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Coherent engineering of landscape potential in crystalline materials is a rapidly evolving research
field. Ultrafast optical pulses can manipulate low-frequency shear phonons in van der Waals layered
materials through the dynamical dressing of electronic structure and photoexcited carrier density.
In this work, we provide a diagrammatic formalism for nonlinear Raman force and implement
it to shear phonon dynamics in bilayer graphene. We predict a controllable splitting of double
degenerate shear phonon modes due to light-induced phonon mixing and renormalization according
to a coherent nonlinear Raman force mechanism. Intriguingly, we obtain a light-induced shear
phonon softening that facilitates structural instability at a critical field amplitude for which the
shear phonon frequency vanishes. The phonon splitting and instability strongly depend on the
laser intensity, frequency, chemical potential, and temperature of photoexcited electrons. This
study motivates future experimental investigation of the optical fine-tuning and regulation of shear
phonons and layer stacking order in layered van der Waals materials.

I. INTRODUCTION

Exotic emergent phenomena in quantum systems can
be generated via photoexcitation by ultrafast optical
drives [1–5]. Depending on the intensity of the pump
laser, we can excite and disentangle collective modes,
switch the macroscopic phase of the system, dynamically
engineer critical phenomena, and render robust nonlin-
ear couplings among the different degrees of freedom in
the quantum materials [6–8]. Optical switching and pho-
toinduced transitions correspond to the dynamical mod-
ification of the free energy landscape that is not acces-
sible in thermal equilibrium. Photoinduced non-thermal
and coherent control of correlated and topological quan-
tum materials [9] is being under investigation in multi-
ple ways, such as Floquet-Bloch dressed single-particle
states [10] and optical dressing of many-body interac-
tion couplings [11, 12]. Manipulating and fine-tuning
the structural phase of quantum materials by ultrashort
laser pulses open a pathway to regulate quantum de-
vices. For instance, substantial lattice deformations are
reported induced by intense mid-infrared optical pulse
irradiation, e.g., dynamically generated ferroelectricity
and shear strain [13, 14]. Large photoinduced deforma-
tions are due to resonance with a vibration mode, strong
Raman force, and nonlinear phonon couplings [8, 13–17].

Shear phonons in bilayer and multi-layer of 2D mate-
rials, such as the family of graphene, transition metal
dichalcogenides (TMDs) and hexagonal Boron Nitride
(hBN), correspond to the lateral sliding of atomic lay-
ers on each other[18–26]. Shear phonon excitation can
coherently alter the staking order of layers [27, 28],
and the electronic topology [29]. Light-induced dis-
placive dynamics [30–41] of coherent shear phonons in
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van der Waals (vdW) layered materials such as multi-
layer graphene, WTe2, and MoTe2 [27–29, 42–45] is a
promising nondestructive mechanism for controlling 2D
materials properties. The shear mode in bilayer graphene
is a double degenerate Raman-active optical mode and it
has a low-frequency ~Ω0 ≈ 3.9meV due to the weak vdW
interlayer force [18]. The energy and the intensity of the
Raman peak for the shear mode (the C peak) strongly
depend on the number of layers and inter-layer coupling.
Accordingly, the spectroscopy of interlayer Raman modes
is an effective method for determining layer numbers and
stacking configurations, and it provides a unique oppor-
tunity to explore interlayer couplings. Driving coher-
ent shear phonon in MoTe2 causes a first-order phase
transition from an inversion symmetric 1T′ structure to
the non-centrosymmetric 1Td phase [27, 44]. Time and
angle-resolved photoemission spectroscopy (tr-ARPES)
of the Weyl semimetal Td-WTe2, indicates coherent shear
phonon-mediated control of the electronic structure [45].
An optical switching from an ABA to ABC stacking is
experimentally obtained by laser irradiation on trilayer
graphene [42] that might be because of the coherent shear
phonon excitation.

This paper studies the dynamical engineering of lattice
potential for the shear dynamics in vdW layered mate-
rials caused by a linear polarised light field E(t). The
impact of second and third-order Raman susceptibilities
gives rise to light-induced corrections to the lattice po-
tential:

U =
1

2

∑
αβ

[Ω2
0δαβ−Gαβ(E)]QαQβ−

∑
α

F (2)
α (E)Qα, (1)

where Q = (Qx, Qy) is the shear phonon displacement
with Ω0 being the unperturbed phonon frequency. Dis-
placive Raman shear force described as a second-order ef-
fect F (2) ∝ EE∗ in bilayer graphene has been previously
investigated [46]. Here, we define the third-order Raman
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shear force as F (3) =
↔
G · Q ∝ QEE∗ which can renor-

malize shear phonons and lead to a mode splitting. In
particular, it can cause the instability of atomic layers to
slide and form stable or metastable phases with different
layer-stacking orders due to the softening of shear phonon
frequency under the influence of the light field. The Gαβ
coupling can be interpreted as a light-induced self-energy
correction Σαβ(E) = −Gαβ(E)/2Ω0 to the phonon’s dy-
namical matrix. As the central result, here, we develop
a diagrammatic formalism to model the impact of third-
order Raman force (or light-induced phonon self-energy)
on the displacive dynamics of shear phonons in layered
materials. We obtain a dynamical renormalization of the
shear phonons by incident light intensity leading to the
splitting of the double degenerate shear phonons. We
predict a lattice instability where the shear phonon fre-
quency vanishes at a critical field amplitude. We show
that the field-induced phonon splitting and instability are
highly tunable by the incident laser intensity, frequency
at given electronic doping, and temperature. Our theo-
retical model based on the non-equilibrium Green’s func-
tion can be systematically employed in ab initio compu-
tations to study the optical engineering of shear phonon
in layered materials.

The rest of the paper is structured in four sections.
In Section II, we provide details of the diagrammatic
method for the third-order Raman force and develop a
perturbative theory for optically dressed phonon’s dy-
namical matrix. In Section III, we summarize the mixed
couplings of electrons, phonons, and photons in addition
to light-matter and electron-phonon couplings in bilayer
graphene. In Section IV, we discuss numerical results for
the light-induced phonon renormalization and, thus, its
effect on the optical modulation of the shear phonon spec-
tral function, shear mode splitting, and the light-induced
shear instability. Finally, we summarize our theoretical
finding, discuss it in connection with experiments, and
highlight the implication of light-induced phonon renor-
malization in other heterostructures of 2D materials.

II. METHOD

Stimulated Raman effect is an efficient mechanism to
excite Raman-active vibrational modes [47]. The dipole
moment of Raman-active phonon is linearly proportional
to the light field µb = αbcEc where the polarizability
tensor αbc depends on the phonon displacement vector
Q. The electromagnetic potential energy thus follows
U = −µbEb = −αbcEbEc. The corresponding Raman
force driving atoms to oscillate follows a second-order
nonlinear process [47]

F (2)
a = −

[
∂U

∂Qa

]
Q→0

=
∑
bc

[
∂αbc
∂Qa

]
Q→0

EbEc. (2)

Therefore the lowest-order Raman force is finite as long

as the Raman susceptibility is non-vanishing, i.e., σ
(2)
abc =

∂αbc/∂Qa 6= 0. For large displacement, the higher-order
Raman force should also be considered, which can dra-
matically impact phonon renormalization and lattice dy-
namics. The leading higher-order Raman force depends
linearly on the phonon displacement and quadratically on
the light field. Therefore, it is described by a third-order
nonlinear mechanism

F (3)
a =

∑
bcd

[
∂2αcd
∂Qa∂Qb

]
Q→0

QbEcEd. (3)

Formally, we have F (3)
a = GabQb in which Gab generates

a phonon self-energy in terms of a third-order Raman

susceptibility σ
(3)
abcd = ∂2αcd/∂Qa∂Qb and the incident

light intensity. An anisotropic Gab breaks the degeneracy
of Cartesian shear modes and renormalizes the phonon’s
frequency and linewidth.

