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In an in-situ prepared three-terminal Josephson junction based on the topological insulator Bi4Te3
and the superconductor Nb the transport properties are studied. The differential resistance maps as
a function of two bias currents reveal extended areas of Josephson supercurrent including coupling
effects between adjacent superconducting electrodes. The observed dynamics for the coupling of the
junctions is interpreted using a numerical simulation of a similar geometry based on a resistively
and capacitively shunted Josephson junction model. The temperature dependency indicates that the
device behaves similar to prior experiments with single Josephson junctions comprising topological
insulators weak links. Irradiating radio frequencies to the junction we find a spectrum of integer
Shapiro steps and an additional fractional step, which is interpreted by a skewed current-phase
relationship. In a perpendicular magnetic field we observe Fraunhofer-like interference patterns of
the switching currents.

I. INTRODUCTION

Hybrid structures comprising three-dimensional topo-
logical insulator nanoribbons combined with supercon-
ductors are a very promising platform for realizing cir-
cuits for fault-tolerant topological quantum computing
[1–4]. For its operation Majorana bound states are em-
ployed, which are formed by aligning an external mag-
netic field with a nanoribbon proximitized with an s-type
superconductor [5–7]. For the braiding of different pairs
of Majorana states for qubit operation multi-terminal
structures are required [2, 8, 9]. Braiding can be per-
formed by adjusting the superconducting phase of the
superconducting electrodes to each other.

Multi-terminal Josephson junctions are the backbone
of Majorana braiding mechanism in a topological qubit;
where a three-terminal Josephson junction acts as a basic
building block [2]. Understanding the superconducting
transport in such a device holds a key importance for the
realization of a topological quantum system. Generally,
the use of hybrid devices with multiple connections leads
to rich physics in terms of transport properties. Indeed,
theoretical studies have investigated singularities, such
as Weyl nodes, in the Andreev spectra of multi-terminal
Josephson junctions [10–12]. Moreover, multi-terminal
Josephson junctions with topologically trivial supercon-
ducting leads may lead to realizations where the junction
itself can be regarded as an artificial topological material
[13]. Furthermore, three-terminal junctions also allow
transport via the quartet mechanism and non-local An-
dreev processes [14–17].

On the experimental side, multi-terminal Josephson
junctions were fabricated with different materials for the
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weak link. In three-terminal Josephson junctions with
a Cu or InAs nanowire subgap states [18, 19] and half-
integer Shapiro steps [20] were observed, indicating trans-
port via quartets of entangled Cooper pairs. Supercur-
rent flow affected by dissipative currents in an adjacent
junction was studied on graphene-based junctions [21].
Moreover, the higher-dimensional phase space was found
to lead to fractional Shapiro steps in this type of junctions
due to the inverse AC Josephson effect [4]. By combin-
ing a multi-terminal junction with a top gate, the effect
of gate voltage and magnetic field on the critical current
contour has been studied [3, 24, 25]. Recently, flakes of
the topological insulator Bi2Se3 were also used as a weak
link in an interferometer structure, and evidence for a
non-sinusoidal current-phase relationship was observed
[26]. In flux-controlled three-terminal junctions based on
Bi2Te3, the opening and closing of a minigap was studied
using normal probes [27].

