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3 New applications of the Mellin transform

to automorphic L–functions

Laurent Clozel

Introduction
In an earlier paper [2], and its Appendix, written with Peter Sarnak, we

have obtained universal lower bounds on certain quadratic integrals of auto-
morphic L–functions. For instance, if π is a cuspidal unitary representation
of GL(m,AQ), and L(s) = L(s, π):

(0.1)

∫ +∞

−∞

∣∣∣L(1/2 + it)

1/2 + it

∣∣∣
2

dt >
π

2
.

Cf [2, Theorem D]. In this article, we follow some questions that arose nat-
urally in this context.

The first one was suggested by a remark of Sarnak, according to which we
cannot have such universal bounds for short intervals, e.g. for the integral
on [−1, 1] in (0.1); at least such cannot be obtained if m is allowed to vary.
See the Introduction to [2], § 2.

The argument does not succeed if m is fixed; neither did the author suc-
ceed in finding, for m fixed, an absolute bound on a short interval. This
remains an interesting problem.

In Chapter 2, we obtain a universal lower bound, for m fixed, for the
integral on an interval [−A logC,A logC] where C is the analytic conductor.
Even then, we could not obtain a fixed lower bound. Rather, we prove
that this integral is larger than c(logC)−1/2 where c > 0 is an absolute
constant. This may not be optimal, but it is commensurable with the Lindelöf
conjecture. (We hope that an analytic number theorist familiar with the
use of the Mellin transform, as in the proof of the approximate functional
equation, will be able substantially to improve this result.) Moreover, we can
shift the ordinate and obtain a general result on an interval [X − T,X + T ]
where X is arbitrary and T is of the order of logX . See Theorem 2.2,
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Theorem 2.3. The proof relies on a theorem of Molteni [14], further improved
by Xiannan Li [12].

In Chapter 3, we follow a lead from [2, §3.3]. There we considered Vino-
gradov’s Conjecture on the order of the first quadratic non–residue and we
showed that it followed directly, via the Mellin transform, from the Lindelöf
conjecture (including in the q–aspect) for the associated Dirichlet L–function.
(This may have been well–known to experts).

A similar problem is, given a non trivial representation ρ of a Galois group
Gal(E/F ) of number fields, to determine “the” first prime p of F — i.e. one
of smallest norm — where ρ is unramified and ρ(Frobp) 6= 1, Frobp being a
Frobenius element. The proof of [2] extends naturally. We have treated first
the case where ρ is a one–dimensional character, in Chapter 3, § 1–3. See
Theorem 3.1. When ρ is non–Abelian, the proof is more delicate and leads us
to introduce the unramified variant L(s, ρ) of the Artin L–function L(s, ρ).
See Theorem 3.2.

In §3.6, we show that our estimate is, in some cases, better that the known
unconditional estimates. (The relevant result here is the recent one of Zaman
[21]) However we have to assume that F is a Galois extension of Q and, more
crucially, that L(s, ρ) is holomorphic. Note that we do not have to assume
that ρ is associated to an automorphic representation.

In Chapter 4, we have reviewed some odds and ends concerning the results
and arguments of [2]. In particular we point out that they apply to Rankin L–
functions — not only to the standard L–functions of [2]; and we develop the
remarks made in [2] about the relation between estimates on the summation
function A0(x) — see § 2.1— and subconvexity for L(s, π).

Finally, in Chapter 1, we have recalled some “well–known” results con-
cerning the growth of L–functions in the critical strip, in term of the analytic
conductor. Fortunately we could rely on the very clear exposition of Har-
cos [5]. For the convenience of the reader, we also collect some formulas for
special functions.

We use notation standard in analytic number theory, in particular Lan-
dau’s symbols ≪, O( ), indexed when we want to specify the dependence of
the implicit constants. We use f ≺ g (f, g positive functions) for f/g → 0.
We use A for an absolute constant (in the context), not always the same in
different occurrences.

Acknowledgement.- I thank Farrell Brumley, Jesse Thorner and Asif Za-
man for providing useful references, and Peter Sarnak for suggesting that
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my lower bounds should be compared with the well-known bound of Ra-
machandra. I also thank the Fondation Simone et Cino del Duca for financial
support.

1 Majorations and formulas

1.1

In this preliminary chapter we have grouped together the majorations and
formulas which will be used in the text, and crucially in using an “absolute”
version, due to Molteni, of the Friedlander–Iwanieč estimate. We briefly
recall our set–up, which is that of [2]. We consider a unitary cuspidal rep-
resentation π of GL(m,A), or a product π = π1 × π2 × · · · × πr (parabolic
induction) of cuspidal representations πi of GL(mi,A), m =

∑
mi. Then

L(s, π) =

r∏

i=1

L(s, πi).

is the standard L–function. The completed L–function

Λ(s, π) = Ds/2 L(s, π∞) L(s, π),

where D is the conductor, an integer ≥ 1, satisfies a functional equation

Λ(s, π) = ε(π)Λ(1− s, π̃).

For details and a review of the other L–functions to which these theorems
apply, see [2, § 2.1].

We do not assume, as we did in [2], that π∞ is self–dual. The functional
equation can than be written

(1.1) L(1− s, π) = ε(π)γ(s)L(s, π̃)

with

γ(s) = (π−mD)s−1/2 c(π̃∞)Γ(s, π̃∞)

c(π∞)Γ(1− s, π∞)

and

Γ(s, π∞) =

m∏

j=1

Γ
(s+ cj

2

)

3



with

Re(cj) ≥
1

m2 + 1
− 1

2
[13].

Following Iwanieč and Sarnak, we associate to π its conductor D = D(π)
and its analytic conductor

(1.2) C = C(π) = D(π)

m∏

j=1

(2 + |cj|)

as well as
C(s) = C(π, s) = C(π) (1 + |s|)m.

(There is a finer version of C(s) ; cf [7, p. 95] for a discussion of this.) We
will need uniform estimates, in terms of these data, for γ(s) and L(s, π) in a
strip Re(s) ∈]− ε, 1 + ε[.

1.2

We recall the known bounds on γ(s) and L(s). For γ(s) a uniform bound
is derived by Harcos [5]. See however the corrections in [6], in particular [6,
(3)] which corrects [5, 3.22]1.

Lemma 1.1. (Harcos) For σ > 1
m
− 1

m2+1
, Re(s) = σ,

γ(s) ≪
σ
C(s)σ−1/2.

We now assume the Ramanujan conjecture for π. Fix ε > 0 (small.)
Since πf is tempered, we have L(s, π̃) ≪ 1 for Re(s) = 1 + ε, uniformly for
m fixed. For such a value of s, γ(s) ≪ C(s)1/2+ε. The functional equation
then implies

L(s, π) ≪ C(s)1/2+ε

for Re(s) = −ε.
We deduce from the Phragmén–Lindelöf principle:

Proposition 1.1. Assume πf tempered. For −ε ≤ Re(s) ≤ 1 + ε,

L(s, π) ≪ε C(s)
1−σ
2

+ε.

