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Magnetic field can generally induce circular phonon dichroism based on the formation of Landau
levels of electrons. Here we study the magnetization-induced circular phonon dichroism in transition
metal dichalcogenides, without forming the Landau levels. We find that, instead of the conventional
deformation potential coupling, the pseudogauge-type electron-phonon coupling plays an essential
role in the emergence of the phenomenon. As a concrete example, a large dichroism signal is
obtained in monolayer MoTe2 on a EuO substrate, even without considering the Rashba spin-orbit
coupling. Due to the two-dimensional spin-valley-coupled band structure, MoTe2 shows a reciprocal
and nonreciprocal absorption of circularly polarized acoustic phonons upon reversing the direction
of phonon propagation and magnetization, respectively. By varying the gate voltage, a tunable
circular phonon dichroism can be realized, which paves a way toward new physics and applications
of two-dimensional acoustoelectronics.

Introduction.—Recent years have seen a surge of inter-
est in investigating topological properties in the nonelec-
tronic systems, e.g., photonic, magnonic and phononic
materials. For phonons, the concepts of band topology
and geometry have brought into new ingredients: chiral
phonons [1–4], angular momentum [5–8], orbital mag-
netic moments of phonons [9–12], phonon angular mo-
mentum Hall effect [13], phonon rotoelectric effect [14]
and so on. In metals, the interplay between phonons
and electrons with nontrivial band topology or geometry
may further induce distinctive features, such as phonon
helicity [15] and phonon magnetochiral effect [16, 17].

Circular dichroism, the differential absorption between
left- and right-handed circularly polarized light, has been
widely used in examining topological phases of mat-
ter [18–24]. A phononic analog, namely, circular phonon
dichroism (CPD), is later proposed in three-dimensional
Weyl semimetals [25]. However, a direct analogy between
phonons and photons is not that obvious. The reasons
are twofold. First, the photon wave vector is usually
much smaller than the Fermi wave vector of electrons,
thus only inducing the interband transition of electrons;
whereas the phonon wave vector may be comparable to
that of electrons, giving rise to either interband or intra-
band transition (see Fig. 1 (b)). Second, light waves con-
sist of only transverse modes, whereas acoustic waves in
solids have both longitudinal and transverse modes. Par-
ticularly, when dealing with two-dimensional (2D) mate-
rials, one has to mix longitudinal and transverse in-plane
modes to create circular phonons [26], in marked con-
trast to the case of light. This indicates that 2D circular
phonon dichroism is intrinsically different from the circu-
lar dichroism of light, where the former has received far
less attention.

Experimentally, several works have unveiled the effect
of Landau levels of electrons on the phonon dispersion
or circular dichroism in graphene [26–28], such as the
magnetophonon resonance. Nevertheless, the treatment

of Landau levels inevitably induces topology, even into
an originally trivial system. In this sense, the CPD can
not resolve the real band topology or geometry of the un-
derlying system. Another way of breaking time-reversal
symmetry is to introduce the magnetic exchange inter-
action, which does not require the formation of Lan-
dau levels and could retain the basic topology or ge-
ometry of the band structure. Up to now, the intrinsic
magnetization-induced CPD in 2D materials like mono-
layer transition metal dichalcogenides, remains unknown.
This generalization of magnetization bears similarities
to the case of anomalous Hall effect, hence the name
anomalous circular phonon dichroism. The distinct
spin-valley-coupled band structure of transition metal
dichalcogenides may further contribute to the anoma-
lous behaviors of CPD and their nonreciprocal relations.
Therefore studying this new type of CPD would be de-
sirable for a better understanding and manipulation of
band geometry or topology in 2D materials.

In this paper, we explore the magnetization-induced
CPD in monolayer transition metal dichalcogenides. To
allow this effect, the pseudogauge-type electron-phonon
coupling is necessary instead of the conventional defor-
mation potential coupling. We obtain a large dichroism
signal in monolayer MoTe2 on a EuO substrate, even in
the absence of Rashba spin-orbit coupling. Due to the
unique spin-valley coupling, we find that MoTe2 shows
a reciprocal (nonreciprocal) absorption of circularly po-
larized acoustic phonons upon reversing the direction
of phonon propagation (magnetization). Our study re-
freshes our knowledge on the effect of electron-phonon
coupling on phonon dynamics, and paves the way toward
acoustoelectronics for 2D materials.

