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We present a first-principles scheme for incorporating many-body interactions into the unified description
of the quadratic optical response to light of noncentrosymmetric crystals. The proposed method is based on
time-dependent current-density response theory and includes the electron-hole attraction via a tensorial long-
range exchange-correlation kernel, which we calculate using the parameter-free bootstrap approximation. By
bridging with the Wannier-interpolation of the independent-particle transition matrix elements, the resulting
numerical scheme is very general and allows resolving narrow many-body spectral features at low computational
cost. We showcase its potential by inspecting the second-harmonic generation in the benchmark zinc-blende
semiconductor GaAs, the layered graphitic semiconductor BC2N and the Weyl semimetal TaAs. Our results
show that excitonic effects can give rise to large and sharply localized one- and two-photon resonances that are
absent in the independent-particle approximation. We find overall good agreement with available experimental
measurements, capturing the magnitude and peak-structure of the spectrum as well as the angular dependence
at fixed photon energy. The implementation of the method in Wannier-based code packages can serve as a basis
for performing accurate theoretical predictions of quadratic optical properties in a vast pool of materials.

I. INTRODUCTION

The field of nonlinear optics [1, 2] has received a consider-
able push in recent years, thanks in part to advances of con-
temporary techniques in designing novel structures such as
layered materials and thin films [3, 4]. Breakthroughs have
come in various fronts like topology [5], with an accute en-
hancement of the nonlinear light absorption in Weyl semimet-
als [6–8] or the prediction of a quantized photoresponse [9];
but also in more applied aspects like the increasing of power-
conversion efficiency in ferroelectric insulators [10] or the en-
gineering of new effects for boosting the performance of stan-
dard solar cells [11].

The unified microscopic description of nonlinear optical
phenomena is due to Sipe and co-workers [12–14], who de-
veloped a general formalism within the independent-particle
approximation for calculating the intrinsic contribution to the
second-order optical photoresponse tensors. This approach
accounts for the various quadratic optical processes taking
place in semiconductors, including injection and shift cur-
rents [2, 15, 16] that originate from physical divergences of
the response coefficients. Building on this scheme, several
studies based on density functional theory (DFT) have re-
ported material-specific calculations for various second-order
processes; see Refs. [17–26] for a small survey. In addition,
recent works have extended the formalism to include metallic
terms [27, 28] and third-order contributions [29–31]. Alter-
native approaches have also been proposed, e.g., based on the
reduced density matrix formalism [32].

While the theory of nonlinear optical photoresponses in
the independent-particle approximation has an ample track
record, much fewer studies have considered many-body in-
teractions beyond this picture. Among those, a series of
works by Luppi, Hübener and Veniard [33–36] casted the
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second-order susceptibility within the time-dependent DFT
(TDDFT), and provided explicit calculations of excitonic ef-
fects on the second-harmonic generation (SHG) spectrum for
various materials. DFT-based SHG spectra influenced by the
electron-hole attraction within a Bethe-Salpeter scheme were
also reported in Refs. [37–39]. An alternative real-time ap-
proach based on the Berry-phase formulation of the dynami-
cal polarization was set forth in Ref. [40, 41]. More recently,
quasiparticle and excitonic effects on the shift current have
been analyzed using the GW plus Bethe-Salpeter equation
method [42, 43].

The relative scarcity of practical implementations is in
part a consequence of the technical difficulties involved.
An important bottleneck concerns the calculation of the
independent-particle quadratic response, due to the intricate
form of the transition matrix elements that involve deriva-
tives with respect to the crystal momentum k of Bloch
states [14]. Their calculation requires a careful treatment
in order to ensure k-space gauge invariance and properly
handle band degeneracies [23, 44, 45], and brute-force ap-
proaches quickly become time-demanding from the compu-
tational point of view [25]. Recently, it has been shown that
the so-called “Wannier interpolation” procedure can solve the
above difficulties [21, 46]. In this approach, the quadratic
matrix elements are reformulated in terms of localized Wan-
nier functions, in the same spirit as the Wannier interpola-
tion of the Berry curvature and anomalous Hall conductiv-
ity [47]. The method offers a general and efficient way of cal-
culating second-order optical response tensors without band-
truncation errors, and can serve as the basis for further devel-
opments.

In this work, we incorporate many-body interactions into
the Wannier-based scheme by working out an expression
for the quadratic optical photoresponse tensor beyond the
independent-particle approximation. Our derivation is based
on the time-dependent current-density response theory and
formally includes excitonic effects through a tensorial long-
range exchange-correlation (xc) kernel. Explicitly adopting
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the tensorial character of the response is of central importance,
as this allows a natural connection with the formalism of the
independent-particle picture in the optical limit and, by ex-
tension, with the Wannier-interpolation scheme. To illustrate
the generality and accuracy of our method, we analyze the
SHG process in three bulk materials. In first place, we con-
sider GaAs as a benchmark test. Secondly, we study BC2N, a
highly anisotropic graphitic-layered semiconductor that show-
cases the advantages of the adopted tensorial framework. Fi-
nally, we apply our scheme to the Weyl semimetal TaAs and
discuss the results in the context of recent optical measure-
ments.

The paper is organized as follows. In Sec. II we present
the main theoretical scheme. We first express the microscopic
quadratic conductivity tensor renormalized by many-body in-
teractions, and compare our main tensorial expression with
the scalar counterpart of TDDFT [33–36]. We then consider
the optical limit and specialize to the SHG process, for which
we derive new metallic terms. In order to establish the link
to experimental observables, we analyze the connection be-
tween the microscopic and macroscopic scales. Technical de-
tails concerning the electronic-structure ab initio calculations
based on maximally localized Wannier functions and the in-
clusion of excitonic effects are described in Sec.III. The com-
puted SHG spectra of GaAs, BC2N and TaAs are presented
and discussed in Sec. IV. We provide concluding remarks in
Sec. V, while several technical subjects are kept for the Ap-
pendix.

II. THEORETICAL FRAMEWORK

A. Microscopic response tensors and many-body effects

Our starting point considers the microscopic response of
a many-body (MB) system of electrons interacting via the
Coulomb potential in a crystal that relates the electric current-
density vector J(r, t) to the powers of an externally ap-
plied time-dependent electric field Eext(r, t). In practice, this
amounts to expanding the current-density vector in a power
series

J(r, t) = ∑
j

J j(r, t), (1)

with the jth-order contribution defined as

J j(1) =
∫

...
∫ 1

0
σ j(1, ..., j+1)∏

j
Eext( j+1)d j+1, (2)

where we adopted the notation (r j, t j)≡ ( j) with j a positive
integer. The quantity σ j(1, ..., j+1) denotes the jth-order MB
conductivity tensor, and our main goal consists in finding an
expression for the second order, i.e. the j = 2 contribution.

To do so, let us adopt the standpoint of an electron in an
auxiliary Kohn-Sham (KS) system of independent particles,
where the total electric field that it feels can be written as

Etot(r, t) = Eext(r, t)+EH(r, t)+Exc(r, t). (3)

The Hartree (H) electric field as a function of the current-
density vector is given by

EH(1) =
∫ 1

0
KH(1,2)J(2)d2, (4)

where KH(1,2) is the tensorial Hartree kernel. In turn, the xc
electric field up to second order can be written as

Exc(1) =
∫ 1

0
Kxc,1(1,2)J(2)d2

+
∫∫ 1

0
Kxc,2(1,2,3)J(2)J(3)d2d3,

(5)

with Kxc,1(1,2) and Kxc,2(1,2,3) the first-order and second-
order tensorial xc kernels, respectively.

Within the KS system, the response properties are governed
by the so-called KS conductivity tensor, which describes the
current-density vector in terms of powers of the total electric
field, in such a way that

J j(1) =
∫

...
∫ 1

0
σ

KS
j (1, ..., j+1)∏

j
Etot( j+1)d j+1. (6)

Thus, the task is to express the MB response tensors up to sec-
ond order in terms of the necessary KS response coefficients
as well as the tensorial Hartree and xc kernels.