Cf. Iwanieč–Kowalski [7, p. 100].

1I thank Farrell Brumley for this reference.
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1.3

Here we insert a few remarks on the analytic conductor. It is not true that,
for A > 0 fixed, there exist a finite number of representations π such that
C(π) ≤ A. Indeed, if m = 1, and π = χ is a Dirichlet character of conductor
D, twisted by | |a, (a ∈ iR), the analytic conductor is D(2 + |a|). This
phenomenon persists in higher rank m, but is essentially due to the center
GL(1) of GL(m).

Proposition 1.2. For any A > 0, there exist a finite number of cuspidal
representations π of GL(m,A) whose central character ω verifies ω|R×

+
= 1

and such that C(π) < A.

Since D(π) < C(π) there is a finite number of possibilities forD(π). Let S
denote the connected component of 1 in the center Z(R) ∼= R× of GL(m,R).
Consider the space L = L2

cusp(S GL(m,Q)\GL(m,A)) of L2–cusp forms in-
variant by S. The Hecke algebra

⊗
v

Hv (where H∞ = C∞
c (GL(n,R)) and,

for v = p finite, Hp is the algebra of compactly supported smooth functions)
acts on L2

cusp by right translations, and it is well–known that this action is
trace–class. Fix D ≥ 1, and let K(D) ⊂ GL(m,Af) be the congruence sub-
group defined by Jacquet, Piaterskii-Shapiro and Shalika [8, §5, Théorème],
and ϕD ∈

⊗
p

Hp its characteristic function. Then ϕD projects L onto its

subspace composed of the K(D)–invariants in the cuspidal representations π
(with ωπ|R×

+
= 1). This is an infinite sum of representations ρ of GL(m,R);

a function ϕ∞ ∈ C∞
c (GL(m,R)) acts on it by a trace–class operator. In par-

ticular, any compact subset of the unitary dual of GL(m,R) contains only a
finite number of such representations. But the set of representations ρ such
that C∞(ρ) =

∏
(2 + |cj|) ≤ A is compact. (See [2, § 2.2] for the relation

between the cj and the Langlands parameters of π∞.)

Assume again π cuspidal. For a ∈ iR, let π[a] = π ⊗ | det |a. We can
choose a such that π[a] has trivial central character on R×

+. In view of this,
it is useful to know the relation between C(π) and C(π[a]).

Again we refer to [2, § 2.2]. The representation π∞ is associated to a sum
of real characters

ν(x) = (sgnx)ε|x|c (x ∈ R×
+); ε = 0, 1)

5



and of characters of C×:

µ(z) = zp(z̄)q, p− q ∈ Z.

(The result of Luo–Rudnick–Sarnak [13] implies simple bounds on Re(c),
Re(p+ q).)

The datum cj associated to ν is c+ ε; the data cj associated to µ are

(q, q + 1) if Re(p− q) < 0
(p, p+ 1) if Re(p− q) > 0.

If we twist by | |a, the cj are transformed into cj + a. Therefore

(1.3) C(π[a]) ≤ C(π)(1 + |a|)m.
We also remark that if C(π) = 2m, D(π) = 1 and the cj are equal to 0.

Under this assumption, the number of π is therefore finite.
Finally, it is of interest to know when ω|R×

+
= 1 in terms of the cj . However

the relation is not direct. The real characters νj contribute cj = c+ ε, where
νj(x) = xc, x > 0; A complex character µ(z) determines a representation π2

of GL(2,R) of central character xp+q (x > 0), and cj, cj′ equal to (q, q + 1)
or (p, p + 1). One checks that cj + cj′ = p + q + n where n = |p − q| > 0 is
the ramification of π2. Therefore the central character of π∞, on R×

+, is x
A,

A =
∑

cj − Ram(π∞),

where
Ram(π∞) =

∑
ε+

∑
n

is the ramification of π∞. To obtain a representation with ω|R×
+
= 1, we have

to twist by | det|−A/m. The new conductor is (very roughly) bounded by

C(π)(1 + |A/m|)m.

1.4

For the reader’s convenience we recall a few facts on special functions. We
will use the functions

Erf(x) =

∫ x

0

e−t2dt,

Erfc(x) =

∫ ∞

x

e−t2dt =
1

2

√
π − Erf(x).
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See [3, p. 147]. In particular we have the asymptotic expansion of Erfc(x)
for x ≫ 0:

Erfc(x) =
1

2
e−x2

(x−1 +O(x−3)).

We will also need an estimate for

I(a, T ) =

∫ ∞

T

e−t2tadt (T > 0).

This is best computed as an incomplete gamma function. With

Γ(a, x) =

∫ ∞

x

e−tta
dt

t
,

I(a, T ) =

∫ ∞

T

e−t2ta+1dt

t

=
1

2

∫ ∞

T 2

e−ss
a+1
2
ds

s

=
1

2
Γ
(a+ 1

2
, T 2

)

and the asymptotic expansion [3, p. 135]

Γ(a, x) = xa−1e−x(1 +O(
1

x
))

now yields

I(a, T ) =
1

2
T a−1e−T 2

(1 +O(T−2)).

2 The quadratic integral of L(1/2+it)
1/2+it on short

intervals

2.1

In this section we assume m fixed; we consider π verifying the assumptions
in (1.1). We write

L(s) = L(s, π),

L(s, π) =
∑

ann
−s,

A0(x) =
∑

n≤x

an (x ≥ 1).
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We assume given ξ, ν > 0 and consider only π such that ν ≥ σc(π) where
σc(π) is the abscissa of convergence of L(s, π). We assume that we have, for
x ≥ 1 and any ε, an estimate

(2.1) A0(x) ≪ε C
ξ xν+ε

where the implicit constant depends only on ε, and C = C(π). For a suitable
function f on R×

+, we define

M̃f(s) =

∫ ∞

0

f(x)x−sdx

x
.

Lemma 2.1. (cf. [2, § 3.3]) For Re(s) > ν, the integral defining M̃A0(s) is

absolutely convergent and M̃A0(s) =
L(s)
s
.

Indeed ∫ X

0

(∑

n≤x

an

)
n−sdx

x

=
∑

n≤X

an

∫ X

n

x−s−1dx

=
1

s

∑

n≤X

ann
−s − 1

s

(∑

n≤X

an

)
X−s.

Since Re(s) > σc(π), the first sum converges to L(s, π) for X → ∞. The
second is dominated by Xν+ε/2X−ν−ε → 0.

For σ > ν, we then have

(2.2)

∫ ∞

1

x−σA0(x)x
−itdx

x
=

L(σ + it)

σ + it
.