To model coherent shear phonons in bilayer systems,
we first provide a general theory for the Raman force and
phonon self-energy using the Green’s function method
and diagrammatic framework. We decompose the to-
tal Hamiltonian of the system in different parts H =
He + Hp + He−p + Hlm which consists of electronic ki-
netic Hamiltonian He, harmonic phonon Hamiltonian
Hp, electron-phonon interactionHep and finally the light-
matter interaction Hlm. The electronic kinetic Hamilto-
nian reads Ĥe =

∑
p ψ̂
†
pĤ(p)ψ̂p where ψ̂p is the fermion

annihilation spinor field at momentum p. The har-
monic shear phonon Hamiltonian with zero momentum
q = 0 can be written in terms of ladder operators

Ĥp =
∑
λ ~Ω0b̂

†
λb̂λ where b̂λ is the phonon annihila-

tion operator. We only consider the zone center phonon
modes with a vanishing wave vector q = 0, and thus the
phonon displacement vector is defined as

Q̂λ =

√
~

ρSΩ0
(b̂λ + b̂†λ) (4)

in which λ = x, y indicates two Cartesian mode compo-
nents, note that S stands for the area of 2D material, and
ρ is the mass density. Including both one-phonon and
two-phonon couplings to electrons, the electron-phonon
interaction Hamiltonian follows

Ĥe−p =
∑
p

∑
a

ψ̂†pM̂(1)
a (p)ψ̂pQ̂a

+
∑
p

∑
ab

ψ̂†pM̂
(2)
ab (p)ψ̂pQ̂aQ̂b. (5)

Note that M̂(1)
a and M̂(2)

ab stand for the one- and two-
phonon-electron couplings’ matrix elements, respectively.
Utilizing this effective lattice potential and the Heisen-
berg equation of motion, we obtain the equation of mo-
tion for coherent phonon displacement amplitude Qa:

∂2Qa(t)

∂t2
+ Γp

∂Qa(t)

∂t
+ Ω2

0Qa(t) =
Fa(t)

ρ

+
1

ρ

∑
b

Gins.ab (t)Qb(t) +
1

ρ

∑
b

∫
dt′Gret.ab (t, t′)Qb(t

′) (6)
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where Ω0 is the shear phonons frequency, Γp stands for
the phenomenological damping frequency of phonons.
The leading-order Raman force is given as the expec-
tation value of the one-phonon coupling to electrons:

F (2)
a (t) = − 1

S

∑
p

〈
ψ̂†pM̂(1)

a (p)ψ̂p

〉∣∣∣
Q→0

. (7)

The nonlinear force reveals two different dynamical
forms of the light-induced phonon self-energy term Gab
that we label as instantaneous Gins.ab (t) and retarded
Gret.ab (t, t′) couplings. The instantaneous coupling is ob-
tained as the expectation value of the two-phonon cou-
pling matrix element

Gins.ab (t) = − 1

S

[∑
p

〈
ψ̂†pM̂

(2)
ab (p)ψ̂p

〉]
Q→0

. (8)

While the retarded coupling is given by the variational
derivative of the Raman force versus the phonon displace-
ment field:

Gret.ab (t, t′) = − 1

S

[
δ

δQb(t′)

∑
p

〈
ψ̂†pM̂(1)

a (p)ψ̂p

〉]
Q→0

.

(9)
Note that 〈. . . 〉 indicates quantum statistical averaging.
In centrosymmetric systems, Raman-active phonons are
infrared-inactive; therefore, they couple to light indi-
rectly. The direct light-matter interaction is only through
the coupling to electrons. The coupling of incident light
field to electrons can be modeled by Peierls substitution
p → p + eA(t) in the kinetic and the electron-phonon
interaction Hamiltonian terms. Considering the homo-
geneous vector potential A(t), the electric field reads
E(t) = −∂tA(t) and thus E(ω) = iωA(ω). Formally,
the light-matter interaction Hamiltonian consists of two
parts: photon-electron term and photon-electron-phonon
term Ĥlm = Ĥph−e+Ĥph−e−p. The photon-electron term
follows

Hph−e = −
∑
p

ψ̂†p

{∑
a

ĵa(p)Aa(t)

+
1

2

∑
ab

γ̂ab(p)Aa(t)Ab(t) + . . .
}
ψ̂p (10)

where ĵa is called the paramagnetic current operator,
and γ̂ab is known as the diamagnetic current operator
as well as the Raman vertex [48, 49]. The photon-
electron-phonon interaction Hamiltonian is given by the
light field dependence of the electron-phonon interaction,

M(1)
a (p + eA(t)) and M(2)

ab (p + eA(t)). By expanding
electron-phonon matrix elements up to second-order in
A(t), we obtain the photon-electron-phonon (PEP) in-

teraction Hamiltonian Ĥph−e−p =
∑

p ψ̂
†
pΞ̂pψ̂p where

Ξ̂p =
∑
ab

Aa(t)Qb(t)
{

Θ̂
(1)
ab (p) +

∑
c

Θ̂
(2)
abc(p)Qc(t)

}
+

1

2

∑
abc

Aa(t)Ab(t)Qc(t)
{

∆̂
(1)
abc(p) +

∑
d

∆̂
(2)
abcd(p)Qd(t)

}
.

(11)

Having defined all vertex couplings, we are equipped to
evaluate the Raman force and the light-induced phonon
self-energy. Because the Raman phonon is even under
parity, the leading contribution to the Raman force is
second order in the light field, which follows

F (2)
a (t) =

∑
bc

∑
ω1,ω2

ei(ω1+ω2)tσ
(2)
abc(ω1, ω2)Eb(ω1)Ec(ω2).

(12)
Similarly, the light-induced instantaneous coupling is
given by

Gins.ab (t) =
∑
cd

∑
ω1,ω2

ei(ω1+ω2)tΠins.
abcd(ω1, ω2)Ec(ω1)Ed(ω2).

(13)

Finally, one can evaluate the light-induced retarded cou-
pling as follows

Gret.ab (t, t′) =
∑
cd

∑
ω1,ω2

ei(ω1+ω2)tΠret.
abcd(ω1, ω2, t− t′)

× Ec(ω1)Ed(ω2). (14)

Notice that Πret.
abcd(ω1, ω2, τ) =∑

ω3
eiω3τΠret.

abcd(ω1, ω2, ω3) where ω3 is the phonon

frequency. Response function Πins.
abcd contributes to the

instantaneous phonon self-energy since it originates from
the simultaneous coupling of two phonons to electrons.
On the other hand, the retarded response function Πret.

abcd
contains memory effects where the past dynamics of
phonons can influence their future motion.

The light-induced rigid displacement directly depends
on the displacive Raman force that is the rectified part
of the force in a second-order nonlinear process [46].
We consider monochromatic incident light-field E(t) =
E0ε̂e

−iωt + c.c. with ε̂ being the linear polarization unit
vector. The displacive force is thus given by the recti-
fication process (i.e., ω1 = −ω2 = ω) that leads to the
following time-independent Raman force:

FD
a =

∑
bc

σ
(2)
abc(ω,−ω)Eb(ω)E∗c (ω). (15)

Similarly, the rectified component of the instantaneous
phonon-phonon coupling reads

Gins.ab =
∑
cd

Πins.
abcd(ω,−ω)Ec(ω)E∗d(ω), (16)

and the retarded light-induced phonon-phonon coupling
follows

Gret.ab (t− t′) =
∑
cd

Πret.
abcd(ω,−ω, t− t′)Ec(ω)E∗d(ω). (17)
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FIG. 1. Feynman diagrams for light-induced phonon self-energy. Diagrams given in panel (a-e) and (f-i) for Gins. and
Gret. couplings, respectively. Dashed and wave lines represent external phonon and photon fields, respectively. The solid lines
represent electron propagators.