1. Linear response

As a warmup, we first review the linear case. Within the
time-dependent current-density functional theory (TDCDFT)
[48, 49], the first-order current-density vector is given by

Ja
1 (1) =

∫ 1

0
∑
b

σ
ab
1 (1,2)Eb

ext(2)d2, (7a)

Ja
1 (1) =

∫ 1

0
∑
b

σ
KS,ab
1 (1,2)Eb

tot(2)d2 (7b)

where σ1(1,2) and σ
KS
1 (1,2) are the first-order conductivity

tensors of the MB and the KS system, respectively, defined as

σ
ab
1 (1,2) =

δJa(1)
δEb

ext(2)
, (8a)

σ
KS,ab
1 (1,2) =

δJa(1)
δEb

tot(2)
. (8b)

Henceforth, superscripts refer to Cartesian components. Ap-
plying the chain rule in the definition of the MB conductivity
tensor in Eq. 8a and taking into account the definition of the
KS conductivity tensor in Eq. 8b, the first-order Dyson-like
equation relating the MB and KS responses reads

σ
ab
1 (1,2) =

∫
∑
c

σ
KS,ac
1 (1,3)ε−1,cb(3,2)d3, (9)
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where we have introduced the dielectric tensor ε(1,2). This
quantity accounts for the MB electronic screening effects
within the crystal and its inverse links the total and external
electric fields as

Ea
tot(1) =

∫ 1

0
ε
−1,ab(1,2)Eb

ext(2)d2. (10)

Considering the implicit definition of the inverse dielectric
tensor in Eq. 10 together with the relation between the total
and external electric fields in Eq. 3, we apply again the chain
rule to obtain

ε
−1,ab(1,2) =δ (1,2)δab

+
∫

∑
c

Kac
Hxc,1(1,3)σ

cb
1 (3,2)d3.

(11)

Above, KHxc,1(1,2) = KH(1,2)+Kxc,1(1,2) is the grouping
of the first-order tensorial Hartree and xc kernels.

For practical purposes, it is useful to express the dielectric
tensor in terms of the KS conductivity tensor instead of the
MB one. Such expression is obtained by reproducing the pre-
vious chain rule procedure, but this time starting from Eq. 8b,
and reads

ε
ab(1,2) =δ (1,2)δab

−
∫

∑
c

Kac
Hxc,1(1,3)σ

KS,cb
1 (3,2)d3.

(12)

2. Quadratic response

In analogy with the treatment of the first-order response,
the second-order current-density vector can be written as

Ja
2 (1) =

∫∫ 1

0
∑
bc

σ
abc
2 (1,2,3)Eb

ext(2)E
c
ext(3)d2d3, (13a)

Ja
2 (1) =

∫∫ 1

0
∑
bc

σ
KS,abc
2 (1,2,3)Eb

tot(2)E
c
tot(3)d2d3, (13b)

where σ2(1,2,3) and σ
KS
2 (1,2,3) are the second-order con-

ductivity tensors of the MB and the KS systems, respectively,
defined as

σ
abc
2 (1,2,3) =

δ 2Ja(1)
δEb

ext(2)δEc
ext(3)

, (14a)

σ
KS,abc
2 (1,2,3) =

δ 2Ja(1)
δEb

tot(2)δEc
tot(3)

. (14b)

By sistematically applying the chain rule in the definition of
the MB conductivity tensor in Eq. 14a, a procedure that is
outlined in Appendix A, one derives the desired second-order
Dyson-like equation relating the MB and KS responses

σ
abc
2 (1,2,3) =

∫∫∫
∑
de f

ε
−1,ad(1,4)σKS,de f

2 (4,5,6)ε−1,eb(5,2)ε−1, f c(6,3)d4d5d6

+
∫∫∫

∑
de f

σ
ad
1 (1,4)Kde f

xc,2(4,5,6)σ
eb
1 (5,2)σ f c

1 (6,3)d4d5d6.
(15)

The above equation can be regarded as the tensorial gener-
alization of the expression for the second-order scalar den-
sity response function obtained in TDDFT (see Eq. 180 in
Ref. [50] or Eq. 13 in Ref. [33]). Dealing with the response
in the form of a tensorial quantity allows a natural connection
with the description of the optical KS response, as we show
below.

B. Optical limit

To proceed further, one needs explicit expressions for the
KS response. This task can be greatly simplified by consider-
ing the optical and long-wavelength limit, which assumes that
the external electric field remains constant in the length-scale
of the crystal’s unit cell [51]. Within this approach, it is conve-
nient to adopt the formalism of Sipe and co-workers [12–14],
where the current-density vector operator is split into its inter-

band (ter) and intraband (tra) parts at any jth order as

J j(t) =
dPter, j(t)

dt
+Jtra, j(t), (16)

where the interband polarization- and intraband current-
density vectors are respectively expressed in terms of the
charge-density matrix elements ρ j,mn(t) as

Pa
ter, j(t) =

e
V ∑

kmn
ra

nmρ j,mn(t), (17a)

Ja
tra, j(t) =

e
V ∑

kmn

[
va

nmδnm −∑
b

(
ra;b

nm +δnmεcabΩ
c
n

)]
ρ j,mn(t).

(17b)

Above, V denotes the volume of the crystal, while n
and m are band indices. The transition matrix ele-
ments involve several quantities; ra

nm = (1−δnm)ξ
a
nm
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and ra;b
nm = ∂ ra

nm/∂kb − i(ξ b
nn −ξ b

mm)r
a
nm are the inter-

band dipole and its generalized derivative, respectively;
ξ a

nm = i⟨un|∂/∂ka|um⟩ and εcabΩc
n = ∂ξ b

nn/∂ka −∂ξ a
nn/∂kb

stand for the Berry connection and curvature, respectively,
with |un⟩ the crystal-periodic part of the Bloch function;
finally, va

nm = ⟨un|∂ Ĥ/∂ka|um⟩ denotes the velocity matrix
element. We kept the dependence on the crystal wave vector
k implicit for all these quantities.

Based on the dynamical equation of the charge-density
operator within the Schrödinger picture, one can solve for
ρ j,mn(t) employing an iterative scheme at the desired order
in the electric field and compute the associated response ten-
sors [14]. In frequency domain, the first-order interband
polarization- and intraband current-density vectors can be re-
spectively expressed as

Pa
ter,1(ω) = ∑

b
α

KS,ab
ter,1 (ω)Eb

tot(ω), (18a)

Ja
tra,1(ω) = ∑

b
σ

KS,ab
tra,1 (ω)Eb

tot(ω), (18b)

and similarly for second order

Pa
ter,2(ω12) = ∑

bc
α

KS,abc
ter,2 (ω1,ω2)Ec

tot(ω1)Eb
tot(ω2), (19a)

Ja
tra,2(ω12) = ∑

bc
σ

KS,abc
tra,2 (ω1,ω2)Eb

tot(ω1)Ec
tot(ω2), (19b)

with ω12 = ω1 + ω2. In Eqs. 18a and 18b, α
KS
ter,1(ω) and

σ
KS
tra,1(ω) are the first-order optical KS interband polarizabil-

ity and intraband conductivity tensors, respectively, while in

Eqs. 19a and 19b, α
KS
ter,2(ω1,ω2) and σ

KS
tra,2(ω1,ω2) are their

second-order counterparts, respectively. Following Eq. 16, the
full optical KS conductivity tensors at first and second order
are respectively given by

σ
KS
1 (ω) =−iωα

KS
ter,1(ω)+σ

KS
tra,1(ω), (20)

and

σ
KS
2 (ω1,ω2) =−iω12α

KS
ter,2(ω1,ω2)+σ

KS
tra,2(ω1,ω2). (21)

The expressions for the optical KS interband polarizability
and intraband conductivity tensors are well established at
first order [52, 53], as well as at second order in the case of
semiconductors [12–14]. In the case of metals and semimetals
extra terms appear due to the presence of a Fermi surface.
Recent works [27, 28] have derived and thoroughly discussed
the metallic terms of σ

KS
tra,2(ω1,ω2), paying special attention

to the direct-current contribution. As for α
KS
ter,2(ω1,ω2), its

metallic terms have not been previously derived to the best
of our knowledge. In Appendix B we provide the general
expressions of all optical KS response tensors up to second
order valid for any kind of material.

1. Second harmonic generation

In the remaining of this work, for conciseness we specialize
in the calculation of a particular quadratic optical response,
namely the second harmonic generation. The SHG process
considers two initial photons with same frequency which are
combined to generate a final photon with twice the initial fre-
quency, maintaining the coherence of the excitation. By set-
ting ω1 = ω2 ≡ ω in Eqs. B2a and B2b of Appendix B, the
SHG KS interband polarizability intraband conductivity ten-
sors are respectively given by

α
KS,abc
ter,2 (ω,ω) =

e3

2h̄2V

(
∑

kmnl

ra
nm
(
rb

mlr
c
ln + rc

mlr
b
ln

)
ωln −ωml

(
2 fnm

ωmn −2ω̃
− fnl

ωln − ω̃
− fml

ωml − ω̃

)
+ i ∑

kmn

{
fnm

[
2ra

nm
(
rb;c

mn + rc;b
mn
)

ωmn (ωmn −2ω̃)
+

ra;b
nm rc

mn + ra;c
nmrb

mn

ωmn (ωmn − ω̃)
+

ra
nm
(
rb

mnΛc
mn + rc

mnΛb
mn
)

ω2
mn

(
1

ωmn − ω̃
− 4

ωmn −2ω̃

)]
− ra

nm
(

fnm;brc
mn + fnm;crb

mn
)

ωmnω

})
,

(22a)

σ
KS,abc
tra,2 (ω,ω) =

e3

2h̄2V

{
− ∑

kmn
fnm

[
rc;a

nmrb
mn + rb;a

nm rc
mn

ωmn − ω̃
+

Λa
nm
(
rb

mnrc
nm + rc

mnrb
nm
)

2ω (ωmn − ω̃)

]
+∑

kn

[
i
( fn;bεdac + fn;cεdab)Ωd

n

ω
− va

n fn;bc

ω2

]}
.

