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Recent experiments have demonstrated interesting physics in a family of two-dimensional (2D)
composition-tunable materials Nb2n+1SinTe4n+2. Here, we show that owing to its intrinsic low
symmetry, metallic nature, tunable composition, and ambient stability, these materials offer a good
platform for studying Berry curvature dipole (BCD) and nonlinear Hall effect. Using first-principles
calculations, we find that BCD exhibits pronounced peaks in monolayer Nb3SiTe6 (n = 1 case).
Its magnitude decreases monotonically with n and completely vanishes in the n → ∞ limit. This
variation manifests a special hidden dimensional crossover of the low-energy electronic states in this
system. The resulting nonlinear Hall response from BCD in these materials is discussed. Our work
reveals pronounced geometric quantities and nonlinear transport physics in Nb2n+1SinTe4n+2 family
materials, which should be readily detected in experiment.

I. INTRODUCTION

The Hall effects, in which a transverse current jH is
induced by a longitudinal driving E field, are of funda-
mental importance in condensed matter physics [1–3]. At
linear order, i.e., with jH ∼ E, the Hall effect requires the
broken time reversal symmetry T , which can be achieved
either by an applied magnetic field or by intrinsic mag-
netism. This constraint is loosened when considering Hall
responses at nonlinear order, as the non-equilibrium elec-
tron distribution driven by E field already breaks T at
its first order. Focusing on the second-order response,
in nonmagnetic materials and in the absence of mag-
netic field, Sodemann and Fu proposed a Berry curvature
dipole (BCD) contribution to the nonlinear Hall current
jH ∼ E2 within the semiclassical theory framework [4].
Their work attracted great interest in the past few years,
and the effect has been successfully detected in several
material systems [5–24]. It was suggested that this effect
offers a new mechanism for nonlinear applications, such
as frequency-doubling and rectification [25–27].

For experimental study, two-dimensional (2D) mate-
rials have advantages in their great tunability. For ex-
ample, the Fermi level in 2D materials can be readily
tuned via gating technique to a large extent not possible
in 3D bulk materials [5, 28]. However, regarding BCD
and its induced nonlinear Hall effect, the constraint from
crystalline symmetry in 2D is rather stringent. It was
shown that the largest symmetry in 2D that allows for a
nonzero BCD is a single in-plane mirror line [4]. Hence,
to realize the effect, one has to choose crystals with very
low symmetry, which are rather limited, or takes extra

∗ caojin.phy@gmail.com
† zzy@mail.buct.edu.cn
‡ mafei@mail.xjtu.edu.cn

effort to exert strain or twist on the crystal to lower the
symmetry. This severely hinders the experimental study.

Recently, the family of composition-tunable materials
Nb2n+1SinTe4n+2 have attracted interest from both the-
ory and experiment [29–34]. In the bulk form, these
materials are van der Waals layered materials. Their
high-quality 2D layers can be obtained by mechanical
exfoliation method [35]. The special feature of this fam-
ily is the tunable composition embodied by the integer
n [36–39]. For each n, the system is a stoichiometric
crystal, and the physical properties have an interesting
dependence on n. For example, it was shown that in a
2D monolayer, for finite n, the material is nonsymmor-
phic nodal-line semimetal [29]; whereas the n→∞ limit,
i.e., the material Nb2SiTe4, is a narrow-gap semiconduc-
tor [33, 40]. With increasing n, the low-energy states at
Fermi level exhibits a dimensional change from 2D-like
states to 1D-like states [32].

We note that 2D Nb2n+1SinTe4n+2 materials actually
offer a good platform to explore BCD related physics.
First, except for the n → ∞ limit, all members of the
family have a sufficiently low symmetry to allow an in-
trinsic BCD, without the need of applied strain. Sec-
ond, they offer an opportunity of systematic investigation
of the evolution of BCD with the tunable composition.
Third, these 2D materials are stable at ambient condi-
tions [32], which facilitates experimental study as well as
possible applications.

Motivated by the above considerations, in this work,
we theoretically study BCD and nonlinear Hall effect
in monolayer Nb2n+1SinTe4n+2 materials. With first-
principles calculations, we show that the n = 1 case,
i.e., Nb3SiTe6, possesses a pronounced BCD. The magni-
tude can reach 1.54 Å in the hole doped case, larger than
previously reported values in 2D Td-WTe2 [18], strained
NbS2 [21] and WSe2 [18]. With increasing n, the BCD
peaks in the spectrum show a monotonic decrease and

ar
X

iv
:2

30
1.

