradient can generate spin current
which confirms that the spin-orbit interactions are also
crucial in the field of ”spin caloritronics.”

The strength of this effect is given by spin Hall angle
γ that measures the material’s effectiveness according to
relation γ = J⊥/J‖, which is defined as the ratio be-
tween steady-state longitudinal charge-current, J‖ and z-
polarized transverse spin currents given by J⊥ as shown
in Fig. 2. The material’s SHE efficiency is determined by
the spin Hall angle. The charge efficiency in the present
spin transition can be determined using materials with a
large spin Hall angle (SHA).

The anomalous effect is another well-known phe-
nomenon in this field. The nonmagnetic spin Hall effect
[16] and the well-known anomalous Hall effect (AHE) [16]
in ferromagnetic metals are closely linked. The magnetic
field Hz and magnetization Mz both affect the Hall resis-
tance ρH , through the relation ρH = R0Hz + RsMz[16].
Where, the normal and anomalous Hall resistances areR0

and Rs, respectively [17, 18]. The anomalous Hall effect
has become one of the most urgent issues in solid-state
physics because it is challenging to forecast the carrier
density in ferromagnets [19–22].

The Edelstein effect (EE) [23] and the inverse Edel-
stein effects (IEE) [24, 25] are two additional effects that
have recently attracted a lot of interest. In the regime
of EE a continuous non-equilibrium spin polarization Sy
is produced by a constant current Jx driven by an elec-
tric field Ex. It was also demonstrated that the EE and
the SHE are connected [23]. The inverse Edelstein effect
is the process underlying the spin-to-charge transforma-
tion. The Edelstein effect is a promising phenomena for
spintronics applications since it can produce spin polar-
ization in nonmagnetic materials just electrically. There-
fore, it is highly desirable to find materials that are highly
efficient at ”converting” the electric current into spin po-
larization. Meanwhile, it should be noted that the spin
and charge quantum numbers can also be converted to
pseudospin index in graphene-like materials [26, 27].

Edelstein effect of enormous topological-insulator-
graphene heterostructures has been investigated by
Rodriguez-Vega et al. [28], where they show that
the nonequilibrium uniform spin-density accumulation
caused by a charge current in magnetic TI-graphene het-
erostructures can be 10 − 100 times larger than in TIs
alone, resulting in a massive Edelstein effect.

Valley Edelstein effect (VEE) has been discovered
in the monolayer transition-metal dichalcogenides by
Taguchi et al [29]. They found that in gated monolayer
transition-metal dichalcogenides (MTMDs), Berry curva-
tures resulting from coexisting Rashba and Ising SOCs
combined with traditional Edelstein effects lead to valley-
contrasting spin polarization parallel to the applied elec-
tric field.

The ability to introduce SOC with multiple symme-
tries [30, 31] and varying spatial extent is a fascinating
property of two-dimensional materials. Recent theoreti-
cal investigations have clarified the significant role that
the SOC symmetry plays in the resonant scattering do-
main [31, 32].

There is a microscopic approach for the spin Hall effect
in amorphous materials using vertex corrections. This
approach has been employed in amorphous graphene
[33] where the nonperturbative quantum diagrammatic
method which has been applied in this approach can also
be used to obtain the response function in materials re-
sembling graphene [33].

For non-magnetic impurities, the vertex coefficient
vanishes when the Fermi level is in the upper band (both
bands are occupied). This problem leads to the disap-
pearance of the spin-Hall effect in the thermodynamic
limit for any degree of disorder [34]. It has also been
shown that the bare vertex is a good approximation and
that the bare bubble diagram is adequate for calculating
the spin-Hall conductivity in the presence of magnetic
impurities [35].

The SHA rises linearly with the SOC impurity den-
sity in disordered samples where other variables restrict
charge mobility [36]. The spin Hall current in graphene
identically vanishes when the spin-orbit interaction (SOI)
is absent even in the presence of the magnetic impurities
[37]. Therefore, it can be inferred that the SOI is of
crucial importance for SHE and it cannot be generated
merely by the spin-flip scatterings [37]. It has been shown
that the spin Hall conductivity (SHC) are generally finite
in the presence of SOI and magnetic impurities under a
zero external magnetic field [37].