In order to obtain a minoration of the L2–norm of
L( 1

2
+it)

1/2+it
on an interval

[−T, T ], we consider its scalar product with a Gaussian. Thus let, for α > 0:

gα(t) = e−παt2 .

We extend gα to a function of s, equal to gα(t) for s = 1/2 + it. Thus

Gα(s) = eπα(s−1/2)2 .

8



This is a function of rapid decrease in t (s = σ + it), uniformly in any
vertical strip. In particular, for σ > ν:

(2.3)

∫

σ

L(s)

s
Gα(s)ds = i

∫ +∞

−∞

L(1/2 + it)

1/2 + it
gα(t)dt

since L(s) and Gα(s) have no poles. We estimate the left–hand side using
the Fourier transform. We have by (2.2)

∫ ∞

0

e−σXA0(e
X)e−itXdX =

L(σ + it)

σ + it
,

i.e.
L(σ + it)

σ + it
= F(e−σXA0(e

X))

where

Fh(t) =

∫ +∞

−∞
h(X)e−itXdX.

The inverse transformation is

(2.4) F−1k(X) =
1

2π

∫ +∞

−∞
k(t)eitXdt.

The scalar product formula is
∫

k1(X)k2(X)dX =
1

2π

∫
h1(t)h̄2(t)dt.

However, (2.3) is a bilinear product, and then:
∫

h1(t)h2(t)dt = 2π

∫
k1(X)k2(−X)dX.

Therefore the left–hand side of (2.3) is equal to the product of i =
√
−1 and

of

(2.5) 2π

∫ ∞

0

e−σXA0(e
X)Ĝα(−X)dX

where Ĝα(X) is given by (2.4) applied to k(t) = Gα(σ + it). Now

(2.6) Gα(σ + it) = eπα(σ−1/2)2e−παt2e2πα(σ−1/2)it.

9



We have

F−1k(X) =
1

2π
F−1

0 k(
X

2π
)

where F0, F−1
0 denote the usual Fourier transforms, normalised by 2π. Now

F−1
0 (f(t)e2iπβt) = F−1

0 f(X + β),

F−1
0 (e−παt2) =

1√
α
e−

π
α
X2

so F−1
0 Gα)(X) is, by (2.6), equal to

eπα(σ−1/2)2 1√
α
e−

π
α
(X+α(σ−1/2))2

=
1√
α
e−

π
α
X2

e−2πX(σ−1/2),

and

F−1Gα(−X) =
1

2π
√
α
e−

X2

4πα e(σ−1/2)X .

2.2

We now consider the integral (2.5), equal to

(2.7)

1√
α

∫ ∞

0

e−σXA0(e
X)e−

X2

4πα e(σ−1/2)XdX

=
1√
α

∫ ∞

0

A0(e
X)e−

X2

4πα e−
X
2 dX.

(It is, as it should be in view of the translation of complex integrals, inde-
pendent of σ.)

For 1 ≤ x ≤ 2, A0(x) = 1. We first obtain a lower bound for

I1 :=
1√
α

∫ log 2

0

e−
X2

4πα e−
X
2 dX.

In the sequel, Landau’s symbols O( ),≪, . . . , unindexed, are used when the
implicit constants are absolute. We have

I1 ≥
√

1/2
1√
α

∫ log 2

0

e−
X2

4παdX.

10



We set X =
√
4παY ; the integral is then

2
√
π

∫ log 2/2
√
πα

0

e−Y 2

dY

= 2
√
πErf

( log 2

2
√
πα

)

= 2
√
π
(1
2

√
π −Erfc

( log 2

2
√
πα

))
.

For x → ∞, Erfc(x) = 1
2x
e−x2

(1 + O( 1
x2 )). For small α, then,

I1 ≥ π
√

1/2− O
(√

α e−
log2 2
4πα

)

and I1 ≥ π
2
:= 2c for α sufficiently small.

We now have to estimate the remainder, dominated by

I2 =
1√
α

∫ ∞

log 2

Cξ e(ν+ε−1/2)Xe−
X2

4παdX.

Write θ = ν + ε− 1/2, and set

Y = X − 2πθα.

The exponential term in the integrand is then

exp
(
− Y 2

4πα

)
eπθ

2α.

We can neglect the constant since α will be small. Thus I2 is dominated by

I3 =
1√
α

∫ ∞

ℓ

Cξe−
1

4πα
X2

dX,

ℓ = log 2− 2πθα.

for small α, so the part relative to [ℓ, log 2] is dominated by Cξ
√
α · e−a1/α

with a1 > 0 fixed. We now consider

I4 = Cξ

∫ ∞

log 2

1√
α
e−

1
4πα

X2

dX.

11



The integral is equal to 2
√
π Erfc( log 2

2
√
πα
) (see the formulas in § 1); it

admits an expression

(2.8)
√
π e−

log2 2
4πα

(2√πα

log 2
+O(α3/2)

)

for small α. This (multiplied by Cξ) is of the same order as the integral
on the small segment.

We want to ensure that this is dominated by I1, which is implied by
√
α e−

a2
α Cξ ≤ a3

where a3 is a small constant, i.e.

1

2
logα− a2

α
+ ξ logC ≤ −a4

(a4 > 0). We may assume α ≤ 1, so we seek

(2.9)
a2
α

≥ a4 + ξ logC.

Since C ≥ 2m, ξ logC > a5 > 0 and

1

a4 + ξ logC
>

1

Nξ logC

for N such that a4 < (N − 1)ξ logC, so N is determined by constants inde-
pendent of π.

Thus (2.9) is verified if

(2.10) α ≤ a5
logC

.

We summarise the result

Proposition 2.1. Assume π cuspidal, and σc(π) ≤ ν. There exist positive
constants c, b1 (depending only on ξ, ν) such that if C = C(π) and

α ≤ b1
logC

,

then ∣∣∣
∫ +∞

−∞

L(1/2 + it, π)

1/2 + it
gα(t)dt

∣∣∣ ≥ c.

12



2.3

We can now apply the previous proof by using a theorem of Molteni [14].

Theorem 2.1. (Molteni). Assume π is a cuspidal, unitary representation of
GL(m,A). Then

∑

n≤x

|an| = Oε(C
εx1+ε) (x ≥ 1).

(The implicit constant depends only on m and ε.) In fact Molteni proves a
stronger result:

∑

n≤x

|an|
n

= O(Cεxε).

Thus, in the previous proof, we may take ν = 1, ξ = ε. (This has been
improved by Xiannan Li [12]; the improved estimate seems irrelevant to
us, but the theorem extends to automorphic representations satisfying the
conditions in §1.1) The assumption σc(π) ≤ ν is of course satisfied.