00
94

6v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  3
 J

an
 2

02
3

mailto:caojin.phy@gmail.com
mailto:zzy@mail.buct.edu.cn
mailto:mafei@mail.xjtu.edu.cn


2

eventually vanish in the n→∞ limit. This behavior can
be understood from two perspectives. One is from the
symmetry perspective, and the other is from the dimen-
sional evolution of the electronic states. The latter view
manifests that although structurally, these materials are
strongly bonded in both directions in 2D, electronically,
the states exhibit a dimensional crossover from 2D to
1D. This hidden crossover dictates the change in BCD.
The key features of the results are further captured by
our constructed tight-binding models for this family of
materials. To guide experiment, we discuss properties of
the nonlinear Hall response arising from BCD. Our work
reveals interesting properties of Nb2n+1SinTe4n+2 family
materials and suggests them as a suitable platform to
explore BCD and nonlinear Hall physics.

II. COMPUTATION METHOD

Our first-principle calculations were based on the den-
sity functional theory (DFT), performed by using the
Vienna ab initio simulation package [41–43]. The ionic
potentials were treated by using the projector aug-
mented wave method [44]. The exchange-correlation
functional was treated by the generalized gradient ap-
proximation [45] in the scheme by Perdew, Burke, and
Ernzerhof [46]. The plane-wave cutoff energy was set to
be 400 eV, and a 10× 4× 1 Γ-centered k-point mesh was
used for the Brillouin zone (BZ) sampling. The conver-
gence criteria for the total energy and the force were set
to be 10−6 eV and 0.01 eV/Å, respectively. To avoid
artificial interaction between periodic images, a vacuum
space of 15 Å thickness was added. Spin-orbital cou-
pling (SOC) was included in all calculations. Based on
the band structure calculation, an ab initio tight-binding
model was constructed by using the Wannier90 pack-
age [47]. The d orbitals of Nb atoms and p orbitals of
Te atoms were used as the initial guess of the local basis.
The BCD was calculated based on this ab initio tight-
binding model. In evaluating BCD, we set T = 100 K in
the Fermi distribution function.

III. CRYSTAL AND ELECTRONIC
STRUCTURES

The Nb2n+1SinTe4n+2 family materials were first syn-
thesized in the 1990s by chemical vapour transport
method [36]. The lattice structures of their 2D mono-
layers are illustrated in Fig. 1. Here, each monolayer
consists of three atomic layers: the middle layer con-
taining Nb and Si atoms is sandwiched by two Te lay-
ers [Fig. 1(a)]. From the top view [see Figs. 1(b)-1(d)],
these materials can be viewed as composed of three build-
ing blocks, which are conventionally called the a, b, c
chains. As shown in Fig. 1(b), a and b chains contain Si
atoms and share the same composition of NbSi1/2Te2,
whereas the c chain does not contain Si and has the
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FIG. 1. (a) Lattice structure of monolayer Nb3SiTe6. (b) The
three building blocks of of Nb2n+1SinTe4n+2 family materials:
a, b and c chains. (c) Top view of n = 1 case (Nb3SiTe6). The
dashed box marks the unit cell. (d) Nb2n+1SinTe4n+2 can be
constructed by n copies of (ab) chains and one c chain in a
unit cell (the dashed box).

composition of NbTe2. Assuming these chains are along
the x direction [as in Fig. 1(c)], then a and b are con-

nected by a glide mirror operation M̃y = {My| 120}, and
in these materials they always appear together. Mem-
bers of this family are formed by assembling these chains
along the lateral direction (y) in a periodic manner, such
that Nb2n+1SinTe4n+2 corresponds to the arrangement
of (ab)nc. Namely, in a period, we have one c chain and
n copies of (ab) chains, as illustrated in Fig. 1(d). In the
n = ∞ limit, there is no c chain in the structure any
more, and we reach the composition of Nb2SiTe4.

Our optimized lattice parameters for n = 1, 2, 3,∞ are
listed in Table I. These values are in good agreement with
experiment and previous calculations [29, 30, 32]. We
also note that for members with finite n, they all have
the space group symmetry Pmc21, with C2v point group.
In comparison, Nb2SiTe4 with n =∞ has a larger space
group Pbam and a point group D2h. The main difference
is the extra glide mirror M̃x = {Mx|0 1

2} for n =∞ case
but not for any finite n. From Fig. 1(c), one can see that

it is the c chains that break the M̃x symmetry which
holds for (ab) chains.