It is worth highlighting that the second harmonic parts
of Gins.ab and Gret.ab ∼ ei2ωt do not contribute noticeably
due to its convolution with the slow oscillation of the ion
displacement Qa ∼ eiΩ0t since ω � Ω0. In this regard,
the rectified parts of Gins.ab and Gret.ab play the dominant
role. Eventually, the phonon equation of motion coher-
ently dressed by the light field is given by

∂2Qa(t)

∂t2
+ Γp

∂Qa(t)

∂t
+ Ω2

0Qa(t) =
FD
a

ρ
+

1

ρ

∑
b

Gins.ab Qb(t)

+
1

ρ

∑
b

∫
dt′Gret.ab (t− t′)Qb(t′). (18)

We employ a diagrammatic formalism to estimate nu-
merical values of the Raman force [46] and phonon self-
energy. Here, the main focus is on the light-induced
renormalization and mixing of shear phonons. The Feyn-
man diagrams for the instantaneous and retarded cou-
plings thus are given in Fig. 1a-d and Fig. 1e-i, respec-
tively. To quantitatively analyze the spectral function
and the splitting of shear phonons, we microscopically
explore the coherent dynamics of shear modes in bilayer
graphene in the remaining part of the paper.

III. LIGHT-MATTER AND
ELECTRON-PHONON COUPLINGS

Bilayer graphene consists of two single layers of
graphene sheets offset from each other in the xy plane.
The low-energy quasiparticles follow a two-band Hamil-
tonian around the corners of the hexagonal Brillouin zone
[50]

Ĥp = − 1

2m
{(p2

x − p2
y)σ̂x + 2τpxpyσ̂y} − µÎ. (19)

Note that p = ~k is the momentum vector, τ = ± indi-
cates two K and K′ valley points, the identity matrix Î
and Pauli matrices σ̂x and σ̂y are in the layer pseudospin

basis, and µ is the chemical potential. In our conven-
tion, the x-direction shows a zigzag orientation of the
honeycomb lattice [51]. The effective mass is given by
1/2m ≈ v2/|γ1| with v ≈ 106m/s and vertical inter-layer
hopping energy γ1 ≈ −0.4eV [52]. Having the in-plane
displacement Q(`)(r) of two layers ` = 1, 2, the shear
phonon displacement is the asymmetric component:

Q =
Q(1) −Q(2)

√
2

. (20)

The shear displacement vector is even under parity
P since P{Q(1),Q(2)}P−1 = −{Q(2),Q(1)} leading to
PQP−1 = Q. Therefore, the shear mode is a Raman-
active but IR-inactive phonon. We consider the cou-
pling of electrons to one and two photons given by
ĵα = −e∂pαĤp and γ̂αβ = −e2∂pα∂pβ Ĥp, respectively.
The coupling of electrons to one and two photons are
thus given by

(ĵx, ĵy) =
e

m
(pxσ̂x + τpyσ̂y,−pyσ̂x + τpxσy),

(γ̂xx = −γ̂yy, γ̂xy = γ̂yx) =
e2

m
(σ̂x, τ σ̂y). (21)

The electron-phonon couplings are obtained using a
four-band tight-binding model following the approach de-
veloped in Ref. [46] providing the detailed analysis of
electron coupling to shear phonons in bilayer graphene
using tight-binding and k · p models– see also Refs. [53–
55]. Accordingly, the couplings of electrons to shear
phonons in the low-energy model read [46]

(M̂(1)
x ,M̂(1)

y ) ≈M(1)(τ σ̂y, σ̂x),

(M̂(2)
xx = −M̂(2)

yy ,M̂(2)
xy = M̂(2)

yx ) ≈M(2)(σ̂x, τ σ̂y). (22)

Electron-phonon coupling can depend on the light field,
and this leads to mixed PEP couplings which are ob-
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tained after neglecting electron momentum p [46](
Θ̂

(1)
xy = Θ̂

(1)
yx

Θ̂
(1)
yy = −Θ̂

(1)
xx

)
≈ −Θ(1)

(
τ σ̂x
σ̂y

)
, (23)(

Θ
(2)
yyx = Θ

(2)
yxy = Θ

(2)
xyy = Θ

(2)
xxx/3

Θ
(2)
xyx = Θ

(2)
xxy = Θ

(2)
yxx = Θ

(2)
yyy/3

)
≈ Θ(2)

(
τ σ̂x
−σ̂y

)
,

(24)(
∆

(1)
xxy = ∆

(1)
xyx = ∆

(1)
yxx = ∆

(1)
yyy/3

∆
(1)
yxy = ∆

(1)
yyx = ∆

(1)
xyy = ∆

(1)
xxx/3

)
≈ ∆(1)

(
σ̂x
τ σ̂y

)
.

(25)

The expression for ∆
(2)
abcd coupling, representing the cou-

pling of two-photon and two-phonon fields with an elec-
tron field, has yet to be specified. However, we can in-
clude its contribution using a gauge invariance argument,

and therefore there is no need to explicitly calculate ∆
(2)
abcd

coupling constants. This gauge invariance issue is dis-
cussed more explicitly in the following sections.

The values of electron-phonon couplings strength are
given in terms of microscopic parameters of the system
[46]

M(1) = −
( 3a0√

2b

)(∂γ3

∂b

)
=
(3a0γ3√

2b2

)
β3, (26)

M(2) =
(3a2

0

4b2

)(∂2γ3

∂b2

)
=
(3a2

0γ3

4b4

)
β3(1 + β3). (27)

where γ3 ≈ 0.3eV [52] is an interlayer hopping energy cor-
responding to the hopping of electrons from sublattice A
of bottom layer one to sublattice A of the top layer in a
Bernal stack bilayer system. The Gruneisen parameter
follows β3 = −∂ ln γ3/∂ ln b. The mixed PEP coupling
constants are thus obtained as Θ(1) = (ea0/2~)M(1),
∆(1) = (ea0/2~)2M(1) and Θ(2) = −(ea0/4~)M(2). Ac-
cordingly, the only coupling parameter is β3. In the sec-
ond equality of the above relation, we assume the power-
law rule γ3 ∼ 1/bβ3 for the dependence of γ3 on the cor-

responding bond length b =
√
a2

0 + c2 ≈ 0.38nm with in-
tralayer Carbon-Carbon bond length a0 = 0.142nm and
the interlayer distance c = 0.34nm. An analysis based on
the density functional calculation estimates the depen-
dence of γ3 on the bond length as ∂γ3/∂b ≈ −0.54eV/Å
[54] and therefore one can obtain the Gruneisen param-
eter β3 = −(b/γ3)∂γ3/∂b ≈ 6.84. The vertical hopping
derivative ∂γ1/∂c does not contribute to the leading or-
der electron-phonon interaction.

IV. NUMERICAL RESULTS AND DISCUSSION

The phonon self-energy terms depend on Πins.
abcd and

Πret.
abcd which are given in terms of corresponding suscep-

tibilities χins.abcd and χret.abcd in response to the vector poten-

tials Ac(ω1) and Ad(ω2). Therefore, we have

Πins.
abcd(ω1, ω2) = −

χins.
abcd(ω1, ω2)

(iω1)(iω2)
, (28)

Πret.
abcd(ω1, ω2, ω3) = −

χret.
abcd(ω1, ω2, ω3)

(iω1)(iω2)
. (29)

where ω3 is the phonon frequency. The overall minus sign
in the above relations by definition, given in Eq. (8) and
Eq. (9). Utilizing Feynman diagrams given in Fig. 1(a-
d) and Fig. 1(e-i) we calculate χins.abcd and χret.

abcd response
functions, respectively. Before reporting the numeri-
cal results, it is necessary to mention that the contri-

bution of the mixed PEP coupling ∆
(2)
abcd, depicted in

the diagram in Fig. 1d, is frequency-independent. One
can incorporate this diagram by enforcing the gauge
invariance, implying a vanishing system response to a
static homogeneous gauge field. Accordingly, we have
χins.
abcd(ω1 = 0, ω2 = 0) + χret.

abcd(ω1 = 0, ω2 = 0, ω3) = 0 so

that the impact of ∆
(2)
abcd can be taken into account by

subtracting the static value of each diagram.

