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We study two-dimensional (2D) droplets of noninteracting electrons in a strong magnetic field,
placed in a confining potential with arbitrary shape. Using semiclassical methods adapted to the
lowest Landau level, we obtain near-Gaussian energy eigenstates that are localized on level curves
of the potential and have a position-dependent height. This one-particle insight allows us to de-
duce explicit formulas for expectation values of local many-body observables, such as density and
current, in the thermodynamic limit. In particular, correlations along the edge are long-ranged and
inhomogeneous. As we show, this is consistent with the system’s universal low-energy description
as a free 1D chiral conformal field theory of edge modes, known from earlier works in simple ge-
ometries. A delicate interplay between radial and angular dependencies of eigenfunctions ultimately
ensures that the theory is homogeneous in terms of the canonical angle variable of the potential,
despite its apparent inhomogeneity in terms of more naïve angular coordinates. Finally, we propose
a scheme to measure the anisotropy by subjecting the droplet to microwave radiation; we compute
the corresponding absorption rate and show that it depends on the droplet’s shape and the waves’
polarization. These results, both local and global, are likely to be observable in solid-state systems
or quantum simulators of 2D electron gases with a high degree of control on the confining potential.
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I. INTRODUCTION

Quantum Hall (QH) droplets are mesoscopic two-
dimensional (2D) electron gases placed in a strong per-
pendicular magnetic field and confined by some electro-
static potential. They lie at the heart of the QH effect
[1–3] and provide a key benchmark for topological phases
of matter as a whole. In practice, however, the majority
of detailed analytical studies of QH droplets and their
low-energy edge excitations [4–9] are limited to highly
symmetric cases, typically involving isotropic traps or
harmonic potentials that are translation invariant in one
direction [10, 11]. This is especially troubling as far as
edge modes are concerned, since it is not obvious that
they are universally described by a homogeneous chiral

Figure 1. 2D electron droplet (shaded area) placed in a
strong perpendicular magnetic field and confined by a typical
anisotropic edge-deformed potential well (10). At leading or-
der in the thermodynamic limit, the droplet’s boundary (thick
black curve) coincides with the equipotential of the trap at the
Fermi energy.
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Luttinger liquid when the gradient of the potential makes
their propagation velocity position dependent [12–14].

The goal of the present paper is to address this
lack of analytical results by predicting the behavior of
many-body observables near the edge of essentially any
anisotropic droplet, as illustrated in Fig. 1. We achieve
this by providing general, explicit formulas for the den-
sity, current, and correlations in the regime of strong
magnetic fields. We also study the corresponding low-
energy edge modes, which are described by a free-fermion
chiral conformal field theory (CFT) whose Fermi veloc-
ity is constant provided distances along the boundary are
measured by the canonical angle coordinate determined
by the potential. As we explain, this universal result
stems from a delicate interplay between the radial and
angular dependencies of anisotropic wave functions, and
only becomes manifest upon suitably ‘averaging’ over the
radial direction.

Such phenomena are likely to be directly observable
with local imaging techniques in condensed matter sys-
tems [12, 14–22] or quantum simulators [23–30]. In ad-
dition, we predict two effects that probe the anisotropy
without requiring local imaging. The first consists of
shape-dependent quantum corrections to the velocity and
dispersion of edge modes, measurable in both genuine QH
samples [31–34] and their cold-atom simulators [35–37];
the second is the microwave absorption spectrum [38] of
anisotropic QH droplets, whose rich pattern of peaks with
a polarization-dependent magnitude should similarly be
detectable in view of the recent experiment [39].

Related questions have appeared in the literature. In-
deed, random potentials with no symmetries are essential
to model disorder, whose importance for the robustness
of QH physics is hard to overstate [40–42]. A relevant se-
ries of works in that context is [43, 44], which study the
density and current of QH droplets with arbitrary poten-
tials, at finite temperature, generally including Landau-
level mixing, in the semiclassical limit of strong magnetic
fields and weak traps [41, 42]. However, the coherent
states used in these references only provide a limited res-
olution at the single-particle level, precluding the com-
putation of low-energy dynamics and long-range correla-
tions along the boundary. Our objective here is instead
to find explicit one-particle wave functions, which will
depend on the shape of the potential, and use these as a
starting point for many-body objects.

Regarding electronic edge correlations, similar issues
have been addressed in the context of classical 2D
Coulomb gases, where holomorphic methods provide a
handle on droplets of pretty much any shape [45–51]. The
most-studied case of harmonic traps even involves an ex-
act correspondence between the quantum Landau prob-
lem and the appropriate Coulomb gas [52, 53]. However,
no such matching holds for generic confining potentials,
so the two setups really need to be treated separately. In
other words, the vast majority of anisotropic QH droplets
admit no faithful Coulomb-gas description.

Finally, the results put forward here may be seen as

microscopic, first-principles derivations of quantities that
are normally studied within less-controlled approxima-
tion schemes in the geometry of the QH effect [54–62].
Our hope is thus to build a bridge between these theo-
retical works and concrete observations that may soon be
accessible in tabletop experiments with a high degree of
control on the confining potential [29, 30].

Here is the plan of the paper. To begin, Sec. II summa-
rizes our methods and results, avoiding technical details.
The next two sections are devoted to one-body physics
in the lowest Landau level: Sec. III first discusses gener-
alities on semiclassical holomorphic wave functions, and
Sec. IV presents a detailed calculation of the semiclassi-
cal energy spectrum in a broad class of ‘edge-deformed’
potentials of particular interest. This leads to Sec. V,
where we investigate the many-body density, current,
correlations and low-energy edge modes of anisotropic
droplets. Last, Sec. VI is devoted to the microwave ab-
sorption spectrum, seen as a realistic global probe of
anisotropy. We conclude in Sec. VII by discussing several
future directions and open questions. To streamline the
text, some details are deferred to Appendices A–E.

II. SETUP AND MAIN RESULTS

This section is an overview of our methods and re-
sults, beginning with the general setup (see Fig. 1): a
QH droplet in a strong magnetic field, with a trapping
potential that varies slowly compared to the magnetic
length [41, 42, 63]. We explore this regime by developing
a powerful WKB ansatz adapted to the lowest Landau
level (LLL), inspired by semiclassical tools for holomor-
phic wave functions [64–67] in general and quasimodes
[68, 69] in particular. Concretely, we obtain the one-
particle eigenfunctions and energy spectrum for a class of
edge-deformed potentials representing the most general
leading-order anisotropy of any star-shaped QH sample
[70]. We then apply these insights to the full many-body
setting of an anisotropic QH droplet, providing explicit
and practical formulas for both local and global many-
body observables, respectively depicted in Figs. 2 and 4.

A. Semiclassical limit in the LLL

Consider spin-polarized noninteracting electrons of
mass M and charge q in the plane. Each electron is
governed by a Landau Hamiltonian with an anisotropic
potential V (x),

Hone-body =
1

2M
(p − qA)2 + V (x), (1)

where x denotes position, p is canonical momentum, and
A is the vector potential of the magnetic field B = dA.
The latter is taken to be uniform, i.e. B = B dx∧ dy for
some constant B ̸= 0 in terms of Cartesian coordinates
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Figure 2. Intensity plots of: (a) The many-body density (16) along with several equipotentials (dashed curves), for a droplet
with N = 100 electrons confined by the edge-deformed trap (10) used in Fig. 1. The constancy of the bulk density and its decay
at the boundary are manifest. (b) The norm of the current (17) for the same droplet, together with the edge (black curve) on
which it is localized. (c) The norm of the correlation function (18) for the same droplet, plotted as a function of x2 = (x, y) for
a fixed point (black cross) x1 = (ℓ

√
Nλ(0), 0) on the edge. Long-range correlations along the boundary are clearly visible and

satisfy the asymptotics (19) away from the coincident point x1 = x2. In each case, the color coding goes from black to white,
respectively corresponding to vanishing and maximal values of the plotted function.

(x, y), and we systematically work in symmetric gauge
A = 1

2B(x dy − y dx). (We view A and B as differential
forms, which simplifies some notation but is otherwise in-
consequential.) For simplicity, we also assume that V (x)
is ‘monotonic’, meaning that it has a unique global min-
imum away from which it grows monotonically but is
otherwise general [71]. The level curves or equipotentials
of V (x) are therefore nested and take the form shown in
Fig. 2(a). Finally, we assume throughout that the poten-
tial is weak relative to the magnetic field [41–44, 72, 73],
in that it is nearly constant on length scales comparable
to the magnetic length ℓ given by

ℓ2 ≡ ℏ
qB

, (2)

where qB > 0 without loss of generality [74]. Note that
the assumption of monotonicity is natural for QH sam-
ples: the potential near the edge of any realistic droplet
is guaranteed to be monotonic, and this ultimately deter-
mines the low-energy physics regardless of bulk details.

In the regime of slowly varying potentials, the operator
V (x) is a small perturbation of the pure Landau Hamil-
tonian ∝ (p − qA)2 and the eigenstates of Hone-body in
Eq. (1) are well approximated by wave functions in the
LLL. For instance, if the potential V (x) = V0(r

2/2) is
isotropic, any eigenfunction of Hone-body has some defi-
nite angular momentum ℏm with integer m. Each eigen-
state thus reduces at strong B to a standard LLL wave
function in symmetric gauge,

ϕm(x) =
1√
2πℓ2

zm√
m!

e−|z|2/2, (3)

where m ≥ 0 and we introduced the dimensionless com-
plex coordinate

z ≡ x+ iy√
2 ℓ

. (4)

The wave function (3) reaches its maximum on the cir-
cle |z| = √

m, away from which it decays in a Gaussian
manner with a width of the order of ℓ. Our goal will be
to obtain similar approximate eigenstates for anisotropic
traps, using the squared magnetic length (2) as a small
parameter [75]. Equivalently, we shall carry out a semi-
classical (small ℏ), high-field (large B) expansion.

In practice, the projection to the LLL is implemented
by the (one-body) operator P ≡ ∑∞

m=0 |ϕm⟩⟨ϕm| whose
kernel can be obtained from the wave functions (3):

⟨z, z̄|P |w, w̄⟩ = 1

2πℓ2
e−(|z|2+|w|2)/2 ezw̄. (5)

This kernel is manifestly Gaussian and reduces to a delta
function in the formal semiclassical limit ℓ→ 0. At small
but finite ℓ, the projection (5) makes space noncommu-
tative in the sense that LLL-projected position operators
satisfy the Heisenberg algebra

[PxP, PyP ] = iℓ2. (6)

One can thus think of the plane R2 as a phase space
whose canonical variables are (x, y). This interpretation
pervades much of the QH literature [63, 76–85] and will
similarly affect our discussion. Indeed, projecting the
Hamiltonian (1) to the LLL and looking for its spectrum
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leads to the eigenvalue equation

PVP |ψ⟩ = E|ψ⟩, (7)

where the unknowns are the energy E and the quantum
state |ψ⟩ in the LLL [86]. Note that the kinetic term in
Eq. (1) has disappeared in Eq. (7): the potential itself
plays the role of an effective Hamiltonian in the noncom-
mutative phase space (x, y).

Exact solutions of Eq. (7) are generally out of reach,
so one has to resort to approximations. The semiclassical
one that we shall use is well known in the QH context
[41–44, 68, 69]. More precisely, we will seek solutions of
Eq. (7) labeled by a large quantum number m ∈ N, seen
as a generalization of angular momentum. This large-m
limit is accompanied by a small-ℓ limit such that the area
2πℓ2m remains fixed. In that regime, the mth eigenstate
is approximately Gaussian and localized on an equipo-
tential γm of V (x), enclosing a quantized area such that
the Bohr-Sommerfeld condition holds:∮

γm

xdy = 2πℓ2m. (8)

Equivalently, the flux of the magnetic field through the
area enclosed by γm is m times the flux quantum. The
energy of the mth state is then

Em = E0
m + ℓ2E1

m +O(ℓ4), (9)

where E0
m = V (γm) is the leading classical approximation

and the quantum correction E1
m involves the Laplacian of

the potential and the curvature of the equipotential γm
[68, 69]. The more familiar Wentzel-Kramers-Brillouin
(WKB) approximation of 1D quantum mechanics [87]
includes (topological) Maslov corrections on the right-
hand side of Eq. (8); we will encounter similar correc-
tions below, although their topological interpretation is
prevented by a subtle distinction between real and Käh-
lerian polarizations in geometric quantization [68, 69].

B. One-body results

The semiclassical limit just outlined applies to any
(monotonic) weak potential. In practice, our main con-
cern is the physics of QH droplets near the edge, where
the details of the bulk potential are irrelevant. Most
of our explicit results will therefore be given for edge-
deformed potentials, obtained as follows. Consider any
monotonically increasing function V0(s) for s ≥ 0, and
let λ(φ) be any strictly positive 2π-periodic function
of the angle φ ∈ [0, 2π). We normalize λ(φ) so that∮
dφλ(φ) = 4π, writing

∮
dφ as a shorthand for

∫ 2π

0
dφ.

Then, adopt polar coordinates in the plane such that
x+ iy = reiφ and define the potential

V (r, φ) ≡ V0

(
r2

λ(φ)

)
. (10)

Figure 3. The second exponential in Eq. (11) involves the
signed distance d between the point x = (r cos(φ), r sin(φ))

and the equipotential at r = ℓ
√

mλ(φ). At large m, the
equipotential is locally nearly straight, so the expression (13)
of d in terms of the angle φ and the radial deviation a defined
below Eq. (11) follows from elementary Cartesian geometry.

We refer to this as an edge-deformed trap because it
arises from a deformation r2 7→ r2/λ(φ) that changes
the shape of the boundary of isotropic droplets in a fi-
nite and smooth way, even in the thermodynamic limit
where the droplet’s area goes to infinity [88]. The cor-
responding equipotentials enclose star-shaped regions in
the plane that only differ from one another by their over-
all scale [70]. In this sense, the class of potentials (10) is
generic as far as edge effects are concerned. It is partly
inspired by earlier works on the W1+∞ algebra [89–95],
where it was argued that infinitesimal deformations of
the form (10) span a Virasoro algebra.

The traps (10) allow for explicit calculations of the
semiclassical energy spectrum, generalizing the known
isotropic formulas reviewed in Appendix A. Indeed, we
show in Sec. IV that the relevant eigenfunctions, solving
the LLL eigenvalue problem (7), are Gaussians localized
on equipotentials r = ℓ

√
mλ(φ) at large quantum num-

bers m. They can be written in polar coordinates as

ψm(r, φ) ∼ eiΘm(r,φ)√
2πℓ2σ(φ)

e−a2/σ(φ)2

(2πm)1/4
, (11)

where Θm(r, φ) is a position-dependent phase given be-
low in Sec. IVD, a ≡

(
r − ℓ

√
mλ(φ)

)/
ℓ
√
λ(φ) is a di-

mensionless coordinate encoding the deviation from the
equipotential, and the quantity

σ(φ) ≡
√

2

λ(φ)

√
1 +

[
λ′(φ)

2λ(φ)

]2
(12)

determines the local height of the wave function. It is
worth stressing the simple geometric interpretation of
these objects. First, the ratio a/σ(φ) in the exponen-
tial in Eq. (11) measures the (signed) distance to the
equipotential, namely

d =
√
2 ℓ

a

σ(φ)
(13)

for large m; see Fig. 3. The Gaussian factor in Eq. (11)
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thus exhibits the expected ‘quantum smearing’ of wave
functions in a strong but finite magnetic field [43, 44, 67],
which would be missed by the leading classical approx-
imation (ℓ2 = 0). Second, the function (12) is propor-
tional to the Euclidean norm of the velocity of guiding
centers, namely

∥v(φ)∥ =
√
2m

ℓV ′
0(ℓ

2m)

qB
σ(φ) (14)

on the level curve r = ℓ
√
mλ(φ) of an edge-deformed

potential (10). The probability density corresponding to
the wave function (11) is thus proportional to 1/∥v(φ)∥,
in agreement with classical intuition.