In Fig. 2, we plot the calculated electronic band struc-
tures for the four representative members in Table I. One
can see that the band structures for n = 1, 2, 3 show sim-
ilar features. Previous works have shown that in the
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TABLE I. Optimized lattice parameters and the correspond-
ing symmetries of representative monolayer Nb2n+1SinTe4n+2

materials.

n a (Å) b (Å) Thickness (Å) Space group Point Group

1 6.408 11.633 3.649 Pmc21 C2v

2 6.405 19.590 3.770 Pmc21 C2v

3 6.404 27.552 3.651 Pmc21 C2v

∞ 6.401 7.962 3.783 Pbam D2h

absence of SOC, these materials are nodal-line semimet-
als [29, 32]. The nodal line on the X-M path around

Fermi level is enforced by the nonsymmorphic T M̃y sym-
metry. The detailed analysis was given in our previous
works [48], so we will not repeat it here. It should be
noted that in Fig. 2, the band structures include the SOC
effects. Under SOC, the T M̃y symmetry protection is no
longer exact, so the original nodal line degeneracy will be
lifted. In the enlarged view in Fig. 2(b), one can clearly
see the splitting of the nodal line. Nevertheless, there
is still a degenerate nodal point at X (and also at M).
This point is a fourfold degenerate Dirac point enforced
by nonsymmorphic symmetries of the system. Its for-
mation mechanism has been discussed in Ref. [29]. The
SOC induced change to the band structure is weak, so for
many properties, SOC may just be neglected. However,
band geometric properties like Berry curvature and BCD
are very sensitive to small-gap regions in band structures,
such as those due to SOC splitting. Therefore, to study
BCD and its nonlinear Hall effect, we have to include
SOC in the calculation.

The low-energy states around Fermi level are mostly
distributed on the c chains. Previous scanning tunnel-
ing spectroscopy (STS) experiments also verified this fea-
ture [32, 33]. With increasing n, the distance between
two c chains will increase and hence the coupling between
them will decrease. As a result, the band dispersion will
become flatter along the y direction, as can be seen in
Figs. 2(c)-2(e) along the Γ-Y and X-M paths.

For Nb2SiTe4 with n = ∞, Fig. 2(f) shows that it is
a narrow-gap semiconductor. The band gap is ∼ 0.51
eV, which is slightly larger than the band gap of lay-
ered Nb2SiTe4 (∼ 0.39 eV) [40]. This different character
can now be understood from the discussion above. One
can view the c chains as metals, whereas the (ab) chains
are insulating. Since Nb2SiTe4 is entirely made of (ab)
chains, its spectrum would naturally be gapped.

The features discussed above, particularly the evolu-
tion of band structure with n, will have important im-
plications on BCD and nonlinear Hall response in these
materials.

IV. BERRY CURVATURE DIPOLE

Berry curvature is an intrinsic band geometric quan-
tity. It plays an important role in many physical prop-
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FIG. 2. (a) Brillouin zone for monolayer Nb2n+1SinTe4n+2.
(b-f) Band structures for monolayer Nb2n+1SinTe4n+2: (b, c)
n = 1, where (b) is an enlarged figure around the path X-M
in (c); (d) n = 2; (e) n = 3; and (f) n =∞.

erties, especially anomalous transport properties [49]. In
nonmagnetic materials, nonzero Berry curvature requires
the breaking of inversion symmetry. This condition is ful-
filled in monolayer Nb2n+1SinTe4n+2 with finite n. For
Nb2SiTe4 with n = ∞, inversion symmetry is respected
and hence Berry curvature vanishes identically.

For a 2D system, Berry curvature only has a single
component, which can be expressed as (we set e = ~ = 1
in the formulas)

Ωz(nk) = −2 Im
∑
n′ 6=n

〈unk|vx|un′k〉〈un′k|vy|unk〉
(εnk − εn′k)2

, (1)

for a state |unk〉, where vx and vy are the velocity oper-
ators, and εnk is the energy of |unk〉.