χret.
abcd(ω1, ω2, ω3)→ χret.

abcd(ω1, ω2, ω3)− χret.abcd(0, 0, ω3),

χins.
abcd(ω1, ω2)→ χins.

abcd(ω1, ω2)− χins.abcd(0, 0). (30)

The rest of the section summarises our analytical and
numerical results for the light-induced instantaneous and
retarded couplings and the resulting renormalization of
shear phonon frequency in bilayer graphene. Afterward,
we quantitatively analyze the splitting of shear phonon
modes and phonon instability which are coherently con-
trollable by altering the incident laser intensity, fre-
quency, and polarization. We also investigate the impact
of finite electronic temperature on our numerical results.

A. Light-induced instantaneous self-energy

Light-induced instantaneous phonon self-energy is cal-
culated following the Feynman diagrams depicted in
Fig. 1a-d employing the effective low-energy descrip-
tion of electrons and the couplings to phonons and
photons. For a linearly polarized incident light field
E(t) = E0(x̂ cos θ + ŷ sin θ)e−iωt + c.c, the symmetry of
the system enforces the following constraints for the only
non-vanishing tensor elements as −Πins.

xxxx = −Πins.
yyyy =

Πins.
xxyy = Πins.

yyxx = Πins.
xyxy = Πins.

yxyx = Πins.
xyyx = Πins.

yxxy =

Πins.. In accordance with this symmetry constrain, we
find the dependence of Ĝins. on the light field polarization
angle θ:

Ĝins. = Πins.(ω̄1, ω̄2)E2
0

[
− cos(2θ) sin(2θ)

sin(2θ) cos(2θ)

]
(31)

where ω̄j = ~(ωj+iΓe)/|µ| with ω1 = −ω2 = ω and ~Γe is
the electron scattering rate. The functional dependence
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FIG. 2. Light-induced retarded self-energy coupling versus the laser frequency. Panel (a) indicates the imaginary
and real parts of Πret.

I versus the incident laser frequency at zero electronic temperature Te = 0 and Γe = 0.001meV. Panel (b)
and (c) respectively illustrate the imaginary and real parts of Πret.

I at Γe = 1meV and different values of electronic temperature
Te. We set µ = 200meV, and ~Ω0 = 3.9meV in this figure.

of the instantaneous coupling is obtained analytically us-
ing the effective low-energy Hamiltonian, and it reads
Πins.(ω̄1, ω̄2) = Πins.

0 Λ(ω̄1, ω̄2) with (see Appendix A)

Λ(ω̄1, ω̄2) =

{
(ω̄1 + 2ω̄2)

ω̄2
2(ω̄1 + ω̄2)

ln

[
4− ω̄2

1

4− (ω1 + ω2)2

]
+

(ω̄2 + 2ω̄1)

ω̄2
1(ω̄1 + ω̄2)

ln

[
4− ω̄2

2

4− (ω̄1 + ω̄2)2

]
− 3

2ω̄1ω̄2
ln

[
1− (ω1 + ω2)2

4

]}
, (32)

and the dimensionful constant prefactor reads

Πins.
0 =

Nfe
2M(2)

4πµ2
. (33)

in which Nf = 4 stands for the spin-valley degeneracy.
The properties of universal function Λ(ω1, ω2) are ex-
plored in Ref. [46] at zero and finite electronic tempera-
ture Te.

B. Light-induced retarded self-energy

For the retarded coupling, we have the Feynman dia-
grams depicted in Fig. 1(e-i), among which only diagrams
shown in panels (e), (h), and (i) of Fig. 1 are non-zero in
our effective model analysis. The symmetry of our low-
energy model results in constraints for the non-vanishing
elements of Πret.

abcd as Πret.
xxxx = Πret.

yyyy, Πret.
xxyy = Πret.

yyxx,

Πret.
xyxy = Πret.

yxyx and Πret.
xyyx = Πret.

yxxy. Accordingly, the
polarization dependence of the retarded coupling reads

Ĝret.(Ω) = E2
0Πret.

I Î + E2
0

[
Πret.
Z cos(2θ) Πret.

X sin(2θ)

Πret.
X sin(2θ) −Πret.

Z cos(2θ)

]
,

(34)

where for a given light field frequency ω and at phonon
frequency Ω, we define

Πret.
I,Z (ω,−ω,Ω) =

Πret.
xxxx ±Πret.

xxyy

2
,

Πret.
X (ω,−ω,Ω) =

Πret.
xyyx + Πret.

xyxy

2
. (35)

The + and − signs in the above relation refer to Πret.
I and

Πret.
Z , respectively. The three contributions from three

diagrams Fig. 2a,d,e can be collected as follows

Πret.
ξ=I,Z,X(ω1, ω2, ω3) = Πret.

0

{
Πsquare
ξ (ω1, ω2, ω3)+

α
[
Πbubble−Θ
ξ (ω1, ω2, ω3) + Πbubble−∆

ξ (ω1, ω2, ω3)
]}

.

(36)

In the low-energy model, we obtain vanishing contri-
butions for the triangle diagrams shown in Fig. 1f,g.
The detailed derivation and analytical expressions of the
above nonlinear response functions at zero electronic
temperature are given in Appendix B. Notice the con-
stant factors

Πret.
0 =

Nf (eM(1))2

24π(~Γe)µ2
, α =

~Γe
(18γ2

0/γ1)
. (37)

Since 18γ2
0/γ1 ≈ 102eV and ~Γe is usually less than tens

of meV, we have α � 1 for realistic value of scatter-
ing rate ~Γe. Therefore, we safely neglect the contribu-
tion of bubble diagrams relative to the square diagram.
Considering the square diagram, our microscopic calcu-
lation gives Πret.

xxxx = Πret.
xxyy and Πret.

xyxy = −Πret.
xyyx. Con-

sequently, we obtain

Πret.
I = Πret.

xxxx ≈ Πsquare
I and Πret.

Z = Πret.
X = 0. (38)

In Fig. 2, we illustrate real and imaginary parts of
Πret.
I at zero and finite electronic temperature Te. At
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FIG. 3. Adiabatic and non-adiabatic spectral functions of optically dressed shear phonons. Panels (a) and (b)
illustrate the results obtained within the adiabatic and non-adiabatic models, respectively. In panel (c), we depict the spectral
function obtained after neglecting the imaginary part of Πret

I (Ω). The shear phonons’ splitting is depicted at different values
of the light field amplitude in the unit of V/nm. The splitting is almost the same in both adiabatic and non-adiabatic models.
However, the linewidth and peak values are different in the two models. We set µ = 200meV, ~Γe = 5meV, ~Γp = 0.5meV,
Te = 100K, ~Ω0 = 3.9meV and θ = 0 in this figure.

very low temperatures, the imaginary part is finite only
in a narrow frequency window close to the interband op-
tical transition gap 2|µ| where the width of the frequency
window is given by the shear phonon frequency 2Ω0. The
real part of Πret.

I shows logarithmic cusps at optical tran-
sition edges for ~ω = 2µ and ~ω = 2µ± ~Ω.

We generalize the zero temperature response function
Πabcd(εF , Te = 0, . . . ) to finite electronic temperature us-
ing the Maldague’s formula [46, 56], by integrating over
the Fermi energy as follows

Πabcd|µ,Te =

∫ ∞
−∞

dy
Πabcd|εF→y,Te=0

4kBTe cosh2
(

y−µ
2kBTe

) . (39)

The electronic temperature can reach thousands of
Kelvin due to intense and ultrashort laser pulses [57–
61]. The imaginary part of Πret.