As for the energy of the state (11), its expansion (9)
up to O(ℓ4) contributions turns out to be

Em ∼ V (γm) +
ℓ2

2
Ωm

[
1 +

(
1 +

Γm

Ωm

)∮ dφ

4π
λ(φ)σ(φ)2

]
,

(15)
where V (γm) = V0

(
ℓ2m

)
is the leading (classical) term

and the first quantum correction involves derivatives
Ωm ≡ V ′

0(ℓ
2m) > 0 and Γm ≡ ℓ2mV ′′

0 (ℓ2m). Note that
our semiclassical regime ensures that Γm/Ωm is finite at
large m [96]. The mth energy is thus determined by the
potential and its derivatives on an equipotential that sat-
isfies the quantization condition (8), in accordance with
general theorems for holomorphic WKB theory [68, 69].

C. Many-body results

Now consider the ground state of a large number
N ≫ 1 of free spin-polarized electrons, each governed by
the single-particle Hamiltonian (1). This ground state
is a Slater determinant of wave functions whose large-m
behavior is the Gaussian (11). As we show in Secs. V
and VI, the ensuing many-body density, current, corre-
lations, low-energy effective field theory, and microwave
absorption spectrum can all be written in closed form in
terms of λ(φ) and the number N of fermions.

Concretely, the density ρ(x) =
∑N−1

m=0 |ψm(x)|2 has the
expected bulk value ρ ∼ 1

2πℓ2 , while its form near the
edge at r = ℓ

√
Nλ(φ) is given by a complementary error

function:

ρ(r, φ) ∼ 1

4πℓ2
erfc

(
d(r, φ)

ℓ

)
, (16)

where d(r, φ) is the (signed) distance to the droplet’s
edge [67], given by Eq. (13) for m = N . As a re-
sult, the ground state forms a star-shaped droplet with
total area 2πNℓ2 and a nonzero width inherited from
that of one-body wave functions. Turning to the current
J =

∑N−1
m=0

1
2i (ψ

∗
mdψm−ψmdψ∗

m−2iq|ψm|2A) written as

a one-form in polar coordinates, one has

J(r, φ) ∼ −
exp
(
−d(r,φ)2

ℓ2

)
(2πℓ2)3/2σ(φ)

(
ℓ
√
N dφ+

λ′(φ)

2λ(φ)3/2
dr
)
.

(17)
This is localized on the edge and tangent to it, missing
the bulk behavior Ji ∝ εij∂jV as expected in the LLL
[72, 73]. Finally, the two-point correlation function

C(x1,x2) =

N−1∑
m=0

ψ∗
m(x1)ψm(x2) (18)

behaves near the edge as

C(x1,x2) ∼
eiΘN (x1,x2)

4πℓ2
√
σ(φ1)σ(φ2)

i exp
(
− d2

1

2ℓ2 − d2
2

2ℓ2

)
√
2πN sin

(∫ φ1

φ2

dφ
4 λ(φ)

)
(19)

with d1 = d(|x1|, φ1) and d2 = d(|x2|, φ2) in polar coor-
dinates, while ΘN (x1,x2) is a complicated overall phase.
Note again the Gaussian localization at the edge, as well
as the long-range correlation ∝ sin(. . .)−1 typical of gap-
less fermions. Indeed, we will confirm that the underlying
low-energy edge modes are described by a chiral CFT
of free fermions; see the action functional (74) below.
The corresponding angular Fermi velocity ωF ∼ ℓ2ΩN/ℏ
[with ΩN defined below Eq. (15)] is constant along the
boundary when measured in terms of the canonical angle
variable of the potential (10), namely

θ(φ) ≡ 1

2

∫ φ

0

dαλ(α). (20)

By contrast, the ‘lab velocity’ measured e.g. in terms of
Euclidean distances is generally nonconstant along the
edge [recall Eq. (14)].

The canonical angle coordinate (20) crucially affects
the microwave absorption spectrum. Indeed, we show
in Sec. VI that an anisotropic droplet’s electromagnetic
absorption rate Γ at frequency ω is given by

Γ(ω)

2πNℓ2
=

q2E2

16πℏ2
∞∑
p=1

p δ(ω − pωF)

×
∣∣∣∣ ∮ dφ

2π
cos(φ− α) eipθ(φ) λ(φ)3/2

∣∣∣∣2, (21)

where the angle α determines the direction of the linearly
polarized electric field with amplitude E. This predicts
a series of peaks of absorption at resonance frequencies
pωF, as anticipated in [38]; see Fig. 4 for a typical plot.
For each absorption peak, both its height and its depen-
dence on α involve the deformation function λ(φ) and
the canonical angle (20). Eq. (21) thus suggests that mi-
crowave absorption spectroscopy can be used to ‘hear the
shape of a droplet’.
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Figure 4. Intensity plot of the absorption spectrum (21) for
the same droplet as in Figs. 1 and 2, with delta functions
replaced by Lorentzian distributions to account for the finite
lifetime of quasiparticles in real systems. Following the domi-
nant first peak at ω = ωF (the angular Fermi velocity), the ab-
sorption rate displays a series of weaker resonances at higher
frequencies, with visibly angle-dependent magnitudes. The
separation between peaks is clear despite the fact that the
resolution chosen here is lower than what can be achieved in
experiments [39].

III. ANISOTROPIC STATES FROM
AREA-PRESERVING DEFORMATIONS

This section presents the WKB ansatz [see Eq. (25)]
that forms the basis of all our later considerations. The
structure is ultimately quite simple: given a monotonic
potential V (x), we pick one of its equipotentials, γm, with
quantized area (8). We then build a wave function with
winding m, perfectly localized on γm, and finally project
it to the LLL using the operator (5). General theorems
on Kählerian semiclassical analysis [64–66, 68, 69] ensure
that LLL-projected eigenstates satisfying Eq. (7) can in-
deed be built in this way. The detailed application of this
method to edge-deformed traps (10) is given in Sec. IV.

Note that what follows relies on the mathematics of
area-preserving diffeomorphisms, which is not reviewed
in detail. We refer instead to [88] for an introduction
whose language is similar to that adopted here. For more
general discussions in the symplectic context, see [97, 98].

A. Potentials in action-angle variables

Let us be more precise about the geometry of the
setup, remaining at the classical level for now. We pick
a smooth potential V (x) and assume as in Sec. II that
it is monotonic. Its unique global minimum is thus sur-
rounded by nested level curves, and one can always find
an area-preserving deformation of the plane that sends
each equipotential on a circle [97]. In other words, one
can find an invertible smooth map F : R2 → R2 with

unit Jacobian such that

V
(
F(x)

)
= V0(r

2/2), (22)

where the trap on the right-hand side is isotropic, de-
pending only on r = |x|. If F is the identity (or a rotation
around the origin), then V was isotropic to begin with
and its eigenstates satisfying Eq. (7) are the standard
wave functions (3) with definite angular momentum. In
the more general case of arbitrary V , Eq. (22) suggests
using F to map the eigenstates (3) on those correspond-
ing to our general V (x).

The existence of F in Eq. (22) is guaranteed by the
monotonicity and smoothness of V , and is equivalent to
the existence of globally well-defined canonical action-
angle variables. In fact, we can use this to write F in a
more explicit form that will be useful below. Let there-
fore (ℓ2K, θ) be action-angle coordinates for the potential
V (x), where K ≥ 0 is dimensionless and θ ∈ [0, 2π) is a
genuine angle. They are normalized so that ℓ2dK ∧dθ =
dx ∧ dy, which is to say that their Poisson bracket reads
{ℓ2K, θ} = ℓ2 in terms of the phase space (x, y) whose
bracket stems from the commutator (6). Then, the map
(x, y) 7→ (ℓ2K, θ) is an area-preserving diffeomorphism
in terms of which V (x) = V0(ℓ

2K(x)) is invariant under
rotations of θ. To be specific, write these coordinates
as functions K(x, y) and θ(x, y) and let the inverse be
x = F (K, θ) and y = G(K, θ) for some functions (F,G);
this inverse is nothing but the deformation F in Eq. (22).
In other words, knowing the action-angle variables of a
potential V allows us to map it on its (unique) isotropic
cousin V0, which, in turn, can be used to relate the cor-
responding anisotropic eigenstates to those in Eq. (3).

These considerations apply to any monotonic
anisotropic trap, in which case one typically encoun-
ters intricate area-preserving maps with complicated
action-angle variables. In practice, we will focus in
Sec. IV on the edge deformations mentioned below
Eq. (10). This will enable us to tackle a broad range
of setups where such complexities become manageable
while still capturing key features of generic anisotropic
droplets, especially as far as their boundary properties
are concerned. For now, we remain general and turn to
quantum aspects.

B. Anisotropic eigenstates

Using the action-angle variables (ℓ2K, θ) for V (x), the
statements around Eqs. (8)–(9) can be turned into formu-
las and eventually yield anisotropic eigenfunctions that
satisfy Eq. (7). Indeed, the Bohr-Sommerfeld quantiza-
tion condition (8) implies that the equipotential γm is
the set of points in R2 for which K = m. Now consider
the following quantum state, perfectly localized on γm:

|Ψm⟩ ≡ 2πℓ2
∮

dθ n(θ) eimθ
∣∣F (m, θ), G(m, θ)〉. (23)
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Here the factor 2πℓ2 is included for later convenience, the
state |F,G⟩ gives a delta function ⟨x|F (m, θ), G(m, θ)⟩ =
δ2
(
x−F(m, θ)

)
, and n(θ) is some complex periodic func-

tion. The latter does not wind upon completing one turn
in the plane along the equipotential, so all the winding
of the integrand in Eq. (23) is encoded in the phase eimθ.

We emphasize that Eq. (23) is analogous to the stan-
dard WKB ansatz ψ(x) ∼ eiS0(x)/ℏeiS1(x) in 1D. In-
deed, the phase eimθ is the leading classical contribu-
tion eiS0/ℏ for m≫ 1, corresponding to the geometrical-
optics approximation of the wave function, while n(θ) is
the physical-optics quantum correction eiS1 that needs to
satisfy a transport equation in order for the Schrödinger
equation to hold [87]. The only difference lies in the
interpretation of areas in the plane as values of an ‘ac-
tion’, which ultimately stems from the noncommutative
geometry (6) of LLL physics. Note that n(θ) is the only
unknown in Eq. (23); in fact, most of the WKB method
below will concern the derivation of a transport equation
for n(θ) from the requirement that Eq. (7) be satisfied.

Starting from Eq. (23), it is straightforward to build a
state in the LLL thanks to the projector (5): denoting

ψm(z, z̄) ≡ ⟨z, z̄|P |Ψm⟩, (24)

one finds the wave function

ψm(z, z̄) = e−|z|2/2
∮

dθ n(θ) eimθ

× e−[F (m,θ)2+G(m,θ)2]/4ℓ2ez[F (m,θ)−iG(m,θ)]/
√
2ℓ. (25)

This is manifestly of the form e−|z|2/2 times a holomor-
phic function that depends on the action variable ℓ2m
and the uniformizing map F in Eq. (22). It will be our
starting point for the semiclassical solution of the eigen-
value equation (7).

As a consistency check, note that Eq. (25) simplifies for
isotropic potentials. In that case, the action-angle vari-
ables are essentially polar coordinates ℓ2K = r2/2 and
θ = φ, and the map in Eq. (22) is F(x) = x, merely im-
plementing a change from polar to Cartesian coordinates:
F (m, θ) = ℓ

√
2m cos(θ) and G(m, θ) = ℓ

√
2m sin(θ).

One can then verify that ψm(z, z̄) in Eq. (25) with
n(θ) = const coincides (up to normalization) with the
standard LLL wave function (3). Similarly to that simple
example, any anisotropic wave function (25) reaches its
maximum on the equipotential γm and is approximately
Gaussian close to it, as ensured by the kernel (5). This
will be confirmed explicitly in Sec. IV for edge deforma-
tions.

C. Expanding the eigenvalue equation

None of what we wrote so far involves a manifest semi-
classical expansion; the latter is hidden in the eigen-
value equation (7) and the function n(θ) in Eq. (25),
since n(θ) should be expanded as a power series n(θ) =

n0(θ) + ℓ2n1(θ) + O(ℓ4). (As before, there are no odd
powers of ℓ since ℓ2 ∝ ℏ is really the semiclassical pa-
rameter.) It is therefore worth anticipating the first few
terms of the semiclassical approximation of Eq. (7). We
stress that the expansion below will eventually be limited
to the leading-order transport equation, so only n0(θ)
will, in fact, be calculated. In principle, one can push
the expansion to higher orders for more detailed results.

The semiclassical expansion of the right-hand side of
Eq. (7) is clear: it is given by the large-m, small-ℓ2 ex-
pansion of the projected wave function (25), including
an expansion of n(θ). As for the energy, its expansion
was written in Eq. (9). The left-hand side of Eq. (7) is
more subtle, as its semiclassical expansion involves that
of the operator PVP . The latter is a ‘Berezin-Toeplitz
operator’ [68, 69] that will play an important role for
edge-deformed potentials, so we now explain its expan-
sion in some detail. First, given Cartesian coordinates
(x, y), express the potential in complex coordinates (4)
as V (x, y) ≡ V(z, z̄) for some function V(z, w̄) which is
holomorphic in z and antiholomorphic in w. Then, recall
that P is the LLL projector with kernel (5) to find

⟨z, z̄|PVP |w, w̄⟩ = 1

2πℓ2
e−(|z|2+|w|2)/2

×
∫
R2

dudv V (u, v) e−|X|2+zX̄+w̄X (26)

withX ≡ (u+iv)/
√
2ℓ defined similarly to the coordinate

(4). Our task is to expand the integral on the right-hand
side in the semiclassical limit. The key is to assume that
the potential varies slowly on the scale of the magnetic
length [41–44], i.e. we choose once and for all a smooth
potential V (x), independent of ℓ, and let ℓ be small. In
that regime, the integrals in Eq. (26) are approximately
Gaussian and give (see Appendix B)

⟨z, z̄|PVP |w, w̄⟩ ℓ≪1∼ 1

2πℓ2
e−|z−w|2/2 e(zw̄−z̄w)/2

×
[
V(z, w̄) + ℓ2

2
(∇2V )(z, w̄)

]
, (27)

where (∇2V )(z, w̄) is the bicomplex function that
corresponds to the Laplacian of the potential, i.e.
(∇2V )(z, w̄) = 4

2ℓ2 ∂z∂w̄V. This is the standard semiclas-
sical expansion of a Berezin-Toeplitz operator [65, 68, 69].
Note the general structure: the entire PVP operator boils
down to P itself, with kernel (5), multiplied by a function
that coincides with V at leading order but also includes
quantum corrections. In the ‘zoomed-out’ limit where the
kernel of P is a delta function, the first term in Eq. (27)
becomes V(z, z̄)δ2(z − w, z̄ − w̄) as expected. Moreover,
for harmonic potentials, the truncated expression (27) is
actually exact since the next term ∇4V and all subse-
quent ones vanish. This agrees with the common lore
that ‘WKB is exact for quadratic Hamiltonians’.
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IV. EDGE-DEFORMED ANISOTROPIC TRAPS

Here, we apply the WKB ansatz of Sec. III to poten-
tials (10) with scale-invariant level curves, obtained by
acting with edge deformations on an isotropic trap. As
we explain below, these provide a broad class of setups
that describe QH droplets whose shape is any star do-
main in the plane [70]. The plan is as follows. First,
we introduce edge deformations and give a few examples
for later reference. Second, we apply Eq. (7) to edge-
deformed traps and expand it in the classical limit [large
m, small ℓ2 with ℓ2m = O(1) kept fixed]. We keep track
of all terms up to order O(ℓ2), leading to a transport
equation for the function n(θ) in Eqs. (23) and (25).
This eventually yields an explicit energy spectrum [see
Eq. (42)] along with approximately Gaussian eigenfunc-
tions [see Eq. (48)]. Last, we conclude with a consistency
check by showing that our wave functions reproduce the
asymptotic (large-m) form of the known LLL-projected
spectrum for anisotropic harmonic traps [53, 99–102].