We have given an exposition of the proof valid for other exponents, be-
cause of the following fact. Consider only representations π that are tem-
pered, i.e. satisfy the Ramanujan Conjecture. Assume moreover π∞ self–
dual. Then by a result of Friedlander and Iwanieč, (2.1) is satisfied with
ξ = 1

m+1
, ν = m−1

m+1
. (See [4]; the self–duality condition is implicit there, and

made explicit in [2].) However Friedlander and Iwanieč consider only the
arithmetic conductor, so (2.1) is replaced by

A0(x) ≪ D
1

m+1x
m−1
m+1

+ε.

They must also assume that π∞ is bounded, i.e. C∞(π) =
∏
(2 + |ci|)

bounded. Their estimate with respect to x is better, but this does not seem
to play any role in the present proof.

The fact that these representations π verify σc(π) ≤ m−1
m+1

is proved in [2].
We will unfortunately have to assume the Ramanujan conjecture in the

next paragraph.
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2.4

In order to exploit Proposition 2.1 to obtain a lower bound on a “short”
interval, we must now estimate the tail

I5(T ) =

∫ ∞

T

L(1/2 + it)

1/2 + it
gα(t)dt

(and the opposite one). In order to have uniform estimates, we must now
assume that π verifies the Ramanujan Conjecture. We now have

L(
1

2
+ it) ≪ C(t)

1
4
+ε.

Fix gα(t) = e−παt2 with α = b1
logC

. For T ≥ 1,

(2.11) I5(T ) ≪ C
1
4
+ε

∫ ∞

T

e−παt2t
m
4
−1+εdt.

We need an estimate for
∫ ∞

T

e−παt2tadt;

as recalled in Chapter 1,
∫ ∞

T

e−παt2tadt =
1

2
π−1α−1T a−1e−παT 2 ·

·
(
1 +O

( 1

πα
T−2

))
.

We want to ensure that |I5(T )| ≤ 1
4
c; i.e.

C
1
4
+εα−1T a−1e−παT 2

(
1 +O

( 1

α
T−2

))
≪ 1.

We assume provisionally that T can be chosen such that 1
α
T−2 is small. Then

this is implied by

(2.12)
1

2
logC − logα + (a− 1) logT − παT 2 ≤ −X

where X is a positive constant; here a = m
4
− 1 + ε; we replace a by a value

such that a− 1 > 0. With α = b1
logC

, we want to ensure

παT 2 − a log T ≥ X − logα +
1

2
logC,

14



which yelds

πb1T
2 − a logC log T ≥ logC(X ′ + log logC +

1

2
logC).

Assume T 2 = A1 log
2C for a large positive constant. The left–hand side is

then
πb1A1 log

2C − a logC(log logC + log
√

A1) ≥ A2 log
2C

for A1 sufficiently large and C ≥ 2m, and this dominates the right–hand side.
Moreover, 1

α
T−2 ≪ (logC)−1A−2

1 ≤ 1
2
for A1 sufficiently large (independently

of C), as assumed previously. Therefore:

Lemma 2.2. For T = A logC, where A is a sufficiently large positive con-
stant, and α = b1

logC
,

∣∣∣
∫

|t|≥T

L(1/2 + it)

1/2 + it
gα(t)dt

∣∣∣ ≤ c

2
.

Now the absolute value of the integral for |t| ≤ T is ≥ c
2
. Thus

(2.13) Sup
t∈[−T,T ]

∣∣∣L(1/2 + it)

1/2 + it

∣∣∣ ≥ c

2

∣∣∣
∫

t≤T

gα(t)dt
∣∣∣
−1

(2.14)
∥∥∥L(1/2 + it)

1/2 + it

∥∥∥
2

∥∥∥gα(t)
∥∥∥
2
≥ c

2

where the L2–norms are computed in [−T, T ].
We now have to estimate the integral, and quadratic integral, of gα(t) on

[−T, T ]. We have

∫ T

0

e−παt2dt =

∫ √
παT

0

e−s2(
√
πα)−1ds

= a6(logC)1/2
∫ a7(logC)1/2

0

e−s2ds

≍ (logC)1/2

and the same estimate is true for the quadratic integral. Therefore we obtain

15



Theorem 2.2. There exist absolute, positive constants A, c1, c2 such that
for any cuspidal π verifying the Ramanujan Conjecture

(i) Sup
t∈[−T,T ]

∣∣∣L(1/2 + it), π

1/2 + it

∣∣∣ ≥ c1(logC)−1/2

(ii)

∫ T

−T

∣∣∣L(1/2 + it), π

1/2 + it

∣∣∣
2

dt ≥ c2(logC)−1/2

if T ≥ A logC, C = C(π).

It may be noticed that in (i) the Lindelöf Conjecture yields an estimate
≪ (logC)ε (for T of order A logC).

We have used the cuspidality of π only in order to rely on Molteni’s result;
Xianan Li’s result makes this unnecessary.

We can now use the remarks in §1.3 on the translation of integrals to
obtain lower bounds on L(1

2
+it, π) on short intervals, not necessarily centered

in 0. We have

L(s, π[X ] = L(s + iX, π)

C(π[X ]) ≤ C(π)(1 + |X|)m
logC(π[X ]) ≤ logC(π) +m log(1 + |X|).

Let

S = Sup
t∈[−T,T ]

∣∣∣L(1/2 + it, π[X ])

1/2 + it

∣∣∣.

By Theorem 2.2, for T ≥ A logC(π[X ]):

S ≥ c1(logC +m log(1 + |X|))−1/2.

However

S = Sup
t∈[−T,T ]

∣∣∣L(1/2 + i(t+X), π

1/2 + it

∣∣∣ ≤ 2 Sup
t∈[−T,T ]

|L(1/2 + i(t+X, π)|

Thus we have the following result on “short intervals”.

Theorem 2.3. There exist absolute, positive constants A, c3, c4 > 0 such
that for any cuspidal π verifying the Ramanujan Conjecture

(i) Sup
t∈[X−T,X+T ]

|L(1/2 + it, π)| ≥ c3 · (logC(π) +m log(1 + |X|))−1/2.
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(ii)

∫ X+T

X−T

∣∣∣ L(1/2 + it, π

1/2 + i(t−X)

∣∣∣
2

dt ≥ c4(logC(π) +m log(1 + |X|))−1/2

if T ≥ A(logC + log(1 + |X|), C = C(π).