(22b)

Above, ωmn = ωm −ωn and fnm = fn − fm, with h̄ωn and fn = f (h̄ωn) the eigenvalue and occupation factor of the eigenstate
|kn⟩, respectively, while Λa

nm = va
n − va

m and ω̃ ≡ ω + iη/h̄, with η a positive real infinitesimal. The terms including the deriva-
tives fn;a = ∂ fn/∂ka and fn;ab = ∂ 2 fn/∂ka∂kb correspond to the metallic contribution. With explicit expressions for the SHG
KS response coefficients at hand, we can now calculate the SHG MB conductivity tensor from Eq. 15 as

σ
abc
2 (ω,ω) = ∑

de f
ε
−1,ad(2ω)σKS,de f

2 (ω,ω)ε−1,eb(ω)ε−1, f c(ω)+∑
de f

σ
ad
1 (2ω)Kde f

xc,2(ω,ω)σ eb
1 (ω)σ f c

1 (ω), (23)
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where the optical dielectric and MB conductivity tensors sat-
isfy respectively (see Eqs. 12 and 9)

ε
ab(ω) = δab −∑

c
Kac

Hxc,1(ω)σKS,cb
1 (ω), (24)

and

σ
ab
1 (ω) = ∑

c
σ

KS,ac
1 (ω)ε−1,cb(ω). (25)

Let us inspect Eq. 23 in some detail. MB interactions
come in two different ways; on the one hand, through the
inverse dielectric tensor that includes screening effects, and
on the other hand, through the second-order tensorial xc ker-
nel Kxc,2(ω,ω). Due to hierarchy arguments we expect the
former to be dominant. Focusing on the first piece on the
right-hand side (r.h.s.) of Eq. 23, the response at frequency ω

is affected by the screening at that and twice that frequency.
This can lead to double-frequency many-body resonances in
the SHG spectrum, as we will show in more detail when ana-
lyzing our numerical results in Sec. IV. Note that, in the case
of isotropic media, Eq. 23 is equivalent to Eq. 37 of Ref. [35].

2. From the microscopic response to the macroscopic response

As the final step, we consider the connection between
the previous microscopic coefficients and their macroscopic
counterparts, which are ultimately the quantities measured in
experiment. The macroscopic response to light is described
by Maxwell’s equations and can be accessed by performing
a macroscopic average of the microscopic response tensors
over regions in space that are large in comparison with the
crystal unit cell, but small compared to the wavelength of the
external perturbation [51]. In this work we adopt the formula-
tion of Del Sole and Fiorino [54] for relating the macroscopic
and microscopic scales; the detailed derivation is outlined in
Appendix D. Here we focus on the SHG process; by setting
ω1 = ω2 ≡ ω in Eq. D12, the macroscopic SHG photocon-
ductivity tensor is calculated from its microscopic counterpart
as

σ
abc
M,2(ω,ω) = ε

aa
M (2ω)σabc

2 (ω,ω)εbb
M (ω)εcc

M (ω), (26)

where the macroscopic optical dielectric tensor is given in
terms of the microscopic optical conductivity by

ε
aa
M (ω) =

[
1− i

4π

ω
σ1(ω)

]−1,aa

. (27)

III. TECHNICAL DETAILS

In this section we describe in detail the steps followed in
the calculations for three bulk materials: the semiconductor
GaAs, the semiconductor BC2N and the semimetal TaAs.

A. DFT calculations

In a first step, we performed DFT self-consistent calcula-
tions using the QUANTUM ESPRESSO code package [55, 56].
The interaction between valence electrons and atomic cores
was modeled by means of projector-augmented-wave pseu-
dopotentials [57] with scalar relativistic corrections for GaAs
and BC2N and fully relativistic corrections for TaAs. The
pseudopotentials were taken from the QUANTUM ESPRESSO
website and generated using the Perdew-Burke-Ernzerhof
generalized gradient approximation for thexc energy func-
tional [58]. For GaAs, we considered the zinc-blende crystal
structure together with the experimental value of the lattice
parameter, i.e. a = 10.68 a0 [59]. We performed DFT calcula-
tions using a 8×8×8 k-point mesh in combination with fixed
occupation values and a plane-wave basis set with a cut-off
energy of 60 Ry. For BC2N, we considered the graphitic-
layered A2 crystal structure, which is the most stable noncen-
trosymmetric bulk structure, with orthorhombic space group
Pmm2 (No. 25) following the theoretical structural parame-
ters of Ref. [60]. We performed DFT calculations using a
10× 10× 10 k-point mesh in combination with fixed occu-
pation values and a plane-wave basis set with a cut-off en-
ergy of 70 Ry. Finally, for TaAs, we considered its ground-
state body-centered-tetragonal crystal structure with nonsym-
morphic space group I41md (No. 109) following the experi-
mental structural parameters of Ref. [61]. We performed non-
collinear spin-DFT calculations using a 8×8×8 k-point mesh
in combination with occupation values calculated by means of
the optimized tetrahedron method [62] and a plane-wave basis
set with a cut-off energy of 60 Ry.

B. Wannier interpolation

In a postprocessing step, we constructed maximally lo-
calized Wannier functions (MLWF) using the WANNIER90
code package [63]. For GaAs, starting from a set of 15
spin-degenerate bands, we constructed 11 disentangled ML-
WFs spanning the 4 high-energy valence bands and the 7
low-energy conduction bands using two s and one p trial or-
bitals centered on all atoms, as well as one s trial orbital
halfway between the two atoms. For BC2N, starting from a
set of 38 spin-degenerate bands, we constructed 8 disentan-
gled MLWF spanning the 4 high-energy valence bands and
the 4 low-energy conduction bands using pz trial orbitals cen-
tered on all atoms. Finally, for TaAs, starting from a set of
48 spin-polarized bands, we constructed 32 disentangled ML-
WFs spanning the 16 high-energy valence bands and the 16
low-energy conduction bands using p and d trial orbitals cen-
tered on all As and Ta atoms, respectively. In all cases, the
agreement between DFT and Wannier-interpolated bands is
in excellent agreement inside the chosen inner energy win-
dow [64], as we illustrate in Fig. 1 for the case of TaAs.

Having converged the Wannier basis, we then computed
the linear and quadratic optical KS response tensors (see
Eqs. B1a-B1b and Eqs. 22a-22b, respectively) using Wannier
interpolation. To that end, we used the schemes described in
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FIG. 1. DFT and Wannier-interpolated energy bands of TaAs. The
horizontal dashed line at 3 eV denotes the upper limit of the inner
energy window used in the disentanglement step of the Wannier con-
struction procedure.

Ref. [47] for the calculation of interband dipole matrix ele-
ments and Berry curvatures, Ref. [46] for the calculation of
generalized derivatives of the dipole matrix and Ref. [65] for
the calculation of velocity matrix elements. Following the
procedure of Refs. [46, 66], in Eqs. 22a-22b we regularized
the energy denominators of the three-band term and ra;b

mn in-
volving intermediate states by means of an auxiliary param-
eter ηr. Alongside, the derivatives of the occupation factors
were computed by replacing

fn;a →
d f

dωn
va

n, (28)

for the first-order derivative and

fn;ab →
d2 f
dω2

n
va

nvb
n +

d f
dωn

ωn;ab, (29)

for the second-order derivative, where ωn;ab denotes the in-
verse effective mass tensor [65]. We considered Gaussian dis-
tributions for the derivatives of the occupation factors.

In order to obtain well-converged optical spectra, we used
dense k-point interpolation meshes of 250 × 250 × 250 for
GaAs, 200× 200× 200 for BC2N, and 300× 300× 300 for
TaAs. With respect to the imaginary part of the complex en-
ergy h̄ω̃ (see Eqs. 22a and 22b), we set η = 0.1 eV in the case
of GaAs and TaAs, consistent with carrier scattering lifetimes
(∼ 10 fs) near the Fermi level observed in both GaAs [67]
and TaAs [68], while for BC2N we employed an adaptative
scheme [65]. Regarding the auxiliary parameter for regular-
izing energy denominators, we chose ηr = 0.04 eV for both
GaAs and BC2N, following Refs. [46] and [69], respectively.
In the case of TaAs, we set ηr = 0.1 meV, in order to prop-
erly capture the contribution of Weyl points. The occupation
factors and their derivatives are evaluated at zero temperature
(T = 0 K) for the semiconductors GaAs and BC2N and at
room temperature (T = 300 K) for TaAs.