I is always positive at
zero and finite temperatures. We investigate the impact
of the electronic temperature, and the result shows an
expected reduction of the response for frequencies in the
range |~ω − 2|µ|| < ~Ω0 while outside this range, the
response function increases by raising the temperature.

C. Light-induced phonon splitting and instability

Performing the Fourier transform of the shear phonon
displacement vector Qa(t) =

∑
ΩQa(Ω)e−iΩt in Eq. (18)

leads to the equation of motion into the frequency domain

∑
b

{
Kab(Ω)− (Ω2 + iΓpΩ)δab

}
Qb(Ω) =

FD
a

ρ
(40)

where the dynamical matrix of shear modes is dressed by
the external light field and given by

Kab(Ω) = Ω2
0δab −

Gins.ab

ρ
− G

ret.
ab (Ω)

ρ
. (41)

We write the light-induced phonon self-energy term in
a compact form in the unit of a characteristic frequency
ν0 =

√
g0/ρ with g0 = γ3(eE0/bµ)2 and thus the dynam-

ical matrix reads

K̂(Ω) = Ω2
0Î − ν2

0

[
KI +KZ cos(2θ) KX sin(2θ)

KX sin(2θ) KI −KZ cos(2θ)

]
.

(42)

where for given driving field frequency ω, we have

KI(Ω) = r1Πsquare
I (ω,−ω,Ω),

KX = −KZ = r0Λ(ω,−ω). (43)

Notice that r0 = 3a2
0β3(1 + β3)/(4πb2) and r1 =

3a2
0β

2
3γ3/(4πb

2~Γe) are dimensionless parameters. Con-
sidering numerical values of γ3 and β3 and lattice param-
eters, we obtain r0 ≈ 1.738 and r1 ≈ 455/(~Γe[meV]).
Utilizing the dynamical matrix, we introduce the phonon
Green’s function dressed by the light field

D̂(Ω) =
[
(Ω2 + iΓpΩ)Î − K̂(Ω)

]−1
. (44)

Therefore, the spectral function of the shear mode is
defined as A(Ω) = −Im[Tr[D̂(Ω)]]/π. By defining

ν2
0K̃I(Ω) = ν2

0KI(Ω)+iΓpΩ and consideringKX = −KZ ,
we obtain a θ-independent spectral function

A(Ω) =
2

π
Im

[
Ω2

0 − Ω2 − ν2
0K̃I(Ω)

[Ω2
0 − Ω2 − ν2

0K̃I(Ω)]2 + ν4
0K

2
Z

]
. (45)
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FIG. 4. Light-induced shear phonon splitting and instability. Panel (a) and (b) shows the mode splitting as a function
of the light field amplitude at laser frequency ~ω = 3µ and two different values of electronic temperature. Panel (c) illustrates
the frequency dependence of dynamically renormalized shear modes at field amplitude E0 = 0.1V/nm and Te = 300K. Panel
(d) indicates the shear phonon frequencies versus the electronic temperature at ~ω = 2µ and E0 = 0.1V/nm. Panel (e) shows
the field dependence of shear phonon linewidth at ~ω = 3µ and Te = 300K. Panel (f) manifests the laser frequency dependence
of the critical field amplitude at which phonon modes become unstable. We set µ = 200meV, ~Γp = 0.1meV, ~Γe = 5meV and
~Ω0 = 3.9meV in this figure.

For displacive Raman force analysis and rigid shear dis-
placement, we only need to know the dynamical matrix
at Ω = 0, which corresponds to the adiabatic component
of the spectral function. In the adiabatic approximation
[62], Green’s function is obtained by setting the phonon
frequency to zero in the dynamical matrix K(Ω = 0):

D̂ad(Ω) =
[
(Ω2 + iΓpΩ)Î − K̂(Ω = 0)

]−1
. (46)

We calculate the spectral function for both adiabatic
and non-adiabatic models, and the results are depicted
in Fig. 3a,b. Both models predict a splitting of degen-
erate shear modes due to the impact light field based
on the nonlinear Raman mechanism. This comparison
shows that the adiabatic approximation nicely predicts
the same value for splitting phonon modes in the non-
adiabatic formalism. However, the two methods differ
for the linewidth and the spectral weight peak value. In
particular, in Fig. 3c, we neglect the imaginary part of
Πret
I (Ω), which results in sharper peaks coinciding with

the spectral peaks in the adiabatic model. According

to this analysis, we can safely consider an adiabatic ap-
proximation by setting Ω = 0 in the dynamical matrix
K̂(Ω = 0) to discuss the light-induced shear mode split-
ting and instability at which phonon frequency vanishes.
In this case, we diagonalize the adiabatic dynamical ma-
trix and obtain the normal shear phonon modes in a lin-
ear superposition of two Cartesian modes. Eventually,
the normal mode frequencies read(

Ω±
Ω0

)2

= 1− ξ2KI(0)± ξ2|KZ |. (47)

Note that ξ = ν0/Ω0 is a dimensionless parameter, and
both KI(0) and KZ are real numbers. Since KI(Ω) is
a complex number, its imaginary part induces a field-
dependent renormalization of the phonon linewidth that
follows

Γ±
Γp

= 1 +
ν2

0

ΓpΩ±
Im[KI(Ω±)]. (48)
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There are some qualitative features in the field-dependent
phonon frequency and linewidth: (i) First, our perturba-
tive analysis is primarily valid for small enough ξ; there-
fore, we have Ω± > 0 in the best validity range of our
formalism. However, we can predict the case Ω± = 0
at critical field amplitudes E± for which the shear mode
becomes unstable that can facilitate an optically driven
structural phase transition of the vdW material via the
change in the staking order. (ii) For KI(0) = 0 the
splitting of two modes is symmetric and Ω+ is always

non-zero while Ω− vanishes at ν0 = Ω0/
√
|KZ |. (iii)

For |KZ | � |KI(0)|, phonons remain degenerate at a
larger or smaller frequency relative to Ω0 for KI(0) < 0
or KI(0) > 0, respectively. If KI(0) > 0, phonon modes
get soften (Ω± → 0) at a critical field amplitude lead-

ing to ν0 = Ω0/
√
KI(0). (iv) Since Im[KI(Ω±)] > 0

as shown in Fig. 3c, we obtain a field-induced broad-
ening of spectral function due to the optically enhanced
electron-phonon scattering.

We illustrate the normal mode frequency in Fig. 4a,b
as a function of the incident field intensity at two different
electronic temperature values manifesting the quadratic
dependence on the field amplitude. Fig. 4a shows that
two normal modes conversely evolve where Ω+ (Ω−) in-
creases (decreases) by raising the field amplitude E0.
The diverging evolution of two phonon modes’ frequency
in opposite directions becomes a converging trend with
negative renormalization and phonon softening at higher
electronic temperatures. This is because KI(0) enhances
by raising the temperature, and thus, it becomes larger
than KZ leading to a converging trend for both Ω± ver-
sus field amplitude E0. Intriguingly, at a critical value
of E0, we predict a vanishing value for Ω± = 0, and by
a further increase of E0 the phonon frequency becomes
imaginary Ω2

± < 0 indicating a structural instability. As
a result of this light-induced instability, atomic layers can
easily slide to emerge in other stable or metastable stak-
ing orders.

In Fig. 4c, we show the frequency dependence of the
normal modes’ energies at room temperature showing the
non-monotonic profile with a strong dependence on the
light frequency. In the sub-gap regime, the phonon fre-
quency drops to zero, then becomes unstable for a range
of frequencies around interband transition edge ~ω = 2µ.
This is because the real part of Πret.

I is enhanced around
~ω = 2µ as depicted in Fig. 2c. Further increasing the
laser frequency makes Ω2

± positive and thus stable again.
The phonon modes’ splitting is stronger at higher laser
frequency where KI(0) becomes less relevant than KZ .
Fig. 4d depicts the temperature dependence of the nor-
mal mode frequencies at the interband transition edge
~ω = 2|µ| and for a field amplitude E0 = 0.1V/nm. The
real part of Πret.