A. Edge deformations

We saw in Sec. III that area-preserving deformations
play a key role for the semiclassical solution of the eigen-
value equation (7). The group of all such deformations
is obviously huge, so it is essential to identify the sub-
set of transformations that are likely to be important for
low-energy physics. In fact, part of this work has already
been carried out, at least implicitly, in [89–94], which we
now use as a basis for the definition of edge deformations.
(A similar motivation was put forward in [88].)

Label points on the plane by their polar coordinates
(r, φ), defined as usual by x + iy = r eiφ. Then, the
boundary of any isotropic QH droplet is located at some
fixed radius redge = O(ℓ

√
N). What is the most general

area-preserving diffeomorphism that preserves this order
of magnitude? The answer is readily found by realizing
that the constraint of keeping redge = O(ℓ

√
N) is equiva-

lent, at leading order in 1/N , to the condition that the de-
formation commutes with overall dilations r 7→ const×r.
The most general diffeomorphism satisfying this criterion
is an edge deformation(

r2

2
, φ

)
7→
(

r2

2f ′(φ)
, f(φ)

)
, (28)

where f(φ) is an (orientation-preserving) deformation of
the circle, i.e. any smooth map satisfying f(φ + 2π) =
f(φ) + 2π and f ′(φ) > 0 [103]. The angle-dependent
rescaling of r on the right-hand side ensures that the map
preserves area. Note that the set of maps (28) is isomor-
phic to the group of diffeomorphisms of the circle, whose
central extension famously leads to the Virasoro algebra
encountered in CFT. Indeed, this motivates the state-
ment in [91, 92] that generators of maps (28) in the QH
effect produce conformal transformations of edge modes.

We stress that the subset of transformations (28) orig-
inates from an asymptotic analysis of the relevant or-
ders of magnitude. One can undoubtedly consider other
families of deformations, motivated by different consid-
erations, but those are irrelevant for our purposes. For
instance, the transformations r2 7→ r2 + α(φ) are crucial
for the effective low-energy description of QH droplets
[4, 8, 92], but they are subleading compared to those in
Eq. (28) since they deform the radius redge = O(ℓ

√
N) by

terms of order O(1/N) instead of O(1). Conversely, one
might consider ‘higher-spin transformations’ [89, 91, 92]
that change the radius in a dramatic way such as r2 7→
β(φ)r4[1 +O(1/r)], but these stretch QH droplets to an
infinite extent in the thermodynamic limit, which is why
we discard them.

Let us provide a few examples of edge deformations
for future reference. First, the maps (28) include rigid
rotations around the origin given by f(φ) = φ + const.
A richer class is obtained by fixing some positive integer
k and considering all maps of the form

eikf(φ) =
α eikφ + β

β̄ eikφ + ᾱ
, (29)

where α, β are complex numbers satisfying |α|2−|β|2 = 1.
For fixed k, such maps span a group locally isomorphic to
SL(2,R), always containing a subgroup of rigid rotations.
We will return to these deformations below, since they
can be seen as Fourier modes for circle diffeomorphisms
[104]. In particular, setting α = cosh(λ) and β = sinh(λ)
for some real parameter λ turns the map (29) into an
analogue of a Lorentz boost with rapidity λ. In terms of
the bulk action (28), any deformation (29) turns a circle
into a ‘flower with k petals’; see Fig. 7 for k = 3. For
k = 2, this maps the circle on an ellipse (see [88] for
details), to which we will return in Sec. IV E.

B. Edge-deformed potentials

Given an isotropic potential V0(r2/2), how is it affected
by an edge deformation (28)? The answer is provided by
the anisotropic trap (10) with λ(φ) = 2f ′(φ):

V (r, φ) ≡ V0

(
r2

2f ′(φ)

)
. (30)

In what follows, we exclusively consider this class of po-
tentials and refer to them as edge-deformed traps, for the
reasons stated above. The shape of their equipotentials is
entirely fixed by the function f(φ). For instance, flower
deformations (29) give rise to lower values of the poten-
tial inside the flower’s petals and higher values between
petals. Having chosen some circle deformation f(φ), our
goal is to solve the corresponding eigenvalue equation (7)
in the classical limit of high quantum numbers and small
magnetic length.

We begin by listing the key classical data of the prob-
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lem. The action-angle variables suited to Eq. (30) are
(ℓ2K, θ) =

(
r2
/
2f ′(φ), f(φ)

)
with an inverse given by

(r2/2, φ) =
(
ℓ2K/(f−1)′(θ), f−1(θ)

)
, where f−1 denotes

the inverse of f . In particular, the angle coordinate coin-
cides with our earlier Eq. (20) upon using λ(φ) = 2f ′(φ),
possibly up to an overall rotation of θ. Points satisfying

r2

2f ′(φ)
= ℓ2K (31)

with constant K ≥ 0 form an equipotential, i.e. a level
curve of the potential in Eq. (30). In Cartesian coordi-
nates, this is the set of points x =

√
2ℓ2Kf ′(φ) cos(φ),

y =
√

2ℓ2Kf ′(φ) sin(φ) for φ ∈ [0, 2π). Equivalently,
in terms of the angle variable θ = f(φ) ∈ [0, 2π), the
equipotential is

x =

√
2ℓ2K

(f−1)′(θ)
cos(f−1(θ)) ≡ F (K, θ),

y =

√
2ℓ2K

(f−1)′(θ)
sin(f−1(θ)) ≡ G(K, θ),

(32)

where the notation (F,G) was introduced in Sec. III A.
We will eventually focus on the regime where K is a very
large integer m such that the dimensionful area 2πℓ2m is
an O(1) quantity as ℓ→ 0.

Moving just slightly away from the classical regime, we
saw in Sec. III that the expansion of the operator PVP
involves a bicomplex potential function V(z, w̄). In the
case of edge-deformed potentials (30), with the conven-
tion (4) for complex coordinates, one finds

V(z, w̄) = V0

(
ℓ2

zw̄

f ′
(
1
2i log[z/w̄]

)) . (33)

Note that this only makes sense for z and w close to each
other; otherwise, taking z → e2πiz affects the argument
of f ′ on the right-hand side. By contrast, when z and w
remain close, taking z → e2πiz also requires w → e2πiw,
and this time the angle 1

2i log[z/w̄] is indeed invariant.

Finally, the expansion (27) also involves the complexi-
fied Laplacian of the potential, but only its real value will
be relevant at the order studied here. Let us therefore
express the Laplacian of Eq. (30) in polar coordinates:

∇2V =
1

f ′

(
2− 1

2

f ′′′

f ′
+
f ′′2

f ′2

)
V ′
0

(
r2/2f ′

)
+
r2

f ′2

(
1 +

f ′′2

4f ′2

)
V ′′
0

(
r2/2f ′

)
. (34)

Here, the prime means differentiation with respect to the
argument, namely φ for f(φ) and r2/2 for V0(r2/2). We
shall rely on Eqs. (33) and (34) below, since they directly
affect the eigenvalue equation (7).

C. Eigenvalue equation and energy

Having studied the potential (30), let us turn to the
quantum state meant to solve the eigenvalue equation
(7). As in Sec. III B, we begin by building a state (23)
that is perfectly localized on the equipotential (31) with
K = m, project to the LLL using the operator (5), and
obtain the wave function (25) that now reads

ψm(z, z̄) = e−|z|2/2
∮

dφf ′(φ)n(f(φ))

× exp

[
imf(φ)− 1

2
mf ′(φ) + z

√
mf ′(φ) e−iφ

]
, (35)

where we changed variables using θ = f(φ). It remains to
show that this solves the eigenvalue equation (7) for edge-
deformed traps (30) in the semiclassical regime, provided
the function n(θ) satisfies a suitable transport equation.
The latter is derived by expanding the energy (9) and
the potential (27) to get

0 =

∮
dφf ′(φ)n(f(φ))

×
(
V(z, w̄) + ℓ2

2
∇2V (z, w̄)− E0

m − ℓ2E1
m

)
× exp

[
imf(φ)− 1

2
mf ′(φ) + zw̄

]∣∣∣∣
w̄=

√
mf ′(φ) e−iφ

,

(36)

where V(z, w̄) is the bicomplex function (33) and the
equation holds up to neglected O(ℓ4) corrections. In the
extreme classical limit, the potential expansion (27) boils
down to ⟨z|PVP |w⟩ ∼ V(z, z̄)δ2(z − w), so Eq. (36) im-
plies E0

m = V0(ℓ
2m) = V (γm) at leading order. The issue

is to find the two remaining unknowns, namely the func-
tion n(f(φ)) and the first-order energy correction E1

m.

To determine these, the crucial step is to evaluate
Eq. (36) along the equipotential (31) labeled by K = m,
i.e. for z =

√
mf ′(α) eiα with α ∈ [0, 2π), assuming

as before m ≫ 1. Indeed, if Eq. (36) holds on a level
curve, then it holds for all z by holomorphicity. This is
written in more detail in Appendix C, where we show
that the integrand of Eq. (36) has a saddle point at
φ = α + O(1/

√
m), eventually resulting in a transport

equation for the unknown function n(θ). Here, we skip
the computation and analyze separately the real and
imaginary parts of the transport equation. We start with
the real part, which will allow us to deduce the LLL-
projected energy spectrum. The imaginary part is post-
poned to Sec. IV D, where we also display the ensuing
nearly Gaussian wave functions.

Let Φ(φ) be the phase of n(f(φ)) ≡ N (φ) eiΦ(φ).
Then, the real part of the transport equation [see
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Eq. (C17)] yields

Φ′(φ) =
E1

m

Ωm
f ′(φ)− 1

2

(
1 +

Γm

Ωm

)(
1 +

f ′′(φ)2

4f ′(φ)2

)
− 1

2
+ ∂φ

(
f ′′(φ)

8f ′(φ)

)
+

1

2

∂φ[f
′′(φ)/2f ′(φ)]

1 + f ′′(φ)2/4f ′(φ)2
, (37)

where E1
m is the first-order correction to the energy (9)

and we introduced the derivatives

Ωm ≡ V ′
0(ℓ

2m) > 0, Γm ≡ ℓ2mV ′′
0 (ℓ2m). (38)

In many-body droplets with N electrons, these will re-
spectively measure the Fermi velocity and the curvature
of the spectrum at the Fermi surface when m = N . Note
that all terms in Eq. (37) except the factor 1+ [f ′′/2f ′]2

are total derivatives, so the solution is

Φ(φ) =
E1

m

Ωm
f(φ)− 1

2

(
1+

Γm

Ωm

)∫ φ

0

dα

(
1+

f ′′(α)2

4f ′(α)2

)
− φ

2
+
f ′′(φ)

8f ′(φ)
+

1

2
arctan

(
f ′′(φ)

2f ′(φ)

)
+ const. (39)

This turns out to imply a quantization condition for en-
ergy. Indeed, when we initially introduced the function
n(θ) in Eq. (23), we mentioned that it must have a van-
ishing winding number along the equipotential, so that
all the winding of ψm(x) is contained in the exponential
factor eimθ. The phase Φ(φ) must therefore be strictly
2π-periodic, i.e. Φ(2π) = Φ(0). Using Eq. (39), this fixes
the first quantum correction of the energy (9):

E1
m

Ωm
=

1

2
+

(
1 +

Γm

Ωm

)∮
dφ

4π

(
1 +

f ′′(φ)2

4f ′(φ)2

)
. (40)

The latter generally depends on m through Γm and Ωm

in Eq. (38). A simplification occurs in ‘harmonic’ setups,
where Γm = 0 and the right-hand side of Eq. (40) is an
f -dependent constant, for all m [105]. In any case, the
full mth energy (9) in the semiclassical limit reads

Em ∼ V0
(
ℓ2m

)
+
ℓ2

2

[
Ωm +

(
Ωm + Γm

) ∮ dφ

2π

(
1 +

f ′′(φ)2

4f ′(φ)2

)]
, (41)

reproducing the expression announced in Eq. (15) with
λ(φ) = 2f ′(φ), and generalizing the isotropic value ob-
tained for f ′(φ) = 1 [see Eq. (A3)]. The leading-order
Bohr-Sommerfeld quantization condition (8) is mani-
festly satisfied, while the first quantum correction can
be written in terms of a Maslov-like shift and an integral

of the Laplacian, confirming the general result in [69]:

Em = V0

(
ℓ2
[
m+

1

2

])
+
ℓ2

4

∮
dφ

2π
f ′(φ)∇2V

∣∣
r2=2ℓ2(m+1/2)f ′(φ)

+O(ℓ4). (42)

(In the language of [69], our ‘Maslov-like’ term actually
stems from an integral of the curvature of γm.)

D. Gaussian wave functions

As above, write n(f(φ)) = N (φ) eiΦ(φ) for the un-
known function of the WKB ansatz, with a norm N (φ) =
|n(f(φ))|. Then, the imaginary part of the transport
equation [see Eq. (C18)] can be recast into

N ′(φ)

N (φ)
=

1

4
∂φ log

[
1

f ′(φ)

(
1 +

f ′′(φ)2

4f ′(φ)2

)]
, (43)

which remarkably has the form of an overall logarithmic
derivative. The general solution is therefore

∣∣n(f(φ))∣∣ = N0

[
1

f ′(φ)

(
1 +

f ′′(φ)2

4f ′(φ)2

)]1/4
, (44)

where the normalization N0 will soon be fixed. Note the
exponent 1/4, typical of WKB approximations [87].

We can now use Eq. (44) to evaluate approximate
eigenfunctions (35) near their maximum, i.e. close to the
equipotential (31) with K = m. To see this, zoom in on
the equipotential by writing

z ≡
(√
m+ a

)√
f ′(α) eiα (45)

for m≫ 1 and some finite a. The integral (35) then has
a unique saddle point at φ = α+ δ1/

√
m+O(1/m), with

δ1 = −ia
[
1−i f

′′(α)
2f ′(α)

]−1

. The saddle-point approximation
of the wave function (35) thus yields

ψm(z, z̄) ∼ 1√
2πℓ2

1

(2πm)1/4
eimf(α)+iΦ(α)

× 1√
σ(α)

exp

− f ′(α) a2

1− i f
′′(α)

2f ′(α)

 . (46)

Here, we used Eqs. (39) and (44) for the phase and norm
of n(f(α)), fixed the integration constant in Eq. (44) to
N0 = 1

2πℓ (
m
2π )

1/4, and introduced the function

σ(φ)2 ≡ 1

f ′(φ)

(
1 +

f ′′(φ)2

4f ′(φ)2

)
, (47)

written earlier in Eq. (12) with λ(φ) = 2f ′(φ). The nor-
malization was fixed so that the square of the function in
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Figure 5. The density of a wave function (46) for m = 30 in
an edge-deformed trap (30). The Gaussian behavior is man-
ifest, as is the angle-dependent ‘roller coaster’ predicted by
Eq. (48), reflecting the changing Euclidean norm (14) of the
local velocity of classical guiding centers. (Peaks and troughs
of the wave function respectively correspond to minima and
maxima of the local velocity.) Left: Anisotropic harmonic po-
tential given by Eq. (30) for f of the form (29), with k = 2 and
α = cosh(1), β = sinh(1). Right: The same edge-deformed
trap as in Figs. 1 and 2.

Eq. (46),

|ψm(z, z̄)|2 ∼ 1

2πℓ2
e−2a2/σ2(α)

√
2πmσ(α)

, (48)

is a genuine probability density such that
∫
d2x |ψ|2 = 1.