When the magnetic impurities are combined with
the SOI, the magnetic scattering centers act as spin-
dependent barriers, causing a charge imbalance at the
boundaries. Changing the chemical potential close to
the gap should also reveal charge and spin Hall effects
in graphene. Several investigations have been performed
on the charge and spin Hall phenomena in magnetically
impure graphene. Using the Kubo formula, analytical
formulations of the charge and spin Hall conductivities
has been developed theoretically. [37].
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The SHE and EE can be described by the Edelstein
conductivity (EC) and the SHC that are defined through
the following relations Jzy = σSHExy Ex, sy = σEExy Ex re-
spectively. In this study spin Hall and Edelstein conduc-
tivities for pseudospin-1 particles with vertex corrections
have been investigated. Using the Kubo-Streda method
and vertex corrections in the presence of non-magnetic
impurities, these two response functions, σSHE and σEE ,
have been evaluated in a pseudospin-1 particle system
with Rashba-type spin-orbit interaction. Numerical cal-
culations provide the normalized operators within a self-
consistent approach. Results show that the bare Kubo
response function of both EE and SHE are absolutely
small and the main contribution comes the vertex cor-
rections. Therefore, in these type of materials we cannot
expect high SHA. Meanwhile, EC and SHC could reveal
the different physics behind these novel materials.

II. METHODOLOGY

Within a low energy approximation, effective Hamil-
tonian of massive Dirac-like pseudospin-1 particles in
the presence of the Rashba spin-orbit interaction can be
stated as follows:

H = ~vF (Sxkx ⊗ Iσ + Syky ⊗ Iσ)

+ λR(kxIδ ⊗ σy − kyIδ ⊗ σx) +mSz ⊗ Iσ (1)

where vF is the pseudospin-1 particle’s Fermi velocity, λR
is the Rashba coefficient and S = (Sx, Sy, Sz) is a vector
of matrices with pseudospin components [38]:

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

 0 −i 0
i 0 −i
0 i 0

 ,

Sz =

 1 0 0
0 0 0
0 0 −1

 .

The three matrices represent all pseudospin-1 particles
that fulfill the angular momentum commutation relations
[Sl, Sm] = iεlmnSn with three eigenvalues, s = ±1, 0,
where εlmn is the Levi-Civita symbol. However, they
do not form a Clifford algebra, as opposed to Pauli
matrices; that is, {Sn, Sm} 6= 2δn,mI3×3. These three
dimensional matrices represent the contribution of three
A, B and C sublattices.

After the Fourier transformation

H =
∑
k

Ψ†kH(k)Ψk, (2)

where Ψ†k = (cA,k,↑, cB,k,↑, cC,k,↑, cA,k,↓, cB,k,↓, cC,k,↓)

and c†ikσ denotes the creation operator of electron on the

i sublattice with spin of σ and wave-number of k.

Then in presence of Rashba coupling, the Hamilto-
nian is given by

H =
~vF√

2

 0 k− 0
k+ 0 k−
0 k+ 0

⊗ Iσ
+ λR

 kx 0 0
0 kx 0
0 0 kx

⊗ σy − λR
 ky 0 0

0 ky 0
0 0 ky

⊗ σx
+m

 1 0 0
0 0 0
0 0 −1

⊗ Iσ (3)

The energy spectrum can be obtained as

E1,2(k) = ±|k|λR

E3,4(k) = ±
√
m′(k) + k2λ2

R − 2
√
k2λ2

Rm
′(k)

E5,6(k) = ±
√
m′(k) + k2λ2

R + 2
√
k2λ2

Rm
′(k), (4)

where m′(k) = m2 + k2~2v2
F .

Therefore, electrons in the T3 lattice as seen in Fig. 1,
can behave as massless Dirac fermions with pseudospin
S = 1, rather than S = 1/2 for those trapped in the
hexagonal lattice. Each unit cell in this T3 lattice has
three inequivalent sublattices. Two lattice sites, A and
B, are triply coordinated, while site C connects six of its
closest neighbors.