Here, we report on the transport properties of a three-
terminal Josephson junction based on the Bi4Te3 mate-
rial system as the weak link and Nb as the supercon-
ductor. To fabricate the samples, we used selective-area
growth for the Bi4Te3 layer in combination with an in-
situ bridge technology to define the superconducting elec-
trodes [2]. Bi4Te3 is a natural superlattice of alternating
Bi2 bilayers and Bi2Te3 quintuple layers. Initially, Bi4Te3
has been reported to be a semimetal with zero band gap
and a Dirac cone at the Γ point [29]. However, recent
band structure calculations in conjunction with scanning
tunneling spectroscopy and angular photoemission spec-
troscopy measurements suggest that the material is a
semimetal with topological surface states [30–32]. In par-
ticular, advanced GW -band structure calculations have
shown that a band gap of about 0.2 eV opens at the Γ
point, which significantly reduces the density of the bulk
state in this energy range [32]. Bi4Te3 is classified as a
dual topological insulator, a strong topological insulator
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with a non-zero mirror Chern number, i.e. a topological
crystalline insulator phase. Though Bi4Te3 does not ex-
hibit the proposed Dirac semimetal phase, it is still a very
interesting material as it resides in close proximity to the
critical point of band crossing in the topological phase
diagram of BixTey alloys [33]. Such a transition is pro-
posed by Yang et al. [34] where a topological crystalline
insulator (Bi2Te3) [35] can be topologically transformed
into a topological Dirac semimetal through alloying it
with other materials. On our multi-terminal junctions,
we first investigated the DC properties and related the
results to simulations based on the resistively and capac-
itively shunted Josephson junction (RCSJ) model. We
then measured the radio frequency (rf) response, finding
evidence for coupling of adjacent junctions. Finally, the
behavior of our three-terminal junctions when an out-of-
plane magnetic field is applied is investigated.

II. EXPERIMENTAL

Using the previously introduced technologies of topo-
logical insulator selective-area growth and in-situ bridge
technology we fabricated three-terminal Josephson junc-
tions, as illustrated in Fig. 1(a) [2, 36]. The geome-
try of the nanoribbon T-shaped junction for selective-
area growth is defined by trenches in a SiO2/Si3N4

(5 nm/15 nm) layer on a highly-resistive Si (111) sub-
strate [37]. First, the 600-nm-wide nanotrenches are
etched into the top Si3N4 layer using a combination of
electron beam lithography and reactive ion etching. Sub-
sequently, a second set of layers, i.e. a 100-nm-thick SiO2

layer and a 300-nm-thick Si3N4 layer, is deposited on top
to define the stencil mask for the in-situ Nb deposition
[2]. After patterning the structures for the stencil mask
into Si3N4, SiO2 is etched in hydrofluoric acid (HF) form-
ing the free-hanging bridge structures. Simultaneously,
the Si(111) surface in the selective-area growth trenches
is released in the bottom SiO2 layer defined by the Si3N4

layer on top. The Bi4Te3 layer is selectively grown within
these trenches, while the Si3N4 bridge structures are em-
ployed to define the geometry of the in situ deposited su-
perconducting electrodes [2]. The Bi4Te3 layer is grown
at a temperature of 310◦C using molecular beam epitaxy.
Subsequently, the 50-nm-thick superconducting Nb elec-
trodes are deposited by electron beam evaporation fol-
lowed by covering the whole structure with a 5-nm-thick
Al2O3 dielectric capping layer. Our processing scheme
ensured a high-quality crystalline topological insulator
material with clean superconductor interfaces [2, 38], as
reported in previous transmission electron microscopy
studies. An electron microscopy image of the investi-
gated device is presented in Fig. 1(b).

The measurements of the three-terminal Josephson
junction were carried out in a dilution refrigerator with
base temperature of T = 25 mK. containing a 1 - 1 - 6 T
vector magnet. As indicated in Fig. 1(b), the left, right,
and bottom junction electrodes are labeled as ”L”, ”R”,

and ”B”, respectively. Two current sources supply cur-
rents ILB and IRB from L and R to the bottom electrode,
respectively, with the according voltages VLB and VRB

measured. The differential resistances are measured by
adding an ac current of 10 nA to the DC current bias us-
ing a lock-in amplifier. The rf-irradiation for the Shapiro
step measurements was provided by an antenna placed
in close vicinity to the sample.