I is larger at lower temperatures, mak-
ing both shear modes unstable. By raising the electronic
temperature, phonon modes become stable again, and by
a further increase in temperature, the renormalization of
phonon frequency starts to converge. In addition to the
field-dependent phonon frequency, we obtain a robust en-

hancement of phonon linewidth shown in Fig. 4e, due
to the photon-mediated amplification of electron-phonon
scattering. Finally, we investigate the frequency depen-
dence of critical electric fields E± at which phonon modes
Ω± become unstable. Fig. 4f shows that the critical fields
E± increase by raising the laser frequency.

Considering the nonlinear Raman force, one can
further manipulate shear phonon renormalization and
its impact on rigid shear displacement Q0 =
〈Q(t)〉time−average that reads

Q0 = −1

ρ
D̂(Ω = 0) ·FD. (49)

where FD is the displacive Raman shear force in bilayer
graphene [46]. One can transform to the normal mode
basis where the dynamical matrix is diagonal for which
one finds the rigid shift Q±0 = FD± /ρΩ2

± for two normal

shear phonon modes where FD± are the displacive Raman
force components along the normal mode vibrational di-
rections. For the case of θ = 0, two normal modes Q+

and Q− correspond to vibration along x and y direction,
respectively. Therefore, the nonlinear Raman force mech-
anism modulates the light-induced rigid shear displace-
ment via the optically driven renormalization of shear
phonon frequency.

V. CONCLUSION AND OUTLOOK

In conclusion, we present a complete quantum theory
incorporating coherent dressing of electrons and phonons
perturbatively. Unlike Floquet theory, the validity of
our approach based on Green’s function method is for
a wide range of driving field frequencies. We apply
the formal theory to the coherent optical engineering of
shear phonons in bilayer graphene. We obtained strong
renormalization of shear phonons’ frequency that time-
resolved spectroscopy of shear phonons can probe in
pump-probe experiments [43, 45, 63–65]. In particu-
lar, we predict a light-induced non-thermal instability of
shear vibration modes that can facilitate nondestructive
coherent engineering lattice structure in layered materi-
als. Our theory can be applied to other types of phonon
modes in heterostructures of layered materials, which in-
volve relative twists of layers. Having a coherent control
of shear phonon dynamics provides an optical switching
of polar metals, moiré ferroelectrics, and superconductiv-
ity in the heterostructures of layered quantum materials
[66–74]. For intense incident laser, there is a saturation
effect of the light-induced displacement usually observed
in experimental measurements of coherent phonon dis-
placement amplitude. This effect is due to the satura-
tion of the optical absorption that can be explained via
a saturable absorption process described by the third-
order optical conductivity and a nonlinear force forth-
order in the electric field amplitude, e.g., F ∝ EE∗EE∗.
The saturation effect analysis is beyond the scope of this
manuscript and will be discussed elsewhere.
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Appendix A: Instantaneous susceptibility

Considering the contribution of ∆
(2)
abcd, the instantaneous coupling consists of three contributions

χ̄ins.
abcd(ω1, ω2) = χ̄triangle

abcd (ω1, ω2) + χ̄bubble−γ
abcd (ω1, ω2) + χ̄bubble−Θ

abcd (ω1, ω2) (A1)

In the following subsections, we calculate the values of each diagram for the instantaneous susceptibility.

1. Calculation of χ̄triangle
abcd for the diagram depicted in Fig. 1a

The triangle diagram Fig. 1a can be written in terms of electronic Green’s function Ĝ(k, ikn) and two-phonon-

electron matrix-element M̂(2)
ab and paramagnetic current operator ĵc, ĵd:

χabcd(iωm1 , iωm2) =
∑
P

1

S

∑
k

1

β

∑
ikn

Tr
[
M̂(2)

ab (k)Ĝ(k, ikn)ĵc(k)Ĝ(k, ikn + iωm1)ĵd(k)Ĝ(k, ikn + iωm1 + iωm2)
]
(A2)

where the trace operator Tr[. . . ] sum over all spinor degree of freedom, β = 1/kBTe, ikn (iωm) stands for the fermionic
(bosonic) Matsubara frequency. The intrinsic permutation symmetry is enforced by

∑
P for the exchange of photon

frequencies and corresponding tensorial index: (c,m1) ↔ (d,m2). From now on, we adopt a short-hand notation
ikn → n and iωm → m for the sake of simplicity. The electronic Green’s function is given as follows

Ĝ(k, ikn) = [ikn − Ĥk]−1. (A3)

Because of the inversion symmetry, the response tensor elements with odd Cartesian index x and y vanishes χxxxy =
χxxyx,= χyyxy = χyyyx = χxyxx = χxyyy = χyxxx = χyxyy = 0. This symmetry consideration is confirmed by an
explicit calculation based on the low-energy two-band model. The remaining tensor elements are also related to each
other due to the rotation symmetry of the system:

−χxxxx = −χyyyy = χxxyy = χyyxx = χxyyx = χxyxy = χyxyx = χyxxy = χ1. (A4)

After performing the integration on the azimuthal angle of electronic wave vector k and using the low-energy dispersion
εk = ~2k2/2m and kdk = (m/~2)dε we find

χ1(m1,m2) =

(
NfM(2)

2π

)( e
m

)2 (m
~2

)∫ ∞
0

dε
1

β

∑
n

8ε2ξ(n)(2ε2 − ξ(m1 + n)2 − ξ(m2 + n)2)ξ(m1 +m2 + n)

(ε2 − ξ(n)2) (ε2 − ξ(m1 + n)2) (ε2 − ξ(m2 + n)2) (ε2 − ξ(m1 +m2 + n)2)
. (A5)

where ξ(n) = µ + n. After performing Matsubara summation, integrating over ε at zero temperature and analytical
continuation mi → ωi + i0+, we find

χ1(ω1, ω2) =
NfM(2)e2

4π~2

{
A1 ln[4ε2 − ω2

1 ] +A2 ln[4ε2 − ω2
2 ] +A3 ln[4ε2 − (ω1 + ω2)2]

}ε→∞
ε→µ

. (A6)

Here by ωi we mean ~ωi + i0+ and Ai factors read

A1 =
ω1(ω1 + 2ω2)

ω2(ω1 + ω2)
, A2 =

ω2(ω2 + 2ω1)

ω1(ω1 + ω2)
, A3 = −1− (A1 +A2). (A7)

By subtracting the zero-frequency contribution and after some simplifications, we find

χ1(ω1, ω2)− χ1(0, 0) =
NfM(2)e2

4π~2

{
A1 ln

[
4ε2 − ω2

1

4ε2 − (ω1 + ω2)2

]
+A2 ln

[
4ε2 − ω2

2

4ε2 − (ω1 + ω2)2

]
− ln

[
4ε2 − (ω1 + ω2)2

4ε2

]}ε→∞
ε→µ

.

(A8)

Eventually, we obtain χ̄triangle
1 (ω1, ω2) = χ1(ω1, ω2)− χ1(0, 0) as follows

χ̄triangle
1 (ω1, ω2) =

NfM(2)e2

4π~2

{
ln

[
1− (ω1 + ω2)2

4µ2

]
−A1 ln

[
4µ2 − ω2

1

4µ2 − (ω1 + ω2)2

]
−A2 ln

[
4µ2 − ω2

2

4µ2 − (ω1 + ω2)2

]}
.