C. Long-range contribution to the tensorial xc kernel

Within the long-wavelength and optical limit, the general
expressions for the tensorial Hartree and xc kernels (see Eqs. 4
and 5) simplify. The Hartree term reduces to a diagonal and
isotropic tensor

Kab
H (ω) =−i

4πδab

ω
, (30)

As for the xc term, it takes the form of a long-range contri-
bution (LRC) with a screened Coulomb-like potential, as first
discussed in Ref. [70]. In our work, we took into account
quasiparticle self-energy effects by means of a scissors opera-
tor, while we incorporated electron-hole interactions assum-
ing a static tensorial LRC xc kernel based on an attractive
Coulomb-like potential. With these assumptions, the first-
order tensorial xc kernel simplifies to (see Appendix C)

Kab
xc,1(ω) = i

αa
LRCδab

ω
, (31)

which is a diagonal but generally anisotropic 3 × 3 ma-
trix composed of three independent, positive-definite and
frequency-independent coefficients αa

LRC. We note that αa
LRC

in Eq. 31 is the tensorial generalization of the scalar α-
parameter of LRC xc kernels used in TDDFT [71–73]. In our
implementation, we calculated these coefficients by means
of the so-called self-consistent bootstrap (BO) approxima-
tion [74] along each principal axis of the material (see Ap-
pendix C for details). While this approximation might under-
estimate excitonic effects in large band-gap insulators [75],
we have verified that our results on semiconducting GaAs
and BC2N are practically unchanged when using an alterna-
tive one-shot RPA-bootstrap (RBO) approximation proposed
in Refs. [75, 76].

Finally, in our calculations we discarded the effect of the
second-order tensorial xc kernel Kxc,2(1,2,3) entering Eq. 5,
given that its approximate expression is generally unknown
and its effects are expected to be minor (of the order of crystal
local-field effects [70]) in comparison to the first-order contri-
bution [33–35].

To sum up, in practice, we calculated the microscopic SHG
MB conductivity tensor by means of

σ
abc
2 (ω,ω) =

∑
de f

ε
−1,da(2ω)σKS,de f

2 (ω,ω)ε−1,eb(ω)ε−1, f c(ω), (32)

where the microscopic optial dielectric tensor is given by

ε
ab(ω) = δab + i

4π −αa
LRC

ω
σ

KS,ab
1 (ω). (33)

The last step involves calculating the macroscopic SHG pho-
toconductivity tensor from its microscopic counterpart by
means of Eq. 26.
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IV. RESULTS

In this section we present our numerical results of the
macroscopic SHG photoresponse. To facilitate comparison
with existing literature, we will partly describe our results in
terms of the photosusceptibility, whose connection to the pho-
toconductivity used in our derivations of Sec. II is provided in
Appendix D. In the materials analyzed in this work, the optical
dielectric tensor is diagonal due to symmetry arguments [77].
It then follows that the relation between the macroscopic SHG
MB and KS photosusceptibilities simplifies to

χ
abc
2 (ω,ω) = β

abc(ω)χKS,abc
2 (ω,ω), (34)

with

β
abc(ω) =ε

aa
M (2ω)ε−1,aa(2ω)×

ε
bb
M (ω)ε−1,bb(ω)εcc

M (ω)ε−1cc
(ω).

(35)

the enhancement factor, a quantity that will be useful when
discussing the impact of MB corrections in our results.

A. GaAs

The first SHG measurements in GaAs date back to the
1960’s [78, 79], and it has become the standard mate-
rial for benchmarking theoretical SHG calculations. Ini-
tial works were based on empirical pseudopotentials [80]
and tight-binding models [81]. More recently, several first
principles studies have been reported [17–19, 21, 82]; most
have been performed within the independent-quasiparticle ap-
proximation (IQA), i.e. including self-energy effects to the
independent-particle picture. Beyond this approach, only few
studies have reported the impact of MB interactions [34, 35,
37, 38].

Since GaAs is a cubic crystal, εaa(ω) = εxx(ω) for any
Cartesian component a, and χabc

2 (ω,ω) = χ
xyz
2 (ω,ω) for any

permutation abc of xyz, while all other components of both
tensors vanish by symmetry [77]. Figures 2(a) and 2(b) show
the spectra of the imaginary and real parts, respectively, of the
calculated macroscopic optical dielectric tensor. Figures 2(c)
and 2(d) show the spectra of the imaginary and real parts, re-
spectively, of the calculated macroscopic SHG photosuscep-
tibility. KS calculations have been performed within IQA in-
corporating quasiparticle corrections by means of a scissors
operator that rigidly shifts the conduction bands by 0.91 eV
in order to recover the experimental value of the band-gap en-
ergy at room temperature, Ebg = 1.42 eV [83]. In the MB pic-
ture, excitonic effects have been included through the LRC
xc coefficient αa

LRC ≡ αLRC, which is isotropic in cubic crys-
tals. The calculated coefficients within BO and RBO approx-
imations are αBO

LRC =−0.11 and αRBO
LRC =−0.12, respectively,

consistent with the values of previous ab initio studies [84–
86]. From Figs. 2(a) and 2(b), the inclusion of LRC coef-
ficients significantly improves the agreement of linear optics
with experimental measurements [87].

Coming next to quadratic SHG optics, let us begin by de-
scribing the KS-IQA results. The spectrum of the imaginary
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FIG. 2. (a) Imaginary and (b) real parts of the macroscopic dielectric
function and (c) imaginary and (d) real parts of the macroscopic SHG
photosusceptibility for bulk GaAs. Thin solid black, thick solid red
and thick dashed blue lines represent the KS-IQA, MB-BO and MB-
RBO spectra, respectively. Grey cirlces represent the experimental
data from Ref. [87]. Vertical dotted lines represent the band-gap en-
ergy (Ebg = 1.42 eV) and half its value (Ebg/2). (e) Absolute value
of the enhancement factor β xyz(ω) (see Eq. 35).

part [Fig. 2(c)] is finite for energies above Ebg/2 [14] and con-
tains a strong peak near the band edge. As for the real part
[Fig. 2(d)], it is finite at all energies owing to photons ab-
sorbed or emitted in virtual excitations. The spectrum grows
progressively at low energies and exhibits maxima at Ebg/2
and Ebg due to two- and one-photon resonances, respectively.
At higher energies double resonant transitions take place [14]
and the spectrum shows several strong peaks.
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FIG. 3. Absolute value of the macroscopic SHG photosuscepti-
bility for bulk GaAs in the (a) KS-IQA and (b) MB-BO pictures.
Solid black lines represent our calculated spectra. Grey circles rep-
resent the experimental data from Ref. [87]. Magenta hexagons,
yellow squares and cyan diamonds represent theoretial spectra from
Refs. [37], [38] and [35], respectively, within IQA in (a) and includ-
ing excitonic effects in (b) by means of BSE for Refs. [37] and [38],
and TDDFT for Ref. [35]. In all these works, the scissors shift is such
that the experimental value of the band-gap energy is recovered, be-
ing equal to 0.6 eV and 0.8 eV for Refs. [38] and [35], respectively.
In Ref. [35], TDDFT is employed with an empirical αLRC = 0.2.

The net effect of MB-LRC corrections is to increase the
magnitude of both the imaginary and real parts of the SHG
spectrum, as is clearly visible in Figs. 2(c) and 2(d), respec-
tively. The enhancement factor displayed in Fig. 2(e) shows
that the difference ranges between 0 and 50 %, with the largest
renormalization taking place right at the band-edge energy.
No new spectral feature is formed as a consequence of exci-
tonic effects. It is also worth noting that the MB-BO and MB-
RBO spectra are practically indistinguishable from each other
at both first and second orders; hence, in the remaining of this
work we will only show MB-BO results for conciseness.

In Fig. 3 we show the absolute value of the macroscopic
SHG photosusceptibility and compare our calculations with
experimental measurements as well as previous theoretical
works including different approximations. The experimen-
tal spectrum is dominated by a peak at the band-edge energy

and contains a “V”-shaped form between 2 and 3 eV. These
two spectral features are well described by both our KS-IQA
and MB-LRC calculations, which show similar shape but dif-
ferent size as discussed previously. Our KS-IQA result [see
Fig. 3(a)] is in qualitative agreement with previous IQA calcu-
lations, specially that of Ref. [35]. Our MB-LRC calculation
[see Fig. 3(b)] strikes the best balance in describing the magni-
tude and width of the two spectral features of the experiment,
although the height of the “V”-shaped form is somewhat over-
estimated. Here too we note a qualitative agreement with the
TDDFT result of Ref. [35].