III. RESULTS AND DISCUSSION

DC characteristics

Information about the basic junction characteristics is
obtained by measuring the differential resistances RLB =
∆VLB/∆ILB andRRB = ∆VRB/∆IRB as a function of the
bias currents ILB and IRB, respectively. Starting with the
left junction we find that RLB shown in Figs 2(a) and (b)
contains a superconducting region in the center when ILB
and IRB are varied. The observed critical current contour
is similar to what has been observed in induced supercon-
ducting nano junctions made of high mobility materials
such as InAs/Al [3, 24] or graphene [21]. The supercon-
ducting region extends along an inclined line indicated by
the dashed line in Fig. 2(a). The switching to the super-
conducting state can be seen in the line cuts at fix values
IRB = 0 and ±0.7µA provided in Fig. 2(b). The exten-
sion of the superconducting state originates from a part of
IRB which flows via R to L through the junction between
L and B compensating the current ILR partly and by that
reducing the total current. For our three-terminal device
no reduced differential resistance is observed along the
line ILB = IRB, which would indicate the presence of a
Josephson supercurrent between the junction formed be-
tween electrodes L and R [3, 25]. We attribute this to the
fact that the distance between these electrodes is slightly
larger than for the other junctions so that no Josephson
supercurrent is obtained. However, the junction between
L and R acts as a shunt resistor taking care that the
switching to the superconducting state is non-hysteretic.
The differential resistance RRB measured between R and
B electrodes, depicted in Figs 2(c) and (d), shows a sim-
ilar behaviour as RLB, i.e. featuring also an extended
superconducting range due a compensation provided by
part of ILR. The tilt of the superconducting range indi-
cated by the dashed line in Figure 2(c) is lower compared
to Fig. 2(a) since now ILR is the compensating current.

Simulations

The experimental results are modeled by assuming
a network of two resistively and capacitively shunted
Josephson (RCSJ) junctions coupled by a resistor RC ,
as illustrated in Fig. 3(a). Solving the related system
of differential equations numerically, in analogy to what
was presented in previous works [3, 4], we simulate the
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FIG. 1. Rendering of a selective-area grown three-terminal Josephson junction and false color scanning electron micrograph
with circuit: (a) The three-terminal junction is composed of the silicon substrate (gray bottom layer), the first hard mask
composed out of a silicon oxide (white)/ silicon nitride (blue) layer (as indicated by the labels). On top of this another hard
mask layer composed of silicon oxide (white) and silicon nitride (blue) is deposited and patterned as a shadow mask. The
topological insulator (red) is grown selectively into the first hard mask trench and the shadow mask is used for the definition
of the junction in the metal deposition (silver) step. (b) False-color scanning electron micrograph of the in-situ prepared three-
terminal junction device. Niobium contacts (cyan) are deposited on top of the TI (red). The measurement configuration is also
indicated.

FIG. 2. Differential resistance maps: (a) shows RLB as a
function of the bias currents ILB and IRB at 25 mK with cor-
responding line cuts given in (b). In (c) the differential re-
sistance map of RRB is depicted with a selection of line cuts
given in (d). The dashed lines in a and (c) indicate the super-
conducting regions of compensating bias currents. The differ-
ential resistances was measured by using lock-in technique,
i.e. RLB = ∆VLB/∆ILB and RRB = ∆VRB/∆IRB.

behaviour of the experimental system (information about
the procedure see Supplementary Material). The results
of the simulations are shown in Figs. 3(b) to (e), where
the differential resistance RLB is given as a function of
the bias currents ILB and IRB.

The model describes the experiment well by reproduc-
ing the Josephson supercurrent along the inclined lines
originating from compensating currents from both elec-
trodes with a superconducting region at the center. The
inclination is determined by the coupling resistance RC .

In Figs. 3(b) and (c), the coupling resistance was taken
as RC = 4 · RLB, with RLB = 40Ω which results in the
same tilt as observed experimentally. Taking these val-
ues into account the normal state resistance is given by
RN = 6/5 · RLB = 48Ω. In our simulations for the crit-
ical current and for the Steward-McCumber parameter
we assumed Ic = 538 nA and βc = (2e/~)IcR