The wave function (46) coincides with the earlier ex-
pression (11) upon using λ(φ) = 2f ′(φ) and the phase

Θm(x) ≡ mf(φ) + Φ(φ)− a2f ′′(φ)

2f ′(φ)σ(φ)2
. (49)

The Gaussian behavior of LLL-projected eigenstates is
thus manifest, as anticipated at the end of Sec. III B for
the general WKB ansatz (25). In that context, we stress
again that the exponent a2/σ2 in Eq. (48) is nothing but
the squared distance (13) away from the equipotential,
while the function σ(φ) defined by Eq. (47) is essentially
the velocity (14) of guiding centers. It is therefore classi-
cally expected that the probability of finding an electron
at position φ is proportional to 1/σ(φ), which is indeed
confirmed by the density (48). As a consequence, the
wave function (46) generally behaves as a ‘roller coaster’
whose height follows the local symplectic gradient of the
confining potential; this is illustrated in Fig. 5 for two
choices of edge-deformed traps (30). Finally, note that
Eq. (46) generalizes the behavior of isotropic states (3)
[see Eq. (A1)], including the O(1/

√
m) contribution that

we did not state here but that can be computed by incor-
porating the next-order term δ2/m for the saddle point
and repeating the analysis; see Appendix D for details.

E. Comparison with elliptic wave functions

To conclude this section, we now focus on the flower de-
formations (29) and show that the corresponding trans-
port equation is integrable: both the phase (39) and

the norm (44) can be expressed in terms of elementary
functions. These results are valuable in themselves since
‘flowers’ are the simplest edge deformations [104], but
also because their special case k = 2 reproduces known
wave functions for anisotropic harmonic traps [52, 53],
providing an important benchmark for our WKB ap-
proach.

Consider first the deformation (29) with α = cosh(λ)
and β = sinh(λ) for an arbitrary integer k and a real
parameter λ. When λ > 0, the ensuing potential (30)
is steeper in the directions φ = 0, 2πk ,

4π
k , . . . ,

(2k−2)π
k and

lower around the petals at φ = π
k ,

3π
k ,

5π
k , . . . ,

(2k−1)π
k ; see

Fig. 7 for k = 3. Then, the energy quantization condition
(40) can be integrated exactly, yielding

E1
m

Ωm
=

1

2
+

1

2

(
1 +

Γm

Ωm

)(
1 +

k2

2
sinh2(λ)

)
. (50)

As for the solution of the transport equation, consisting
of the phase (39) and the norm (44), it is found to be

n(θ) = N0 e
−i Γm

Ωm
k
8 sinh(2λ) sin(kθ)ei

θ
2

[
1− k

2+
(
1+ Γm

Ωm

)(
1− k2

4

)]
×
(
cosh(λ)− sinh(λ)eikθ

cosh(λ)eikθ − sinh(λ)

) 1
2k

[
1− k

2+
(
1+ Γm

Ωm

)(
1− k2

4

)]

×
√

1 + ik2 sinh(2λ) sin(kθ)

cosh(λ)− sinh(λ)e−ikθ
, (51)

up to an overall constant phase. [Recall that the overall
constant is N0 = 1

2πℓ (
m
2π )

1/4 for normalized wave func-
tions (46).]

Eq. (51) depends in a nontrivial way on the potential’s
derivatives (38), with some simplification in the ‘har-
monic’ regime Γm = 0. Let us therefore apply Eqs. (50)
and (51) to the case of an elliptic harmonic potential,
meaning k = 2 with constant stiffness Ωm = Ω > 0
(hence Γm = 0). The corresponding edge deformation
(28) maps the isotropic harmonic potential V0(r2/2) =
Ω r2/2 on its anisotropic cousin,

V (x) = Ω
e2λx2 + e−2λy2

2
, (52)

whose equipotentials are ellipses rather than circles (with
their major axis along y for λ > 0). The energy correction
(50) then becomes E1

m = Ωcosh2(λ), and the (normal-
ized) solution (51) of the transport equation is

n(θ) =
1

2πℓ

(m
2π

)1/4√
cosh(λ) + sinh(λ)e2iθ. (53)

It is straightforward to use these data to obtain the
elliptic version of the normalized Gaussian wave func-
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tion (46):

ψm(z, z̄) ∼ 1√
2πℓ2

1

(2πm)1/4
eimθ√

cosh(λ) + sinh(λ)e−2iθ

× exp

(
−e2iθ − tanh(λ)

e2iθ + tanh(λ)
a2
)
, (54)

again up to an overall constant phase. Crucially, this co-
incides with the large-m approximation of the exact LLL-
projected eigenstates of the harmonic potential (52) [53],
as can be verified thanks to known asymptotic formulas
for Hermite polynomials. This is actually true even at
subleading order in m−1/2; see Appendix D2.

V. MANY-BODY OBSERVABLES

This section applies the results of Secs. III and IV to
entire QH droplets consisting of a large number N ≫ 1
of electrons. Specifically, we exploit our insights on near-
Gaussian single-particle wave functions (46) to compute
many-body observables and read off the universal shape-
dependent effects due to the deformation f(φ). We first
show that the density equals 1

2πℓ2 in the bulk and drops to
zero as an error function at the edge redge = ℓ

√
2Nf ′(φ).

Second, we turn to the current and show that it is local-
ized as a Gaussian on the edge, to which it is tangent.
Third, correlations near the edge are found to display
the usual power-law behavior of free fermions, dressed
by radial Gaussian factors. This reduces to known ex-
pressions in isotropic traps [90], and to the harmonic re-
sults of [52, 53] in the case of flower deformations (29)
with k = 2. Finally, the radial behavior of correlations
is shown to be consistent with the effective low-energy
field theory of edge modes: we derive it microscopically
and obtain a chiral CFT in terms of the canonical angle
variable on the boundary.

A. Density

Consider a QH droplet of N ≫ 1 noninteracting 2D
electrons governed by the Hamiltonian (1), with a very
strong magnetic field B = dA and a weak edge-deformed
potential (30). The ground state |Ω⟩ of this many-body
system is a Slater determinant of the wave functions ψm

for occupied states m = 0, 1, . . . , N − 1, where we recall
thatm is a quantized action variable generalizing angular
momentum. This is schematically depicted by red dots
in Fig. 6. Explicitly,

|Ω⟩ =
N−1∏
m=0

a†0,m|0⟩, (55)

where |0⟩ is the empty state and a†0,m is a (canonically
normalized) Fock space creation operator for the one-
particle wave function ψm in the LLL. (We will later use

1

m

Energy

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦••••
N

Fermi energy
••••••

••◦◦◦
◦◦◦·

· ·◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
· · ·
2Λ
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First Landau level
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Figure 6. The one-body spectrum (42), where the N states
that are occupied in the many-body ground state (55) are
highlighted in red and those that contribute to the low-energy
Hamiltonian (70) are filled (black for ‘particles’ and red for
‘holes’). Energies are filled up to a Fermi energy set by a
chemical potential µ such that EN−1 ≤ µ < EN . The cutoff
Λ is large but much smaller than N in the sense that the
limit Λ → ∞ is taken after taking the thermodynamic limit
N → ∞ at fixed Λ.

a†n,m for creation operators in the nth Landau level; see
Sec. V D.) The same ground state can be obtained by
fixing a chemical potential (Fermi energy) µ and filling
all one-body energies Em such that Em ≤ µ, implying
that N is the largest integer such that EN−1 ≤ µ [106].

Since each ψm yields a single-particle probability den-
sity |ψm(x)|2, the many-body density of the state (55) is
a sum,

ρ(x) =
N−1∑
m=0

|ψm(x)|2. (56)

While WKB theory does not give access to the form of ψm

at low m, large values of m should be correctly captured
by the analysis of Sec. IV, in which case the one-body
density is approximately Gaussian and given by Eq. (48).
We now exploit this Gaussian form to evaluate the many-
body density, both in the bulk and close to the edge.
(Some technical details are highlighted along the way, as
the same method will later allow us to study the many-
body current and correlations.)

The key point is that each wave function (48) is local-
ized on an equipotential of V (x) with area 2πℓ2m, so the
density close to some equipotential |z| = const×

√
f ′(φ)

only receives sizeable contributions from wave functions
whose quantum number is close to |z|2/f ′(φ). Accord-
ingly, the bulk density for 1 ≪ |z| ≪

√
N is obtained

by letting the upper summation bound in Eq. (56) go to
infinity and writing the approximate density as

ρ(x) ∼ 1

2πℓ2

∞∑
m=m0

e
− 2

σ(φ)2

(
|z|√
f′(φ)

−
√
m

)2

√
2πmσ(φ)

, (57)

where the lower summation bound m0 is irrelevant as
long as it is large but much smaller than |z|2 and σ(φ)
is given by Eq. (47). At large |z|, the Euler-Maclaurin
formula allows us to approximate the sum over m by a
(Gaussian) integral over

√
m. This yields the uniform
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density

ρ(x) ∼ 1

2πℓ2
, (58)

as expected in the bulk of a QH droplet consisting of a
single fully filled LLL [107].

An analogous argument can be carried out close to the
droplet’s edge, with one key difference: the upper sum-
mation bound in Eq. (56) is now crucial. Thus, letting
|z| =

(√
N+a

)
f ′(φ) with finite a in the large-N limit and

using once more the approximate Gaussian form (48), the
density (56) near the edge behaves as

ρ(x) ∼ 1

2πℓ2

∞∑
k=1

e
− 2

σ(φ)2

(
a+ k

2
√

N

)2

√
2πN σ(φ)

, (59)

where we changed variables as m ≡ N − k with k =
O(

√
N) at large N and only kept track of leading-order

terms. For N ≫ 1, the sum over k can once more be
converted into an integral, now over k/2

√
N . This yields

the asymptotic behavior

ρ(r, φ) ∼ 1

4πℓ2
erfc

(
1

σ(φ)

r − ℓ
√
2Nf ′(φ)

ℓ
√
f ′(φ)

)
, (60)

where erfc denotes the complementary error function and
the width (47) is inherited from that of our LLL wave
functions. This explicit result was announced in Eq. (16)
with λ(φ) = 2f ′(φ). It confirms that the density is
roughly constant and given by Eq. (58) in the bulk, then
drops to zero within a distance of the order of the mag-
netic length (2) around the edge at r = ℓ

√
2Nf ′(φ); see

Figs. 2(a) and 7(a).
We stress that, in contrast to wave functions, the den-

sity (60) only depends on the potential near the edge
of the droplet: bulk deformations of the potential do
not affect the quantized bulk density (58) in the limit
of strong magnetic fields. In this sense, Eq. (60) is a uni-
versal formula for the density of any QH droplet of LLL
states whose edge traces an equipotential of the form
r2 = 2ℓ2Nf ′(φ); such an error function behavior is in-
deed known to hold in considerable generality [67]. It
would be instructive to probe this local density in ex-
periments, using either real samples [20, 21] or quantum
simulators [27–30].

Note that the leading-order result (60) receives a num-
ber of subleading corrections that can be systematically
computed in our formalism; these are omitted here for
brevity, but the O(1/

√
N) correction is evaluated in Ap-

pendix D3. A related comment is that Eqs. (58) and (60)
are only valid at extremely strong magnetic fields, which
stems from the simplification provided by the LLL pro-
jection. The actual density profile, both in the bulk and
near the edge, depends on the gradient of the potential.
For instance, anharmonic traps [108] give rise to an ex-
cess charge density at the edge, but this involves higher
Landau levels that are beyond our scope. Interactions

are similarly absent here, so electrostatic backreaction
and edge reconstruction [109] do not appear in our ap-
proach. In this respect, the application of Eq. (60) to real
condensed-matter samples is subtle; quantum-engineered
systems may provide a better platform to observe such
detailed local effects.

B. Current

The current of a droplet of N ≫ 1 electrons can simi-
larly be expressed as a sum over single-particle currents.
To this end, recall that the gauge-invariant one-body
probability current of a charged wave function ψ with
mass M is a one-form ℏ j/M given by

j =
1

2i

(
ψ∗dψ − ψdψ∗ − 2i

q

ℏ
A|ψ|2

)
, (61)

where the first term is only sensitive to the gradient of
the phase of ψ and A = (Br2/2) dφ = (ℏ/q)|z|2 dφ in
symmetric gauge. The many-body current of the ground
state (55) is thus

J =

N−1∑
m=0

jm, (62)

where jm is the single-particle current (61) of each occu-
pied one-particle state ψm.

As before, the WKB approximation does not give ac-
cess to wave functions for small m, but this is unimpor-
tant close to the edge. In that regime, we have already
gathered all the ingredients needed to evaluate the cur-
rents (61) up to small quantum corrections: the one-body
density is given by Eq. (48), while the derivative of the
phase is obtained from Eq. (49) and the real part (37) of
the transport equation. In practice, the WKB phase Φ
turns out to be negligible at leading order, and the only
relevant parts of the phase are those explicitly visible in
Eq. (46): the (fast) phase eimf(φ) together with the con-
tribution from A =

(
ℏ/q
)
|z|2 dφ eventually gives rise to

the leading angular component of the current, while the
(slow) phase e−i[f ′′(φ)/2f ′(φ)]a2/σ2

yields its radial com-
ponent that is nonzero whenever f ′′(φ) ̸= 0.

Starting from these facts, it is straightforward to adapt
the method of Sec. V A to the many-body current (62).
Writing |z| =

(√
N+a

)√
f ′(φ), the sum over m ≡ N−k

becomes an integral over k/2
√
N = O(1) and yields the

leading-order result (17) with λ(φ) = 2f ′(φ):

J(r, φ) ∼ − e−2a2/σ(φ)2

(2πℓ2)3/2σ(φ)

ℓ
√
2Nf ′(φ) dφ+ f ′′(φ)

2f ′(φ) dr√
2f ′(φ)

,

(63)
where a =

(
r−ℓ

√
2Nf ′(φ)

)/
ℓ
√
2f ′(φ) and σ(φ) is given

by Eq. (47). Both components in Eq. (63) receive sub-
leading corrections that are omitted here. In particular,
there is an O(1) term in Jφ that is nonzero on the edge,
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Figure 7. Intensity plots of: (a) The density (60) for N = 100 electrons and a flower deformation (29) of order k = 3 with
α = cosh(1) and β = sinh(1). The constancy of density in the bulk and its sharp decay at the boundary are manifest. Note
also the depletion of electrons between petals, due to the steepness of the potential at φ = 0, 2π

3
, 4π

3
, to be contrasted with the

deeper potential wells near the petals at φ = π
3
, π, 5π

3
. (b) The current’s norm (64) for the same droplet. The localization on

the edge equipotential (black curve) is clearly visible, as is the width of the Gaussian jump. (c) The norm of the correlation
function (65) for the same droplet, seen as a function of x2 when x1 = (ℓ

√
2Nf ′(0), 0) (black cross) is fixed close to the edge;

its behavior for well-separated points is given by the long-range correlator (67). The color coding is the same as in Fig. 2.

even in the isotropic case f ′ = 1. Evaluating that term
requires the O(1/

√
m) correction that was neglected in

Eq. (48); see Appendix D for the computation of this
correction and its contribution to the current.

Using the metric ds2 = dr2 + r2dφ2, one can verify
that the one-form ℓ

√
2N f ′ dφ + (f ′′/2f ′) dr in Eq. (63)

is the dual of a vector tangent to the equipotential at the
droplet’s edge [110]. Moreover, the norm squared

∥∥J(r, φ)∥∥2 ∼ 1

2(2πℓ2)3
exp

[
−2
(
r − ℓ

√
2Nf ′(φ)

)2
ℓ2σ(φ)2f ′(φ)

]
(64)

shows that the current has a constant maximum along
the edge, with a constant nonzero width owing to
Eq. (13); see Figs. 2(b) and 7(b).

Similarly to the density, it is important to remember
that the LLL projection misses some important physics.
Indeed, the actual bulk current is the symplectic gradient
of the confining potential multiplied by the Hall conduc-
tance [43, 44, 72, 73]. No such effect occurs in Eq. (63)
because it requires higher Landau levels, which are be-
yond our scope.

