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Abstract: We propose a magnetic laser in a subwavelength system consisting of a 

high-refractive-index dielectric cavity and an active medium formed by magnetic 

quantum emitters. Stimulated emissions of magnetic quantum emitters induced by 

their coherent interactions with quantized magnetic fields of a cavity are theoretically 

considered. The condition to achieve such a magnetic laser is obtained. Numerical 

results show that magnetic lasers are feasible in some realistic systems, for example, a 

silicon disk of high-quality whispering gallery modes with embedded emitters. 

Furthermore, the competitions between the electric interaction and magnetic one in 

terms of their Purcell factors are also considered in some magnetic laser achievable 

systems. In a wavelength-scale silicon block of a high-order magnetic mode, the ratio 

of magnetic Purcell factor to the electric one can reach more than ~10
3
 large. Our 

results open up ways to enhanced magnetic light-matter interactions.  

 

 



I. INTRODUCTION 

The interactions of the magnetic component of light and magnetic dipole (MD) 

transitions at optical frequencies are usually several orders of lower than their electric 

counterparts [1, 2]. Hence, the light-matter interactions are generally interpreted as the 

couplings of electric fields and electric dipoles. Nevertheless, the magnetic 

interactions provide another dimension in glimpsing light-matter interactions [2-4]. 

Furthermore, strong MD transitions of quantum emitters at optical frequencies are 

indeed found in some lanthanide series ions such as Eu
3+

 and Er
3+

 [5-7]. The 

interactions of these magnetic quantum emitters (MQEs) with light have been 

attracting increasing research interests despite high technology requirements [4, 8-12].  

   Putting MQEs close to photonic structures could allow one to largely turn the 

couplings between MQEs and light. The spontaneous decay rate enhancement, which 

is also termed as Purcell factor [13-15], can be modified a lot [4]. Due to their high 

near-field confinement, plasmonic nanostructures have been utilized to interact with 

MQEs [4, 16-18]. However, plasmonic systems suffer from high material losses, and 

complex geometries are required to obtain effective magnetic responses. In the past 

years, all-dielectric (sub)wavelength-scale structures with high-refractive indexes nr 

have been found to exhibit Mie-like resonances [19, 20], and they can readily support 

magnetic near-field responses. Those magnetic responses provide a platform for 

magnetic light-matter interactions [21-24]. The common resonant modes in the 

reported subwavelength all-dielectric structures are low-order electromagnetic 

multipoles such as electric/magnetic dipoles, toroidal modes, and supercavity mode 



[19, 20, 25-28]. Most of these modes show low quality (Q) factors (~101) and low 

electromagnetic near field enhancement (~101) with a common material silicon (Si) 

nr~3.5. Recently, it has been demonstrated that subwavelength dielectric resonators 

(nr~3.5) can also support whispering gallery modes (WGMs) with high enough Q 

factors (~105) and high electromagnetic near field enhancements (~102) [29]. These 

achievements of all-dielectric magnetic cavities hold great promise to enable more 

efficient magnetic photons-MQEs couplings [30, 31].          

Here, we theoretically propose that a magnetic laser can be obtained in a 

subwavelength system of a dielectric cavity and MQEs. MQEs are modeled as simple 

two-level emitters with MD transitions. The MQEs can undergo stimulated emission 

of radiation though coherent interactions with the photons in the cavity. The 

stimulated emission is similar to that in common lasers or spasers [32-40] while the 

couplings here are magnetic interactions instead of the electric ones. A subwavelength 

dielectric disk with high-Q WGMs is numerically considered. The magnetic laser can 

be obtained due to the high-Q features of the WGMs. Furthermore, we also consider 

the competition between the magnetic interactions and electric ones in some magnetic 

laser achievable systems. Specifically, the ratio of magnetic Purcell factor to the 

electric one in a subwavelength silicon block of a high-Q magnetic mode can reach 

~10
3
 large. This property makes such a kind of dielectric cavity a suitable platform to 

carry out the magnetic light-matter interactions including a magnetic laser. 

II. THEORETICAL APPROACH 

The magnetic field of a high-Q resonant mode of a dielectric cavity can be 



quantized based on that of the standard harmonic oscillators [37, 41, 42] (see 

Appendix A). A MQE is taken as a two-level emitter with a matrix element of M⃗⃗⃗ 10 

for its MD transition. Then, the interaction Hamiltonian between a MQE and the 

quantized magnetic field under the rotating-wave approximation can be expressed as  