2
NC = 0.1,

respectively, with c the junction capacitance. We found
that the superconducting state in the junction between
R and B leads to some weak feature as a similar line in-
clined towards horizontal orientation. Note, that for this
line RLB is non-zero, as the supercurrent in the other
junction only partly reduces the current in the junction
between L and B and hence only partially reduces the
voltage drop. A noticeable difference between experiment
and simulation is that in the measurements the extension
of the superconducting state observed along the inclined
line (cf. Fig. 2(a) is decreased compared to the simula-
tion depicted in Fig. 3(b). As discussed by Draelos et
al. [21], this effect can be explained by dissipation in the
neighboring junction being in the normal state resulting
in an effective heating, in particular for junctions with
small dimensions. In our simulation the direct coupling
between the different junctions was neglected. As shown
by Arnault et al. [4], including coupling results in a more
complex contour of the critical current area. If the cou-
pling resistance becomes very small, i.e. RC → 0, the
observed lines in the differential resistance shift towards
the diagonal (cf. Figs. 3(d) and (e). Thus, both junctions
are maximally correlated to both current biases ILB and
IRB.

Temperature dependence

In Figs. 4(a) to (f) the differential resistance maps are
shown for RLB and RRB measured at temperatures of
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FIG. 3. Numerical simulation of different coupling scenar-
ios: (a) The three-terminal circuit is modeled by two RCSJ
shunted Josephson junctions JLB and JRB (green and blue
dashed line boxes), which are each modeled by a resistor RN ,
a capacitor c, and an ideal Josephson junction J . Currents
ILB and IRB are supplied via current sources while the volt-
age drops VLB and VRB across the junctions are measured.
Both junctions are coupled via a coupling resistance RC . (b)
Differential resistance RLB as a function of current biases
for a realistic scenario for RC close to the one extracted in
the experiment: RN = 40Ω, RC = 160Ω, Ic = 538 nA,
βc = (2e/~)IcR

2
NC = 0.1. The zero resistance range is ob-

served as a tilted line due to a compensation by a part of
IRB. Additionally, the influence of the second junction is ob-
served as a similar line close to horizontal orientation. The
corresponding line cuts indicated in (b) are presented in (c).
The scenario for a very small coupling resistance (RC → 0)
is shown as a color map of RLB and selected line cuts in (d)
and (e).

100 mK, 200 mK, and 800 mK. One finds that with in-
creasing temperature the area of the central supercon-
ducting region shrinks. This is in accordance with the
temperature dependence of the critical current of a sin-
gle Nb/Bi4Te3/Nb reference junction, as shown in the
Supplementary Material. It is noteworthy that the super-
conducting feature along the inclined lines basically does
not change with increasing temperature. This can be ex-
plained by the fact, that the dissipation in the neighbor-
ing junction already leads to an increased temperature
being larger than the substrate temperature.
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FIG. 4. Differential resistance maps at various temperatures:
Left column (a), (c), (e) shows the differential resistance RLB,
right column (b), (d), (f) RRB, accordingly. The temper-
atures displayed in the rows from up to down are 100 mK,
200 mK, and 800 mK, respectively.

rf characteristics

Next the radio frequency response of the system is in-
vestigated in order to confirm that the experiment is de-
scribed well by Josephson junction physics and to analyze
the rf response of the Josephson current. This is done by
first choosing a frequency and an amplitude for the rf ir-
radiation so that both junctions show a large rf response
in the differential resistance. Subsequently the same DC
bias sweeps are performed as in the prior experiments.
Figures 5(a) and (b) show Shapiro step measurements of
the differential resistances RLB and RRB, respectively, as
a function of bias currents ILB and IRB. The differential
resistances are calculated by numerical differentiation.
Differential resistances obtained by lock-in amplifier mea-
surements can be found in the Supplementary Material.
The rf frequency frf and the according power was set to
5.8 GHz and 0 dBm, respectively. The differential resis-
tances show clear intercrossing stripe-like patterns which
can be attributed to the presence of Shapiro steps con-
firming the presence of a Josephson supercurrent. The
intercrossing parallel stripes indicating a coupling of both
junctions. By calculating the related voltage drop we find
that for both junctions the Shapiro steps are located at
integer multiples, n = 1, 2, 3 . . . , of the characteristic
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FIG. 5. Shapiro step measurements at 5.8 GHz: (a) Numer-
ically determined differential resistance RLB as a function of
ILB and IRB at 5.8 GHz and rf power of 0 dBm. (b) Corre-
sponding map of the differential resistance RRB.

voltage V0 = hfrf/2e.