In quantitative terms, our results show sharper peaks than
those of previous theoretical works. This can be a conse-
quence of the small smearing factors achieveable thanks to
Wannier interpolation, which makes it possible to consider
on the order of 106 k-points for converging the SHG inte-
grals over the BZ (see Eqs. 22a and 22b). For comparison,
the calculations of Refs. [38] and [35] employed on the order
of 103 and 104 k-points, respectively. This fine sampling has
allowed us to model the lifetime of hot carriers (∼ 10 fs) in
bulk GaAs [67], which therefore renders more realistic spec-
tral widths as compared to experiment.

B. BC2N

The graphitic-layered semiconductor BC2N has attracted
interest in the last years as a potential nonlinear optical ma-
terial [88, 89]. Its layered geometry composed of alternat-
ing zigzag of C−C and B−N chains makes it a malleable
and strongly anisotropic crystal [90]. Among its several
polytypes, the A2 configuration (BC2N-A2) is the most sta-
ble noncentrosymmetric structure [60] that allows a finite
quadratic response. First-principles calculations within the
independent-particle approximation (IPA) have recently pre-
dicted a large SHG for BC2N-A2 in monolayer and nanotube
form [91] that is an order of magnitude larger than in bulk
GaAs. A large shift current has also been calculated recently
in bulk [92] and monolayer [69] form. To our knowledge, no
systematic study of MB effects on the SHG has been carried
out for bulk BC2N-A2 up to date.

Owing to its mm2 point group, the symmetry-allowed com-
ponents of the SHG photosusceptibility tensor for BC2N-A2
are xxy = xyx, yxx, yyy yzz and zzy = zyz [77]. Their abso-
lute values in the KS-IPA picture are displayed in Fig. 4(a).
In order to facilitate the discussion of the spectral features, in
Fig. 4(b) we show the joint density of states (JDOS) per crys-
tal unit cell [92] for the one- and two-photon signals. In these
and following figures, Ebg = 1.18 eV denotes the direct band-
gap energy, while EX = 1.33 eV refers to the band-gap energy
at high symmetry point X. The latter was found to mark the
peak absorption of the shift current at low energies [92] and
will also play an important role in the SHG.

The tensor components xxy and yxx dominate the SHG pho-
toresponse with values of the order of the SHG for the mono-
layer and nanotube forms [91], and coincide with the domi-
nant components of the shift current for bulk BC2N-A2 [92].
The maximum value of 5.8×103 pm/V takes place for the
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FIG. 4. (a) Absolute value of the SHG KS-IPA photosusceptibility
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lines represent the one- and two-photon signals, respectively. Ver-
tical dotted lines represent the band-edge energy range boundaries
(Ebg ≈ 1.18 and EX ≈ 1.33) and half their values (Ebg/2 and EX/2).

yxx component at EX/2 owing to a two-photon absorption pro-
cess. These and further specral features like the peak at ≃ 1 eV
can be associated to contributions in the one- and two-photon
JDOS [see Fig. 4(b)].

We focus next on the MB-LRC interactions. Unlike the
case of GaAs studied previously, BC2N-A2 is anisotropic and
so is the tensorial LRC xc kernel; the calculated BO coeffi-
cients are {αx

LRC,α
y
LRC,α

z
LRC}= {0.06,0.29,5.51}. Note that

the z component is an order of magnitude larger than the x and
y components, as well as the coefficient computed for GaAs
(see Sec. IV A). Therefore, BC2N-A2 represents a clear ex-
ample where an isotropic treatment of the excitonic effects
constitutes a poor choice, given that the value of the space-
averaged scalar LRC xc coefficient α iso.

LRC = 0.42 is close to
none of the actual space-resolved tensorial components. In
the following, we illustrate the profound errors that this pro-
cedure can induce in the absorption spectrum.

In Fig. 5(a) we display the renormalization of the macro-
scopic SHG photosusceptibility tensor component xxy by
electron-hole corrections at two levels: using the anisotropic
and isotropic tensorial LRC xc kernels. Comparison to the
KS-IPA response shows that the anisotropic kernel induces
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FIG. 5. (a) Absolute value of the xxy component of the macroscopic
SHG photosusceptibility tensor for bulk BC2N-A2. (b) Absolute
value of the enhancement factor β xxy(ω). The solid black line repre-
sent the KS-IPA spectrum. The dashed red and dashdotted blue lines
represent the MB-BO spectrum using the anisotropic (aniso.) and
isotropic (iso.) tensorial LRC xc kernel, respectively. (c) xx compo-
nent of the inverse of the macroscopic optical dielectric tensor. The
solid red (dashed green) and dotted blue (dashdotted black) lines
represent the real (Re) and imaginary (Im) parts in the anisotropic
(isotropic) case, respectively. These spectra are practically identical
when using BO or RBO approximations.

a maximum increase of nearly a factor 1.5 [see enhance-
ment factor in Fig. 5(b)], but does not alter the overall shape
of the spectrum, in line with what we found for GaAs (see
Sec. IV A). On the other hand, the isotropic kernel produces a
large peak at half the band-edge energy that completely dom-
inates the MB-BO spectrum, with an enhancement of more
than one order of magnitude as compared to the anisotropic
kernel. A secondary peak is also visible at the band-edge en-
ergy.

The origin of these two sharp peaks can be determined by
inspecting the inverse of the macroscopic optical dielectric
tensor along x; this quantity is shown in Fig. 5(c) separately
for the real and imaginary parts. While Imε

−1,xx
M (ω) is barely
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FIG. 6. (a) Absolute value of the zzz component of the macroscopic SHG photosusceptibility tensor for bulk TaAs. Dashed black and solid
colored lines represent the KS-IPA and MB-LRC spectra as a function of α

z
LRC, respectively. Black errorbar corresponds to the experimen-

tal datapoint from Ref. [6] (b) SHG intensity polar plot in both parallel (∥) and perpendicular (⊥) generator/analyser configurations. For
better visualization, results in the ⊥ configuration are multiplied by a factor 8. KS-IPA calculations are multiplied by a factor 6 and 24
for ∥ and ⊥ configurations, respectively. Open red and blue circles represent ∥ and ⊥ experimental data from Ref. [6], respectively. Solid
(dashed) red (magenta) and blue (cyan) lines represent our MB-LRC (KS-IPA) calculations in the ∥ and ⊥ configurations, respectively, for
{α

x=y
LRC = 1.8,αz

LRC = 0.3}. (c) Absolute value of the macroscopic SHG photoconductivity tensor. Open red, dark blue and black circles
represent experimental data from Ref. [93] for the xxz, zxx and effective components, respectively. Orange, cyan and grey solid lines represent
our calculated MB-LRC spectra of the xxz, zxx (multiplied by 100) and effective (multiplied by 10) components, respectively.

affected by the type of tensorial LRC xc kernel, Reε
−1,xx
M (ω)

shows a strong shift that is nearly frequency-independent;
both these features can be qualitatively understood by work-
ing out explicit expressions (use Eqs. 33 and 25 in Eq. 27) and
noting that the Hartree contribution is much stronger than any
of the LRC xc components, i.e., 4π ≫ αa

LRC. In the case of the
isotropic kernel, Reε

−1,xx
M (ω) crosses the zero axis very close

to the band-edge energy, where Imε
−1,xx
M (ω) ≃ 0 too, lead-

ing to a sharp peak in εxx
M (ω) at that energy [see enhancement

factor in Fig. 5(b)]. This peak is then replicated at half the
band-edge energy in the SHG spectrum through the εxx

M (2ω)
factor in Eq. 26, and enhanced by transition matrix-elements.

We have verified that a similar effect takes place for the
SHG tensor component yxx too (not shown). In this case, the
isotropic kernel gives rise to a even larger peak right at the
band-edge energy reaching ≃ 700×103 pm/V (see Fig. 5(a)
for comparison), while the anisotropic kernel induces only
moderate changes to the KS-IPA response. These examples
show that sharp, exciton-like peaks in the SHG spectrum can
be induced by MB-LRC effects provided the appropriate con-
ditions are met. These conditions are very sensitive to numer-
ics, which stresses the importance of accounting for the space-
resolved anisotropy of the material in the tensorial xc kernel,
and therefore, its advantage over a space-averaged scalar ap-
proach.

C. TaAs

Theoretically predicted [94, 95] and experimentally con-
firmed in 2015 [96–98], TaAs is a type I Weyl semimetal [99]
without an inversion center. Following its discovery, several
experiments have reported remarkable nonlinear optical prop-
erties. Ref. [6] measured a “giant” SHG photosusceptibility

at ≃ 1.55 eV that is an order of magnitude larger than in most
other materials. Shortly after, Ref. [93] extended the mea-
surements to lower energies and found a narrow resonance at
≃ 0.75 eV with an even larger photoresponse. In addition to
the SHG, other quadratic optical responses such as the shift
current have also been measured to be exceptionally large [8].