C. Correlations

The methods that we applied to density and current
can also be used to compute electronic correlations near
the edge, for which much less is known. Indeed, consider
as before an anisotropic droplet whose occupied one-body
states have quantum numbers m = 0, 1, . . . , N−1. Then,

the correlation function between the points x1 and x2 is

C(x1,x2) =

N−1∑
m=0

ψ∗
m(x1)ψm(x2), (65)

which reduces to the density (56) when x1 = x2. As
before, we rename m ≡ N − k and let the complex coor-
dinates z, w corresponding to x1,x2 be such that

z =
(√
N + a

)√
f ′(φ1) e

iφ1 ,

w =
(√
N + b

)√
f ′(φ2) e

iφ2 ,
(66)

where a, b are finite at large N and φ1, φ2 are the po-
lar angles of x1,x2. One can then plug the Gaussian
wave functions (46) into Eq. (65), this time assuming k
finite, and perform the sum over k. The gradient expan-
sion of the potential implies that the ratio Γm/Ωm ∼
ΓN/ΩN + O(ℓ2) is nearly constant in this regime, so
Eq. (65) becomes a geometric sum over k that reproduces
the result stated in Eq. (19) with λ(φ) = 2f ′(φ):

C(x1,x2) ∼
eiΘN (x1,x2)

(2π)3/2ℓ2
√
N

1√
σ(φ1)σ(φ2)

×
i exp

(
− a2

σ(φ1)2
− b2

σ(φ2)2

)
2 sin

(
[f(φ1)− f(φ2)]/2

) , (67)

where σ(φ) was defined in Eq. (47). The overall phase
ΘN (x1,x2) = ΘN (x2) − ΘN (x1) − [f(φ2) − f(φ1)]/2,
given by Eq. (49), involves the WKB phase (39).

Several features of Eq. (67) are worth emphasizing.
First, note the striking appearance of long-range cor-
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relations localized at the edge by a Gaussian envelope.
Their power-law decay along the boundary is a static di-
agnostic of the presence of edge modes [8, 90, 111] and
matches the standard CFT propagator written in the an-
gle variable θ = f(φ), as will be discussed in Sec. V D.
In fact, this behavior agrees with the classical picture
in which edge modes propagate at constant speed in the
θ coordinate [112]. A second key aspect is the lack of
translation invariance in φ along the edge, caused not
only by the argument f(φ1)− f(φ2) =

∫ φ1

φ2
dφf ′(φ) but

also by the factors σ(φ1) and σ(φ2). Interestingly, the
product σ(φ1)

−1/2σ(φ2)
−1/2 resembles prefactors picked

up by primary fields in CFT under local conformal trans-
formations.

It is tempting to compare our result with the edge cor-
relations of a 2D Coulomb gas of the same shape as the
droplet. For harmonic potentials, the two problems are
indeed identical, and Eq. (67) coincides with the plasma
result of [53] upon using the map (29) with k = 2,
α = cosh(λ), and β = sinh(λ). But there is no such
coincidence for arbitrary edge deformations: our formula
(67) generally differs from the plasma prediction of [46].
[This can be verified e.g. with flower deformations (29)
of order k ≥ 3.] The reason for this mismatch is that
Coulomb-gas edge correlations are obtained by solving
an electrostatic problem that only depends on the shape
of the droplet [46], whereas QH edge correlations are sen-
sitive not only to a droplet’s shape, but also to the local
edge velocity, which is controlled by the gradient of the
potential. These ideas will be further explored elsewhere.

Finally, it is a simple matter to include time depen-
dence in the correlator (67). Indeed, the occupied one-
particle states in Eq. (65) have definite energies Em given
by Eq. (42) at large m. This spectrum is approximately
linear close to the Fermi energy: changing variables ac-
cording to m = N + k with k finite at large N , one has

EN+k − EN ∼ ℏωFk (68)

with ωF ≡ ℓ2ΩN/ℏ the angular Fermi velocity given by
the potential’s derivative in Eq. (38) at m = N . In the
linear regime (68), one can repeat the asymptotic compu-
tation of correlations to find once more an expression of
the form (67), now with a time-dependent overall phase
and a time-dependent denominator 2 sin

(
[f(φ1)−f(φ2)−

ωF(t1−t2)]/2
)
. This exhibits the standard ballistic prop-

agation of correlations in a CFT, which we confirm below
from the low-energy dynamics of our droplet.

D. Edge modes

The effective low-energy description of anisotropic QH
droplets can be derived similarly to the isotropic case
[90] inspired by Luttinger-liquid theory [113]. This has
the advantage of circumventing topological field theory,
at the cost of failing to apply for fractional QH states
[4–8]. We now provide such a first-principles calculation,

eventually concluding that edge modes span a free chiral
CFT expressed in terms of the canonical angle coordinate
θ = f(φ) along the boundary. Aside from its intrinsic in-
terest, this provides an independent check of the validity
of the correlator (67).

Our starting point is the one-body Hamiltonian
Hone-body − µ given by Eq. (1) with the chemical poten-
tial µ introduced in Sec. V A. The corresponding second-
quantized Hamiltonian in the fermionic Fock space is

H =
∑

n,m≥0

(En,m − µ)a†n,man,m, (69)

where each En,m is a one-particle eigenvalue of the op-
erator in Eq. (1) labeled by the Landau-level index
n ∈ N and the ‘action variable’ quantum number m ∈
N within each level. (Thus, the eigenvalues found in
Sec. IV are really Em ≡ E0,m.) As for the Fock space
operator a(†)n,m, it annihilates (creates) the correspond-
ing eigenstate, with standard anticommutation relations
{an,m , a†n′,m′} = δn,n′δm,m′ . The exact energy spectrum
is unknown, but this is not an issue since low-energy exci-
tations all belong to the LLL, with an approximately lin-
ear dispersion (68) near the Fermi momentum; see Fig. 6.
As a consequence, the low-energy approximation of the
many-body Hamiltonian (69) can be written as

H ∼
∑

p∈[−Λ,Λ]

ℏωF p :a†pap : , (70)

where Λ is some cutoff on the half-integer label p with
a
(†)
p ≡ a

(†)
0,N+p−1/2 and the right-hand side is normal or-

dered with respect to the ground state (55)—this merely
subtracts a constant such that the Hamiltonian has a
well-defined Λ → ∞ limit [114].

Up to the cutoff Λ, the Hamiltonian (70) is that of a 1D
chiral CFT. However, one should keep in mind that the
operators a†p create 2D states. Showing the emergence
of a truly 1D effective theory relies on the fact that the
relevant wave functions (46) are Gaussians localized on
the edge. Indeed, provided Λ is kept finite while taking
the thermodynamic limit N → ∞, one can write the
creation operators in Eq. (70) as Fourier modes

a†p =

∮
f ′(φ)dφ√

2π
eipf(φ)Ψ†(f(φ)) (71)

of an ‘edge field’ Ψ†(f(φ)) that is independent of p. This
1D field is a radial integral of 2D creation operators c†(x)
weighted by the N th wave function ψN (x) in Eq. (46):

Ψ†(f(φ)) ≡
√
2π

f ′(φ)
e−if(φ)/2

∫ ∞

0

rdr c†(x)ψN (x). (72)

We emphasize that the appearance of a single label N
in this definition crucially stems from the restriction to
quantum numbers that differ from N by a finite amount
in the thermodynamic limit. It is then clear that the
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operator Ψ†(θ) creates an electron at the position θ =
f(φ) on the edge. Furthermore, the normalization of the
1D field (72) is canonical in angle variables: using the
standard anticommutator {c(x1), c

†(x2)} = δ(2)(x1−x2),
one similarly finds {Ψ(f(φ1)),Ψ

†(f(φ2))} = δ(f(φ1) −
f(φ2)) in terms of the Dirac delta function on the circle.
This is consistent with the canonical anticommutator of
the operators (71). Also note that the half-integer labels
in Eq. (70) imply antiperiodic (Neveu-Schwarz) boundary
conditions in φ [or θ = f(φ)] for the edge field (72).

The derivation of the low-energy effective field theory
is now essentially done. Indeed, removing the cutoff by
taking Λ → ∞ in Eq. (70) yields Heff =

∑
p ℏωFp :a†pap : ,

where the sum is over all half-integer ‘momenta’ p ∈ Z+
1/2 and the angular Fermi velocity is ωF = ℓ2ΩN/ℏ with
ΩN given by Eq. (38). This can be recast as

Heff = ℏ
∮

dθ :Ψ†(θ) (−iωF∂θ)Ψ(θ): (73)

in terms of the 1D fields Ψ(†)(θ). The canonical normal-
ization of (72) then implies the presence of the usual term
iΨ†∂tΨ in the fermionic action functional of edge modes,
which reads

S[Ψ,Ψ†] = ℏ
∫

dtdθ iΨ†(θ)
(
∂t + ωF∂θ

)
Ψ(θ). (74)

This is manifestly a local 1D free chiral CFT in terms of
the angle variable θ = f(φ). By bosonization, the cor-
responding edge density waves (magnetoplasmons) are
similarly described by a free bosonic chiral CFT.

We stress that the simplification leading from highly
anisotropic, inhomogeneous wave functions (46) to the
homogeneous field theory (74) stems from delicate can-
cellations between radial and angular dependencies in the
integral (72). This generalizes the known theory of edge
modes in highly symmetric geometries to the anisotropic
setups studied here. The low-energy effective theory (74)
is thus universal: for any trapping potential, edge modes
are described by a chiral fermionic CFT expressed in
terms of the canonical angle coordinate of the trap at the
boundary. One could have guessed this from the dynam-
ics of electronic guiding centers induced by the potential
V in the noncommutative plane (6) [112]. In the present
case, the angle coordinate is θ = f(φ); more general cases
involve more complicated action-angle variables.

Of course, θ generally has nothing to do with other
obvious position coordinates, such as the polar angle φ
or the arc length

s(φ) = ℓ
√
2N

∫ φ

0

dα

√
f ′(α) +

f ′′(α)2

4f ′(α)
. (75)

Any such ‘wrong’ coordinate makes the apparent Fermi
velocity of edge modes position dependent. For example,
the Euclidean norm (14) of the velocity of edge modes
varies along the boundary and is, in fact, proportional to

the function σ(φ) defined in Eq. (47). This is reminiscent
of inhomogeneous CFTs, whose light cones are curved
owing to the presence of a nonzero spacetime curvature
[115–122]. However, one should keep in mind that our
edge modes sense a flat metric ω2

Fdt
2 − dθ2 = ω2

Fdt
2 −

f ′(φ)2dφ2, whose light cones are straight lines in terms
of the canonical angle coordinate θ = f(φ).

This observation is also consistent with the seemingly
complicated correlator (67). Indeed, one can start from
the definition (72) to write the 1D correlation function
⟨Ψ†(θ1)Ψ(θ2)⟩ as a double radial integral of the 2D quan-
tity ⟨c†(x1)c(x2)⟩. The asymptotic relation (67) then
yields numerous simplifications, eventually giving

⟨Ψ†(θ1)Ψ(θ2)⟩ =
1

2π

i

2 sin
(
[θ1 − θ2]/2

) . (76)

The same result would have been obtained directly from
the low-energy action (74): it is a correlation function of
free gapless fermions written in terms of the angle coor-
dinates θ1 = f(φ1) and θ2 = f(φ2). As a bonus, time-
dependent correlations automatically satisfy the behavior
∝ sin

(
[θ1 − θ2 − ωF(t1 − t2)]/2

)−1 stated at the end of
Sec. V C.

In conclusion, it is worth noting that the CFT action
(74) is only the leading part of the full effective action
of edge modes. The latter actually contains many sub-
leading terms—irrelevant corrections that vanish in the
thermodynamic limit and typically break conformal in-
variance. For example, the Taylor expansion (68) of en-
ergies near the Fermi momentum can be pushed further
to include quantum corrections that we have so far ne-
glected. Their leading part can be consistently computed
from Eq. (41), yielding

EN+k − EN = ℏ
(
ω̃Fk +

ℓ4

2ℏ
ΓN

Nℓ2
k2 +O

(
ℓ6
))

, (77)

which involves the spectrum’s curvature ΓN in Eq. (38)
as well as the corrected Fermi velocity

ω̃F = ωF +
ℓ4

2ℏ

[
ΓN

Nℓ2
+

2ΓN +∆N

Nℓ2

∮
dφ

2π
f ′(φ)σ(φ)2

]
.

(78)
Here, ωF ≡ ℓ2ΩN/ℏ was defined below Eq. (68) in terms
of the potential’s derivative in Eq. (38), and ∆N ≡
ℓ4N2 V ′′′

0 (ℓ2N). Thus, edge modes have a weak disper-
sion (77) governed by the curvature of the potential—a
well-known effect whose bosonization gives rise to nonlin-
ear dynamics for edge density waves [108, 123, 124]. The
velocity ωF itself also receives corrections in Eq. (78);
these depend on the entire shape of the droplet through
the integral of f ′(φ)σ(φ)2. In principle, since the propa-
gation velocity on the edge is measurable in QH experi-
ments [31–33] and also affects transport [34], this opens
up the possibility to probe the anisotropy e.g. in cold-
atom realizations [35–37], where the smaller number of
particles enhances subleading effects. It is somewhat re-
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markable that our leading WKB wave functions (46) suf-
fice to predict such detailed corrections. In practice, real-
istic QH systems involve numerous other sources of mod-
ifications to the leading effective action (74), typically
stemming from higher Landau levels and/or interactions;
no such complications occur here.

VI. MICROWAVE ABSORPTION

Our study so far focused on local properties of QH
droplets in space—their wave functions, density, etc.
While the measurement of such local quantities may
soon be within reach in quantum simulators, it is gen-
erally much trickier in genuine solid-state systems where
one’s control over the confining potential is limited. The
present section is therefore devoted to an experimentally
realistic, global probe of anisotropy that requires no local
imaging. Namely, we consider the microwave absorption
spectrum of anisotropic QH droplets [38] and show that
it consists of a characteristic series of peaks whose magni-
tude depends on the waves’ polarization. This is expected
to soon be observable in setups that build upon the ex-
perimental work [39]. In what follows, we first review the
basics along with known isotropic results, then turn to
anisotropic droplets, finally concluding with nonuniform
generalizations and a discussion of subleading effects.

A. Transition rates and isotropic benchmark

Consider a QH droplet of mesoscopic size, with a con-
fining potential such that the angular Fermi velocity ωF
falls in the microwave range [125, 126]. The droplet, pre-
pared in its ground state (55), is placed next to a coplanar
microwave transmission line that subjects it to electro-
magnetic pulses with a frequency ω close to ωF. Suddenly
switching on the radiation at time t = 0 excites edge den-
sity waves, leading to a frequency-dependent absorption
rate Γ(ω) of electromagnetic waves by the droplet. Our
goal is to compute this rate.

As a general starting point, let a quantum system be
prepared in a given energy eigenstate |ψm⟩, and subject it
to a time-dependent perturbation W cos(ωt) starting at
time t = 0, where W is some Hermitian operator. Stan-
dard perturbation theory then predicts that the transi-
tion rate from |ψm⟩ to some other eigenstate |ψn⟩ is

Γm→n ∼ 1

2ℏ
∣∣⟨ψm|W |ψn⟩

∣∣2 δ(ℏω − |Em − En|
)

(79)

up to subleading corrections involving higher powers of
W , where Em and En are the respective energies of |ψm⟩
and |ψn⟩. In particular, Eq. (79) applies to electronic
orbital transitions in a QH sample subjected to electro-
magnetic waves [127, 128]. Here, we shall mostly focus
on linearly polarized, uniform perturbations, in which
case W = qE[x cos(α) + y sin(α)] in terms of the electric

field’s amplitude E and the polarization angle α. The
ensuing transition rates (79) can be evaluated thanks to
the knowledge of the relevant eigenfunctions. The corre-
sponding many-body absorption rate, for a QH droplet
consisting of many states |ψ0⟩, . . . , |ψN−1⟩, will be a sum
of those one-body rates (79) that are permitted by the
Pauli exclusion principle given the ground state (55).