The absolute constants depend only on m.
Sarnak suggested that the estimate (ii) should be compared with the lower

bound on short intervals obtained by Ramachandra in [18]. (Ramachandra
notes that his proof, written for the Riemann zeta function, will extend to
L-functions with Euler products. See [18, Remark 3].) In fact, because of
the large denominator in the integral, our lower bound seems better than
the one that follows obviously from Ramachandra’s. We assume X positive
and large and T small with respect to X . (In the next lines the constant A
depends on the formula.) Then Ramachandra’s estimate is

∫ X+T

X

|L(1/2 + it)|2dt ≥ AT log T, T ≥ A log logX

while here we obtain

∫ X+T

X−T

∣∣∣ L(1/2 + it, π

1/2 + i(t−X)(

∣∣∣
2

dt ≥ A(logC + logX)−1/2

for T ≥ A(logC + logX).
For fixed C, our condition on T implies Ramachandra’s. We consider

T ≈ A logX . The denominator in our formula is smaller than T 2. Thus
Ramachandra’s bound implies for the integral

∫ X+T

X−T

∣∣∣ L(1/2 + it, π

1/2 + i(t−X)

∣∣∣
2

dt

a lower bound in AT−1 log T . But for T ≈ A logX , (logX)−1 log logX is
dominated by our bound (logX)−1/2. Thus, for fixed C, the results do not
seem commensurable. (It would be interesting to know how the conductor
enters in Ramachandra’s formula.)
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3 The first non–trivial Frobenius element in

a Galois representation

3.1

In this chapter we consider a non–trivial, irreducible representation ρ :
Gal(E/F ) → GL(m,C), where E/F is a Galois extension of number fields.
If ρ is unramified at a prime p of F , we can consider the image ρ(Frobp), a
conjugacy class in GL(m,C). We want to obtain a lower bound β on the
first value of Np such that ρ is unramified and ρ(Frobp) 6= 1. Of course, this
is complicated by the presence of ramification, i.e., there may be a ramified
prime q such that Nq ≤ β. If m = 1, this applies to Artin characters of A×

F .

3.2

We first consider the Abelian case, m = 1. If F = Q, we are looking
at primitive Dirichlet characters mod q = D. If L(s, χ) ≪ (q|s|)µ+ε for
Re(s) = 1

2
, it was shown in [2, § 3.3] that β ≪ q2µ+ε. Since Petrow and

Young [17] have proved the Weyl bound µ ≤ 1
6
, we obtain by this simple

application of the Mellin transform

(3.1) For χ a primitive Dirichlet character mod q, β(x) ≪
ε
q1/3+ε.

Of course this is much weaker than Burgess’s bound (for q prime)

β(χ) ≪
ε
q

1
4
√

e
+ε
.

However, we can now extend the method to Artin characters of A×
F for an

arbitrary number field F .
So let χ be a character of finite order, and ρ the 1–dimensional represen-

tation of Gal(Fχ/F ) associated to χ by class field theory. We consider the
L–function L(s, χ) as a L–function over Q. All the conditions in the paper of
Friedlander–Iwaniec are met — this will also be the case for a Galois repre-
sentation of degree > 1. We therefore have the properties of L(s, χ) recalled
in § 2.3.

Rather than the formulas in [2], we use the Mellin transform as in § 2.1.
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Thus let
L(s, χ) =

∑

n

ann
−s,

A0(x) =
∑

n≤x

an

and

(3.2) M̃A0(x) =

∫ ∞

1

A0(x)x
−s dx

x
.

Let ν0 be the exponent of Friedlander–Iwaniec:

ν0 =
d− 1

d+ 1
, d = [F : Q].

so

(3.3) A0(x)≪
d,ε
D

1
d+1xν0+ε (x ≥ 1).

We note that the Archimedean data (cj) associated to χ are uniformly
bounded, so the constant depends only on (d, ε). Moreover (3.2) is obtained
by Friedlander–Iwaniec for x ≥ D1/2 (see a correction in [2, § 2.5]) but it is
trivial for x ≤ D1/2 since |an| ≪ nε′ for any ε′ > o.

The integral in (3.2) is absolutely convergent for Re(s) > ν0, say Re(s) =
ν > ν0. The function A0(x)x

−ν then belongs to L2(R×
+,

dx
x
). It follows (cf.

Titchmarsh [19]) that L(s)
s

is L2 on the line Re(s) = ν, and that

(3.4)

∫ ∞

1

|x−νA0(x)|2
dx

x
=

1

2π

∫

ν

∣∣∣L(s)
s

∣∣∣
2

|ds|.

However, if ν is close to ν0, the convergence of the right–hand side does not
follow from convexity: see [2, § 3.2]; we will review this in Chapter 4. As a
consequence we cannot use Proposition 1.1 to estimate the right–hand side.

By Proposition 1.1, we have µ(ν) ≤ d
2
(1 − ν), so µ(ν) < 1

2
if ν > 1 − 1

d
.

The convergence of the right–hand side then follows from convexity and we
have again by Proposition 1.1:

Lemma 3.1. For ν > 1− 1
d
,

∫

ν

∣∣∣L(s)
s

∣∣∣
2

|ds| ≪ D1−ν+ε.
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3.3

We now want to obtain a lower bound for the left–hand side of (3.4). We
consider the integral on [1, β] where β is the norm of the first unramified
prime such that χ(p) 6= 1.

Before doing so we recall the expression of the “absolute” conductor D.
Let DF be the absolute value of the discriminant of F ; let f(χ) be the con-
ductor of χ (seen as a character of A×

F ), an ideal of F . Then

(3.5) D = DF NF/Qf(χ).

We need an expression for A0(x), for x < β. It is then given by

an =
∑

Na=n

a(a)

where
∑

a(a)Na−s is the expression of L(s, χ) as an L–function over F , and
Na < β, which implies that the factorization of a involves only primes p with
Np < β. We have

Lp(s, χ) = (1−Np−s)−1

if χ is unramified at p and Np < β,

Lq(s, χ) = 1

is χ is ramified at q. If a =
∏

qαi
i

∏
p
βj

j (where we use {qi} to denote all the
ramified primes), this implies that

a(a) = 0

if αi > 0 for some i, and a(a) = 1 otherwise. Thus, up to x = β, A0(x) is a
variant of the summation function for ζF :

(3.6) A0(x) =
∑

n≤x

∑

Na=n
(qi,a)=1

1

where the condition (qi, a) = 1 is imposed for all i. Let B0(x) be the sum-
mation function for ζF . The difference B0 −A0 is then

(3.7)
∑

n≤x

∑

Na=n

′1
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where
∑′ is restricted by the condition

(3.8) ∃ i : qi|a.

At this point it is necessary to extend the main result of [4]. Very generally,
assume π is a tempered representation of GL(m,A); assume π is a product
π1×· · ·πr of cuspidal representations (with at most a factor mi = 1, πi = 1);
assume π∞ self-dual. Let A0(x) be the associated summation function. Let
κ be the residue of L(s, π) at 1. We write D for the conductor of π.

Proposition 3.1. For x ≥ 1,

A0(x) = κx+O(D
1

m+1
+εx

m−1
m+1

+ε)

where the implicit constant depends only on m, ε and the Archimedean pa-
rameters of π.