Hint = ћg(𝑎̂𝜍̂10𝑒
−𝑖(𝜔𝑛𝑡+𝜑(𝑟)) + 𝑎̂+𝜍̂01𝑒

𝑖(𝜔𝑛𝑡+𝜑(𝑟))),                  (1) 

where 𝜔𝑛  is the frequency of the photon, and 𝑎̂+and 𝑎̂  are the creation and 

annihilation operators of a photon, respectively. 𝜍̂10 and 𝜍̂01 are transition operators 

of the MQE. 𝜑(𝑟) represents the spatial phase of the magnetic field at the location 𝑟. 

g is the coupling strength g = √
𝜇0𝜔𝑛

2ћ𝑉𝑚
M⃗⃗⃗ 10 ∙

𝐵⃗ (𝑟)

𝐵𝑚𝑎𝑥
 (see Appendix A), where 𝑉𝑚 is the 

magnetic field mode volume of the cavity 𝑉𝑚 =
∫𝜇0|𝐻⃗⃗ (𝑟)|

2𝑑3𝑟

𝜇0𝐻𝑚𝑎𝑥
2 , 𝐵⃗ (𝑟)/𝐵𝑚𝑎𝑥 

(= 𝐻⃗⃗ (𝑟)/𝐻𝑚𝑎𝑥) is the normalized magnitude of the magnetic field in the cavity, 

𝐻⃗⃗ (𝑟) is the magnitude of the magnetic field at location r, ħ is reduced Planck 

constant, and 𝜇0 is the permeability of vacuum. The analytical description is similar 

to that of electric interactions [38, 43-46], while the coupling strength g should be 

replaced by ge =√
𝜔𝑛

2ћ𝜀0𝑉e
𝜇 10 ∙

𝐸⃗ (𝑟)

𝐸𝑚𝑎𝑥
 for an electric interaction. 𝜇 10  is the matrix 

element of the electric dipole transition of an electric quantum emitter (EQE), 

𝐸⃗ (𝑟)/𝐸𝑚𝑎𝑥 is the normalized electric field, 𝜀0 is the permittivity of vacuum, and 𝑉𝑒 

is the electric-field mode volume of a cavity mode. 

Under Fermi's golden rule, the total emission rate into photons from a MQE can 

be expressed as (see Appendix B) 

 Γ′ = 2π𝑔2 (𝑁𝑛 + 1) ∫𝐹(𝜔)
  
2

(𝜔−𝜔𝑛)2+  
2
𝑑𝜔,              (2) 

where the term Nn+1 represents the contributions from the stimulated 𝛤st (Nn) and 



spontaneous 𝛤sp (1) emissions. ∫𝐹(𝜔)
  
2

(𝜔−𝜔𝑛)2+  
2
𝑑𝜔 is the spectral overlap factor 

[37], where 𝐹(𝜔) is the normalized-to-1 spectrum of MD transitions, and γn is the 

relaxation rate of the photon. 𝐹(𝜔) is highly related to the relaxation rate ( 10) of the 

MQE. For  10   γn, the overlap factor is 1. While for  10   γn, the overlap factor 

becomes γn /  10  Note that in the above integrations of overlap factors, we have 

assumed the resonant couplings between the MQE and photons. The stimulated 

absorption rate 𝛤sa is equal to the stimulated emission rate 𝛤sa = 𝛤st . For the 

couplings of many MQEs and photons, the generation rate of photon number 𝑁𝑛 can 

be expressed as  

𝑁𝑛̇ = ∫𝛤st𝜌𝑒𝑓𝑓(𝑟)𝑑
3𝑟 + ∫𝛤sp 𝜌1(𝑟)𝑑

3𝑟 − 𝑁𝑛γ𝑛,              (3) 

where 𝜌𝑒𝑓𝑓(𝑟) = 𝜌1(𝑟) − 𝜌0(𝑟), 𝜌1(𝑟) and 𝜌0(𝑟) are the population densities of 

MQEs in the excited and ground states, respectively. The rate equation for the 

population of MQEs can be written as (see Appendix C) 

∫ 𝜌̇𝑒𝑓𝑓(𝑟)𝑑
3𝑟 =

∫(𝑊01 − 𝛤sp)(𝜌1(𝑟) + 𝜌0(𝑟))𝑑
3𝑟 − ∫(𝑊01 + 𝛤sp + 2𝛤st) 𝜌𝑒𝑓𝑓(𝑟)𝑑

3𝑟,       (4) 

where 𝑊01is the pumping rate of the MQEs. 

The coupling strength g is an important parameter that determines if a magnetic 

laser can be realized in a system. Generally, g can be obtained by calculating the 

mode volume based on numerical methods, for example, the finite-difference time- 

domain (FDTD) simulations. Alternatively, the spontaneous decay rate enhancement 

can be simulated by numerical methods. Then, g can also be obtained correspondingly. 