Model Hamiltonian.—We take the pristine 2H-phase
transition metal dichalcogenides MoTe2 on a EuO sub-
strate as a prototype (see Fig. 1 (a)). The effective
electronic Hamiltonian is given by He =

∑
k ψ

+(k)[H0 +
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FIG. 1. Schematics of (a) the setup and (b) electronic band
structure of monolayer MoTe2. In (a), 2H-phase monolayer
MoTe2 is deposited on the EuO substrate. In (b), yellow
(green) region corresponds to spin-up (-down) bands. Tran-
sition process of electrons due to acoustic phonons (photons)
is indicated by the blue solid (red dashed) line.

Hsoc +Hex +HR]ψ(k), where [29, 30]

H0 = h̄v(τσxkx + σyky) +
∆

2
σz,

Hsoc = τsz(λcσ+ + λvσ−),

Hex = −s · n(Bcσ+ +Bvσ−),

HR = λR(τsyσx − sxσy).

(1)

ψ+(k) and ψ(k) are the creation and annihilation op-
erator of electrons. Hsoc, Hex and HR correspond to
the Ising-type spin-orbit coupling, proximity-induced ex-
change and Rashba interaction, respectively. s and σ are
Pauli matrices acting on spin {↑, ↓} and orbit subspace
{|dz2〉, 1√

2
(|dx2−y2〉 + iτ |dxy〉)}, and σ± = 1

2 (σ0 ± σz).

τ = ±1 labels valley K±. λc/v describes the spin splitting
of the conduction and valence bands, respectively. Bc/v
is the effective Zeeman field experienced by the conduc-
tion and valence bands, arising from the exchange cou-
pling with the magnetic substrate. The out-of-plane z-
direction magnetization n = ez is considered (see Fig. 1
(a)). For the moment, we set λR = 0 in order to have an-
alytical expressions and intuitive physical picture. The
role of λR will be clarified later. The electronic band
structure upon magnetization is schematically shown in
Fig. 1 (b), where the signature of spin-valley coupling
can be seen explicitly. The Fermi level is pinned at the
valence bands, where the effect of spin-valley coupling is
manifest. The magnetization Bc/v shifts the opposite-
spin states from different valleys in opposite directions,

and thus breaks the time-reversal symmetry.
For the phononic part, we consider two branches of

in-plane acoustic phonon modes. Due to the low sound
velocity cl/t (l/t for longitudinal/transverse phonon po-
larization), the acoustic phonon energy ωl/t = h̄cl/t|q| is
much smaller than the valence band splitting of electrons,
i.e., 2(Bv ± λv), where q is the phonon wave vector. As
a result, only intraband transitions of electrons are trig-
gered by acoustic phonons (see Fig. 1 (b)). By contrast,
optical phonon modes with larger energy, may enable
either intraband or interband transitions. Nonetheless,
the basic physical picture should be similar. For simplic-
ity, we further study the long-wavelength limit of phonon
modes, which allows us to neglect the intervalley scatter-
ing process of electrons.

Based on the theory of elasticity [31–33], the electron-
acoustic-phonon coupling in MoTe2 contains two terms:
He−ph = Hde−ph + Hpe−ph, where Hde−ph (Hpe−ph) refers
to the deformation (pseudogauge) potential coupling.

Hd/pe−ph has a general form [34, 35]

Hd/pe−ph =
∑
k,q

ψ+(k + q)[u(q) · T̂d/p(q)]ψ(k), (2)

where u(q) is the Fourier transform of the in-plane collec-

tive displacement u(r) for acoustic modes [32] and T̂ (q)
is the Fourier transform of the “effective” force operator
T̂ (r) acting on atoms by electrons. For the deforma-

tion potential Hde−ph, T̂d(q) = igdq, which is indepen-
dent of the valley index τ . For the pseudogauge poten-
tial Hpe−ph, the force operator becomes valley-dependent,

that is, T̂ τ=−1
p (q) = igp[q · σ, (q × σ)z] and T̂ τ=1

p (q) =

K[T̂ τ=−1
p (−q)]. K is the complex conjugation operator.

The relation between T̂ τ=1
p (q) and T̂ τ=−1

p (−q) preserves
the time-reversal symmetry of electron-phonon coupling
in the absence of magnetization.
Phonon equation of motion.—For the phonon dynam-

ics, we consider the phonon equation of motion in the
frequency-momentum (ω, q) domain [25]

ω2uα(q) =
∑
β

[Φαβ(q) + h̄χαβ(q, ω)]uβ(q), (3)

where α, β = x, y and Φ(q) is the dynamical matrix.
χαβ(q, ω) is a retarded response function arising from the
electron-phonon coupling and follows at each valley [35]