III. THE KUBO-STREDA APPROACH

The density operators for charge and spin-current can
be defined as follows [39–41]:

J = −eΨ†(x)vΨ(x), (5)

J αβ = −eΨ†(x)
1

2
{sα,vβ}Ψ(x), (6)

where {., .} represents the anticommutator, v represents
the velocity operator, −e represents the electron,s charge,
and sz ≡ s3 represents the diagonal Pauli matrix with
eigenvalues ±1. Using the Kubo-Streda method the con-
ductivity tensor in the presence of SOC [42] is:

σzij =
~

2πΩ
Tr
〈
Ji(G

R−GA)JiGA−Jj(GR−GA)JiG
R
〉
dis
,

(7)
GR(A) denotes the retarded (advanced) Green,s function,
which is defined as follows:

GR(A) =
1

ε−H0 − V ± i0+
, (8)
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Where H stands for the total Hamiltonian, H = H0 +V ,
withH0 for the non-perturbed Hamiltonian, and V repre-
sents the perturbation. Cartesian elements of the charge-
and spin-current density operators’ are denoted by Ji and
Ji respectively.

〈
...
〉
dis

indicates the configurational dis-
order average compared to the conventional version.

〈
O
〉
dis

= lim
N,Ω→∞

( N∏
i=1

∫
Ω

d2xi
Ω

)
O(x1, ...,xN )

∣∣∣∣
N
Ω =n

, (9)

Where i represents impurities, Ω represents the sample
area, and Tr represents the trace over the entire Hilbert
space. The conductivity of SH is equal to

σSHExy =
1

πΩ
Tr[
〈
GRJxG

A
〉
dis
Jy] (10)

and also EE conductivity is given as follows

σEExy =
1

πΩ
Tr[
〈
GRSyG

A
〉
dis
Jx] (11)

For short-range impurities, calculations were made using
the weak-scattering regime. Within the Kubo formal-
ism, the main focus has been devoted on analyzing the
electric dc Edelstein and Hall conductivities in a typi-
cal pseudospin-1 particle system with nonmagnetic dis-
orders.

The linear response Kubo formalism has been used
to explain the fully quantum mechanical response func-
tions by taking the vertex correction into account. The
response functions were obtained at zero temperature,
which may be specified using Green’s time-ordered func-
tions. Because the calculations were performed in the dc
regime, it can be achieved by ω −→ 0 limit at the end of
the calculations. In the meantime, this method has been
necessary for all ac-based calculations in this approach.

III.0.1. Disordered Vertex Correction

A randomly distributed disorder potential has been as-
sumed as follows

V̂ (r) = V0

N∑
i=1

δ(r−Ri), (12)

weak, and short-range Gaussian correlation can be con-
sidered by imposing following relations〈

V̂ (r)
〉
imp

= 0,
〈
V̂ (r1)V̂ (r2)

〉
imp

= nV 2
0 δ(r1 − r2),

(13)
The impurity concentration and scattering potential are
indicated by n = 5× 1010cm−2 and V0 = 0.1eV , respec-
tively. This method has been used extensively to study
the properties of disordered systems. The Kubo relation
for dc electric current conductivity is:

σxν =
~

2πL2
Tr
〈
ĵxĜ

RĵνĜ
A
〉
imp

, (14)

where L2 represents the system area and ĜR(A)(ε) =

(ε ± i0 − Ĥ − V̂ )−1 refers to the retarded (advanced)
Green,s function in the Pauli space. The current operator

is expressed as ĵ = −e(−i/~)[r̂, Ĥ] = −evF ẑ× σ̂. Mean-
while,

〈
...
〉
imp

shows an ensemble average over random

nonmagnetic impurity configurations. The conductivity
then is given as

σxν ≈
~

2πL2
Tr[ĵx

〈
ĜR
〉
ĵν
〈
ĜA
〉
] + Vertex correction

(15)

≡ ~
2πL2

Tr[ĵx
〈
ĜR
〉ˆ̃jν〈ĜA〉],

Where
〈
ĜR(A)

〉
is the averaged Green,s function and ĵν

is the bare charge current density operators. The ladder
diagram correction to the bare charge current density op-
erator can be evaluated using the following relation[43],

ˆ̃jν(εF ) ≡ ĵν + δˆ̃jν(εF ), (16)

where j̃ν is the normalized charge current operator within

the ladder vertex correction and δˆ̃jν is the charge cur-
rent vertex correction. The averaged Green function is
expressed using the Dyson equation and the Born ap-
proximation, as shown in Fig. 3.〈

ĜR(A)
〉

=
〈
(z − Ĥ − V̂ )−1

〉
imp

(17)

= Ĝ
R(A)
0 + Ĝ

R(A)
0 Σ̂R(A)

〈
ĜR(A)