In Figs. 6(a) and (b) the differential resistance maps
of RLB and RLB, now taken at 8.5 GHz at 0 dBm, are
depicted, respectively. Here, the color maps are plot-
ted as a function of the normalized voltages VLB/V0 and
VRB/V0. On first sight one finds that the Shapiro step
pattern is more pronounced in RLB. We attribute this to
a stronger coupling of the rf signal compared to the neigh-
bouring junction due to spatial variations of the rf field.
As for the measurements at 5.8 GHz a coupling of both
junctions, although weaker, is observed. Our experimen-
tal results of Shapiro step measurements are supported
by comparison to simulations based on the previously in-
troduced RCSJ model. In Supplementary Figures 4(a)
and (b) maps of the simulated values of RLB and RLB

as a function of the normalized bias voltages are shown.
There, one finds that the coupling by RC results in a
weak cross coupling of the Shapiro signal resulting in in-
tercrossing stripe-like patterns of different contrast.

A closer inspection of the resistance map presented in
Fig. 6(a) reveals that apart from the integer Shapiro steps
also half-integer Shapiro steps, e.g. at n = 1/2, are ob-
served. The half integer steps are also clearly resolved
in the averaged value of RLB along VLB/V0 shown in
Fig. 6(a). In single Josephson junctions such fractional
steps are interpreted by assuming a skewed current-phase
relationship [39–41] (a simulation for this case using our
model is provided in the Supplementary Material). More
specifically for multi-terminal junctions the rf response
of superconductivity induced into normal metal has been
studied previously by Duvauchelle et al. [20]. Here, half-
integer steps have been found and interpreted as a feature
due to the presence of coherent quartet states. How-
ever, in Fig. 2 we did not find indications of quartet
states, which would be visible by a feature in the dif-
ferential resistance at opposite voltage drops on the left
and right terminal [18]. Other experimental observations
of such fractional steps in multi-terminal junctions are in-
terpreted on the basis of highly connected nonlinear net-
works of Josephson junctions, where (due to the higher
phase space) different transitions of the phase particle in
the washboard potential are possible [4]. However, since
fractional Shapiro steps were observed in single junctions

made with similar materials [42], we favor the explana-
tion based on a skewed current-phase relationship, which
can be attributed to contributions of quasi-ballistic trans-
port. In our measurements under rf radiation we did
not find indications of missing odd Shapiro steps, as pre-
dicted when Majorana bound states are present in topo-
logical junctions [2, 43]. Probably, for our samples the
narrow width of the Bi4Te3 ribbons prevents the forma-
tion of these states, since due to the finite Berry phase
a magnetic field along the junctions is required to gain
a gap closure for the coherent surface states around the
nanoribbon cross section [36].

Magnetic field response

The junction characteristics were also analyzed in a
perpendicularly oriented magnetic field B⊥. In Fig. 7(a)
the magnetic field dependence RLB is plotted as a func-
tion of B⊥ and ILB, while IRB is kept at zero. One
clearly observes a Fraunhofer-like interference pattern of
the switching current, i.e. the boundary between the
red superconducting areas and the areas with finite resis-
tance. The blue line in Fig. 7(a) indicates the according
fitting based on the Fraunhofer interference relation. The
close resemblance of the experimental data to an ideal
Fraunhofer pattern points towards a relatively homoge-
neous distribution of the supercurrent density. From the
fit we extract a period of about ∆B =14 mT, which corre-
sponds to a junction area of 152×103 nm2. Relating these
values to the dimensions of the left junction JLB one finds
that the period is about a factor of ten smaller than ex-
pected. Based on the actual junction size of 200×72 nm2

a period of 144 mT is expected for a h/2e flux periodic-
ity. We attribute the discrepancy to the experimental
period to a pronounced flux focusing effect, where the
magnetic field is expelled from the edge regions of the
superconducting electrodes and bundled in the junction
area. As a matter of fact, a comparably large flux fo-
cusing effect was previously observed in similar planar
Josephson junctions based on topological insulators and
Nb superconducting electrodes [36].