(A9)
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2. Calculation of χ̄bubble−γ
abcd for the diagram depicted in Fig. 1b

The bubble diagram Fig. 1b can be written in terms of electronic Green’s function Ĝ(k, n), electron-phonon matrix-

element M̂(2)
ab and the Raman vertex γ̂cd:

χabcd(m1,m2) = − 1

S

∑
k

1

β

∑
n

Tr
[
M̂(2)

ab (k)Ĝ(k, n)γ̂cd(k)Ĝ(k, n+m1 +m2)
]

(A10)

The overall minus sign originates from the standard rules of Feynman diagrams [48], also see [75]. Similar to the
previous diagram, we have χxxxy = χxxyx = χyyxy = χyyyx = χxyxx = χxyyy = χyxxx = χyxyy = 0. The other
non-vanishing tensor elements read

−χxxxx = −χyyyy = χxxyy = χyyxx = χxyyx = χxyxy = χyxyx = χyxxy = χ2. (A11)

After performing the integration on the azimuthal angle of electronic wave vector k and using the low-energy dispersion
εk = ~2k2/2m and kdk = (m/~2)dε we find

χ2(m1,m2) = Nf
m

~2

e2M(2)

2πm

∫ ∞
0

dε
1

β

∑
n

2ξ(n)ξ(m1 +m2 + n)

(ε2 − ξ(n)2) (ε2 − ξ(m1 +m2 + n)2)
. (A12)

After performing the summation on the Matsubara frequency n and subtracting the zero-frequency contribution, we
find

χ2(ω1, ω2)− χ2(0, 0) = −NfM
(2)e2

8π~2

{
ln[

4ε2 − (ω1 + ω2)2

4ε2
]
}ε→∞
ε→µ

. (A13)

Finally, we obtain

χ̄bubble−γ
2 (ω1, ω2) =

NfM(2)e2

8π~2
ln

[
1− (ω1 + ω2)2

4µ2

]
. (A14)

3. Calculation of χ̄bubble−Θ
abcd for the diagram depicted in Fig. 1c

The bubble diagram Fig. 1c can be written in terms of electronic Green’s function Ĝ(k, n), 1photon-electron-phonon

vertex Θ̂
(2)
abc and the paramagnetic current ĵd. Considering the permutation symmetry, we have

χabcd(m1,m2) = − 1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂

(2)
abc(k)Ĝ(k, n)ĵd(k)Ĝ(k, n+m2)

]
− 1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂

(2)
abd(k)Ĝ(k, n)ĵc(k)Ĝ(k, n+m1)

]
. (A15)

Using the isotropic approximation for the PEP vertex given in Eq. (6) and after performing the integration on the
azimuthal angle of electronic wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within
our low-energy model analysis, the mix of photon-electron-phonon coupling does not contribute to the Raman force:

χ̄bubble−Θ
abcd (ω1, ω2) = 0. (A16)

4. The sum of all diagrams for the instantaneous coupling

Similar to the Raman force case, we obtain χ̄ins.(ω1, ω2) = χ̄1(ω1, ω2) + χ̄2(ω1, ω2). One main difference is that
instead of M(1) we have M(2):

χ̄ins.
xxxx(ω1, ω2) =

NfM(2)e2

4π~2

{
3

2
ln

[
1− (ω1 + ω2)2

4µ2

]
− ω1(ω1 + 2ω2)

ω2(ω1 + ω2)
ln

[
4µ2 − ω2

1

4µ2 − (ω1 + ω2)2

]
− ω2(ω2 + 2ω1)

ω1(ω1 + ω2)
ln

[
4µ2 − ω2

2

4µ2 − (ω1 + ω2)2

]}
. (A17)
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Finally, by considering a linear polarized incident electric field E(t) = E0(x̂ cos θ + ŷ sin θ)e−iωt + c.c, we find

Ĝins.(ω1, ω2) = Πins.
xxxx(ω1, ω2)E2

0

[
− cos(2θ) sin(2θ)

sin(2θ) cos(2θ)

]
. (A18)

The rectified part of Ĝins. is obtain after setting ω1 = ~(ω+ i0+) and ω2 = ~(−ω+ i0+) where ω is the incident laser
frequency and Γe stands for the effective scattering rate of electrons.

Appendix B: Retarded susceptibility

The retarded coupling is given in terms of five different diagram

χ̄ret.
abcd(ω1, ω2, ω3) = χ̄square

abcd (ω1, ω2, ω3) + χ̄triangle−γ
abcd (ω1, ω2, ω3) + χ̄triangle−Θ

abcd (ω1, ω2, ω3)

+ χ̄bubble−Θ
abcd (ω1, ω2, ω3) + χ̄bubble−∆

abcd (ω1, ω2, ω3). (B1)

In the following, we calculate the explicit expression of each contribution using standard Kubo’s formalism at zero
electronic temperature.

1. Calculation of χ̄square
abcd for the diagram depicted in Fig. 1e

The square diagram Fig. 1e can be written in terms of electronic Green’s function Ĝ(k, ikn) and two-phonon-electron

matrix-element M̂(1)
a , M̂(1)

b and paramagnetic current operators ĵc, ĵd:

χabcd(m1,m2,m3) =
1

3!

∑
P

1

S

∑
k

1

β

∑
n

Tr
[
M̂(1)

a (k)Ĝ(k, n)M̂(1)
b (k)Ĝ(k, n+m3)ĵc(k)Ĝ(k, n+m3 +m1)

ĵd(k)Ĝ(k, n+m3 +m1 +m2)
]
. (B2)

Note that
∑
P stands to ensure the intrinsic permutation symmetry. Because of the inversion symmetry, the response

tensor elements with odd Cartesian index x and y vanishes χxxxy = χxxyx = χyyxy = χyyyx = χxyxx = χxyyy =
χyxxx = χyxyy = 0. Accordingly, there are only four independent tensor elements

χxxxx = χyyyy, χxxyy = χyyxx, χxyxy = χyxyx, χxyyx = χyxxy. (B3)

By performing a straightforward algebra similar to what was discussed in the previous subsection, one can obtain the
four non-vanishing tensor elements in the following form:

χxxxx(ω1, ω2, ω3) = χxxyy(ω1, ω2, ω3) =
Nf
24π

(
eM(1)

~

)2

×{
−

4ω1ω2

(
ω2

1 + (ω2 + ω3)ω1 + ω3 (ω2 + ω3)
)

(ω1 + ω2)ω3 (ω1 + ω3) (ω2 + ω3) (ω1 + ω2 + ω3)
ln

[
2|µ| − ω1

2|µ|+ ω1

]
−

4ω1ω2

(
ω2

2 + ω3ω2 + ω2
3 + ω1 (ω2 + ω3)

)
(ω1 + ω2)ω3 (ω1 + ω3) (ω2 + ω3) (ω1 + ω2 + ω3)

ln

[
2|µ| − ω2

2|µ|+ ω2

]
+

4ω3

(
(ω2 + ω3)ω2

1 +
(
ω2

2 + 3ω3ω2 + ω2
3

)
ω1 + ω2ω3 (ω2 + ω3)

)
ω1ω2 (ω1 + ω2) (ω1 + ω3) (ω2 + ω3)

ln

[
2|µ| − ω3

2|µ|+ ω3

]
− 4 (ω1 + ω3) (ω1 (ω3 − ω2) + ω3 (ω2 + ω3))

ω1ω2ω3 (ω1 + ω2 + ω3)
ln

[
2|µ| − ω1 − ω3

2|µ|+ ω1 + ω3

]
− 4 (ω2 + ω3) (ω1 (ω3 − ω2) + ω3 (ω2 + ω3))

ω1ω2ω3 (ω1 + ω2 + ω3)
ln

[
2|µ| − ω2 − ω3

2|µ|+ ω2 + ω3

]
+

4ω3

(
ω3

1 + 2 (ω2 + ω3)ω2
1 +

(
2ω2

2 + 3ω3ω2 + ω2
3

)
ω1 + ω2 (ω2 + ω3) 2

)
ω1ω2 (ω1 + ω2) (ω1 + ω3) (ω2 + ω3)

ln

[
2|µ| − ω1 − ω2 − ω3

2|µ|+ ω1 + ω2 + ω3

]}
, (B4)
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and

χxyxy(ω1, ω2, ω3) = −χxyyx(ω1, ω2, ω3) =
Nf
24π

(
eM(1)