In the FDTD simulations, the calculations are carried out with the condition of  10   



γn, and the directly simulated decay rate enhancement is 2π𝑔2/Γ1, where Γ1 is the 

decay rate of a MQE in the medium of nr [31]. Γ1 =  𝑟
3Γ0, where Γ0 is the vacuum 

spontaneous decay rate of a MQE [4]. Thus, the magnetic Purcell factor is 𝛤sp/Γ0 =

2π𝑔2/Γ0 = 2π𝑔2 𝑟
3/Γ1.  

In our considered systems, a photon is generated through stimulated or 

spontaneous emission from MQEs. Meanwhile, a photon can be annihilated through 

stimulated absorption by MQEs or its own relaxation in the cavity (Eq. (3)). The net 

generation rate of coherent photons in a system is ∫𝜌𝑒𝑓𝑓(𝑟)𝛤
st𝑑3𝑟. The magnetic 

laser can occur when this value is larger than the photon relaxation rate 𝑁𝑛γ𝑛, namely,  

∫𝜌𝑒𝑓𝑓(𝑟)𝛤
st𝑑3𝑟 > 𝑁𝑛γ𝑛.                     (5) 

If we assume that the coupling strength g of each MQE and cavity is the same for 

simplicity. Under the situation of  10   γn, the net generation rate of coherent 

photons becomes𝑁𝑒𝑓𝑓𝛤
st. Here, 𝑁𝑒𝑓𝑓 is the inversed total number of MQEs 𝑁𝑒𝑓𝑓 

= ∫𝜌𝑒𝑓𝑓(𝑟)𝑑
3𝑟. Eq. (5) then reduces to  

𝑁𝑒𝑓𝑓2𝜋𝑔
2 >  𝑛.                             (6) 

Thus,  𝑛/2𝜋𝑔
2 represents the threshold number of MQEs required to achieve a 

magnetic laser in the above considered system. Under the situation of  10   γn, the 

net generation rate of coherent photons is 𝑁𝑒𝑓𝑓𝛤
st   𝑛 /  10. The condition to realize 

a magnetic laser becomes 𝑁𝑒𝑓𝑓2𝜋𝑔
2 >  10  correspondingly. For the rest of 

discussion, we will take the situation of  10   γn unless specified.  

III. MAGNETIC LASER IN A SUBWAVELENGTH WGM CAVITY 

A realistic dielectric cavity with active MQEs is considered as shown in Fig. 1(a). 



The cavity is a Si disk supporting high-Q subwavelength WGMs [29]. The radius and 

the height are both 630 nm. The geometry is chosen to match the wavelength region 

such that the refractive index of Si is around nr = 3.5. Simulations show that the 

resonance of a TE WGM of the azimuthal mode index m = 7 occurs at λ = 1230 nm. 

The Q-factor of this mode is 1.5 x 10
5
 and the corresponding relaxation rate is γn = 1.6 

x 10
9
 s

-1
. The magnetic Purcell factor 2π𝑔2/Γ0 can reach 1.65 x 10

5
. Note that the 

diameter of the above disk is very close to the resonant wavelength of m = 7 mode, 

while the height is much smaller than this wavelength. Thus, one can roughly take this 

mode as a subwavelength resonance. In fact, by slightly increasing the height and 

decreasing the diameter, a WGM mode will keep the same resonant wavelength and 

almost the same Q-factor, while both the diameter and height are completely 

subwavelength [29]. In this work, the height and radius are taken the same for 

simplicity. 

We assume the maximum population inversion of active MQEs 𝜌1  𝜌0  Thus, 

𝑁𝑒𝑓𝑓 ≈ 𝑁𝑀𝑄𝐸=∫(𝜌1(𝑟) + 𝜌0(𝑟))𝑑
3𝑟 , where 𝑁𝑀𝑄𝐸 represents the total number of 

MQEs. The coupling strength g of each MQE and cavity is assumed to be the same 

for simplicity. With the situation of low enough temperature ( 10   γn) and a realistic 

value of Γ0 = 10
1
 s

-1
 [7], the threshold number of MQEs required to achieve a 

magnetic laser is 𝑁𝑀𝑄𝐸
𝑡𝑕 ≈  𝑛/2𝜋𝑔

2 ≈ 9 8 x 102 based on Eq. (6). Such a threshold 

value should be easily satisfied experimentally. The 𝑁𝑀𝑄𝐸
𝑡𝑕  for a magnetic laser 

increases dramatically as the Q-factor of a cavity mode decreases (𝑁𝑀𝑄𝐸
𝑡𝑕 ~1/𝑄2, Fig. 

1(b)), and reaches more than ~10
8 

for
 
m = 3 (Q ≈ 150). For the situation of  10   γn, 



the 𝑁𝑀𝑄𝐸
𝑡𝑕  becomes 𝑁𝑀𝑄𝐸

𝑡𝑕 =  10/2𝜋𝑔
2. This value is relatively  10/γn times larger 

than that under the situation of low enough temperature.   