〉
,

with z = ε ± i0 in which ε is small positive. Here, the
solution may then be written as:〈

Ĝ
〉

= ((Ĝ
R(A)
0 )−1 − Σ̂R(A))−1, (18)

in which the self-energy in the Born approximation is

Σ̂R(A) =
〈
V̂
〉
imp

+
〈
V̂ Ĝ

R(A)
0 V̂

〉
imp

, (19)

in which the impurity configuration average can be ob-
tained as〈

V̂ Ĝ
R(A)
0 V̂

〉
imp

= nV 2
0

∫
d2q

(2π)2
Ĝ
R(A)
0 . (20)

The total of all ladder diagrams in Fig. 3 depicts the
vertex function in the Born approximation. The ladder
vertex-normalized charge current, ĵν , is followed by the
integral (Bethe-Salpeter) equation as shown in Fig. 3
which can be expressed as following relations:

ˆ̃jν = ĵν + nV 2
0

∫
d2q

(2π)2

〈
ĜR
〉ˆ̃jν〈ĜA〉. (21)

σSHExy =
1

πΩ
Tr[GRJxGAJy]

+
1

πΩ
Tr[GAJyGR

〈
T RGRJxGAT A

〉
dis

], (22)
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and similarly Bethe-Salpter equation for the EC results
in:

σECxy =
1

πΩ
Tr[GRJxGASy]

+
1

πΩ
Tr[GASyGR

〈
T RGRJxGAT A

〉
dis

]. (23)

FIG. 3. (a) Ladder diagram of the response function suc-
cessive interactions of an electron-hole pair with impurities.
(b) Iterative equation of vertex corrections (Bethe-Salpeter
equation) is presented using the diagrammatic approach.

IV. RESULTS AND DISCUSSION

It can be realized that both the EE and SHE are ob-
tained as a result of the vertex corrections, whereas in the
absence of these corrections, the magnitudes of the EE
and SHE response function are negligible. Accordingly,
vertex correction plays a significant role in the realization
of SHE and EE in pseudospin-1 systems. As a result, the
EE and SHE in pseudospin-1 particle systems cannot be
considered first order effects that could be captured by
a linear response function or band broadening given by
the relaxation time broadening of self-energies within the
Born approximation. Unlike the pseudospin-1 particles,
it has been shown that the spin Hall conductivity of two-
dimensional electron gas systems with isotropic short-
range defects identically vanishes with the vertex correc-
tions [44]. This is due to the fact that the dressed current
operator, which is the renormalized vertex-modified cur-
rent, is corrected in such a way that the spin dependent
part of the electric current operator, that comes from
the Rashba coupling contribution in the current opera-
tor, is suppressed by the vertex corrections [44]. In a two-
dimensional electron gas system, this means that vertex
corrections decrease the correlation between electric cur-
rent and spin current. This makes the SH conductivity go
away. However, As mentioned before, vertex corrections
could effectively generate accountable SH conductivity in
pseudospin-1 systems.

In the absence of the vertex corrections, we have re-
alized that the magnitude of SH and EE conductivities

is negligible, while the vertex corrections enhance these
conductivities significantly. Therefore, it can be inferred
that there is a deep difference between the influence of
the vertex corrections in the electron gas and pseudospin-
1 systems. On the other hand, it has been reported that
the vertex corrections enhance the SHE in graphene, this
can be obtained within the Dirac cone approximation by
taking into account chiral bands [45].

Accordingly, this similar influence of the vertex cor-
rections in graphene and pseudospin-1 systems suggests
that the linear nature of the band energies in both the
graphene and pseudospin-1 samples may provide this
deep difference with the results of the electron gas sys-
tems. It should be noted that the pseudospin-1 systems
with the Rashba spin-orbit coupling show linear disper-
sion as indicated by Eq. (2.5). However, due to the low
Rashba coupling strength these linear bands cannot re-
sult in metallic sample within the Brillouin zone at m 6= 0
as shown in Fig. 4.

FIG. 4. Band structures of pseudospin-1 systems for m = 1.0,
λR = 0.05 and Ef = 0.25.