χταβ(q, ω + iδ) =
∑
n,m

∫
h̄d2k

ρ(2π)2

fτ,m,k − fτ,n,k−q
ω + iδ + Eτ,m,k − Eτ,n,k−q

× 〈τ,m,k|T̂ τα (q)|τ, n,k − q〉〈τ, n,k − q|T̂ τβ (−q)|τ,m,k〉.
(4)

Eτ,m,k and |τ,m,k〉 are the dispersion and electronic
wave function of Hamiltonian (1), respectively. fτ,m,k
(fτ,n,k−q) is the Fermi distribution function, ρ is the 2D



3

mass density, δ is a positive infinitesimal. Since only in-
traband transitions (band indices m = n) of electrons are
allowed by acoustic modes in the low-temperature limit,
m,n reduce to the ones intersected by the Fermi level,
i.e., spin-split valence bands at valley K± (see Fig. 1
(b)).

Circular phonon dichroism.—Our main interest lies in
the anti-Hermitian part of χ(q, ω), that is, −2iωγ(q, ω),
where γ(q, ω) is a Hermitian matrix satisfying γ+(q, ω) =
γ(q, ω). This matrix corresponds to the non-Hermitian
part of the phonon self-energy, which physically origi-
nates from the phonon absorption by electrons. In the
basis of {x̂, ŷ}T , γ matrix has the form

γ(q, ω) =

 D(q, ω) + D̄(q, ω) Ā(q, ω) + iA(q, ω)

Ā(q, ω)− iA(q, ω) D(q, ω)− D̄(q, ω)

 .
(5)

Different from the Weyl semimetals [25], new terms
D̄(q, ω) and Ā(q, ω) occur in monolayer MoTe2 as a re-
sult of D3h point-group symmetry. For the left- and
right-handed circularly polarized phonons, |uL/R〉 =
1√
2
[1 ±i]T , the damping (absorption) coefficients read

γL/R = D(q, ω) ∓ A(q, ω). The relative difference be-
tween γL and γR defines the circular phonon dichroism
(CPD). One can see that the behavior of CPD is totally
determined by A(q, ω)/D(q, ω).

For longitudinal or transverse phonons, the polariza-
tion is linear as |ul〉 = [cosφq sinφq]T and |ut〉 = [− sinφq
cosφq]T , where the angular variable φq = tan−1(qy/qx).
The damping coefficients are given by γl/t = D(q, ω)
± cos 2φqD̄(q, ω) ± sin 2φqĀ(q, ω), which explicitly de-
pends on the phonon propagation direction q. Here, dif-
ferent from the circular phonons, the damping coefficients
γl/t for the linear phonons depend on the parameters
D̄(q, ω) and Ā(q, ω).

Specifically for the deformation potentialHde−ph, γ ma-
trix is proportional to [35]

γ(q, ω) ∝

 q2
x qxqy

qxqy q2
y

 . (6)

This immediately leads to A(q, ω) = 0, meaning that
the CPD vanishes when only the deformation potential
coupling is taken in account. Meanwhile, γt = 0, sug-
gesting that there is no absorption for the transverse
phonon modes. This agrees with the fact that the de-
formation potential only couples electrons to the longi-
tudinal phonon modes [34].

For the pseudogauge potential Hpe−ph, the situation
is more complex. When only focusing on the acoustic
modes, analytical expressions for all elements of γ(q, ω)
matrix can be obtained [35]. For example, when a sin-
gle valence band at valley Kτ is intersected by the Fermi
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FIG. 2. (a) Angular φq-dependence of the damping coeffi-
cients γl (γt) for the longitudinal (transverse) acoustic phonon
modes. (b)-(d) Relations of the circular phonon dichroism
A/D versus the phonon wave vector q/kτ=−1

F , Fermi energy
EF and gap function ∆, respectively. In (b), the Fermi energy
is fixed: EF = −0.48 eV. The inset shows the details of the
cyan region, and the two peaks are due to the longitudinal
and transverse phonon modes, respectively. The peaks in the
cyan region are given by a summation of valleys K±, whereas
the peaks near q/kτ=−1

F = 2 are only determined by valley
K−. kτ=−1

F is the Fermi wave vector at valley K−. The red
dot refers to the case of (a). In (c), different values of q are
adopted. The locations of the Fermi level at the peaks are
shown in the inset: both valley K± are intersected at smaller
EF ; only valley K− is intersected at larger EF . In (d), the
black dot indicates the value of ∆ in (a)-(c): ∆ = 1.05 eV.
Parameters: λv = 0.11 eV, λc = 0.029 eV, h̄v = 2.33 eV·Å,
Bc = 0.206 eV, Bv = 0.17 eV [29], longitudinal and trans-
verse sound velocity cl = 3.64× 103 m/s and ct = 2.21× 103

m/s [36], mass density ρ = 9.40 × 10−6 kg/m2 [37] and the
electron-phonon coupling constant gp = 0.32 eV [38].