 

Fig. 1. (a) Schematic of a magnetic laser system consisting of a subwavelength dielectric cavity 

and active MQEs. Each MQE is a two-level emitter. (b) 𝑁𝑀𝑄𝐸
𝑡𝑕  of a WGM-resonant Si cavity with 

different mode m. Each WGM is a TE mode. The line is the fitting results with an exponential 

decay function. The radius and the height are both 630 nm.  

By enlarging the size of a disk cavity, it becomes relatively easier to obtain a 

magnetic laser. The WGM response is a geometric resonance in a dielectric cavity. 

Thus, the resonant wavelength λn of a WGM is in proportion to the disk diameter D 

(λn ∝ D) [29], where the height/diameter ratio of a disk is always kept the same. The 

Q-factor of each WGM remains the same with varying the disk size (Fig. 2(a)). The 

magnetic field distribution size increases proportionally with the disk size. Thus, the 

mode volume Vm increases proportionally with the geometric volume of the disk 

(Vm ∝ D
3
). By combining all these factors, the Purcell factor 

𝛤sp

𝛤0
=

2𝜋𝑔2

𝛤0
∝ 𝑄𝜆𝑛

3/𝑉𝑚 

[4] also remains unchanged with disk size. This is also confirmed by direct 



simulations (Fig. 2(a)). The decay rate of a WGM photon γn decreases with the disk 

size γn ∝1/D as the resonant frequency 𝜔𝑛 decreases with D (𝜔𝑛 ∝1/D) while the 

Q-factor remains unchanged. Thus, the 𝑁𝑀𝑄𝐸
𝑡𝑕  to achieve a magnetic laser becomes 

relatively smaller with disk size 𝑁𝑀𝑄𝐸
𝑡𝑕 =  𝑛/2𝜋𝑔

2 ∝ 1/𝐷 (Fig. 2(b)). Here, we have 

assumed a fixed 𝛤0 for simplicity. The above analysis is not restricted to a specific 

WGM. Thus, the relation 𝑁𝑀𝑄𝐸
𝑡𝑕 ∝ 1/𝐷 with a fixed 𝛤0 applies for any WGM in the 

disk system. Furthermore, a larger disk also provides more space to host the MQEs. 

This is also an important profitable factor to realize such a system in experiments. 

 

Fig. 2. (a) Directly simulated Q factor (blue dots) and magnetic Purcell factor 𝛤𝑠𝑝/ 𝛤0 (black dots) 

as a function of the disk size (radius). The WGM is a m = 7 TE mode for each case. (b) 

Normalized threshold number of MQEs 𝑁𝑀𝑄𝐸
𝑡𝑕 /𝑁𝑀𝑄𝐸

𝑡𝑕0  as a function of the size (diameter) ratio 

D/D0 (red line). D0 is a reference diameter of a disk with a threshold number of 𝑁𝑀𝑄𝐸
𝑡𝑕0 . The height 

is always kept the same the radius in each case. 

Now let us turn to the number of photons Nn of the magnetic laser system. At 



first, Nn increases as the gain is larger than the loss. Then, Nn turns to be saturated 

(denoted by 𝑁𝑛
𝑚𝑎𝑥) when the gain equals the loss. The 𝑁𝑛

𝑚𝑎𝑥  can be obtained by 

solving Eqs. (3) and (4) under the steady-state conditions, namely, 𝜌̇𝑒𝑓𝑓 = 0 and 

𝑁𝑛̇ = 0. The analytical expression of 𝑁𝑛
𝑚𝑎𝑥 as a function of the system parameters is 

complex (see Appendix D). There are two solutions for 𝑁𝑛
𝑚𝑎𝑥, where the negative 

one is omitted. The 𝑁𝑛
𝑚𝑎𝑥 as a function of pumping rate for cases with different 

number of MQEs 𝑁𝑀𝑄𝐸 are shown in Fig. 3. When 𝑁𝑀𝑄𝐸 is more than several times 

larger than the 𝑁𝑀𝑄𝐸
𝑡𝑕 , 𝑁𝑛

𝑚𝑎𝑥increases linearly with the pumping rate W01 (𝑁𝑛
𝑚𝑎𝑥 ∝ 

(𝑁𝑀𝑄𝐸 − 𝑁𝑀𝑄𝐸
𝑡𝑕 )W01/ 𝛤sp ). For the case where 𝑁𝑀𝑄𝐸  is equal to the 𝑁𝑀𝑄𝐸

𝑡𝑕 , 

𝑁𝑛
𝑚𝑎𝑥shows a square root function of the pumping rate 𝑁𝑛

𝑚𝑎𝑥 = √
𝑊01

2𝛤sp
+

1

4
−

1

4
 . 