Consider Nb3SiTe6 (n = 1). In Fig. 3(a), we plot the
distribution of its Berry curvature in BZ for occupied
states, i.e., the quantity

Ω(k) =
∑
n

f0Ωz(nk), (2)

where f0 is the Fermi distribution function. One observes
that the Berry curvature is odd in ky and even in kx, as

required by T and M̃y, and its value is quite pronounced
along the Γ-Y path.

BCD is the first moment of Berry curvature in BZ. It
is a pseudovector in 2D, defined as [4]

Da =
∑
n

∫
BZ

d2k

(2π)2
f0∂aΩz(nk)

=−
∑
n

∫
BZ

d2k

(2π)2
f ′0va(nk)Ωz(nk),

(3)
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(a) (b)

(c) (d)

(e) (f )

FIG. 3. Berry curvature and its dipole (BCD) in Nb3SiTe6.
(a) Distribution of Berry curvature for the occupied states.
(b) The BCD Dy versus chemical potential µ. (c-f) The k-
resolved BCD as defined in Eq. (4). Here, (c, d) are plotted
for µ = 0.064 eV (the upper peak in (b)), and (e, f) are for
µ = −0.180 eV (the lower peak in (b)). The Fermi contours
at these energies are indicated by the black curves.

where a ∈ {x, y}, ∂a ≡ ∂ka
, and in the second line, we

write it as a Fermi surface integral.
For finite n, Nb2n+1SinTe4n+2 only has a single mirror

line along x, which allows a nonzero BCD. Since D is
a pseudovector, it must be along the y direction, i.e.,
D = Dy ŷ. In Fig. 3(b), we plot the calculated Dy versus
the chemical potential µ for n = 1. One observes two
peaks in the figure: one is at 0.064 eV with a value of
0.399 Å, and the other is at −0.180 eV with a value of
−1.540 Å. The two peaks are of opposite signs. We note
that the magnitude of -1.540 Å is quite large. This is
comparable or larger than those found in monolayer Td-
WTe2 (0.1 ∼ 0.7 Å) [18], strained NbS2 (0.2 Å) [21] and
strained WSe2 (0.02 Å) [18].

To understand the origin of the large BCD in mono-
layer Nb3SiTe6, in Figs. 3(c)-3(f), we plot the k-resolved
BCD on Fermi surface, namely the quantity

Da(k) = −
∑
n

f ′0va(nk)Ωz(nk), (4)

for µ = 0.064 eV (upper peak) and −0.180 eV (lower
peak). First of all, one observes that Dx(k) is an odd
function in ky whereas Dy(k) is an even function, as re-

quired by the M̃y symmetry. Hence, after integral over
BZ, BCD only has the y component left. From Figs. 3(c)-
3(f), one can see that the nodal line region along X-M
does not make a sizable contribution to BCD. For the
upper peak [Fig. 3(d)], large contribution to Dy is from
the Γ-Y path, which corresponds to the SOC splitting
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-0.8

0

0 0.2-0.2 0 0.2-0.2
µ (eV)

0.8
n = 2 n = 3

(a) (b)

-0.8

0

0.8

D
y (
Å)

D
y (
Å)

FIG. 4. The BCD Dy versus chemical potential µ for (a)
n = 2, and (b) n = 3 cases.

gap indicated in Fig. 2(c). The spin splitting gap on
the outer Fermi surface [marked by the green arrow in
Fig. 3(d)] also gives a non-negligible contribution. As
for the lower peak, Figs. 3(e)-3(f) show that the Fermi
surface has two separate pieces. By examining the band
structure around the hot spots in Fig. 3(f), we find that
the large negative contribution is also from SOC splitting
of the band structure.

Next, we consider the cases with n = 2 and 3. From
the results in Fig. 4, one can see that the magnitude of
BCD decreases with increasing n. For n = 3, the BCD
value above µ = 0 (which is also the energy of nodal
line) is already negligibly small. As for the lower peak,
the value is about 0.663 Å for n = 2 and 0.396 Å for
n = 3.

This trend of decreasing BCD with increasing n
in monolayer Nb2n+1SinTe4n+2 can be understood
from two perspectives. First, in terms of symmetry,
Nb2n+1SinTe4n+2 with finite n supports BCD because
of its low symmetry. The presence of c chains is cru-
cial because they break the M̃x symmetry of (ab) chains

(Fig. 5). Without c chains, M̃x becomes an exact sym-
metry and it suppresses BCD (given the other mirrors in
the system) as in the n = ∞ limit. Hence, the density
of c chains in the system can be viewed as a measure of
the extent of symmetry breaking. It is strongest in n = 1
case, and gradually decreases as n increases, determining
the trend in BCD.