For the function ζF , the implicit constant depends only on d and ε.
For x ≥ D1/2 this is the result of [4]. For x ≤ D1/2, it was already noticed

in § 3.2 that A0(x) ≪ D
1

m+1x
m−1
m+1

+ε. (This does not depend on the fact that

L(s) is holomorphic.) If x ≤ D1/2, D
1

m+1x− 2
m+1 ≥ 1 and it suffices to check:

κ ≪ (Dx)ε

which is true since κ ≪ Dε, cf. [7, p. 100]. (For a zêta function, this is the
easy part of the Brauer–Siegel theorem.)

We can now apply this to B0:

B0(x) = κx+O(D
1

d+1
+ε

F x
d−1
d+1

+ε),

κ = Ress=1ζF (s). Now fix i and consider the sum (3.7), the condition being
qi|a. By a change of variables,

∑

Na≤x
qi|a

1 =
∑

Nb≤ x
qi

1

where qi = Nqi and b ranges over integral ideals. This can be expressed as

κ
x

qi
+O(D

1
d+1

+ε

F (x/qi)
d−1
d+1

+ε).
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However, care has to be exercised. This is certainly true for x ≥ qi, however
for x < qi the sum is empty and we have to check that

κ
x

qi
≪ D

1
d+1

+ε

F (x/qi)
1− 2

d+1
+ε

(uniformly when d is fixed.) This reduces to

κ ≪ D
1

d+1
+ε

F (x/qi)
− 2

d+1
+ε;

but x/qi ≤ 1 and κ ≪ Dε
F .

Now return to the sum (3.7). By the inclusion–exclusion principle, it is
equal to ∑

Si −
∑

Sij +
∑

Sijk − · · ·
where

Sij···ℓ =
∑

Na≤x
qi···qℓ|a

1.

The same argument yields, with q = qi · · · qℓ, q = qi · · · qℓ:

Sij···ℓ = κ
x

qi
+O

(
D

1
d+1

+ε

F (x/q)
d−1
d+1

+ε
)
.

The previous argument remains correct for x ≤ q, with the same uniformity.
Let us write ξ = d−1

d+1
+ ε. We now have

(3.9) A0(x) =
∏

i

(
1− 1

qi

)
κx+O(

∏
(1 + q−ξ

i )D
1

d+1
+ε

F xξ).

In (3.9), we can (brutally) replace DF by D ≥ DF . We have to evaluate
Q =

∏
(1− 1

qi
) and R =

∏
(1 + q−ξ

i ).
Let pi be the prime divisor of qi. Then

Q ≥
∏

i

(
1− 1

pi

)
.

There may be several primes associated to pi, but fewer than d = [F : Q].
Thus

Q ≥
∏

j

(
1− 1

pj

)d
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where the pj are now distinct. But pj divides N fχ, so pj ≤ N = N fχ and

Q ≥
∏

p≤N

(
1− 1

p

)d

.

Since
∏
p≤N

(1− 1
p
) = e−γ

logN
(1+O( 1

logN
)) we deduce that Q ≥ A log(N fχ)

−d. (If

χ is everywhere unramified, Q = 1.).
Consider now R =

∏
(1 + q−ξ

i ). Again, R ≤
∏
i

(1 + p−ξ
i ) ≤ (

∏
j

(1 + p−ξ
j ))d,

with the same notation. But
∏
(1 + p−ξ

j ) = σ−ξ(p1 · · · pj) < σ0(p1 · · · pj) ≪
(p1 · · · pj)ε ≪ (N fχ)

ε and the same estimate obtains for R.
Now fix ν > 1− 1

d
and consider the integral

∫ β

1

|x−νA0(x)|2
dx

x
.

By (3.9) this is a sum of three terms, one of them exact:

I1 =

∫ β

1

(Qκx1−ν)2
dx

x
,

so

(3.10) I1 ≍ Q2κ2β2−2ν (β ≥ 2).

The second term is dominated by

I2 = D
1

d+1
+εQκ

∫ β

1

x2− 2
d+1

−2ν dx

x

using that R ≪ Dε, so

(3.11) I2 ≍ D
1

d+1
+εQκβ2− 2

d+1
−2ν .

The third term is dominated by

I3 = D
2

d+1
+ε

∫ β

1

x−2ν+1− 4
d+1

+εdx

(rescaling ε · · · ).
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For ν > 1 − 1
d
, the exponent in the integral is always < −1 (Assume

d > 1.) Thus

(3.12) I3 ≍ D
2

d+1
+ε.

We now compare I1 and I2; we want to assume that I1 is dominant, i.e.

Qκ ≻ D
1

d+1
+εβ− 2

d+1 .

We now assume that the extension F/Q is Galois. By the Brauer–Siegel
theorem, κ ≫ D−ε

F , the implicit constant depending only on d. By our
estimate on Q, we must have

D−ε
F (logN fχ)

−d ≻ D
1

d+1
+εβ− 2

d+1

which is true, upon changing ε, if

β
2

d+1 ≻ D
1

d+1
+ε,

i.e.

(3.13) β ≫ D
1
2
+ε.

Now consider I1 and I3. In this case, using again the estimate on Qκ, we
must have

β2−2ν ≻ D
2

d+1
+ε;

for ν close to 1− 1
d
, we see that this yields

(3.14) β ≫ D
d

d+1
+ε.

We now compare I1, assumed to be dominant, with the estimate given by
Lemma 3.1. This yields

D1−ν+ε ≫ Q2κ2β2−2ν ;

since we can neglict Q κ, we obtain

β ≪ D1/2+ε.

The conclusion is:
β ≫ D

d
d+1

+ε ⇒ β ≪ D1/2+ε.

We conclude that β ≪ D
d

d+1
+ε for large D. There is a finite number of

pairs (F, χ) such that DFN(fχ) ≤ A. Indeed there is then a finite number of
possibilities for F ; for F fixed the primes and the ramification degrees of χ
are bounded. Therefore:
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Theorem 3.1. Consider the Galois extensions F of degree d ≥ 2 of Q, and
the non–trivial Artin characters χ of F . Let β = Np where p is an unramified
prime of smallest norm such that χ(p) 6= 1. Then

β ≪ D
d

d+1
+ε

where D = DFN(fχ) and the implicit constant depends only on d and ε.

Remark. It may be possible to obtain a slightly better estimate, depending
of N fχ, by avoiding the change of DF to D after (3.9).

3.4

Now let F be a number field and

ρ : Gal(E/F ) −→ GL(M,C)

an irreducible representation of degree M . We consider its Artin L–function
L(s, ρ), given by an Euler product of degree M over F . We can view it as
an L–function of degree m = Md over Q. We assume that ρ is non–trivial
and that the Artin Conjecture is true for ρ : L(s, ρ) is holomorphic. (For a
review of recent results on the Artin Conjecture see Calegari [Ca ] and the
references therein.). We recall that the results of Friedlander–Iwaniec apply
to L(s, ρ) (cf. [2, § 2.1].)