 

Fig. 3. Saturated number of photons 𝑁𝑛
𝑚𝑎𝑥 as a function of the normalized pumping rate W01/𝛤

sp. 

The number of MQEs 𝑁𝑀𝑄𝐸 varies from 𝑁𝑀𝑄𝐸
𝑡𝑕  to 3𝑁𝑀𝑄𝐸

𝑡𝑕 . 

IV. COMPETITIONS BETWEEN MAGNETIC AND ELECTRIC 

INTERACTIONS 



We shall now investigate the coupling strengths of a magnetic interaction and an 

electric interaction associated with a cavity mode. This is an important factor that 

determines if a magnetic laser action can exceed an electric one. Note that Eq. (6) also 

holds for the electric case while the 2𝜋𝑔2 term should be replaced by 2𝜋𝑔𝑒
2 to 

represent the electric interaction. The Purcell factor of an EQE can be expressed as 

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒, where 𝛤𝑒
𝑠𝑝

 and 𝛤0
𝑒 are the spontaneous decay rate of an EQE in a cavity 

and vacuum, respectively. The ratio of the vacuum decay rate of an EQE to that of a 

MQE 𝛤0
𝑒/𝛤0 can reach several orders of magnitude for a common molecular, while it 

can be much smaller for a rare-earth ion [5,6]. We assume resonant couplings for both 

electric and magnetic interactions. Numerical calculations show that, the 
𝛤sp/Γ0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 is ~ 

10
1
 for a WGM of nr = 3.5 (Fig. 4). This means that 𝛤0

𝑒/𝛤0 should be smaller than 

~10
1
 to make the magnetic interaction stronger than the electric one. This can be 

realistic for rare-earth ions. If only the magnetic interaction is a resonant coupling, the 

detuning of the nonresonant electric interaction is 𝜔 − 𝜔𝑛 = 𝑓 𝑛. Based on Eq. (2), 

the nonresonant decay rate of an emitter is 1/(f 
2
+1) times of the resonant one. This 

will make the ratio 
𝛤sp/Γ0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 become relatively (f 
2
+1) times larger.  

 

Fig. 4. Magnetic Purcell factors for different modes (red dots). Electric Purcell factors with an 



EQE as the excitation are also shown (black dots). The disk is the same as that in Fig. 1(b). For 

each case, an emitter is placed at the maximal field of a mode. The inset shows magnetic field 

distribution at the center cross section of the disk (m = 7). A MQE denoted by the green point is 

located at a maximal field point of the m = 7 WGM mode. 

 

    One efficient way to further enlarge the emission ratio 
𝛤sp/𝛤0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 can be considered 

by putting an emitter inside a less symmetrical cavity. Here, we also assume resonant 

couplings for both electric and magnetic interactions for simplicity. Figure 5(a) shows 

a Si block cavity with an emitter at its center. The length, width and height are 1500, 

1050 and 1050 nm, respectively. Here, the size of the cavity is also chosen to match 

that nr is around nr = 3.5. There is a high-order magnetic mode around λ = 1375 nm 

which is around the size of the cavity (Figs. 5(b)-5(d)). This mode can be efficiently 

excited by a y-polarized MQE with a magnetic Purcell factor of 𝛤sp/𝛤0 ≈ 1200. The 

Q factor is about 1.5 x 10
3
. On the other hand, if an EQE is placed at the same point. 

The 𝛤𝑒
𝑠𝑝/𝛤0

𝑒 for an EQE polarized in x, y and z are only 2.5, 0.3 and 0.3, respectively. 

We take an average value of 𝛤𝑒
𝑠𝑝/𝛤0

𝑒≈ 1 for an EQE. The ratio 
𝛤sp/Γ0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 can reach ~10
3
. 

This means that the magnetic interaction can exceed the electric one if 𝛤0
𝑒/𝛤0 of an 

emitter is smaller than ~10
3
. 
𝛤sp/Γ0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 increases exponentially with nr and reaches ~10
5
 

around nr = 5 (Fig. 5(e)). Based on Eq. (6), the 𝑁𝑀𝑄𝐸
𝑡𝑕  for the above magnetic mode 

with nr = 3.5 is 𝑁𝑀𝑄𝐸
𝑡𝑕  ~ 10

6
. This number is achievable in such a system. The Q 

factor of the mode increases almost exponentially with nr. Thus, the 𝑁𝑀𝑄𝐸
𝑡𝑕  decreases 

almost exponentially with nr (Fig. 5(f)). It is also relatively beneficial to enlarge the 



cavity size, and the discussion is the same as that in a WGM cavity (Fig. 2).  