Due to its 4mm point group, the symmetry-allowed compo-
nents of the SHG tensor in TaAs are zzz, zxx = zxz = zyy = zyz
and xxz = xzx = yyz = yzy, where x and y are equivalent direc-
tions of the tetragonal unit cell and the direction perpendicular
to the xy plane is the polar axis z.

Unlike GaAs and BC2N studied previously, TaAs is a
semimetal. In this case, the BO and RBO approximations for
the calculation of the tensorial LRC xc kernel cannot be ap-
plied directly since Im[ε(ω = 0)] ̸= 0 [74]. In consequence,
we have chosen to renormalize the SHG KS-IPA spectrum for
a reasonable range of LRC xc coefficients {α

x=y
LRC,α

z
LRC} and

determine empirically their most appropriate values by com-
paring to the experimental measurements.

In Fig. 6(a) we show our calculated |χzzz
2 (ω,ω)| as a func-

tion of α
z
LRC together with the available experimental data-

point at ≃ 1.55 eV from Ref. [6], equal to 7±1×103 pm/V.
The KS-IPA response peaks around 0.85 eV, and captures the
magnitude of the experimental value but underestimates it by
roughly a factor two. The SHG MB-LRC spectrum grows
with the value of α

z
LRC until it equals 0.3, where it basically

matches the experiment and therefore represents the optimal
value. For α

z
LRC > 0.3, the magnitude of |χzzz

2 (ω,ω)| starts
decreasing and it becomes nearly overdamped for α

z
LRC > 0.6.

The overall shape of the spectrum is maintained in the whole
range of α

z
LRC considered. By applying the same procedure to

the zxx and xxz components we have determined the remain-
ing coefficient α

x=y
LRC = 1.8.

In Ref. [6], two additional measurements were conducted
at ≃ 1.55 eV for varying angle θ of linearly-polarized light,
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with the field oriented along the [1,1,-1] (parallel setup, ∥)
and [1,-1,0] (perpendicular setup, ⊥) directions. Making use
of the appropriate combination of the SHG tensor compo-
nents (see Eqs. 3 and 4 of the Supplementary Information in
Ref. [6]), we have calculated the angular dependence of the
SHG intensity and compared it to the experimental polar plot,
as shown in Fig. 6(b). For the parallel configuration, the re-
sponse shows an elongated shape along the θ = 0 axis that
is remarkably well captured by our MB-LRC result. For the
perpendicular configuration, the response shows a four-fold
structure with maxima at π/4+n ·π/2 and minima at n ·π/2
for any integer n. While the KS-IPA calculation fails in both
magnitude and shape, our MB-LRC result nicely agrees with
the experimental measurement, thus capturing the main char-
acteristics of the photoresponse at this particular energy.

As the last step, we proceed to study the low-energy
region accessed in Ref. [93], where a narrow reso-
nance was measured at ≃ 0.75 eV. In Fig. 6(c) we
compare the experimentally measured |σ zxx

M,2|, |σ xxz
M,2| and

|σ eff
M,2| ≡ |σ zzz

M,2 +4σ
xxz
M,2 +2σ

zxx
M,2| with our calculations using

the optimal values of αa
LRC quoted previously. Our results un-

derestimate the main exciton-like peak by an order of magni-
tude, and we have been unable to strike a substantial improve-
ment by further varying αa

LRC. The description of this low-
energy peak appears therefore to be beyond the scope of the
linear tensorial LRC xc kernel considered here. It is tempting
to speculate that it might be induced by MB corrections not
included in our calculations, e.g., a frequency dependence in
the LRC xc coefficients αa

LRC(ω) [100, 101], or the quadratic
tensorial xc kernel of Eq. 5.

V. SUMMARY AND OUTLOOK

In summary, we have described a general scheme for cal-
culating the quadratic optical response to light tensor of crys-
tals taking into account many-body interactions. We have for-
mally included excitonic effects by means of a tensorial long-
range exchange-correlation kernel whose coefficients have
been calculated using two variants of the parameter-free boot-
strap approximation. We have also generalized previous
independent-particle expressions [12–14, 27, 28] for the tran-
sition matrix elements to account for all metallic contribu-
tions, allowing an exhaustive study of materials like Weyl
semimetals.

Linking the formalism with the Wannier interpolation of
the transition matrix elements [46, 47, 102], we have per-
formed calculations of the second-harmonic generation pho-
toresponse tensor in a range of materials. Besides bench-
marking our approafch in bulk GaAs, we have shown that
the electron-hole attraction can give rise to strong and sharply
localized one- and two-photon resonances that are absent in
the Kohn-Sham photoresponse. In the graphitic-layered bulk
crystal BC2N, an space-averaged isotropic approach over-

estimates the electronic renormalization by orders of mag-
nitude, highlighting the need of accounting for the space-
resolved anisotropic nature of many-body interactions in ten-
sorial form. We have further verified that the bootstrap and the
RPA-bootstrap kernels yield virtually the same result, consis-
tent with previous studies in small to medium-gap semicon-
ductors [86, 103, 104]. Finally, with the use of a highly dense
k-space mesh, our calculations have reproduced the magni-
tude and angular dependence of the photoresponse for the
Weyl semimetal TaAs measured recently [6].

We hope that the presented scheme together with its imple-
mentation in the Wannier90 and WannierBerri code pack-
ages will facilitate an efficient and accurate calculation of the
quadratic optical photoresponse of materials beyond the SHG
process analyzed here. We note that the procedure adopted for
including many-body excitonic effects requires only a fraction
of the computational time as compared to the calculation of
the Kohn-Sham photoresponse.

The proposed method can be improved in several fronts.
Adopting a Wannier-based strategy for the calculation of the
linear xc kernel in metals and semimetals (see e.g., Ref. [105])
would allow a fully parameter-free analysis in these type of
materials. An improved description of many-body effects can
be achieved by extending the LRC xc coefficients to frequency
domain [100, 101] or by working out an approximation for
the second-order xc kernel, which would open the way to
study potentially new excitonic effects that have been barely
described in the literature up to now. The method can also
model crystal local-field corrections, whose effect tends to re-
duce the intensity of the SHG spectra [106] and could there-
fore improve agreement with experiments. Finally, account-
ing for quasiparticle self-energy corrections due to electron-
electron or electron-phonon interactions would allow mod-
elling extrinsic quadratic contributions such as the ballistic
current [2, 107–109]. We expect to address these subjects in
future works.
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APPENDIX A: DERIVATION OF THE QUADRATIC
DYSON-LIKE RESPONSE TENSOR EQUATION

Here we outline the steps involved in the derivation of the
Dyson-like equation relating the MB and KS conductivity ten-
sors at second order in Eq. 15 of the main text. We start by
applying the chain rule twice in the definition of the quadratic
MB conductivity tensor in Eq. 14a,
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σ
abc
1 (1,2,3) =

δ

δEb
ext(2)

[∫
∑
d

δJa(1)
δEd

tot(4)
δEd

tot(4)
δEc

ext(3)
d4

]

=
∫

∑
d

{
δ 2Ja(1)

δEb
ext(2)δEd

tot(4)
δEd

tot(4)
δEc

ext(3)
+

δJa(1)
δEd

tot(4)
δ

δEb
ext(2)

[
δEd

tot(4)
δEc

ext(3)

]}
d4

=
∫∫

∑
de

δ 2Ja(1)
δEe

tot(5)δEd
tot(4)

δEe
tot(5)

δEb
ext(2)

δEd
tot(4)

δEc
ext(3)

d4d5+
∫

∑
d

δJa(1)
δEd

tot(4)
δ 2Ed

tot(4)
δEb

ext(2)δEc
ext(3)

d4.

(A1)

The first term on the right-hand side (r.h.s.) of the last line in Eq. A1 can be expressed in terms of σ
KS
2 and ε using Eqs. 14b

and 10, respectively. As for the second term, the piece δJa(1)/δEd
tot(4) can be written in terms of σ

KS
1 using Eq. 8b, while the

calculation of the remaining piece requires applying the chain rule again,

δ 2Ed
tot(4)

δEb
ext(2)δEc

ext(3)
=

δ

δEb
ext(2)

[
δ (4,3)δdc +

∫
∑
e

δEd
Hxc(4)

δJe(5)
δJe(5)

δEc
ext(3)

d5
]

=
∫

∑
e

[
δ 2Ed

Hxc(4)
δEb

ext(2)δJe(5)
δJe(5)

δEc
ext(3)

+
δEd

Hxc(4)
δJe(5)

δ 2Je(5)
δEb

ext(2)δEc
ext(3)

]
d5

=
∫∫

∑
e f

δ 2Ed
Hxc(4)

δJ f (6)δJe(5)
δJ f (6)

δEb
ext(2)

δJe(5)
δEc

ext(3)
d5d6+

∫
∑
e

δEd
Hxc(4)

δJe(5)
δ 2Je(5)

δEb
ext(2)δEc

ext(3)
d5,

(A2)

where we used ε−1,ab(1,2) = δEa
tot(1)

δEb
ext(2)

and Eq. 14b. The first term on the r.h.s. of the last line in Eq. A2 can be expressed in terms

of Kabc
xc,2(1,2,3) and σab

1 (1,2) using δ 2Ea
Hxc(1)

δJb(2)δJc(3) = Kabc
xc,2(1,2,3) and Eq. 8a, respectively. As for the second piece, it can be recast

in terms of Kab
Hxc,1(1,2) and σ2 using Kab

Hxc,1(1,2) =
δEa

Hxc(1)
δJb(2) and Eqs. 14a, respectively.