The (absolute) conductor D of L(s, ρ) is equal to DM
F N(fρ) where fρ, an

ideal of F , is the Artin conductor of ρ, cf. Neukirch [16, Prop.11/7].

Let L(s, ρ) =
∞∑
1

ann
−s. Its Euler product (over F ) is

L(s, ρ) =
∏

p

det((1− FrobpNp−s) | V Ip)−1

where V is the space of ρ and Ip is the inertia. In particular, the ramified
primes introduce factors

∏
i

(1 − αi,pNp−s)−1, where αi,p is a root of unity

different from 1, that are not positive. In order to apply the method of § 3.2,
we introduce the unramified L–function

L(s, ρ) =
∏

p

Lp(s, ρ)
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where the product ranges only over the unramified primes. Thus, with q

ranging over the ramified primes,

L(s, ρ) = L(s, ρ)
∏

q

Dq(s, ρ)

where Dq(s, ρ) =
∏
i

(1−αi,qNq−s). Let D(s, ρ) =
∏
q

Dq(s, ρ). We need to

control the growth of L(s, ρ) in the critical strip. For
Re(s) ≥ 0, Dq(s, ρ) ≤ 2M−1. Thus

|D(s, ρ)| ≤ 2(M−1)r ≤ 2d(M−1)t

where r is the number of ramified primes q and {p1, . . . pt} are the distinct
rational primes dividing one of the qj .

Fix d, and fix ε > 0. We first show that

(3.15) |D(s, ρ)| ≤ (DM
F N fρ)

ε

except for a finite number of pairs (F, f). Assume first r → ∞. We have
r ≤ dt, so t ≥ [ r

d
]. Moreover pi | N fρ, so N fρ ≥

∏
pi ≥ t! Thus (3.14) is

verified if 2(M−1)r ≤ Γ([ r
d
] + 1)ε, thus if

2M−1)r ≤
(
Γ
(r
d

))ε

.

Since ε is fixed, this is true for large r by Stirling’s formula.
So assume now r ≤ r0. Then |D(s, ρ)| ≤ 2(M−1)r0 and (3.15) is true if DF

is large, i.e., excluding a finite number of F .
Again, for F fixed, (3.15) is true if N fρ is sufficiently large. If N fρ ≤ A,

this leaves a finite number of possibilities for the places and degrees of fρ.
Finally (3.15) is violated only for a finite number of values of (F, fρ).

Therefore we have
|D(s, ρ)| ≤ A(DM

F N fρ)
ε

for a sufficiently large constant A. By Proposition 1.1, then:

Lemma 3.2. For Re(s) ≥ 0,

L(s, ρ) ≪ C(s)
1−σ
2

+ε

where C(s) is the analytic conductor of L(s, ρ).
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We can now imitate the arguments of §2. Let β be the smallest norm Np

of an unramified prime such that ρ(Frobp) 6= 1. If L(s, ρ) =
∑
a

b1(a)Na−s

is the Dirichlet series of L(s, ρ) over F , the coefficients b1(a) coincide, for
Na < β, with those of the Euler product (S = {q1, . . . , qs})

LS(s, ρ) =
∏
p/∈S

(1−Np−s)−M

= (ζSF (s, ρ))
M .

These coefficients are equal to 0 if a is divisible by one of the qi, and ≥ 1
otherwise. (Using the explicit series for (1 − X)−M does not lead to better
estimates.). Thus, with q =

∏
qj:

(3.16) L(s, ρ) =
∞∑

n=1

bn n
−s

where

(3.17) bn ≥
∑

Na=n
(a,q)=1

1 (n < β).

Now let B0 be the summation function of L(s, ρ):

B0(x) =
∑

n≤x

bn.

For x < β, this is given by (3.16), and this has been analysed in § 3.3.
(See formulas (3.6) to (3.9).) In fact, with A0(x) defined by (3.6), we now
have

Lemma 3.3. For x < β,
B0(x) ≥ A0(x)

where (for x < β)

A0(x) = Qκx+O(RD
1

d+1
+εx

d−1
d+1

+ε).

Again, we have replaced DF by D; κ is the residue of ζF .
However, we still have to check that the Mellin transform can be applied

to yield the summation function B0(x), and for which values of s.
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3.5

We write simply D(s, ρ) =
∏
j

(1 − αjNq−s
j ) where qj ranges over ramified

primes and αj over the associated roots. Let qj = Nqj. With L(s, ρ) =∑
n

a(n)n−s,

L(s, ρ)(1− αq−s) =
∑

n≥1

(a(n)− αa(n/q))n−s

where αn/q = 0 if q ∤ n. We deduce that L(s, ρ) =
∑
n

bnn
−s, where

bn = a(n)−∑
j

αja(n/qj) +
∑
j1,j2

αj1αj2a(n/qj1qj2)−

· · ·+ (−1)Nα1 · · ·αNa(n/q1 · · · qN ),

N being the degree of D(s, ρ); the same condition on a(n/q1 · · · qn) applies.
Recall that m = dM . By the theorem of Friedlander–Iwaniec, we have

A0(x) ≪ D
1

m+1
+εx

m−1
m+1

+ε (x ≥ 1)

where A0 is the summation function for L(s, ρ), and we deduce that the same
estimate is true for B0(x) if x is sufficiently large. In particular (Lemma 2.1)

M̃B0(s) is given by an absolutely convergent integral if Re(s) > 1 − 2
m+1

,

and, for ν = Re(s) > 1− 1
m
,

(3.18)

∫

ν

∣∣∣L(s)
s

∣∣∣
2

|ds| ≪ D1−ν+ε

(See Lemma 3.1.)
By Lemma 3.3, the integral

∫ β

1

|x−νB0(x)|2
dx

x

is larger than ∫ β

1

|x−νA0(x)|2
dx

x

where the expression of A0 is recalled in Lemma 3.3. We now imitate the
calculation in § 3.3. We find first an explicit term, cf (3.10)

I1 ≍ Q2κ2β2−2ν .
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However, in the computation of I2, the exponent 2− 2
d+1

− 2ν is negative

for ν > 1− 1
m
, so

I2 ≪ D
1

d+1
+εQκR.

The same applies to the third term,

I3 ≪ D
2

d+1
+εR2.

Note that Q, R and κ depend on F , not on ρ. However DF ≪ D, so we
can use the estimates in § 3.3, and neglect these terms if F is Galois over Q.
With ν ∼ 1− 1

m
, we see that I1 dominates I2 if

(3.19) β ≫ D
m

2(d+1)
+ε
,

and that it dominates I3 if

(3.20) β ≫ D
m

d+1
+ε.

Using (3.18) we see that

β ≫ D
m

d+1
+ε ⇒ β ≪ D1/2+ε.

The conclusion, as in §3.3, is that

β ≪ D
m

d+1
+ε.