 

Fig. 5. (a) Schematic of a dielectric block excited by a MQE. The origin of the coordinate system 

is placed at the block center. (b) Spontaneous emission rate enhancement of a MQE (𝛤sp/𝛤0) and 

an EQE (𝛤𝑒
𝑠𝑝
/𝛤0

𝑒). The polarization of the MQE is along y-axis. The polarization of the EQE is 

along x-axis (EQE-1) or z-axis (EQE-2). The emitter is located at the block center in each case. nr 

= 3.5. (c,d) Magnetic field distribution on the x-y (c) and x-z (d) plane of the MQE-excited block 

at λ= 1375 nm. The arrows denote the main feature of the magnetic field directions. (e) Emission 

ratio 
𝛤sp/Γ0

𝛤𝑒
𝑠𝑝
/𝛤0

𝑒 as a function of the refractive index nr. (f) Q-factor and 𝑁𝑀𝑄𝐸
𝑡𝑕  as a function of nr. 

The size of the block in (e) and (f) is the same as that in (b). 

V. CONCLUSION 

In conclusion, we have theoretically proposed that a magnetic laser can be 

obtained through the stimulated emissions of MQEs in a subwavelength dielectric 

cavity. The quantum treatment of such a hybrid system is carried out by considering 

the interactions of quantized magnetic field and two-level MQEs. The magnetic laser 

can be achieved in a subwavelength cavity based on the facts that the cavity can host 

high-Q electromagnetic resonances with significant magnetic near field responses. 



The saturated number of photons 𝑁𝑛
𝑚𝑎𝑥  shows a linear relation with the pumping rate 

when the number of MQEs is more than several times larger than its threshold value. 

The competition between the electric interaction and magnetic one in terms of their 

decay rate enhancements is also considered. In a wavelength-scale block cavity, their 

Purcell factor ratio can reach more than ~10
3
 large (nr = 3.5) due to the location 

dependent emission properties. The widely developed fabrications of combined 

systems of dielectric structures and rare-earth ions may provide technical support for 

realizing our proposed magnetic laser in experiments [47-52]. It should be noted that 

to keep the couplings between MQEs and a cavity efficient enough in experiments, 

the MQEs should be placed carefully to match the near field distributions of a cavity 

mode. Our results will enrich the laser field and could find important applications in 

enhanced magnetic light-matter interactions. 
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APPENDIX A: THE INTERACTION HAMILTONIAN BETWEEN A MQE 

AND THE QUANTIZED MAGNETIC FIELD OF A CAVITY 

The magnetic field of a high-Q electromagnetic mode in a cavity can be 

expressed as 



𝐻⃗⃗ (𝑟, 𝑡) = a𝑄⃗ (𝑟)cos (𝜔𝑛𝑡 + 𝜑(𝑟)) 

=
𝑎

2
𝑄⃗ (𝑟)𝑒−𝑖(𝜔𝑛𝑡+𝜑(𝑟)) +

𝑎

2
𝑄⃗ (𝑟)𝑒𝑖(𝜔𝑛𝑡+𝜑(𝑟))                       (A1)

 

where 𝜑(𝑟) represents the spatial phase of the magnetic field, 𝜔𝑛 is the frequency of 

the photon, and a is the maximal magnitude of the magnetic field (Hmax), namely, 

Hmax = a. 𝑄⃗ (𝑟) is a real function of r. It represents the normalized magnitude of the 

magnetic at location r, and the maximal value of 𝑄⃗ (𝑟) is 1. Thus, the combination of 

𝑄⃗ (𝑟) and a (namely, 𝑎𝑄⃗ (𝑟)) means the magnitude of magnetic field at location r 

(denoted by 𝐻⃗⃗ (𝑟)). Thus, we also have 𝑄⃗ (𝑟) = 𝐻⃗⃗ (𝑟) / Hmax = 𝐵⃗ (𝑟) / Bmax, where 

𝐵⃗ (𝑟) = 𝜇0𝐻⃗⃗ (𝑟). The time averaged energy of a magnetic mode can be expressed in 

terms of magnetic field as 

Um = 
1

2
∫𝜇0|𝐻⃗⃗ (𝑟)|

2𝑑3𝑟 

= c
2
a

2
,                                                          (A2) 

where 𝑐2 =
1

2
∫ 𝜇0|𝑄⃗ (𝑟)|

2𝑑3𝑟. The quantized Hamiltonian becomes the harmonic 

oscillator form [37,41,42] provided that a = 
√ħ𝜔𝑛

𝑐
𝑎̂ and a*=

√ħ𝜔𝑛

𝑐
𝑎̂+. Here, 𝑎̂+and 𝑎̂ 

are the creation and annihilation operators of a photon, respectively. The quantized 

magnetic field as a function of position and time can be written as [37,41,42] 