SHC and EC have been obtained as a function of the
Rashba coupling strength at different gap values as shown
in figures 5 and 6. It can be seen that the SHC and
EC can be manipulated by the Rashba coupling. It has
also been realized that, at high Rashba couplings, the
SHE and EE conductivities decrease rapidly. However, in
the gapless pseudospin-1 systems, vertex corrections are
very effective at low and intermediate Rashba couplings,
where both SHE and EE conductivities are significantly
increased as a result of the vertex corrections. At some
especial Rashba coupling strength, SHE and EE conduc-
tivities abruptly fall in gapped pseudospin-1 systems.

As it can be verified numerically that scattering rate
decreases by increasing the Rashba couplings. It seems
that this simple picture could explain the suppression
of the SHE and EE conductivities at high Rashba cou-
plings. Meanwhile, it should be noted that the effect of
the Rashba coupling should be considered beyond the
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first order linear response regime, since in the case of
the pseudospin-1 systems, only the vertex corrections can
contribute to the SHE and EE response functions, and
as mentioned before, there is no first order contribution.
Vertex correction takes into account the multiple inde-
pendent scatterings in which both retarded and advanced
branches of the electron propagator are interacting with
impurities, as shown in Fig 3. Accordingly, we expect
some different behavior when the single scatterings are
dominant and the response function can be described
within the first-order approximations. Physically, these
multiple, consecutive scatterings that don’t cross each
other create a series of independent events called a lad-
der diagram. These diagrams represent the quantum side
jump (QSJ) contribution to the SHE [33].

Ladder diagrams should be used to explain the role of
Rashba coupling in the framework of independent mul-
tiple scatterings. The ladder diagrams essentially mea-
sure the side-jump contribution, which corresponds to
the transverse coordinate shift of the carriers after scat-
tering process. Therefore, at the intermediate level of the
Rashba coupling strength it seems that this shift is satu-
rated [43] and further increasing of the Rashba coupling
strength just randomizes the final spin state of the car-
riers, due to the increased spin-mixing provided by the
increased Rashba coupling. Accordingly, the suppression
of the EE and SHE is expected as a result of the Rashba
coupling increment after this saturation limit. Mean-
while, there are other reports confirming that the SH
conductivity of 2DEG is suppressed by scattering from
short range nonmagnetic impurities with a linear Rashba
interaction [44, 46–49].

As shown in Fig. 5 and Fig. 6, EE is suppressed in
the gapless sample, while SHE can be increased by an
order of magnitude in that type of systems. Meanwhile,

in gapped systems, it should be considered that both EE
and SHE are increased by decreasing the gap value. This
can be explained if we consider that increasing the gap
value decreases spin-band mixing.

As shown in Fig. 7 and Fig. 8, the SHE and EE
do not have a monotonic dependence on Fermi energy.
However, it has been mentioned that the SH conductiv-
ity in graphene is inversely proportional to the chemical
potential [37].

V. CONCLUSIONS

The spin Hall and Edelstein conductivities are stud-
ied numerically in the current work for the new type
two-dimensional materials called pseudospin-1 systems.
These two response functions have been evaluated in a
pseudospin-1 particle system with Rashba-type interac-
tion using the Kubo-Streda technique and vertex cor-
rections with non-magnetic impurities. Numerical cal-
culations were carried out to derive the normalized op-
erators self-consistently. It has been shown that the
vertex corrections play a significant role on the realiza-
tion of the SHE and EE in the pseudospin-1 systems,
where in the absence of these corrections SHE and EE
response functions are essentially negligible. The ladder
diagrams mainly capture the side jump effect contribu-
tion. Therefor, it can be inferred that the side jump
effect is one of the main effects which can induce SHE
and EE in pseudospin-1 systems. Meanwhile, the con-
tribution of the vertex corrections completely removed
at high Rashba couplings. When the Rashba coupling
strength is high due to the saturation of the side jump
shift of the carriers increased Rashba coupling just in-
creases the spin relaxation that decrease the SHE and
EE abruptly.
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FIG. 5. The EE conductivity in (a) gapped systems for m = 0.5 and m = 1.0, and (b) gappless sample (m = 0).

FIG. 6. The SHE conductivity in (a) gapped systems for m = 0.5 and m = 1.0, and (b) gappless sample (m = 0).

FIG. 7. The EE conductivity in systems with Ef = 0.15
(black line), Ef = 0.25 (red line) and Ef = 0.35 (green line).
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FIG. 8. The SHE conductivity in systems with Ef = 0.15
(black line), Ef = 0.25 (red line) and Ef = 0.35 (orange
line).
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