In Fig. 7(b) the magnetic field dependence RRB is
shown as a function of B⊥ and IRB at ILB = 0. Once
again, a Fraunhofer-like interference is observed, al-
though with a smaller period, i.e. an larger effective
area where the magnetic flux is picked up. The reason
for the difference compare to the measurements shown
in Fig. 7(a) might be some inhomogeneity in the super-
current density in the junction. Finally, the RLB maps
are scanned diagonally, i.e. ILB = IRB, as shown in
Fig. 7(c). Here, once again a regular Fraunhofer pat-
tern is observed, which is almost identical to the pat-
tern shown in Fig. 7(d), indication, that the current IRB

through the neighboring junction basically has not effect.
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FIG. 6. Shapiro step measurements at 8.5 GHz: (a) Numerically determined differential resistance RLB as a function of the
normalized voltage drops VLB/V0 and VRB/V0 at 8.5 GHz and rf power of 0 dBm, with V0 = hfrf/2e. The blue curves represent
the averaged signal along VLB/V0 and VRB/V0, respectively. The dashed lines indicate the half-integer steps. (b) Corresponding
map of the differential resistance RRB.

a b c

FIG. 7. Differential resistances under perpendicular magnetic field sweep: (a) shows a map of RLB as a function of B⊥ and ILB

for IRB = 0. (b) represents the corresponding map of RRB as a function of B⊥ and IRB for ILB = 0. In (c) RLB is plotted with
the sweep current chosen to be ILB = IRB, which corresponds a sweep along the diagonal in the current plane. In all cases a
standard Fraunhofer pattern is fitted indicated as blue lines.

IV. CONCLUSION

We have succeeded in extending the previously devel-
oped in situ fabrication technology for Josephson junc-
tions to a working more complex design of a three-
terminal junction. Analysis of the transport experiments
shows that our system indeed behaves like a coupled net-
work of Josephson junctions in DC transport, rf response,
as well as magnetic field response. This is the first re-
port on the topological multi-terminal devices where an
interaction between the individual Josephson junctions is
observed. Moreover, the observation of fractional steps
in the rf response opens a window that provides a first
insight into the novel physics of this type of device. On
a more technical level, our results demonstrate the re-
alization of more complex devices required for network
structures in topological quantum circuits.

Further investigations and detailed understanding of
such a system are crucial for the realization of complex

topological quantum systems. In future, similar exper-
iments with more intricate circuit designs and super-
conducting phase controlled measurements will be per-
formed. The complexities in the junction characteristics
arose from the selected weak-link material Bi4Te3. In
future experiments we plan to incorporate conventional
three-dimensional topological insulators, e.g. Bi2Te3,
Sb2Te3, Bi2Se3, and the topological Dirac semimetal ex-
hibited by the correctly tuned BixTey stoichiometric al-
loy.

ACKNOWLEDGEMENT

We thank Herbert Kertz for technical assistance as
well as Kristof Moors and Roman Riwar for fruitful
discussion. This work was partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy—Cluster
of Excellence Matter and Light for Quantum Computing



7

(ML4Q) EXC 2004/1—390534769, the German Federal
Ministry of Education and Research (BMBF) via
the Quantum Futur project “MajoranaChips” (Grant
No. 13N15264) within the funding program Photonic
Research Germany, as well as the Bavarian Ministry of
Economic Affairs, Regional Development and Energy

within Bavaria’s High-Tech Agenda Project “Bausteine
für das Quantencomputing auf Basis topologischer
Materialien mit experimentellen und theoretischen
Ansätzen“ (grant allocation no. 07 02/686 58/1/21 1/22
2/23).

[1] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[2] T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R.
Akhmerov, and C. W. J. Beenakker, Flux-controlled quan-
tum computation with Majorana fermions, Phys. Rev. B
88, 035121 (2013).