𝐻⃗⃗ (𝑟, 𝑡) = 
√ħ𝜔𝑛

2𝑐
𝑄⃗ (𝑟)𝑎̂𝑒−𝑖(𝜔𝑛𝑡+𝜑(𝑟)) +

√ħ𝜔𝑛

2𝑐
𝑄⃗ (𝑟)𝑎̂+𝑒𝑖(𝜔𝑛𝑡+𝜑(𝑟)) .            (A3) 

The interaction Hamiltonian is Hint = - 𝑀⃗⃗ ∙ 𝐵⃗ , where 𝑀⃗⃗  is the magnetic dipole 

moment of a MQE. With the second quantization and rotating wave approximation 

[42], Hint can be expressed as  

Hint = - 𝜇0
√ħ𝜔𝑛

𝑐
M⃗⃗⃗ 10 ∙ 𝑄⃗ (𝑟)(𝑎̂𝜍̂10𝑒

−𝑖(𝜔𝑛𝑡+𝜑(𝑟)) + 𝑎̂+𝜍̂01𝑒
𝑖(𝜔𝑛𝑡+𝜑(𝑟))) 

=-ћg(𝑎̂ 𝜍̂10𝑒
−𝑖(𝜔𝑛𝑡+𝜑(𝑟 )) + 𝑎̂+𝜍̂01𝑒

𝑖(𝜔𝑛𝑡+𝜑(𝑟 ))),                            (A4) 



where M⃗⃗⃗ 10 is the matrix element of the MD transition, 𝜍̂10 = |1⟩⟨0|, and 𝜍̂01 =

|0⟩⟨1|are transition operators of a MQE, and g is the coupling strength 

𝑔 =𝜇0
√ħ𝜔𝑛

2𝑐
M⃗⃗⃗ 10 ∙ 𝑄⃗ (𝑟)   

  = 𝜇0
√ħ𝜔𝑛

2𝑐
M⃗⃗⃗ 10 ∙

𝐻⃗⃗ (𝑟)

𝐻𝑚𝑎𝑥
                                                 

= 𝜇0
√ħ𝜔𝑛

2𝑐
M⃗⃗⃗ 10 ∙

𝐵⃗ (𝑟)

𝐵𝑚𝑎𝑥
,                                               (A5) 

The coupling strength g can also be written in terms of the mode volume of a 

magnetic mode. The mode volume of a magnetic mode can be expressed as  

𝑉𝑚= 
∫𝜇0|𝐻⃗⃗ (𝑟)|

2𝑑3𝑟

𝜇0𝐻𝑚𝑎𝑥
2  

= 
2c2

𝜇0
,                                                            (A6) 

Based on Eqs. (A5) and (A6), the coupling strength g can also be written as 

g = √
𝜇0𝜔𝑛

2ħ𝑉𝑚
M⃗⃗⃗ 10 ∙

𝐵⃗ (𝑟)

𝐵𝑚𝑎𝑥
.                                               (A7) 

 

APPENDIX B: STIMULATED EMISSION AND ABSORPTION RATE 

Under Fermi's golden rule, the total emission rate into photons from a MQE can 

be expressed as  

Γ′ =
2𝜋

ћ2
|⟨𝑁𝑛 + 1,0|𝐻𝑖𝑛𝑡|𝑁𝑛, 1⟩|

2δ(𝜔10 − 𝜔𝑛),                            (B1) 

where 𝜔10 is the frequency of MQE transition. |𝑁𝑛, 1⟩ represents a state where there 

are 𝑁𝑛 photons and the MQE is on the excited state. Similarly, |𝑁𝑛 + 1,0⟩ represents 

a state where there are 𝑁𝑛 + 1 photons and the MQE is on the ground state. Based on 

Eq. (A4), the magnitude matrix element for the emission of a photon can be written as 

|⟨𝑁𝑛 + 1,0|𝐻𝑖𝑛𝑡|𝑁𝑛, 1⟩| = ћ𝑔√𝑁𝑛 + 1.                                 (B2) 

Considering certain spectral widths of both MQE transitions and photons [37], Eq. 



(B1) can be expressed as  

Γ′ = 2π𝑔2 (𝑁𝑛 + 1) ∫𝐹(𝜔)
  
2

(𝜔−𝜔𝑛)2+  
2
𝑑𝜔,                             (B3) 

where ∫𝐹(𝜔)
  
2

(𝜔−𝜔𝑛)2+  
2
𝑑𝜔  is the spectral overlap factor. 𝐹(𝜔)  is the 

normalized-to-1 spectrum of MD transitions, and γn is the relaxation rate of the photon. 