level, A(q, ω)/D(q, ω) reduces to

Aτ (q, ω)

Dτ (q, ω)
= τω

∆− τλc + τλv +Bc −Bv
2[ωxτF − (h̄vkτF )2]

Θ(kτF −
q

2
− kτ0 ),

(7)

where the Heaviside step function Θ(· · · ) constrains
the magnitude of phonon wave vector q = |q|.
kτF is a valley-dependent Fermi wave vector of elec-

trons. kτ0 = ω
2h̄v

√
1 + (∆−τλc+τλv+Bc−Bv)2

(h̄vq)2−ω2 and xτF =√
(∆−τλc+τλv+Bc−Bv

2 )2 + (h̄vkτF )2. However, such a

simple relation fails when both valleys are inter-
sected by the Fermi level, given that A(q, ω) =∑
τ A

τ (q, ω) and D(q, ω) =
∑
τ D

τ (q, ω). On the
other hand, both Ā(q, ω) and D̄(q, ω) become φq-
dependent [35]: Ā(q, ω) = −F (q, ω) sin 4φq and
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D̄(q, ω) = F (q, ω) cos 4φq, with a φq-independent fac-
tor F (q, ω). By substituting these into γl/t, we find for
linearly polarized phonons,

γl/t = D(q, ω)± F (q, ω) cos 6φq. (8)

One can see that γl/t has a six-fold (C6) rotational sym-
metry on φq (see Fig. 2 (a)), which is different from
the three-fold (C3) rotational symmetry of the underly-
ing crystals. The reason for the symmetry mismatch is
due to the reciprocal behaviors of γl/t upon reversing the
direction of phonon propagation, i.e., q → −q, as shown
in Table I. For phonons, cl/t � v, giving rise to [35]

D(q, ω) ≈ −F (q, ω). As a result, γl ≈ 2D(q, ωl) sin2 3φq
and γt ≈ 2D(q, ωt) sin2 3(φq− π

6 ). This means that there
is an angular shift π

6 in φq between γl and γt, as shown
in Fig. 2 (a).

For circularly polarized phonons, numerical results of
A(q, ω)/D(q, ω) as functions of the rescaled phonon wave
vector q/kτ=−1

F , Fermi energy EF and ∆ are shown in
Fig. 2 (b)-(d), respectively. The Fermi wave vector
kτ=−1
F rather than kτ=1

F is selected since the valence
band edge of valley K− is higher than K+, as shown
in Fig. 1. In Fig. 2 (b), a non-monotonic behavior of
A/D as q increases can be seen explicitly. The jumps at
q/kτ=−1

F ≈ 0.47 and 1.98 originate from the sudden van-
ishing of valley K+ and K−, respectively, as required by
the factor Θ(kτF−

q
2−k

τ
0 ) in Eq. (7). Such a factor can be

understood as a result of the energy and momentum con-
servation for the electron-phonon scattering process. For
acoustic phonons, the electron scattering approximately
occurs on the Fermi surface. In this sense, the phonon
wave vector q must be smaller than the maximum value of
momentum transfer of electrons, that is, q < 2kτF . kτ0 is a
small offset wave vector arising from the acoustic phonon
dispersion ω. As seen in the inset of Fig. 2 (b), there are
actually two adjacent peaks (jumps) in the highlighted
region corresponding to the l and t mode, respectively,
since kτ0 is different for ω = ωl/t. As the sound velocity
cl > ct, k

τ
0 is larger for the longitudinal mode, leading

to a smaller transition value of q. In Fig. 2 (c), the lo-
cations of the Fermi level for the peaks are indicated in
the inset. The peaks at the lower (higher) Fermi level
are dominated by valley K+ (K−), which exhibit oppo-
site signs of A/D. For each valley, the magnitude |A/D|
increases when the Fermi level is tuned toward the band
edge. Different values of q are also compared. We find

TABLE I. Transformation properties of parameters D, D̄, A
and Ā.