Let us derive such an absorption rate in the simplest
case of an isotropic QH droplet. Then, there is no loss of
generality in assuming polarization along the x axis, and
the relevant wave functions (3) behave near their maxi-
mum as predicted by Eq. (46) with f(φ) = φ and Φ = 0.
It follows that the matrix elements needed in Eq. (79)
satisfy the selection rule ⟨ψm|x|ψn⟩ ∼ ℓ

√
m/2(δm,n−1 +

δm,n+1) at large quantum numbers m,n [129]. Note that
the Kronecker deltas on the right-hand side would occur
for any pair of states with definite angular momentam,n,
while the coefficient in front is specific to the LLL. Owing
to the selection rule, the only transition allowed by the
Pauli exclusion principle for the many-body ground state
(55) is the one where the state |ψN−1⟩ jumps to the state
|ψN ⟩; any other transition either is forbidden or occurs at
higher orders in the perturbation. Eq. (79) then predicts
that the droplet’s absorption rate at frequency ω is given
by [38]

Γ(ω)

2πNℓ2
∼ q2E2

8πℏ2
δ
(
ω − ωF

)
(80)

at leading order in perturbation theory, where we recall
that 2πNℓ2 is the droplet’s area and ωF is the angular
Fermi velocity (68). Thus, the rate exhibits a single ab-
sorption peak (at ω = ωF) whose magnitude is indepen-
dent of the direction of polarization; anisotropic droplets,
to which we now turn, will change both these conclusions.

B. Microwave absorption by anisotropic droplets

Consider as before an edge-deformed potential, for
which the relevant eigenstates are given by Eq. (46).
Then, the one-body matrix elements needed for the tran-
sition rate (79) read

⟨ψm|[x cos(α) + y sin(α)]|ψn⟩

∼ ℓ
√
2m

∮
dφ

2π
cos(φ− α) ei(n−m)f(φ) f ′(φ)3/2, (81)

where we assumed that m,n are both large with a finite
difference m − n and we only wrote the leading-order
result in that limit. There is a priori no selection rule
in Eq. (81), so a state |ψm⟩ can typically jump to any
other state |ψn⟩, with an arbitrary difference p = n −
m. As a consequence, the many-body absorption rate
Γ(ω) involves several distinct peaks, each labeled by p;
at leading order in the thermodynamic limit, these peaks
occur at integer multiples of ωF, with p different one-body
transitions contributing to the pth peak. There is thus
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Figure 8. Plots of the multiple-peaked, angle-dependent absorption spectrum (82) for droplets (a) and (b) shown as insets,
where the latter is the same as in Figs. 1 and 2 and the dashed curves represent a few equipotentials. [As is commonplace, the
delta functions in Eq. (82) have been replaced by Lorentzian distributions to account for the finite lifetime of quasiparticles in
real systems.] Each continuous black curve displays the absorption rate Γ(ω) as a function of the frequency ω for a fixed value
of the polarization angle α, divided by the maximal absorption rate Γmax of the first peak. The occurrence of absorption peaks
at integer multiples of the angular Fermi velocity ωF is manifest. As is visible in (a), even very smooth droplets may give rise
to secondary peaks (p ≥ 2) whose magnitude is comparable to that of the first one.

one lowest-frequency transition at ω = ωF (|ψN−1⟩ →
|ψN ⟩), but two transitions at ω = 2ωF (|ψN−2⟩ → |ψN ⟩
and |ψN−1⟩ → |ψN+1⟩), three transitions at ω = 3ωF,
and so on. All in all, the droplet’s absorption rate per
unit area is

Γ(ω)

2πNℓ2
∼ q2E2

2πℏ2
∞∑
p=1

p δ
(
ω − pωF

)
×
∣∣∣∣ ∮ dφ

2π
cos(φ− α) eipf(φ) f ′(φ)3/2

∣∣∣∣2, (82)

and it manifestly depends on the polarization angle α. As
announced, this generalizes the isotropic formula (80), to
which it reduces in the special case f(φ) = φ; it was writ-
ten in Eq. (21) for λ(φ) = 2f ′(φ). Examples of absorp-
tion spectra given by Eq. (82) are displayed in Figs. 4 and
8, with delta functions replaced by broader Lorentzian
distributions; such a broadening typically occurs in real
systems due to dissipation effects.

Eq. (82) predicts that secondary peaks (p ≥ 2) are
typically lower than the first, although they may be of the
same order of magnitude [see Fig. 8(a)] even for perfectly
smooth potentials. In addition, the first few subleading
peaks may have comparable amplitudes [see Fig. 8(b)],
since the multiplicative factor p in Eq. (82) increases the
weight of high-frequency resonances. Their magnitude
nevertheless falls off exponentially fast when p → ∞, as
the angular integral in Eq. (82) is the pth Fourier mode
of a certain function on the circle (see Appendix E).

In actual QH experiments, the precise shape of the
trapping potential is generally unknown. Eq. (82) of-
fers in this sense a promising path to reconstruct the
shape of the droplet, at least partially. Indeed, the po-
larization of electromagnetic perturbations gives a factor

cos(φ − α) in the integrand, which guarantees that the
angle-dependent absorption rate at the pth peak is a func-
tion Ap+Bp cos(2α+Cp), where the numbers Ap, Bp, and
Cp depend on the deformation f(φ). Each peak thus fixes
(at most) three parameters entering f(φ); combining sev-
eral peaks gives a fair amount of insight into the Fourier
modes of the ‘anisotropy function’ f(φ)−φ. Note in pass-
ing that just three directions of polarization are needed
in order to determine the entire angular dependence of
the absorption at any peak. Thus, only three waveguides
with different orientations are required to measure the
full angle-dependent absorption spectrum, without the
need to scan every single direction individually.

A key property of Eq. (82) is that it is consistent
with the expected behavior of admittance in more fa-
miliar cases. We already mentioned this for the isotropic
setup f(φ) = φ, but one can go further and consider
anisotropic harmonic droplets, which were discussed in
Sec. IV E. Such droplets are obtained from isotropic har-
monic traps through flower deformations (29) of order
k = 2, e.g. with α = cosh(λ) and β = sinh(λ). Plug-
ging such a function f(φ) into the absorption formula
(82) readily shows that a selection rule is satisfied once
more: all peaks with p ≥ 2 vanish, and only the first
peak (p = 1) persists. In fact, the full angle-dependent
absorption rate for an elliptic droplet is

Γ(ω)

2πNℓ2
∼ q2E2

8πℏ2
δ
(
ω − ωF

)[
cosh(2λ)− sinh(2λ) cos(2α)

]
,

(83)
where λ is the deformation parameter that appears in
the harmonic potential (52). This can be derived either
from our Eq. (82) or from the known exact LLL wave
functions in a harmonic potential. As shown in Fig. 9,
Eq. (83) predicts that increasing the droplet’s eccentricity
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Figure 9. Plot of Γ(ωF)/Γ0 = cosh(2λ) − sinh(2λ) cos(2α),
describing the magnitude of the first (and only) peak in the
absorption spectrum (83), seen as a function of α for an el-
liptic droplet with anisotropy parameter λ = 0, 0.05, . . . , 0.5
(orange to black). The rescaling Γ0 contains all dimensionful
quantities on the right-hand side of Eq. (83) (with the delta
function broadened to a Lorentzian). The case λ = 0 corre-
sponds to the circular droplet, while increasing λ elongates
the droplet along the y axis and increases the absorption rate
at most values of α, except near α = 0, π.

increases its absorption rate at most values of α, except
near α = 0 and π, where the absorption rate decreases.
The intuitive explanation is that the elliptic potential
(52) elongates the droplet along the y axis, so that larger
dipole moments, hence larger absorption rates, occur for
α = ±π/2, while smaller rates occur near α = 0, π. In
addition, the overall increase in the absorption rate at
larger eccentricities may be viewed as an effect of the
increase in the droplet’s perimeter (though its area is kept
constant), which agrees with the intuition that microwave
absorption probes the droplet’s edge dynamics.

Moving away from harmonic potentials, the next step
is to consider all flower deformations (29) with arbitrary
order k. The corresponding potentials are both anhar-
monic and anisotropic (unless k = 2), so their absorption
spectra generally display infinite series of peaks. In fact,
for k = 1, all peaks are nonzero and explicitly depend on
α, while flower potentials with k > 2 admit a (weak) se-
lection rule of their own: the pth absorption peak vanishes
unless p = ±1 mod k. We show in Appendix E that this
is a direct consequence of the Zk symmetry of flower de-
formations; the same symmetry also implies (for k > 2)
that all remaining nonzero peaks are independent of the
polarization angle α, in contrast with the cases k = 1, 2
whose absorption rates are angle dependent. Actually,
the precise values of absorption amplitudes (82) can be
obtained analytically for any flower deformation.

C. Nonuniform fields and subleading effects

It is worth noting that one is not limited to the uni-
form electromagnetic perturbations considered so far. In-
deed, one may be interested in spatially modulated per-
turbations that are periodic in time, generalizing the case

W = qE[x cos(α) + y sin(α)] mentioned below Eq. (79).
One particular class of perturbations is especially well
suited for the anisotropic behavior studied here, namely
W = Λ rs cos

(
n[φ − α]

)
in polar coordinates, where s, n

are some positive integers and Λ is some overall scale
with dimensions such that W is an energy. (Incidentally,
such potentials may be viewed as generators of theW1+∞
algebra with spin 1 + s/2 [89].) Then, a straightforward
extension of the derivation surrounding Eq. (81) yields
the many-body absorption rate

Γ(ω) ∼ Λ2ℓ2s(2N)s

2ℏ2
∞∑
p=1

p δ
(
ω − pωF

)
×
∣∣∣∣ ∮ dφ

2π
cos
(
n[φ− α]

)
eipf(φ)f ′(φ)

2+s
2

∣∣∣∣2. (84)

In contrast to Eq. (82), this generally does not scale like
the area of the droplet. It does, however, display a series
of absorption peaks at discrete values of the frequency,
though it is crucially sensitive to more Fourier modes of
the deformation f(φ). For instance, one can verify that
the corresponding absorption peaks generally depend on
the angle α even for flower deformations of order k > 2.
In this sense, Eq. (84) suggests that the combination of
various spatially modulated rates provides an even more
powerful method to reconstruct the shape of a droplet
from its admittance—at the expense of being harder to
realize in practice.

We end with a few words about subleading correc-
tions that were neglected here. First, realistic absorption
peaks are not delta functions as in Eqs. (82)–(84) but
are broadened instead by dissipation as in Figs. 4 and 8.
Second, anharmonic terms in the energy spectrum (77)
affect both the value of the angular Fermi velocity and the
dispersion relation of edge modes and edge magnetoplas-
mons. Both effects modify the absorption rates (82) and
(84), at the very least by affecting the location and the
width of absorption peaks. Other higher-order quantum
corrections appear as well and can, in principle, be in-
cluded similarly to those of local observables in Appendix
D. Modifications also occur due to finite-temperature ef-
fects, higher Landau levels, and interactions, none of
which were taken into account in our approach. Despite
these simplifications, the results presented here show how
microwave absorption by anisotropic droplets can be used
as a powerful probe of geometric effects in edge dynamics.

VII. CONCLUSION AND OUTLOOK

This work was devoted to a detailed study of meso-
scopic droplets of noninteracting planar electrons in a
strong perpendicular magnetic field, confined by any
anisotropic trap with scale-invariant level curves enclos-
ing star domains. In particular, we provided explicit for-
mulas for the corresponding wave functions and energy
spectrum, allowing us to compute the many-body den-
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sity, current, and correlations of an entire droplet. The
low-energy edge modes of the droplet were also shown to
behave as a chiral CFT in terms of the canonical angle
variable along the boundary, despite apparent inhomo-
geneities in terms of more naïve coordinates. In practice,
all calculations were based on a semiclassical expansion
in the magnetic length, crucially involving a WKB ansatz
for holomorphic wave functions and the solution of the
ensuing transport equation. The approach provides a
systematic handle on perturbative quantum corrections,
exemplified by our computations of subleading effects in
density and current, or shape-dependent and dispersive
corrections to the linear CFT spectrum.

These results pave the way for a number of applica-
tions and follow-ups. Indeed, recent advances suggest the
possibility of probing local properties of QH droplets in
the lab [14–21, 27–30], both for static ground states and
their dynamical edge excitations. The density (60) and
the current (63) then predict observable shape-dependent
effects, while the low-energy theory (74) predicts the bal-
listic propagation of local boundary disturbances with a
‘lab velocity’ that may appear position dependent as in
Eq. (14), unless one is careful to express it in canonical
action-angle coordinates. Notably, we also described a
realistic experiment to probe a droplet’s anisotropy with-
out local imaging, namely by measuring its microwave
absorption spectrum. We showed, analytically, that the
latter consists of a series of resonance peaks with a dis-
tinctive dependence on the droplet’s shape and the waves’
polarization; such effects are expected to be visible soon,
given the high sensitivity of state-of-the-art detectors
[39].

More generally, the geometry of the QH effect [48, 54–
62] could soon become relevant for experiments involving
ultracold atoms or photonics. Our work provides a bridge
between this field of mathematical physics and concrete
observables in mesoscopic quantum physics. Confirming
the predictions put forward here through linear response
experiments, direct imaging, or measurements of edge
velocity and absorption rates would be a fascinating ex-
ample of many-body quantum mechanics at work.

Turning to theory, the link between our formalism
and QH symmetries deserves further study: following
the series of works [89–94], one can think of edge de-
formations as unitary operators acting on many-body
QH states. It is then natural to wonder how these op-
erators get composed together, since they are expected
to span a Virasoro group with a nonzero central charge
[95]. More broadly, what are the operators implementing
area-preserving deformations in the sense of the WKB
ansatz (25)? One expects these to provide a finite (expo-
nentiated) form of the operators studied in [89, 91, 92],
with noncommutative composition laws consistent with
the geometry (6) of LLL physics. Similar motivations re-
cently led to [88] on quantum area-preserving diffeomor-
phisms, although the formalism developed there does not
involve any LLL projection.

Most of the discussion above focused on leading-order

properties, but subleading effects are sometimes crucial
and deserve to be investigated in their own right. For
instance, one may be interested in the irrelevant correc-
tions of the edge field theory (74) mentioned at the end
of Sec. VD, especially following the recent numerical ob-
servation [108] that the slow time evolution of edge den-
sity waves is governed by a nonlinear Korteweg-de Vries
equation. This regime is described by small droplet de-
formations of the form r2 7→ r2 + α(φ), spanning a U(1)
Kac-Moody algebra whose level is sensitive to the filling
fraction [89, 91, 92]. The corresponding nonlinear dy-
namics may then be seen as an evolution equation in an
infinite-dimensional group manifold. Such a perspective
is standard in geometric hydrodynamics [130–132], but
it has only recently come to be appreciated in condensed
matter physics [133]. Our work provides a basis for con-
siderations of this kind in the QH effect, including the
possibility of inhomogeneous (position-dependent) irrel-
evant corrections in anisotropic traps.

Another obvious extension of this work is the frac-
tional QH regime. In that context, no single-particle de-
scription is available, but many-body predictions such as
the edge density (60), the current (63), or the absorp-
tion spectrum (82) conceivably display universal geomet-
ric features that would remain true in interacting many-
body ground states [73]. It would be thrilling to derive
such predictions from the family of edge transformations
studied here, either from a microscopic analysis of the
Laughlin wave function or thanks to the reformulation of
fractional QH states as CFT correlation functions [134].
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Appendix A: Isotropic droplets

Most of this work is concerned with anisotropic prop-
erties, but isotropic results provide a useful benchmark.
They are simpler than their anisotropic counterparts and
well known in the literature, so their properties are con-
cisely summarized here. We begin by recalling basic as-
pects of the one-body energy spectrum based on the exact
wave functions (3), then turn to many-body observables.