Meanwhile, the trend is also connected with the di-
mensional crossover in this system [34]. As discussed, the
low-energy states are mostly distributed on the c chains.
One may view the c chains as metallic 1D subsystems put
in an insulating matrix formed by the (ab) chains. For
small n, the system retains a 2D character, because the
c chains are not far from each other and the inter-chain
coupling is sizable. However, with increasing n, the inter-
chain coupling will decrease, and the system approaches
the quasi-1D character. Berry curvature is a differential
2-form, which vanishes in the 1D limit [as can also be seen
from Eq. (1)]. Thus, BCD must decrease and approach
zero during this dimensional crossover.

It must be emphasized that the dimensional crossover
here is referring to the low-energy electronic states.
Structurally, Nb2n+1SinTe4n+2 materials always main-
tain a 2D material character: the lattices are strongly
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x

y
y

FIG. 5. (a) (ab) chains preserve the M̃x symmetry, whereas c
chains break it. Hence, the density of c chains represents the
extend of M̃x symmetry breaking. (b) The Nb2n+1SinTe4n+2

system may be schematically viewed as 1D metallic chains
(c chains) embedded in a 2D insulator matrix (made of (ab)
chains).

bonded in both x and y directions. Thus, the crossover
is a hidden feature that occurs only for the electronic
sector. This is a very interesting piece of physics for 2D
Nb2n+1SinTe4n+2 materials. Now, we revealed its man-
ifestation in BCD, which can be detected via nonlinear
Hall measurement.

V. A MODEL STUDY

To understand the features in band structure and in
BCD, we construct an effective lattice model to describe
the low-energy bands in monolayer Nb2n+1SinTe4n+2

with finite n. The model may also serve as a good start-
ing point for other theoretical studies.

In Refs. [34, 48], we have proposed a 2D Dirac Su-
Schrieffer-Heeger (SSH) model, which is spinless (i.e.,
without SOC) and captures the nonsymmorphic nodal
line feature in monolayer Nb2n+1SinTe4n+2. However,
to study BCD, as we noted, the consideration of SOC
is necessary. Therefore, we need to extend the previous
spinless Dirac SSH model to include SOC effects.

The Dirac SSH model is defined on a rectangular lat-
tice, as shown in Fig. 6. It consists of an array of zigzag
chains running in the x direction. Physically, each chain
corresponds to a c chain in Nb2n+1SinTe4n+2. In a unit
cell, there are two sites A and B. Assigning one orbital
at each site and considering the nearest intra-chain and
inter-chain hoppings, one obtains the following model
constrained by T , M̃y, and Mz symmetries:

H0 = t

[
0 1 + e−ikx

1 + eikx 0

]
σ0

+t′
[

0 e−iky
(
1 + e−ikx

)
eiky

(
1 + eikx

)
0

]
σ0, (5)

where the momenta are measured in unit of the inverses
of lattice constants, and the Pauli matrices σ denote the

x
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0 0.80.4
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x
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0 0.2-0.2

0

0.3

-0.3

µ (eV)

D
y(Å
)

(a) (b)

(c) (d)

(e)

FIG. 6. (a) Schematic figure showing the tight-binding model.
The model consists of zigzag chains. A primitive cell contains
two sites A and B. t and t′ are the amplitudes for intrachain
and interchain hoppings. (b) illustrates the three hopping
processes corresponding to the SOC terms in Eq. (6). (c)
Band structure of the tight-binding model. (d) Corresponding
BCDDy versus chemical potential. (e) Variation of BCD peak
value as a function of the interchain coupling. The solid curve
is a guide to the eye. In (c, d), we set t = 0.2 eV, t′ = 0.16 eV,
λ1 = 1, and λ2 = λ3 = 0.1. The same values of t and λ’s are
taken in (e).

spin degree of freedom.
Next, we add SOC to the model. The above mentioned

symmetries resulted in the following SOC terms up to
second neighbor hopping processes:

HSOC = t

[
2λ1 sin kx 0

0 −2λ1 sin kx

]
σz

+t′
[

2λ3 sin ky iλ2e
iky
(
1 + e−ikx

)
−iλ2e−iky

(
1 + eikx

)
2λ3 sin ky

]
σz.