[3] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Milestones toward
Majorana-based quantum computing, Phys. Rev. X 6,
031016 (2016).

[4] J. Manousakis, A. Altland, D. Bagrets, R. Egger, and
Y. Ando, Majorana qubits in a topological insulator
nanoribbon architecture, Phys. Rev. B 95, 165424 (2017).

[5] A. Cook and M. Franz, Majorana fermions in a
topological-insulator nanowire proximity-coupled to an s-
wave superconductor, Phys. Rev. B 84, 201105 (2011).

[6] A. M. Cook, M. M. Vazifeh, and M. Franz, Stability of Ma-
jorana fermions in proximity-coupled topological insulator
nanowires, Phys. Rev. B 86, 155431 (2012).

[7] H. F. Legg, D. Loss, and J. Klinovaja, Majorana bound
states in topological insulators without a vortex, Phys.
Rev. B 104, 165405 (2021).

[8] L. Fu and C. L. Kane, Superconducting proximity effect
and Majorana fermions at the surface of a topological in-
sulator, Phys. Rev. Lett. 100, 096407 (2008).

[9] J. P. T. Stenger, M. Hatridge, S. M. Frolov, and D. Pekker,
Braiding quantum circuit based on the 4π Josephson ef-
fect, Phys. Rev. B 99, 035307 (2019).

[10] T. Yokoyama and Y. V. Nazarov, Singularities in the
Andreev spectrum of a multiterminal Josephson junction,
Phys. Rev. B 92, 155437 (2015).

[11] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, and
Y. V. Nazarov, Topological transconductance quantization
in a four-terminal Josephson junction, Phys. Rev. B 95,
075417 (2017).

[12] H.-Y. Xie, M. G. Vavilov, and A. Levchenko, Weyl nodes
in Andreev spectra of multiterminal Josephson junctions:
Chern numbers, conductances, and supercurrents, Phys.
Rev. B 97, 035443 (2018).

[13] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter,
Nature Comm. 7, 1 (2016).

[14] M. Houzet and P. Samuelsson, Multiple Andreev reflec-
tions in hybrid multiterminal junctions, Phys. Rev. B 82,
060517 (2010).
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Supplementary Material: Supercurrent in Bi4Te3 Topological Material-Based Three-Terminal
Junctions

SI. SINGLE JUNCTION MEASUREMENTS

As a reference a single Nb/Bi4Te3/Nb junction was measured. The junction has a length of 140 nm and a width
of 500 nm. In Supplementary Figure S1(a) the current voltage characteristics is shown at temperatures in the range
from 30 mK to 0.77 K. At lowest temperature a critical current of 750 nA is obtained. In contrast to the three
terminal junction, here, a hysteretic behaviour is observed, which can be explained by the missing shunt for the single
Josephson junction. We attribute the hysteresis to heating resulting in a lower return current Ir compared to Ic [S1].
The critical current monotonously decreases with temperature with some kink around 0.4 K. The latter might be
attributed to a switching from a more diffusive to a more ballistic transport in the weak link [S2].

Supplementary Figure S1. Current-voltage characteristics of a single Nb/Bi4Te3/Nb junction: (a) Current-voltage charac-
teristics at temperatures ranging from 30 mK to 0.77 K. (b) Critical current Ic as well as return current Ir as a function of
temperature.

SII. RCSJ MODEL FOR A THREE-TERMINAL JUNCTION

The characteristics of our three-terminal junctions is simulated by employing a two-dimensional resistively and
capacitively shunted Josephson junction (RCSJ) Ansatz in analogy to what was presented in previous works [S3, S4].
In Fig. 3(a) in the main text the corresponding network is depicted including two resistively and capacitively shunted
Josephson junctions with the normal state resistance RN and the capacitance C. We assume two identical junctions
each having a critical current of Ic. The junctions are connected by a coupling resistor RC representing the non-
superconducting junction between electrodes L and R. Following the RCSJ Ansatz the characteristics of the three-
terminal junction can be described by a set of coupled differential equations of the form:

ILB
Ic

= sin(ϕLB) +
dϕLB

dτ̃
+ βc

d2ϕLB

dτ̃2
+
RN

RC

(
dϕRB

dτ̃
− dϕLB

dτ̃

)
, (S1)

IRB

Ic
= sin(ϕRB) +

dϕRB

dτ̃
+ βc

d2ϕRB

dτ̃2
− RN

RC

(
dϕRB

dτ̃
− dϕLB

dτ̃

)
, (S2)

with ϕLB and ϕRB the phase differences between junctions JLB and JRB, respectively, τ̃ = t/τJ the normalized time,
τJ = Φ0/(2πIcRN ), with Φ0 = h/2e the magnetic flux quantum, and βc = (2e/~)IcR

2
NC the Stewart-McCumber

parameter [S5]. The equations are similar to the standard RCSJ model for a single junction, except of the last term,
which introduces the current through the resistor, coupling the two junctions. This current is a result of the voltage
difference between the two junctions and the coupling resistance. For RC →∞ the coupling term goes to zero, leading
to two individual junctions (decoupled system) and for RC → 0 the system is dominated by the coupling term.
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SIII. SHAPIRO STEPS IN THREE-TERMINAL JUNCTION EXPERIMENTS

The differential resistances RLB and RRB exposed to an rf radiation with a frequency of 5.8 GHz at 0 dBm recorded
as a function of the applied DC currents are presented in Supplementary Figures S2(a) and (b). In contrast to the
corresponding figure, which was gained by numerical differentiation, here, the resistance is directly taken using a
lock-in amplifier. In Supplementary Figures S3 the corresponding measurements at a frequency of 5.8 GHz at 0 dBm
are shown.

Supplementary Figure S2. Shapiro Step response at 5.8 GHz: (a) shows the measured differential resistance across the first
junction RLB as a function of the direct current ILB and IRB across the junction. (b) shows RRB for the same current
constellation.

Supplementary Figure S3. Shapiro Step response at 8.5 GHz: a shows the measured differential resistance across the first
junction RLB as a function of the direct current ILB and IRB across the junction. b shows RRB for the same current constellation.

SIV. SHAPIRO STEPS IN THREE-TERMINAL JUNCTION SIMULATION

Using the model described in Supplementary Information SII the Shapiro response was simulated by adding an
oscillation contribution ij,rf sin(2πfrft), j = LB,RB, to the dc bias currents. The simulated differential resistances
RLB and RRB as a function of the normalized voltage drops at a frequency of 8.5 GHz are presented in Supplementary
Figures S4(a) and (b). One finds that the Shapiro response is strong in the corresponding junctions, while the coupling
from the neighboring junction is weak.

In order to simulate the appearance of the fractional Shapiro steps a non-sinusoidal current-phase relationship was
assumed for the Josephson junction by including a sin(2ϕ) contribution. In Supplementary Figures S5(a) and (b) the
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Supplementary Figure S4. Shapiro step simulations at 8.5 GHz: (a) Numerically determined differential resistance RLB as a
function of the normalized voltage drops VLB/V0 and VRB/V0 at 8.5 GHz. The blue curves represent the averaged signal along
VLB/V0 and VRB/V0, respectively. (b) Corresponding map of the differential resistance RRB with the blue curves representing
the averaged differential resistance along VLB/V0 and VRB/V0, respectively.

respective simulation outcomes RLB and RRB for junctions JLB and JRB are shown as a function of bias currents.
One finds that by increasing the sin 2ϕ contribution fractional steps appear.
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Supplementary Figure S5. Simulation of Shapiro maps at 8.5 GHz with 2φ term: (a) differential resistance of the first junction
Shapiro steps as a function of ILB, IRB with an equal contribution of a sin 2φ-term in the system, (b) the same for the second
junction. (c) and (d) show the same after doubling the sin 2φ contribution in the system and (e) and (f) show the same after
doubling the contribution of (c) and (d).
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