1. One-body spectrum

Consider a spin-polarized 2D electron governed by the
Landau Hamiltonian (1) with an isotropic confining po-
tential V (x) = V0(r

2/2). At very strong magnetic fields,
the corresponding one-body spectrum is well approxi-
mated by the solution of the LLL-projected eigenvalue
equation (7). As the potential is isotropic, it commutes
with angular momentum, so the eigenstates of PVP
are wave functions (3) with definite angular momentum.
These confirm the general near-Gaussian behavior found
in Eq. (48): letting |z| = √

m+ a with finite a, one finds
that (3) behaves at large m as

ϕm(x) =
eimφ

√
2πℓ2

e−a2

(2πm)1/4

(
1 +

a3

3
√
m

+O(1/m)

)
,

(A1)
where we included the m−1/2 correction for later refer-
ence. The energy Em of each state (3) is readily found
by computing the wave function ⟨z, z̄|PV0(r2/2)P |ϕm⟩,
which yields the exact eigenvalue

Em = ⟨ϕm|V |ϕm⟩ = 1

m!

∫ ∞

0

dt tm e−t V0(ℓ
2t) (A2)

in terms of the integration variable t ≡ |z|2. Observe in
passing that this is the value one would find from first-
order perturbation theory of the full Landau Hamiltonian
(1): by construction, LLL-projected physics is only sen-
sitive to first-order effects of the potential, while higher
orders ultimately involve higher Landau levels.

Now fix an index m ≥ 0. What is the corresponding
equipotential in the sense of Eq. (9)? To answer this in
the classical limit, we let m≫ 1 while fixing the value of
ℓ2m = O(1) and evaluate the integral (A2) by a saddle-
point approximation. The outcome is

Em = V0(ℓ
2m) + ℓ2Ωm +

ℓ2

2
Γm +O(ℓ4), (A3)

where Ωm and Γm were defined in Eq. (38). This is con-
sistent with Eqs. (15) and (41) for λ(φ) = 2f ′(φ) = 2.

2. Many-body aspects

The sequence followed here is the same as in Sec. V:
we start with the density, then consider the current and
the correlations close to the edge. In all cases, the edge
asymptotics reproduce the formulas in Sec. V for the sim-
plest case where f ′(φ) = 1.

Density. Let N ≫ 1 noninteracting planar electrons
be subjected to the Hamiltonian (1), with a very strong
magnetic field B = dA and a weak isotropic potential
V (x) = V0(r

2/2). The ground-state wave function of this
many-body system is a Slater determinant of the occu-
pied single-particle eigenstates ϕ0, ϕ1, . . . , ϕN−1 given by
Eq. (3), each of which has a one-body density |ϕm(x)|2.
In that specific case, the many-body density (56) can be
expressed in closed form as

ρ(x) =
1

2πℓ2
Γ(N, |z|2)
Γ(N)

(A4)

in terms of the upper incomplete gamma function

Γ(N, x) ≡
∫ ∞

x

dt tN−1 e−t = Γ(N) e−x
N−1∑
k=0

xk

k!
. (A5)

Constancy of density in the bulk is then manifest, as is
its drop to zero close to the edge |z| =

√
N , with an er-

ror function behavior that can be deduced from known
asymptotic formulas for gamma functions [111]; this re-
produces Eqs. (16) and (60) with λ(φ) = 2f ′(φ) = 2.

Current. For the LLL states (3) with definite angular
momentum, each one-body current (61) is purely angu-
lar, i.e. it reads jm = (. . .)dφ. The sum (62) can then
be evaluated in closed form owing to an exact cancella-
tion between the contribution of the states m and m+1,
eventually leading to a current that only involves the N th

wave function:

J(x) =
N−1∑
m=0

∣∣ϕm(x)
∣∣2(m− |z|2) dφ

=

N−1∑
m=0

[
m
∣∣ϕm(x)

∣∣2 − (m+ 1)
∣∣ϕm+1(x)

∣∣2] dφ
= −N

∣∣ϕN (x)
∣∣2 dφ. (A6)

It is then trivial to show that the current is localized as
a Gaussian close to the edge, since this is inherited from
the underlying single-particle wave function. In particu-
lar, the (leading part of the) asymptotic behavior (A1)
reproduces Eqs. (17) and (63) with λ(φ) = 2f ′(φ) = 2.

Correlations. The computation of electronic correla-
tions close to the edge is similar to that of the density.
Indeed, since the many-body ground-state wave function
is a Slater determinant, its two-point correlation func-
tion can be expressed as in Eqs. (18) and (65). The
exact wave functions (3) can then be used to write the
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correlation (65) as an incomplete gamma function (this
time with a complex argument):

C(z, z̄, w, w̄) =
1

2πℓ2
Γ(N, z̄w)

Γ(N)
e−(|z|2+|w|2)/2 ez̄w. (A7)

It is then manifest that bulk correlations coincide with
the kernel (5) at leading order in the thermodynamic
limit. As for the edge behavior, it can be extracted e.g.
from a steepest descent argument [111] and reproduces
Eqs. (19) and (67) with λ(φ) = 2f ′(φ) = 2.

Appendix B: Semiclassical expansion of PVP

In this appendix, we derive Eq. (27) starting from
Eq. (26). To this end, think of V (x, y) as some smooth
function of (x, y) whose arguments can be complexified,
and change the integration variables (x, y) in Eq. (26) to

s ≡ x− ℓ√
2
(z + w̄), t ≡ y + iℓ√

2
(z − w̄). (B1)

In terms of (s, t), the integrals in Eq. (26) are two line
integrals in the complex plane, each along a path from
−∞ + ic to +∞ + ic, where c is some irrelevant real
constant (a different one for s and t). The advantage of
the change of variables (B1) is to make the exponential
factor in Eq. (26) purely Gaussian:

⟨z, z̄|PVP |w, w̄⟩ = 1

(2πℓ2)2
e−

|z−w|2
2 e

zw̄−z̄w
2

×
∫

dsdt V
(
s+ ℓ√

2
(z + w̄), t− iℓ√

2
(z−w̄)

)
e−

s2+t2

2ℓ2 . (B2)

We then complexify V , thus replacing V (x, y) by V(z, z̄),
where V(z, w̄) is a function of two complex variables,
holomorphic in z and antiholomorphic in w. We can then
deform independently both integration contours for s and
t back to the real line. For small ℓ, the Gaussian factor
in Eq. (B2) localizes everything to s = t = 0. We now
use our assumption of slow variation of V (x) to Taylor
expand it as

V
(
s+ ℓ√

2
(z + w̄), t− iℓ√

2
(z − w̄)

)
∼
(
V +

s2

2
∂2xV +

t2

2
∂2yV

)∣∣∣( ℓ√
2
(z+w̄),− iℓ√

2
(z−w̄)

), (B3)

where we only kept terms that give nonzero contribu-
tions to the O(ℓ2) approximation of the integral (B2).
Note that everything is evaluated at (x, y) = ( ℓ√

2
(z +

w̄),− iℓ√
2
(z− w̄)); in complex coordinates, this is just the

point (z, w̄), so it is simpler to write the potential as
V(z, w̄). Plugging the expansion (B3) into Eq. (B2) then
yields the result (27).

Appendix C: Transport equation

The goal of this appendix is to derive the real and
imaginary parts of the transport equation in Eqs. (37)
and (43), respectively, by imposing the eigenvalue equa-
tion (7) based on our WKB ansatz (35) in the case of
edge-deformed droplets. The argument relies on expand-
ing the energy and the potential as in Eqs. (9) and (27).
It is divided in two parts. First, we use the eigenvalue
equation to derive the constraint (36), and let z belong to
an equipotential so that the whole equation boils down
to a 1D integral identity. Second, we show that the in-
tegral has a sharp saddle point in the large-m limit; this
allows us to rephrase the integral constraint as a first-
order transport equation for the unknown function n(θ).

1. Evaluation along an equipotential

Using the wave functions (23)–(24) and the expansion
(27) of the potential along with the projector property
P 2 = P , the eigenvalue problem (7) reads

0 =

∫
R2

d2w

2πℓ2
e−

|z−w|2
2 + zw̄−z̄w

2

[(
V+ ℓ2

2 ∇2V
)∣∣∣

(z,w̄)
−Em

]
×
∮

dθ n(θ) eimθ δ2
(
w −

(
F (m, θ), G(m, θ)

))
(C1)

up to O(ℓ4) corrections [135]. In the case of edge-
deformed traps, V(z, w̄) is the bicomplex potential given
in Eq. (33) and the delta function localizes the whole
integral over w to a level curve (32) with K = m. In-
tegrating over w and changing the integration variable
from θ = f(φ) to φ then yields Eq. (36).

Note that the structure of Eqs. (C1) and (36) is 0 =

e−|z|2/2 F (z) for a holomorphic function F (z), so setting
F (z) = 0 on a closed curve implies F (z) = 0 everywhere.
Accordingly, we will solve Eqs. (C1) or (36) along the
equipotential (31) by fixing K = m and parametrizing

z =
√
mf ′(α) eiα, α ∈ [0, 2π). (C2)

This ensures that all three terms in the exponential in
Eq. (36) are of the same order O(m). Then, Eq. (36)
with the choice (C2) and φ ≡ α+ ε becomes

0 =

∫ π

−π

dε f ′(α+ ε)n(f(α+ ε)) exp
[
imf(α+ ε)− 1

2mf
′(α+ ε) +m

√
f ′(α)f ′(α+ ε) e−iε

]
×
[
V
(√

mf ′(α) eiα,
√
mf ′(α+ ε) e−i(α+ε)

)
+ ℓ2

2 ∇2V − E0
m − ℓ2E1

m

]
. (C3)



23

This rewriting will allow us to carry out the integral
thanks to the saddle-point approximation, obtained by
expanding all terms in powers of ε and leading to a dif-
ferential equation for n(θ).

2. Saddle-point analysis and transport equation

The saddle-point expansion of the integral (C3) is cum-
bersome but straightforward. The strategy is to ex-
pand all factors in the integrand up to a suitable power
of ε, then perform the resulting integrals of the form∫
dε ε#e−Cε2 , where C is some f -dependent coefficient

[see Eq. (C5)]. The powers of ε involved are typically
small, as higher powers are suppressed in the classical

limit [large m and ℓ2m = O(1)]. The fact that the ar-
gument of n(θ) also involves a factor ε eventually con-
verts the integral into a transport equation of the form
n′(θ) ∝ n(θ) [see Eq. (C16)].

We start with Eq. (C3) and first expand the exponen-
tial, then the potential with its Laplacian, and finally the
simplest f ′(φ)n(f(φ)) prefactor. For convenience, we in-
troduce the notation

A ≡ f ′′

f ′
, B ≡ f ′′′

f ′
(C4)

for combinations of derivatives of f that often appear
below; from now on, expressions of the form f or f ′, etc.,
are all implicitly evaluated at α unless specified otherwise
[so f ≡ f(α), f ′ ≡ f ′(α), etc.]. Note for future reference
the useful relation A′ = B −A2.

The exponential. Using the notation (C4), one has

exp
[
imf(α+ ε)− 1

2mf
′(α+ ε) +m

√
f ′(α)f ′(α+ ε) e−iε

]
∼ eimf+

1
2mf ′

exp
[
− 1

2mf
′ε2
(
1 + A2

4

)] (
1 +mf ′ε3

[
i
6 − A

4 − iB
12 + iA2

8 − AB
8 + A3

16

])
, (C5)

where the factor exp
[
imf +mf ′/2

]
is ultimately irrelevant for the eigenvalue equation (C3), so we will not include it

in what follows. The main point of Eq. (C5) is to exhibit the leading Gaussian behavior exp
[
−(mf ′/2)(1+A2/4)ε2

]
of

the integrand, which will eventually allow us to convert Eq. (C3) into a differential equation for the unknown function
n(θ). In fact, the same exponential factor appears in the approximately Gaussian wave function (48).

The potential. We now turn to the expansions of the potential and of its Laplacian. As a first step, our task is to
expand the potential

V
(√

mf ′ eiα,
√
mf ′(α+ ε) e−i(α+ε)

)
= V0

ℓ2m √
f ′
√
f ′(α+ ε) e−iε

f ′
(

1
2i log

[√
f ′ e2iα+iε√
f ′(α+ε)

])


∼ V0

(
ℓ2m

[
1− iε

(
1 + A2

4

)
+ ε2

(
− 1

2 + B
8 − 3A2

8 − A3

4i − A4

16 + AB
4i + A2B

32

) ])
∼ V0

(
ℓ2m

)
− iℓ2mε

(
1 + A2

4

)
V ′
0

(
ℓ2m

)
− 1

2ℓ
4m2ε2

(
1 + A2

4

)2
V ′′
0

(
ℓ2m

)
+ ℓ2mε2

(
− 1

2 + B
8 − 3A2

8 − A3

4i − A4

16 + AB
4i + A2B

32

)
V ′
0

(
ℓ2m

)
, (C6)

where we used Eq. (33) and the notation (C4). Aside
from the contribution of the Laplacian, these are all the
terms of the potential needed in the eigenvalue equation
(C3) along an equipotential. As expected, they all ul-
timately involve the potential and its derivatives at the
equipotential (31). For ε = 0, the whole expression boils
down to V0(ℓ2m) alone.

Let us now turn to the Laplacian term. The
eigenvalue equation (C3) requires the Laplacian
evaluated at the complexified point (z, w̄) =(√

mf ′(α) eiα,
√
mf ′(α+ ε) e−i(α+ε)

)
. In practice,

the Laplacian term is multiplied by ℓ2 in Eq. (C3), so
we may safely set ε = 0 when computing it; this removes

the complexification and allows us to write the Laplacian
contribution in Eq. (C3) as

ℓ2

2 ∇2V ∼ ℓ2

f ′

(
1− B

4 + A2

2

)
V ′
0(ℓ

2m)

+ ℓ4m
f ′

(
1 + A2

4

)
V ′′
0 (ℓ2m), (C7)

which follows from the general expression (34) evaluated
on the equipotential (31).