Taking into account all the previous observations, we can rewrite Eq. A1 as

σ
abc
2 (1,2,3) =

∫∫
∑
de

σ
KS,aed
2 (1,5,4)ε−1,eb(5,2)ε−1,dc(4,3)d4d5

+
∫∫∫

∑
de f

σ
KS,ad
1 (1,4)Kd f e

xc,2(4,6,5)σ
f b

1 (6,2)σ ec
1 (5,3)d4d5d6

+
∫∫

∑
de

σ
KS,ad
1 (1,4)Kde

Hxc,1(4,5)σ
ebc
2 (5,2,3)d4d5.

(A3)

Moving now the last term on the r.h.s. of Eq. A3 to the left-hand side (l.h.s.), we can rewrite this side with the quadratic MB
conductivity tensor as a common factor. Taking advantage from the definition of the dielectric tensor in Eq. 12, we obtain that

∫
∑
e

[
δ (1,5)δae −

∫
∑
d

σ
KS,ad
1 (1,4)Kde

Hxc,1(4,5)d4

]
σ

ebc
2 (5,2,3)d5 ≡

∫
∑
d

ε
da(1,4)σdbc

2 (4,2,3)d4 =∫∫
∑
de

σ
KS,aed
2 (1,5,4)ε−1,eb(5,2)ε−1,dc(4,3)d4d5+

∫∫∫
∑
de f

σ
KS,ad
1 (1,4)Kd f e

xc,2(4,6,5)σ
f b

1 (6,2)σ ec
1 (5,3)d4d5d6.

(A4)

Finally, inverting the transpose of the dielectric tensor from the r.h.s. to the l.h.s., we arrive at the Dyson-like equation 15 quoted
in the main text:

σ
abc
2 (1,2,3) =

∫∫∫
∑
de f

ε
−1,da(1,4)σKS,de f

2 (4,5,6)ε−1,eb(5,2)ε−1, f c(6,3)d4d5d6

+
∫∫∫

∑
de f

σ
ad
1 (1,4)Kde f

xc,2(4,5,6)σ
eb
1 (5,2)σ f c

1 (6,3)d4d5d6.
(A5)

APPENDIX B: KS OPTICAL RESPONSE TENSOR
EXPRESSIONS UP TO SECOND ORDER

In this appendix we provide the expressions of all optical
KS response tensors up to second order within the formalism

of Sipe and co-workers [12–14] (see Sec. II B). These expres-
sions are valid for any combination of ω1 and ω2 and include
metallic terms proportional to k-space derivatives of the occu-
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pation factors. Here we merely quote the final expressions; for
details on the derivation steps, we refer the reader to Sec. IV
in Ref. [14] or to Appendix A in the Supplemental Material of
Ref. [27].

At first order, the optical KS interband polarizability and
intraband conductivity tensors are respectively expressed as

α
KS,ab
ter,1 (ω) =

e2

h̄V ∑
kmn

fnm
ra

nmrb
mn

ωmn − ω̃
, (B1a)

σ
KS,ab
tra,1 (ω) =

e2

h̄V ∑
kn

fn

(
i
ωn;ab

ω
− εcabΩ

c
n

)
, (B1b)

while at second order they are respectively expressed as

α
KS,abc
ter,2 (ω1,ω2) =

e3

2h̄2V

{
∑

kmnl

ra
nm

ωmn − ω̃12

[
fnl

(
rb

lnrc
ml

ωln − ω̃1
+

rc
lnrb

ml
ωln − ω̃2

)
− flm

(
rb

mlr
c
ln

ωml − ω̃1
+

rc
mlr

b
ln

ωml − ω̃2

)]
+i ∑

kmn

(
fnmrb;c

mn + fnm;crb
mn

ωmn − ω̃1
− fnmrb

mnΛc
mn

(ωmn − ω̃1)
2 − fnm;brc

mn

ω1

+
fnmrc;b

mn + fnm;brc
mn

ωmn − ω̃2
− fnmrc

mnΛb
mn

(ωmn − ω̃2)
2 − fnm;crb

mn

ω2

)}
.

(B2a)

σ
KS,abc
tra,2 (ω1,ω2) =

e3

2h̄2V

{
− ∑

kmn

[
fnmΛa

nm

ω12

(
rc

nmrb
mn

ωmn − ω̃1
+

rb
nmrc

mn

ωmn − ω̃2

)
+ fnm

(
rc;a

nmrb
mn

ωmn − ω̃1
+

rb;a
nm rc

mn

ωmn − ω̃2

)]
+∑

kn

[
i
(

fn;bεdac

ω1
+

fn;cεdab

ω2

)
Ω

d
n −

va
n fn;bc

ω1ω2

]}
.

(B2b)

All quantities appearing in the expressions above have been
introduced in Sec. II B except for ωn;ab in Eq. B1b, which
stands for the inverse effective mass tensor. As a remark, the
metallic terms of the quadratic optical KS intraband polariz-
ability tensor in Eq. B2a are shown here for the first time to
the best of our knowledge.

APPENDIX C: TENSORIAL KERNELS

Here we describe the calculation of the tensorial kernels in
the optical limit. Let us start by reviewing the Hartree contri-
bution. The Hartree potential is defined by

VH(1) =
∫

vc(1,2)ρ(2)d2, (C1)

where vc(1,2) = δ (t1 − t2)/|r1 − r2| is the static Coulomb
scalar potential and ρ(1) is the charge density. With the aid
of Maxwell’s equation, E(r, t) =−∇∇∇V (r, t) and the continu-
ity equation, ∇∇∇ ·J(r, t) =−∂tρ(r, t), the Hartree electric field
in wavevector and frequency space is expressed as

EH(q1,ω) = ∑
q2

KH(q1,q2,ω) ·J(q2,ω), (C2)

with the kernel given by

Kab
H (q1,q2,ω) = qa

1
vc(q1,q2)

iω
qb

2 = qa
1

4πδq1,q2

iω|q1||q2|
qb

2. (C3)

Above, q1 and q2 represent momenta and the Fourier trans-
form of the Coulomb potential was used. Applying the

q1,q2 → 0 optical limit in Eq. C3, the tensorial Hartree kernel
takes the usual form

Kab
H (ω) = δab

4π

iω
, (C4)

which is a diagonal and isotropic tensor owing to the longitu-
dinal and radial nature of the Coulomb force.

Coming now to the xc piece, its electric field up to linear
order is written as

Exc,1(q1,ω) = ∑
q2

Kxc,1(q1,q2,ω) ·J(q2,ω). (C5)

Assuming that the nonlocal long-range behaviour of excitonic
effects completely dominates over all other terms in the op-
tical limit [71], the xc contribution can be modelled by a
Coulomb-like attractive interaction with LRC xc coefficients
αa

LRC. In the wavevector and frequency domain, the corre-
sponding tensorial xc kernel reads

Kab
xc,1(q1,q2,ω) =−qa

1
αa

LRCδab

iω|q1||q2|
qb

2, (C6)

which is a diagonal tensor owing to the longitudinal nature
of Coulomb-like forces. The tensorial nature of the xc ker-
nel in TDCDFT was stressed in early works by Vignale and
co-workers [48, 49], as well as in later works making use
of polarization functionals [76, 110]. At variance with the
Hartree contribution in Eq. C3, the tensorial coefficients αa

LRC
in Eq. C6 allows a space-resolved anisotropic response of the
xc electric field along the crystal axes. By taking the optical
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limit in Eq. C6, we arrive at the simplified expression used in
our calculations,

Kab
xc,1(ω) =−αa

LRCδab

iω
. (C7)

The bootstrap method is a parameter-free approxima-
tion that was originally proposed for self-consistenty cal-
culating the space-averaged isotropic scalar α-coefficient in
TDDFT [74]. We have adopted this method to compute αa

LRC
by means of the expression

α
a
LRC = ε

−1,aa
M (0)

[
α

KS
1 (0)

]−1,aa
, (C8)

which requires calculating the LRC xc coefficients indepen-
dently for each of the three Cartesian directions. As in the
original bootstrap kernel, the calculation of the coefficients is
done iteratively; firstly, the microscopic optical MB conduc-
tivity is calculated by means of Eqs. 24 and 25; secondly, the
macroscopic optical dielectric tensor by means of Eq. 27; and
finally, the coefficients αa

LRC by means of Eq. C8. The iter-
ative loop starts with the initial guess αa

LRC = 0 and finishes
when self-consistency is reached.