Transformation D(q, ω) D̄(q, ω) A(q, ω) Ā(q, ω)

q → −q + + + +

n→ −n + + − +

that by adopting a smaller q, the peaks are shifted to a
higher Fermi level, as kτF becomes smaller. The peaks
also show a larger magnitude and become sharper, par-
ticularly for the second peaks. Therefore this provides
a means of tuning the sign and magnitude of the CPD.
In Fig. 2 (d), the value of ∆ adopted in Fig. 2 (a)-
(c) is indicated. We can see that the magnitude |A/D|
is basically enhanced when ∆ increases, expect for the
discontinuous points. That is the reason why we pro-
pose monolayer transition metal dichalcogenides as can-
didate materials, which have large band gap and thus
large CPD signals. For an order-of-magnitude estimate,
we consider the parameters corresponding to the red dot
in Fig. 2 (b), which also refer to the case of Fig. 2
(a). We find D = 1.90 × 107/s and A = −7.81 × 105/s.
This yields a difference of the attenuation between the
left- and right-handed circularly polarized waves, that is,
(γL−γR)/c̄ ∼ 534/m, where c̄ = (cl+ct)/2 is the average
sound velocity. Such difference is much larger than that
of the Weyl semimetals [25], and should be observable in
ultrasonic experiments.

Nonreciprocal absorption.—Given that both the space-
inversion and time-reversal symmetry are broken in our
system, the absorption of circularly polarized phonons is
expected to be nonreciprocal. To see this, we consider in
Table I the transformation properties of parameters D,
D̄, A and Ā upon reversing the direction of phonon prop-
agation q or magnetization n. We find that D, D̄ and Ā
are even functions of q and n, whereas A is an even (odd)
function of q (n). Accordingly, the absorption coeffi-
cients of circular phonons γL/R remain unchanged under
the transformation q → −q, whereas γL/R interchange
with each other under the transformation n→ −n. This
represents a reciprocal and nonreciprocal CPD upon re-
versing the direction of phonon propagation and magne-
tization, respectively. Such result is similar to that of
the Faraday rotation of light polarization [39], where the
rotation angle only depends on the magnetic field direc-
tion. However, the origin is different. The absorption
of circularly polarized photons is actually nonreciprocal
when q → −q, but the chirality of circular photons also
depends on the light propagation direction q. As a re-
sult, the reciprocal q-dependence of the rotation angle
is recovered. On the other hand, due to the 2D nature,
the chirality of in-plane circular phonons is independent
of the phonon propagation direction q, giving rise to the
reciprocal absorption. This also indicates that there is
no directional dichroism [40] or phonon magnetochiral
effect [16, 17] in our system.

Roles of Rashba spin-orbit coupling.—Now we take
into account the Rashba term HR and treat it as a per-
turbation. Analytical expressions are calculated [35] and
numerical results of electronic band structure and CPD
are shown in Fig. 3. In Fig. 3 (a), we find that the
Rashba term shifts the conduction (valence) band edge
to higher (lower) energy at valley K−, whereas it hardly
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FIG. 3. (a) Electronic band structure of monolayer MoTe2
and (b) circular phonon dichroism A/D versus the Fermi en-
ergy EF for different strength of Rashba spin-orbit coupling.

changes the band structure at valley K+. This explains
the phenomenon of peak shift in Fig. 3 (b) since the
peaks are always close to the band edge. By increasing
the strength of Rashba spin-orbit coupling, the magni-
tude of CPD can be enhanced, which provides us a knob
to tune the CPD. For a realistic strength λR = 0.072
eV [29], the behavior of A/D is similar to the case with-
out Rashba spin-orbit coupling, thus validating our above
treatment. Particularly, we find that the introduction
of HR does not change the reciprocal behaviors of ab-
sorption coefficients γL/R under q → −q. Therefore, to
obtain the nonreciprocity, additional ingredients should
be taken into account, such as the cyclotron motion of
electrons [26–28, 41, 42] or phonon-magnon coupling [43].

Discussion and conclusion.—We have studied the cir-
cular phonon dichroism in magnetic two-dimensional ma-
terials, i.e., monolayer MoTe2 in proximity to the EuO
substrate. Large dichroism signal is obtained for the
pseudogauge-type electron-phonon coupling, even with-
out introducing the Landau levels or Rashba spin-orbit
coupling. Such a signal is reciprocal (nonreciprocal) upon
reversing the direction of phonon propagation (magneti-
zation). By varying the gate voltage, the CPD signal
can be tuned through the role of Fermi level and Rashba
spin-orbit coupling.

The proposed CPD effect can also be applied to
other transition-metal dichalcogenides with spin-valley-
coupled band structure, or their van der waals het-
erostructures. The effect can be detected by the pulse-
echo technique [44, 45] based on the different absorption
coefficients between left- and right-handed circularly po-
larized phonons. An alternative detection is the Raman
spectroscopy analysis [26, 27] of phonon polarization by
injecting a linearly polarized acoustic waves.
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