~

)2
{

4ω1 (ω1 + ω2 + 2ω3)

ω2 (ω1 + ω2 + ω3)ω3
ln

[
2|µ| − ω1

2|µ|+ ω1

]
− 4ω2 (ω1 + ω2 + 2ω3)

ω1 (ω1 + ω2 + ω3)ω3
ln

[
2|µ| − ω2

2|µ|+ ω2

]
+

4 (ω1 − ω2)ω3

ω1ω2 (ω1 + ω2 + ω3)
ln

[
2|µ| − ω3

2|µ|+ ω3

]
−

4
(
ω2

1 − ω2
2

)
(ω1 + ω2 + 2ω3)

ω1ω2 (ω1 + ω2 + ω3)ω3
ln

[
2|µ| − ω1 − ω2

2|µ|+ ω1 + ω2

]
−

4 (ω1 + ω3)
(
ω2

1 + (ω2 + ω3)ω1 − ω2ω3

)
ω1ω2 (ω1 + ω2 + ω3)ω3

ln

[
2|µ| − ω1 − ω3

2|µ|+ ω1 + ω3

]
+

4 (ω2 + ω3) (ω1 (ω2 − ω3) + ω2 (ω2 + ω3))

ω1ω2 (ω1 + ω2 + ω3)ω3
ln

[
2|µ| − ω2 − ω3

2|µ|+ ω2 + ω3

]
+

4 (ω1 − ω2) (ω1 + ω2 + ω3)

ω1ω2ω3
ln

[
2|µ| − ω1 − ω2 − ω3

2|µ|+ ω1 + ω2 + ω3

]}
. (B5)

For the short hand notation we adapt ωi for ~(ωi + i0+) in the above relations.

2. Calculation of χ̄triangle−γ
abcd for the diagram depicted in Fig. 1f

The triangle diagram Fig. 1f can be written in terms of electronic Green’s function Ĝ(k, ikn) and electron-phonon

matrix-element M̂(1)
a , M̂(1)

b and diamagnetic current operator γ̂cd:

χabcd(m1,m2,m3) = −
∑
P

1

S

∑
k

1

β

∑
n

Tr
[
M̂(1)

a (k)Ĝ(k, n)M̂(1)
b Ĝ(k, n+m1)γ̂cd(k)Ĝ(k, n+m1 +m2 +m3)

]
(B6)

Using the isotropic approximation model Hamiltonian and after performing the integration on the azimuthal angle of
electronic wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within our low-energy model
analysis, we have

χtriangle−γ
abcd (ω1, ω2, ω3) = 0. (B7)

3. Calculation of χ̄triangle−Θ
abcd for the diagram depicted in Fig. 1g

The triangle diagram Fig. 1g can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-

phonon matrix-element Θ̂
(1)
ac , electron-phonon matrix-element M̂(1)

b and paramagnetic current operator ĵd:

χabcd(m1,m2,m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂(1)
ac (k)Ĝ(k, n)M̂(1)

b (k)Ĝ(k, n+m1)ĵd(k)Ĝ(k, n+m1 +m3)
]

+
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂

(1)
ad (k)Ĝ(k, n)M̂(1)

b (k)Ĝ(k, n+m1)ĵc(k)Ĝ(k, n+m1 +m2)
]
. (B8)

Using the isotropic approximation model Hamiltonian and after performing the integration on the azimuthal angle of
electronic wave vector k, we obtain a vanishing result for all tensor elements. Therefore, within our low-energy model
analysis, we have

χtriangle−Θ
abcd (ω1, ω2, ω3) = 0. (B9)
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4. Calculation of χ̄bubble−Θ
abcd for the diagram depicted in Fig. 1h

The triangle diagram Fig. 1h can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-

phonon matrix-element Θ̂
(1)
ac :

χabcd(m1,m2,m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂(1)
ac (k)Ĝ(k, n)Θ̂

(1)
bd (k)Ĝ(k, n+m2 +m3)

]
+
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
Θ̂

(1)
ad (k)Ĝ(k, n)Θ̂

(1)
bc (k)Ĝ(k, n+m1 +m3)

]
. (B10)

Similar to the square diagram the only non-vanishing tensor elements are given by χxxxx = χyyyy, χxxyy =
χyyxx, χxyxy = χyxyx, χxyyx = χyxxy. The straightforward algebra similar to what was discussed earlier, one can
obtain the four non-vanishing tensor elements in the following form:

χ̄xxxx(ω1, ω2, ω3) = CΘ

{
ln

[
1− (ω1 + ω2)2

4µ2

]
+ ln

[
1− (ω1 + ω3)2

4µ2

]
+ ln

[
1− (ω2 + ω3)2

4µ2

]}
, (B11)

χ̄xxyy(ω1, ω2, ω3) = CΘ

{
− ln

[
1− (ω1 + ω2)2

4µ2

]
+ ln

[
1− (ω1 + ω3)2

4µ2

]
+ ln

[
1− (ω2 + ω3)2

4µ2

]}
, (B12)

χ̄xyyx(ω1, ω2, ω3) = CΘ

{
ln

[
1− (ω1 + ω2)2

4µ2

]
− ln

[
1− (ω1 + ω3)2

4µ2

]
+ ln

[
1− (ω2 + ω3)2

4µ2

]}
, (B13)

χ̄xyxy(ω1, ω2, ω3) = CΘ

{
ln

[
1− (ω1 + ω2)2

4µ2

]
+ ln

[
1− (ω1 + ω3)2

4µ2

]
− ln

[
1− (ω2 + ω3)2

4µ2

]}
. (B14)

where

CΘ =
Nfm[Θ(1)]2

24π~2
. (B15)

5. Calculation of χ̄bubble−∆
abcd for the diagram depicted in Fig. 1i

The triangle diagram Fig. 1i can be written in terms of electronic Green’s function Ĝ(k, ikn) and photon-electron-

phonon matrix-element ∆̂
(1)
acd and electron-phonon matrix-element M̂(1)

b :

χ5,abcd(m1,m2,m3) =
∑
P

1

2S

∑
k

1

β

∑
n

Tr
[
∆̂

(1)
acd(k)Ĝ(k, n)M̂(1)

b (k)Ĝ(k, n+m3)
]

(B16)

Similar to the square diagram the only non-vanishing tensor elements are given by χxxxx = χyyyy, χxxyy =
χyyxx, χxyxy = χyxyx, χxyyx = χyxxy. The straightforward algebra similar to what was discussed earlier, one can
obtain the four non-vanishing tensor elements in the following form:

χ̄xxxx(ω1, ω2, ω3) = −3C∆

2

{
ln

[
1− ω2

1

4µ2

]
+ ln

[
1− ω2

2

4µ2

]
+ ln

[
1− ω2

3

4µ2

]}
, (B17)

χ̄xxyy(ω1, ω2, ω3) = −C∆

2

{
− ln

[
1− ω2

1

4µ2

]
− ln

[
1− ω2

2

4µ2

]
+ ln

[
1− ω2

3

4µ2

]}
, (B18)

χ̄xyxy(ω1, ω2, ω3) = −C∆

2

{
ln

[
1− ω2

1

4µ2

]
− ln

[
1− ω2

2

4µ2

]
− ln

[
1− ω2

3

4µ2

]}
, (B19)

χ̄xyyx(ω1, ω2, ω3) = −C∆

2

{
− ln

[
1− ω2

1

4µ2

]
+ ln

[
1− ω2

2

4µ2

]
− ln

[
1− ω2

3

4µ2

]}
. (B20)
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where

C∆ =
Nfm∆(1)M(1)

24π~2
. (B21)

Since ∆(1)M(1) = [Θ(1)]2, we have C∆ = CΘ.
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