In the 𝑁𝑛 + 1 term of Eq. (B3), the 𝑁𝑛 represents the contribution from stimulated 

emission 𝛤st while the number 1 corresponds to the spontaneous emission 𝛤sp. 

Similar to Eq. (B2), the magnitude matrix element for the absorption of a photon can 

be written as 

|⟨𝑁𝑛 − 1,1|𝐻𝑖𝑛𝑡|𝑁𝑛, 0⟩| = ћ𝑔√𝑁𝑛.                                     (B4) 

Thus, one can obtains the stimulated absorption rate 𝛤sa, and it is equal to 𝛤st. 

APPENDIX C: THE RATE EQUATION FOR THE POPULATION OF MQES 

The population density 𝜌1 of MQEs at a given location satisfies 

𝜌̇1 = 𝜌0𝑊01 + 𝜌0𝛤
st − 𝜌1𝛤

st − 𝜌1𝛤
sp,                                 (C1) 

where 𝑊01is the pumping rate. Similarly, 𝜌0 satisfies 𝜌̇0 = −𝜌̇1. We can define 

𝜌𝑡𝑜𝑡 = 𝜌1 + 𝜌0, and we also have 𝜌𝑒𝑓𝑓 = 𝜌1 − 𝜌0. Thus, 𝜌̇𝑒𝑓𝑓 = 2𝜌̇1. Then, 𝜌1and 

𝜌0 can be expressed as 2𝜌1 = 𝜌𝑡𝑜𝑡 + 𝜌𝑒𝑓𝑓 and 2𝜌0 = 𝜌𝑡𝑜𝑡 − 𝜌𝑒𝑓𝑓, respectively. Eq. 

(C1) can be rewritten in terms of 𝜌𝑒𝑓𝑓 and 𝜌𝑡𝑜𝑡 as  

𝜌̇𝑒𝑓𝑓 = (𝑊01 − 𝛤sp)𝜌𝑡𝑜𝑡 − (𝑊01 + 𝛤sp + 2𝛤st)𝜌𝑒𝑓𝑓.                      (C2) 

Considering the integration over the whole region, one obtains Eq. (4). 

APPENDIX D: THE STEADY-STATE SOLUTION FOR THE SATURATED 

NUMBER OF PHOTONS 



The 𝑁𝑛
𝑚𝑎𝑥  can be obtained by solving Eqs. 3 and 4 under the steady-state 

conditions, namely, 𝜌̇𝑒𝑓𝑓 = 0 and 𝑁𝑛̇ = 0. There are two solutions of 𝑁𝑛
𝑚𝑎𝑥. The 

nagtive one is omitted. The positive one is  

𝑁𝑛
𝑚𝑎𝑥 =

1

4
−

𝑊01

4𝛤sp
+

𝑊01𝑁𝑀𝑄𝐸

4 𝑛
+ [

1

16
+

𝑊01

8𝛤sp
+

3𝑊01𝑁𝑀𝑄𝐸

8 𝑛
+ (

𝑊01

4𝛤sp
−

𝑊01𝑁𝑀𝑄𝐸

4 𝑛
)2]1/2. 

                                                                 (D1) 

When 𝑁𝑀𝑄𝐸  is several times larger than 𝑁𝑀𝑄𝐸
𝑡𝑕 (𝑁𝑀𝑄𝐸

𝑡𝑕 =
 𝑛

𝛤sp
), the expression 

[
1

16
+

𝑊01

8𝛤sp
+

3𝑊01𝑁𝑀𝑄𝐸

8 𝑛
+ (

𝑊01

4𝛤sp
−

𝑊01𝑁𝑀𝑄𝐸

4 𝑛
)
2

]  in Eq. (D1) is dominated by the 

(
𝑊01

4𝛤sp
−

𝑊01𝑁𝑀𝑄𝐸

4 𝑛
)2term. Thus, the 𝑁𝑛

𝑚𝑎𝑥 becomes  

𝑁𝑛
𝑚𝑎𝑥 ≈

1

4
+
(𝑁𝑀𝑄𝐸−𝑁𝑀𝑄𝐸

𝑡ℎ )𝑊01

2𝛤sp
.                                          (D2) 

When 𝑁𝑀𝑄𝐸  is equal to 𝑁𝑀𝑄𝐸
𝑡𝑕 , the 

𝑊01

4𝛤sp
−

𝑊01𝑁𝑀𝑄𝐸

4 𝑛
 term becomes 0. Thus, the 

𝑁𝑛
𝑚𝑎𝑥 is 

 𝑁𝑛
𝑚𝑎𝑥 = √

𝑊01

2𝛤sp
+

1

4
−

1

4
,                                            (D3) 

namely, 𝑁𝑛
𝑚𝑎𝑥 ∝ √

𝑊01

𝛤sp
. 
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