Theorem 3.2. Let ρ : Gal(E/F ) → GL(M,C) be an irreducible, non trivial
representation and β = Np be the smallest norm of a prime p of F such that
ρ(Frobp) 6= 1. Then, if L(s, ρ) is holomorphic and F/Q Galois,

β ≪ D
m

d+1
+ε

where d = [F : Q], m = Md, and D = DM
F N(fρ).

The implicit constant depends only on M and d, but it is not effective
since we have used the Brauer–Siegel theorem.
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3.6

It is of course of interest to compare this result with earlier estimates. Assume
E is minimal, i.e., ρ : Gal(E/F ) → GL(M,C) is injective; let G = Gal(E/F )
and g = |G|. If C is a conjugacy class in G, let P(C) be the set of primes p
of F such that ρ is unramified at p and ρ(Frobq) ∈ C; let P1(C) be the subset
composed of primes such that f(p/p) = 1; i.e. Np = p. Let β(C), β1(C)
denote the smallest norm of elements in P(C), P1(C). Then the following
results are known:

(3.21) β(C) ≪ (logDE)
2(log logDE)

4

(Lagarias and Odlyzko, 1975, under the generalized Riemann hypothesis)

(3.22) β1(C) ≪ DA
E

(Lagarias, Montgomery and Odlyzko, 1979, unconditionaly) which has been
improved by Zaman (2017) to

(3.23) β1(C) ≪ D40
E .

In the last two results, the implicit constant is effective. See [10, 11, 20]. The
last estimate has been improved to β1(C) ≤ D16

E for large DE , see [9].

Clearly β1(C) ≥ β(C) and β ≤ Inf
C

β(C), where C runs over non–trivial

conjugacy classes. Since the estimates are uniform with respect to C, (3.20)–
(3.22) give an upper bound for β. However,

DE = Dg
FNF/Q(dE/D),

equal by the Führerdiskriminantenproduktformel to

(3.24) Dg
F

∏

ρ

(NF/Qfρ)
dim ρ,

to be compared with

(3.25) D
m

d+1 = D
M2 d

d+1

F N(fρ)
M d

d+1 ,

M = dim ρ. We have M2 < g, so the first factor of (3.25) is negligible with
respect to that of (3.24). Similarly, since M = dim ρ, the second factor of
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(3.25) is smaller that that of (3.24) relative to our chosen ρ. In general the
new bound is much better. However, our argument applies only to fields F ,
and representations ρ, of bounded degrees d,M .

A more pertinent comparison, however, is with Zaman’s paper [21], which
gives an estimate for β (the smallest norm of a prime p of F that does not
split in E; Zaman also assumes that p is of degree 1 over F . ) For simplicity
we only consider the case where F = Q. In this case [21, Cor.1.2], with
g = [E : Q], Zaman’s estimate is

β ≪ D
1+ε

4A(g−1)

E

≪ (
∏

ρ

(N fρ)
dim ρ)

1+ε
4A(g−1)

with A ≈ 1, to be compared with (this paper)

β ≪ N(fρ0)
M/2+ε, M = dim ρ0

where ρ0 is our chosen representation. The comparison therefore depends
on the complexity of the Galois group G, in particular its number of large
representations and their ramification. For larger fields F [21, Theorem1.1],
this is multiplied by a term at least of order exp(Ag(logDF )

2) (here A is again
an implicit constant) and the product will likely be larger that the estimate
of Theorem 3.2. Note also that Zaman does not assume the extensions to be
Galois.

Example: Assume ρ is associated to a normalised newform f of weight
1 on Γ0(q). Then fρ = (q) ⊂ Z, and Theorem 3.2 yields β ≪ q1+ε.

4 Complements to [2] and remarks on a pa-

per of Friedlander–Iwanieč

4.1

The method of Friedlander–Iwanieč, and the proof in the Appendix of [2],
use only the L–function of a (putative) representation π. In particular, they
apply to the Rankin L–function L(s, π1⊠π2) of two cuspidal representations

31



of GL(m1,A) and GL(m2,A). In particular, we have:

(4.1)
The lower bounds on the quadratic integrals
of L(s) in Theorems A−D of [2]are true
if L(s) = L(s, π1 ⊠ π2), π1, π2 cuspidal.

Assume moreover π1, π2 tempered, and π1,∞, π2,∞ self–dual. Let

L(s, π1 ⊠ π2) =
∑

ann
−s and

A(x) =
∑
n≤x

ann
−s. Then

(4.2) A(x) = κx+O(D
1

m+1x1− 2
m+1

+ε)

where m = m1m2, and κ is the usual residue, and D is the conductor of
L(s, π1 × π2).

The estimation of As(x) in [2, Thm. 2.2], also applies; for π1 ≇ π̃2| |ia,
this yields:

(4.3)
The abscissa of convergence of L(s, π1 ⊠ π2)

satisfies σc ≤ 1− 2
m+1

.

4.2

However, the results of Chapter 2 on “short” integrals do not apply in general
to Rankin L–functions. Indeed Molteni uses the properties of L(s, π ⊠ π̃);
for π = π1 ⊠ π2, this would assume the properties of the L–function of a
quadruple tensor product.

4.3

In [2, §3.4] we discussed the relation between the exponent ν of an estimate
of A0(x):

A0(x) = O(xν+ε)

where A0(x) is associated to a cuspidal π, and the convexity estimates. For
simplicity we assume L(s, π) holomorphic. We have the relation

∫ ∞

1

A0(x)x
−sdx

x
=

L(s)

s
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(Re(s) > ν). Suppose s = σ + it, σ > ν. This can be written as
∫ ∞

0

A0(e
X)e−σXe−itXdX.

The function A0(e
X)e−σX is exponentially decreasing, and therefore this

Fourier transform is a C0 function of t; this implies that µ(σ) ≤ 1.
The convexity estimate for µ(σ) is m

2
(1 − σ). Thus µ(σ) ≤ 1 beats the

convexity estimate if σ < 1− 2
m
.

Friedlander and Iwaniec have shown that the exponent ν = 1− 2
m
could be

obtained for L(s) = L(s, π1)L(s, π2) and m = m1 +m2, m1, m2 ≥ 2. See [4,
§3]2. We see that any improvement on ν = 1− 2

m
would lead to subconvexity

(in the t–aspect) quite generally for GL(m) (and not only over Q.) 3 If we
assume the optimum value conjectured by them, ν = 1

2
− 1

2m
, we obtain the

following approximation of the Lindelöf Conjecture:

(4.4) µ(σ) ≤ m

2
− m(m− 2)

m− 1
σ (σ ≤ 1

2
− 1

2m
)

(4.5) µ(σ) ≤ 2m

m+ 1
(1− σ) (σ ≥ 1

2
− 1

2m
).

The restriction to two factors is not one when subconvexity is concerned,
because the estimate for L(s, π × π) implies one for L(s, π).
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