APPENDIX D: THE OPTICAL
MACROSCOPIC-MICROSCOPIC CONNECTION

In this appendix we derive the relations that connect calcu-
lable response tensors at the microscopic scale with their mea-
surable macroscopic counterparts in the optical limit. This is
largely based on the work of Del Sole and Fiorino for the first
order [54], and on the work of Luppi and co-workers for the
second order [35].

1. General definitions and useful relations

The response of a material to an applied external electric
field can be mainly described in two ways. On the one hand,
the ability of a material to conduct an electric current is de-
scribed by the electric conductivity, which relates the electric
current-density vector to the electric field. On the other hand,
the ability of a material to electrically polarize is described by
the electric susceptibility or polarizability, which relates the
electric polarization-density vector to the electric field.

At the macroscopic scale (M), these relations are expressed
in terms of the macroscopic total electric field EM

tot(r, t), in
such a way that the j-th order power series expansion of the
macroscopic electric current- and polarization-density vectors
are respectively defined as

JM, j(1) =∫
...
∫ 1

0
σM, j(1, ..., j+1)∏

j
Etot,M( j+1)d j+1

(D1a)

PM, j(1) =

ε0

∫
...
∫ 1

0
χ j(1, ..., j+1)∏

j
Etot,M( j+1)d j+1

(D1b)

where JM, j(r, t) and PM, j(r, t) are the j-th order macro-
scopic electric current- and polarization-density vectors, re-
spectively, and σM, j(1, ..., j+1) and χ j(1, ..., j+1) are
the j-th order macroscopic conductivity and suscepti-
bility tensors, respectively. The complete macroscopic
current- and polarization-density vectors are given by
JM(r, t) = ∑ j JM, j(r, t) and PM(r, t) = ∑ j PM, j(r, t), respec-
tively.

In turn, at the microscopic scale the relations are expressed
in terms of the microscopic external electric field Eext(r, t), in
such a way that the j-th order power series expansion of the
microscopic electric current- and polarization-density vectors
are respectively defined as

J j(1) =
∫
...
∫ 1

0
σ j(1, ..., j+1)∏

j
Eext( j+1)d j+1, (D2a)

P j(1) =
∫
...
∫ 1

0
α j(1, ..., j+1)∏

j
Eext( j+1)d j+1 (D2b)

where J j(r, t) and P j(r, t) are the j-th order microscopic
electric current- and polarization-density vectors, respec-
tively, and σ j(1, ..., j+1) and α j(1, ..., j+1) are the j-
th order microscopic conductivity and polarizability ten-
sors, respectively. The complete microscopic current- and
polarization-density vectors are given by J(r, t) = ∑ j J j(r, t)
and P(r, t) = ∑ j P j(r, t), respectively.

In the absence of magnetization, and free charge and cur-
rent densities, the current- and polarization-density vectors are
related by J(M),( j)(r, t) = ∂tP(M),( j)(r, t), both at the macro-
scopic and microscopic levels, as well as at any order of the
power series expansion. Using the latter relation and com-
paring Eq. D1a and Eq. D1b, we can derive the connections
between the macroscopic conductivity and susceptibility up to
second order.

In the reciprocal space and frequency domain, the connec-
tion at first order in the optical limit is given by

σM,1(ω) =−iωε0χ1(ω), (D3)

and at second order by

σM,2(ω1,ω2) =−i(ω1 +ω2)ε0χ2(ω1,ω2). (D4)

In an analogous way, we can derive the connection between
microscopic conductivity and polarizability up to second or-
der, but this time comparing Eq. D2a and Eq. D2b. At first
order it is given by

σ1(ω) =−iωα1(ω), (D5)

and at second order by

σ2(ω1,ω2) =−i(ω1 +ω2)α2(ω1,ω2). (D6)

2. Macroscopic optical susceptibility

Our main goal is to express macroscopic response tensors
as a function of their respective microscopic counterpart. To
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this end, the simplest option is to switch to the KS electronic
system, where the observables in Eqs. D2a and D2b are de-
fined in terms of the microscopic total electric field Etot(r, t)
as in Eq. 6 for the current, and then take a macroscopic spatial
average of the microscopic quantities. In the so-called long-
wavelength limit, where the real-space variation of the total
electric field over distances of the order of the lattice param-
eter is neglected and therefore the total electric field is per
se of macroscopic character, the macroscopic spatial average
of microscopic quantities is straightforward; it is sufficient to
retain the G = 0 reciprocal lattice vector [51]. Furthermore,
the averaging is even more direct in the optical limit, since
microscopic quantities are calculated assuming ideally a non-
variational character in space. Therefore, under this point of
view, one can state that the macroscopic optical conductiv-
ity is equal to its microscopic KS counterpart at any order,
i.e. σM, j(1, ..., j+1) = σKS

j (1, ..., j+1).
Nevertheless, the previous approach does not account for

many-body effects in the response, since those are assumed to
be already included in the total electric field. In order to over-
come this limitation, one can obtain an expression of the exter-

nal electric field as a function of the total electric field at the
microscopic level by using Maxwell’s equations and related
constitutive relations. Then, the resulting expression is used
to define microscopic observables in Eqs. D2a and D2b in
terms of the total electric field, whose macroscopic spatial av-
erages give access to the formulation of macroscopic response
tensors including many-body effects. Following Ref. [35], in
the reciprocal space and frequency domain, the longitudinal-
longitudinal (LL) component of the linear macroscopic sus-
ceptibility tensor is given by [54]

χ
LL
1 (q,ω) = 4πα

LL
1 (q,ω)εLL

M (q,ω), (D7)

where αLL
1 (q,ω)≡ α1

LL
GG′(q,ω)δG,0δG′,0 is the LL

component of the macroscopic spatial averaged mi-
croscopic MB polarizability tensor at first order, and
εLL

M (q,ω) = [1−4παLL
1 (q,ω)]−1 is the LL component of

the macroscopic dielectric tensor. In an analogous way, the
longitudinal-longitudinal-longitudinal (LLL) component of
the quadratic macroscopic susceptibility tensor is expressed
as

χ
L12L1L2
2 (q1,q2,ω1,ω2) = 4πε

L12L12
M (q12,ω12)α

L12L1L2
2 (q1,q2,ω1,ω2)ε

L1L1
M (q1,ω1)ε

L2L2
M (q2,ω2), (D8)

where L1, L2 and L12 stand for the longitudinal component along the directions q1, q2 and q12 ≡ q1 + q2, respectively, and
α

L12L1L2
2 (q1,q2,ω1,ω2)≡ α2

L12L1L2
G12G1G2

(q1,q2,ω1,ω2)δG12,0δG1,0δG2,0 is the LLL component of the spatially averaged micro-
scopic MB polarizability tensor at second order.

The adopted framework is valid for any q and describes lon-
gitudinal responses to longitudinal perturbations [54]. In the
optical limit (q → 0), one can always find three principal axes
for any crystal symmetry in which the macroscopic dielectric
tensor is diagonal [111]. In this reference frame a longitudinal
perturbation induces a longitudinal response, hence any opti-
cal property of the crystal can be deduced from a longitudinal
calculation [112]. Therefore, in the principal frame the linear
macroscopic optical susceptibility tensor is expressed as

χ
aa
1 (ω) = 4πα

aa
1 (ω)εaa

M (ω), (D9)

and the quadratic macroscopic optical susceptibility tensor as

χ
abc
2 (ω1,ω2) = 4πε

aa
M (ω12)α

abc
2 (ω1,ω2)

× ε
bb
M (ω1)ε

cc
M (ω2),

(D10)

where a, b and c are principal axis components of the crystal.
Note that for any crystal with a symmetry greater or equal
to the orthorhombic symmetry, a, b and c coincide with the
Cartesian coordinates [77].

3. Macroscopic optical conductivity

The derivation of the optical macroscopic-microscopic con-
nection in the previous section has been given in terms of the
macroscopic susceptibility and the microscopic polarizability.
Nevertheless, one can also express this connection in terms
of the conductivity by means of the identities provided in
Sec. D 1. In particular, inserting Eqs. D3 and D5 into Eq. D9
one obtains the linear macroscopic optical conductivity,

σ
aa
M,1(ω) = σ

aa
1 (ω)εaa

M (ω), (D11)

while inserting Eqs. D4 and D6 into Eq. D10 yields the ex-
pression for the quadratic macroscopic optical conductivity,

σ
abc
M,2(ω1,ω2) = ε

aa
M (ω12)σ

abc
2 (ω1,ω2)

× ε
bb
M (ω1)ε

cc
M (ω2).

(D12)
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