(6)

Here, the first term is from intrachain hopping process,
whereas the second term is from interchain process, as
indicated in Fig. 6(b).

Therefore, our spin-orbit-coupled Dirac SSH model is
obtained as

H = H0 +HSOC. (7)

In Fig. 6(c), we plot a typical band structure of this
model. Namely, there is an approximate nodal line on
the X-M path (split by SOC); the SOC splitting is ob-
served on X-M and Y -Γ paths, but not on the Γ-X and
M -Y paths. The double degeneracy on X-M and Y -Γ
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FIG. 7. (a) Illustration of the nonlinear Hall current induced
by E field in Nb3SiTe6. The in-plane E field makes an angle
θ from the mirror line. The induced Hall current is perpen-
dicular to the E field, as indicated by the green arrow. (b)
Nonlinear Hall conductivity χH versus the angle θ.

is due to the anti-commutation between M̃y and Mz on
these two paths. One can see that it indeed captures
the main features of DFT band structures in Fig. 2(c).
In Fig. 6(c), we plot the BCD calculated for this model.
The two BCD peaks in Fig. 3(b) are reproduced in this
simple model. One peak is above the nodal-line energy
and the other one is below, and they have opposite signs.
Finally, we plot the BCD peak magnitude as a function of
interchain coupling t′. One can see that the value mono-
tonically increases with the interchain coupling. Since
t′ decreases with n in monolayer Nb2n+1SinTe4n+2, the
behavior in Fig. 6(d) agrees with our result from DFT
calculations.

VI. NONLINEAR HALL EFFECT

It was shown that BCD leads to a second-order non-
linear Hall current. For a 2D system, the current can be
expressed as

jH = −1

2
τ ẑ ×E(D ·E), (8)

where E is the applied in-plane E field, and τ is the
relaxation time. Consider monolayer Nb2n+1SinTe4n+2

with the coordinate setup in Fig. 7(a). Assuming ap-
plied E field is in the direction specified by the polar
angle θ (with respect to the mirror line), i.e., (Ex, Ey) =
E(cos θ, sin θ), then the Hall current will be in the direc-
tion of (jx, jy) = jH(− sin θ, cos θ), with the Hall current
magnitude

jH = χH(θ)E2, (9)

and the nonlinear Hall conductivity

χH(θ) = −1

2
τDy sin θ. (10)

Experimentally, a 2D material sample can be etched
into a disk shape and attached with multiple pairs of

leads [6, 50], such that the sin θ angular dependence in
the nonlinear Hall response can be verified in experiment.
To measure the second-order nonlinear response, one typ-
ically modulates the driving source with a low frequency
and detects the signal at doubled frequency using the
lock-in technique [5, 6]. The Fermi level of 2D materials
can be readily tuned by using electric gating technique.
Here, consider monolayer Nb3SiTe6 (i.e., n = 1). With
our calculated Dy ∼ 1.54 Å at the lower peak, assuming
τ = 10 ps which is typical for 2D materials, the magni-
tude of χH can reach 2.9× 10−4 nm·S/V and its angular
dependence is shown in Fig. 7(b). Under a driving field
of E ∼ 104 V/m, the resulting nonlinear Hall current
density can reach ∼ 0.6 µA/cm . For n = 2 (3), the
signal is expected to be smaller by a factor ∼ 2 (∼ 4),
which is still detectable in experiment.

VII. CONCLUSION

We have revealed monolayer Nb2n+1SinTe4n+2 materi-
als as a suitable platform for studying BCD and nonlinear
Hall effect. These materials have the adequate symmetry
to support the effect without extra strain, enjoy stability
at ambient conditions, and exhibit composition tunabil-
ity. We show that BCD is most pronounced for the n = 1
case, where its magnitude can reach 1.54 Å. The BCD
value decreases with increasing n. This can be under-
stood from degree of symmetry breaking and also from a
dimensional crossover. It is interesting that this crossover
occurs only for the low-energy electronic states, whereas
structurally, the system is always strongly bonded in 2D.
The evolution of BCD with n can be regarded as a man-
ifestation of this hidden transition. We construct the
spin-orbit-coupled Dirac SSH model, which captures the
main features of DFT results. The nonlinear Hall con-
ductivity and its angular dependence are analyzed. Our
work uncovers interesting geometric quantities and non-
linear physics in Nb2n+1SinTe4n+2 family materials. It
provides useful guidance for subsequent experiments on
these systems.
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