All together. Let us finally consider the very first factor
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on the right-hand side of Eq. (C3), namely

f ′(α+ ε)n(f(α+ ε)) ∼ f ′n(f) + ε
[
f ′′n(f) + f ′2n′(f)

]
,

(C8)
where higher powers of ε are negligible at this order. To
see why they may be neglected, it is helpful to investigate
the general structure of the small-ℓ expansion in Eq. (C3):
the exponential term in Eq. (C5) has the form

exp[imf(. . .)] ∼ const× e−mΛε2
(
1 +mLε3

)
(C9)

with m ≫ 1 and Λ, L some O(1) coefficients. Sim-
ilarly, the potential expansion (C6) together with the
Laplacian correction (C7) can schematically be written as
V0+

ℓ2

2 ∇2V0 ∼ V0+ℓ
2W0+Gε+Hε

2, where V0 ≡ V0(ℓ
2m)

while W0, G, H are again some O(1) coefficients. Finally,
the expansion (C8) of the prefactor roughly has the form

f ′n e(...) ∼ const× (f ′n+ εIn′ + εJn), (C10)

where I, J are O(1) coefficients. Putting together the
schematic expressions (C9) and (C10) and using the fact
that constant (i.e. ε-independent) contributions are irrel-
evant, the eigenvalue equation (C3) becomes

0 =

∫
dε
(
f ′n+ εIn′ + εJn

)
e−mΛε2

(
1 +mLε3

)
×
(
V0 + ℓ2W0 +Gε+Hε2 − E0

m − ℓ2E1
m

)
. (C11)

Here, the right-hand side is a sum of integrals whose in-
tegrand has the form εne−mΛε2 . For odd n, each such

integral vanishes; for even n, it is nonzero and scales as
m−n/2. This is why only the first order in ε is needed
in the expansion (C8): higher powers of ε would yield
subleading corrections to Eq. (C11), which can be con-
sistently taken into account only by expanding the expo-
nential, potential, and Laplacian terms up to orders in ε
higher than what we did above. Here, we content our-
selves with the zeroth- and first-order terms in ℓ2 (i.e. in
1/m). At that level of approximation, Eq. (C11) yields
the zeroth-order statement

V0 − E0
m = 0 (C12)

and the first-order result

f ′n
[
Λℓ2m(W0−E1

m)+ H
2 + 3LG

4Λ

]
+ G

2

(
In′+Jn

)
= 0,

(C13)

where ℓ2m = O(1) as before. Eq. (C12) confirms that the
eigenvalue equation holds if E0

m = V0(ℓ
2m), i.e. if the en-

ergy of the eigenstate |ψm⟩ is that of its equipotential at
leading order [recall Eq. (9)]. More important, Eq. (C13)
yields a transport equation for n, whose schematic form
is

GI
2

n′

n +f ′
[
Λℓ2m

(
W0−E1

m

)
+H

2 + 3LG
4Λ

]
+GJ

2 = 0. (C14)

We now rely on the expansions (C5)–(C8) to write this
transport equation explicitly: using the notation (38) and
plugging Eqs. (C5)–(C8) into Eq. (C3) yields the condi-
tion

0 =

∫
dε e

−Kf ′

2

(
1+

A2

4

)
ε2
[
1 + ε

(
A+ f ′

n′(f)

n(f)

)][
1 +Kf ′ε3

(
i
6 − A

4 − iB
12 + iA2

8 − AB
8 + A3

16

)]
×
[
−iℓ2Kε

(
1 + A2

4

)
Ωm − ℓ2Kε2

2

(
1 + A2

4

)2
Γm + ℓ2Kε2

(
− 1

2 + B
8 − 3A2

8 − A3

4i − A4

16 + AB
4i + A2B

32

)
Ωm

+ ℓ2

f ′

(
1− B

4 + A2

2

)
Ωm + ℓ2

f ′

(
1 + A2

4

)
Γm − ℓ2E1

m

]
, (C15)

whose structure is that announced in Eq. (C11), as had to be the case. What remains is to multiply all the factors in
the integrand, keep track of powers of ε, and integrate over ε, which leads to

iR′/R =
(
1 + A2

4

)
Γm

2Ωm
+ 1− B

4 + A2

2 − f ′
E1

m

Ωm
− 1

1 + A2

4

[(
B
8 + A4

16 − A2B
32

)
+ i
(

A
4 + 3A3

16 − AB
8

)]
, (C16)

where we introduced R ≡ R(α) ≡ n(f(α)) for simplicity. This is the transport equation for the O(1) multiplicative
factor of the WKB ansatz (35). Its real and imaginary parts, respectively, govern the phase and norm of n(f(φ)) ≡
N (φ) eiΦ(φ):

−Φ′ =
(
1 + A2

4

)
Γm

2Ωm
− f ′

E1
m

Ωm
+ 1

1+
A2

4

(
1 + 3A2

4 + A4

16 − 3B
8 − A2B

32

)
, (C17)

N ′/N = − 1

1 + A2

4

(
A
4 + 3A3

16 − AB
8

)
. (C18)
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The identity B = A′+A2 then reduces these two relations
to Eqs. (37) and (43) in the main text.

Appendix D: Subleading contributions

In this appendix, we state results for the next-order
correction in m−1/2 to the leading-order wave function
(46), obtained by including the O(1/m) term in the lo-
cation of the saddle point in Sec. IVD. As we show,
this reproduces formulas that can be derived by other
means in isotropic and/or harmonic traps. We also use
this to deduce O(1/

√
N) corrections to the many-body

density (60) and current (63). Note that this is not
a higher-order quantum correction: the latter requires
higher-order terms in the transport equation in Secs. IVC
and IVD, and would give rise to O(1/N) corrections [as
opposed to O(1/

√
N)] for the density and current.

1. One-body wave functions

Using as before the parametrization (45) near the mth

equipotential, the integral (35) has a unique saddle point
at φ = α+ δ1/

√
m+ δ2/m+O(m−3/2) with

δ1 = −ia
[
1− i f

′′

2f ′

]−1

, (D1a)

δ2 = ia2
(

2−{f,α}
4 −i f

′′

2f ′

[
1−i f

′′

2f ′

]) [
1−i f

′′

2f ′

]−3

, (D1b)

where {f, α} ≡ f ′′′/f ′ − 3
2 (f

′′/f ′)2 is the Schwarzian
derivative of f and all derivatives of f are evaluated at
α. Repeating the saddle-point approximation of Eq. (35),
now keeping terms of one order in m−1/2 more than be-
fore and using that m≫ 1 while a is finite, one finds the
wave function

ψm(z, z̄) =
1√
2πℓ2

1

(2πm)1/4
eimf(α)+iΦ(α) 1√

σ(α)
exp

− f ′(α)a2

1− i f
′′(α)

2f ′(α)

(1 + 1√
m
Rm(a, α) +O(1/m)

)
. (D2)

This differs from the leading-order result (46) by the m−1/2 correction

Rm(a, α) ≡ aR1
m(α) +

a3

3!
R3

m(α), (D3)

where

R1
m(α) ≡ − f ′(α)

1− i f
′′(α)

2f ′(α)

[
σ(α)2

2

(
Γm

Ωm
+

1

2

)
− E1

m

Ωm
+

2−{f(α), α}
8f ′(α)2σ(α)2

(
3−i

f ′′(α)

2f ′(α)

)(
1+i

f ′′(α)

2f ′(α)

)]
, (D4a)

R3
m(α) ≡ f ′(α)

2− {f(α), α}(
1− i f

′′(α)
2f ′(α)

)3 , (D4b)

expressed using Eq. (47) for σ(φ). Note that the normal-
ization in Eq. (D2) is the same as in Eq. (46) since it is
unaffected by the O(m−1/2) correction. [This would no
longer be true when including O(1/m) corrections.]

2. Isotropic and harmonic potentials

Let us consider the one-body wave function (D2) for
the isotropic and harmonic cases treated in Secs. A 1
and IV E, respectively.

Isotropic potential. In this case, one has f(α) = α,
so f ′(α) = 1 = σ(α), f ′′(α) = 0 = {f(α), α}, and
Φ(α) = const, where we used Eq. (40) to get E1

m =
Ωm + Γm/2. It follows that the coefficients in Eq. (D4)
are R1

m(α) = 0 and R3
m(α) = 2, meaning that Eq. (D3)

yields Rm(a, α) = a3/3. In conclusion,

ψm(z, z̄) =
eimα

√
2πℓ2

e−a2

(2πm)1/4

(
1 +

a3

3
√
m

+O(1/m)

)
(D5)

up to an overall constant phase. This agrees with the
asymptotics (A1) of the isotropic wave function (3).

Anisotropic harmonic potential. In this case, f(α)
is given by Eq. (29) with k = 2, α = cosh(λ), and β =
sinh(λ). One can then show, with θ ≡ f(α), that

R1
m(α) = sinh(λ)

cosh(λ)e2iθ − sinh(λ)[
cosh(λ)e2iθ + sinh(λ)

]2 , (D6a)

R3
m(α) = 2

(
cosh(λ)e2iθ − sinh(λ)

cosh(λ)e2iθ + sinh(λ)

)3

. (D6b)
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Inserting these into Eq. (D3) yields the m−1/2 term in
Eq. (D2), which should be seen as a correction to the
leading-order result (54) stated in the main text. As
in the isotropic case above, the ensuing wave function
agrees with the large-m approximation of the exact LLL-
projected eigenstates for an anisotropic harmonic poten-
tial, which can be obtained by pushing the saddle-point
analysis of [53] one order further.

3. Many-body aspects

The O(1/
√
m) correction in the wave function (D2) in-

duces O(1/
√
N) corrections for many-body observables.

We now write these for the density and current, whose
leading-order expressions were given in Eqs. (60) and
(63), respectively.

Density. The corrected wave function (D2) yields a one-
body probability density |ψm|2 that differs from the ear-
lier result (48) by terms of order O(1/

√
m). This can

be plugged into the many-body density (56), whereupon
the sum over m can be converted into an integral by the
Euler-Maclaurin formula. Thus,

ρ(x) ∼ 1

2πℓ2

[
1

2
erfc

( √
2

σ(φ)
a

)
+

e−2a2/σ(φ)2

√
2πN

σ(φ)

2

(
A(φ)

a2

σ(φ)2
−B(φ)

)]
, (D7)

where

A(φ) ≡ 2− {f(φ), φ}
3f ′(φ)2σ(φ)4

[
4− 3f ′(φ)σ(φ)2

]
, (D8a)

B(φ) ≡ ΓN

ΩN
+

1

2
− 2

σ(φ)2

(
E1

N

ΩN
− 1

2

)
+

2− {f(φ), φ}
12f ′(φ)2σ(φ)4

[
4 + 3f ′(φ)σ(φ)2

]
. (D8b)

Note that this is consistent with the density of isotropic
droplets: when f(φ) = φ, then σ(φ) = 1 and E1

N =
ΩN + ΓN/2, implying A(φ) = B(φ) = 2/3, which yields

ρ ∼ 1

2πℓ2

[
1

2
erfc(

√
2a) +

e−2a2

√
2πN

(
a2

3
− 1

3

)]
. (D9)

The latter can also be obtained from the asymptotics of
the incomplete gamma function (A4) near the edge.

Current. For the many-body current, the next-order
correction in the wave functions (D2) leads to nontrivial
subleading contributions similar to those of the density,
but substantially more complicated. Through strenuous
computations, the sum (62) over one-body currents yields

J(r, φ) = Jφ(r, φ) dφ+ Jr(r, φ) dr (D10)

with the angular component

Jφ(r, φ) ∼ −e−2a2/σ(φ)2

(2πℓ2)3/2

× ℓ

( √
N

σ(φ)
+A(φ)

a3

σ(φ)3
− C(φ)

a

σ(φ)

)
(D11)

and the radial component

Jr(r, φ) ∼ −e−2a2/σ(φ)2

(2πℓ2)3/2
1√

2f ′(φ)

f ′′(φ)

2f ′(φ)

×
(

1

σ(φ)
+
A(φ)√
N

a3

σ(φ)3
− D(φ)√

N

a

σ(φ)

)
, (D12)

where A(φ) was defined in Eq. (D8a) and

C(φ) ≡ D(φ)− 1− 2− {f(φ), φ}
2f ′(φ)σ(φ)2

, (D13a)

D(φ) ≡ ΓN

ΩN
+

1

2
− 2

σ(φ)2

(
E1

N

ΩN
− 1

2

)
+

2− {f(φ), φ}
4f ′(φ)2σ(φ)4

[
4 + f ′(φ)σ(φ)2

]
. (D13b)

Note that the dependence on m in Ωm, Γm, and E1
m

leads to even higher-order corrections, meaning that they
can safely be evaluated at m = N . In the special case
of isotropic potentials, the corrected components (D11)
and (D12) become

Jφ ∼ − e−2a2

(2πℓ2)3/2

(
ℓ
√
N +

2ℓ

3
a3
)
, Jr = 0, (D14)

which perfectly agree with the asymptotic behavior of the
many-body current (A6) upon using both the leading and
subleading parts of Eq. (A1).

We conclude with a few remarks on the current. First,
note that the aforementioned subleading differences be-
tween Jφ and Jr show that the current’s tangency to
the droplet only holds at leading order. Second, one can
verify that the one-form (D10) satisfies

∇ · J(r, φ) = 0 +O(1/N) (D15)

for general anisotropic traps, as should indeed be the case
for the current of any energy eigenstate. In that argu-
ment, the differences in the coefficients for the a/σ(φ)
terms in Eqs. (D11) and (D12) conspire so that the
subleading contributions to the divergence cancel. An
analogous statement appears in standard WKB theory,
where the transport equation implies that the proba-
bility current is divergence-free. Our result shows that
this remains true here: n(f(φ)) = N (φ) eiΦ(φ) satisfying
Eqs. (37) and (43) is consistent with the current satisfy-
ing Eq. (D15).
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Appendix E: Microwave absorption for flower
droplets

This appendix accompanies Sec. VI; it is devoted to the
microwave absorption spectrum of flower-shaped droplets
given by deformations (29) of any order k, including the
derivation of selection rules for k > 2. Letting λ be the
anisotropy parameter, such setups are obtained by acting
on an isotropic potential with a flower deformation (29)
of the form

eikf(φ) =
cosh(λ)eikφ + sinh(λ)

sinh(λ)eikφ + cosh(λ)
. (E1)

On top of the selection rules, we will show that the mag-
nitude of absorption peaks can be evaluated analytically
for such droplets.

Our starting point is to rewrite the angular integral in
the absorption rate (82) as a sum:∮

dφ

2π
cos(φ−α)eipf(φ)f ′(φ)3/2 =

1

2
(Xpe

−iα +X−pe
iα),

(E2)
where we defined

Xp ≡
∮

dθ

2π
eipθ

eif
−1(θ)√

(f−1)′(θ)
(E3)

in terms of the canonical angle coordinate θ = f(φ).
Thus, the coefficients Xp and X−p that determine the
magnitude of the pth peak are Fourier modes of the aux-
iliary function

F (θ) ≡ eif
−1(θ)√

(f−1)′(θ)
=

∞∑
p=−∞

Xpe
−ipθ. (E4)

This readily implies the following selection rule: if f(φ)
is a flower deformation of order k as in Eq. (E1), then

Xp = 0 if p ̸= −1 mod k. (E5)

Put differently, the pth absorption peak can be nonzero
only if p = ±1 mod k. To prove this, note first that the
definition of flower deformations (E1) is ambiguous: if
f(φ) satisfies Eq. (E1), then so does f(φ) + 2π/k. We
fix this ambiguity by choosing f smooth and such that
f(0) = 0, hence

f(φ) = −2

k
arctan

(
e2λ cot(kφ/2)

)
+
2π

k

⌊
kφ

2π

⌋
+
π

k
, (E6)

where ⌊·⌋ denotes the nearest lower integer part. As a
consequence, the auxiliary function (E4) satisfies F (θ +
2π/k) = e2πi/kF (θ), which, in turn, implies the an-
nounced selection rule (E5).

A corollary of this observation is that the norm of the
expression in Eq. (E2) is independent of α for any k > 2,
since at least one of Xp = 0 or X−p = 0 must be true.

Thus, the uniform-field absorption rate (82) is indepen-
dent of α for any flower deformation beyond the elliptic
case, and the peaks in the absorption rate (82) vanish un-
less p = ±1 mod k. This does not mean that all peaks
allowed by the selection rule (E5) are nonzero; for in-
stance, the case k = 2 allows peaks for any odd p, but all
peaks vanish in practice except p = 1, where the absorp-
tion rate is given by Eq. (83). The other exceptional case
is k = 1, where the selection rule trivially allows all peaks
to be nonzero and angle dependent—as indeed they are.

For k > 2, the rule (E5) turns out to give all the vanish-
ing peaks. The intensity of the remaining nonzero peaks
can be evaluated analytically. Indeed, for p = −1 + nk
with some integer n, one can rewrite the Fourier mode
(E3) as

X−1+nk = k

∫ 2π/k

0

dθ

2π
einkθ

ei[f
−1(θ)−θ]√

(f−1)′(θ)

=

∫ 2π

0

dϕ

2π
einϕG(ϕ), (E7)

where we let ϕ ≡ kθ and the function

G(ϕ) ≡ ei[f
−1(ϕ/k)−ϕ/k]√
(f−1)′(ϕ/k)

(E8)

is 2π-periodic. Using the flower deformation (E1) and the
fact that its inverse takes the same form with λ replaced
by −λ, one finds

G(ϕ) = cosh(λ)
[
1− tanh(λ)e−iϕ

] k+2
2k
[
1− tanh(λ)eiϕ

] k−2
2k .

(E9)

It is then straightforward to write the Fourier modes (E7)
in terms of hypergeometric functions: for n ≥ 0, one has

X−1+nk = cosh(λ)[− tanh(λ)]n
( 1

2 + 1
k

n

)
× 2F1

(
1

k
−1

2
, n−1

k
−1

2
; 1+n; tanh2(λ)

)
, (E10)

while, for n < 0,

X−1+nk = cosh(λ)[− tanh(λ)]−n

( 1
2 − 1

k

−n

)
× 2F1

(
−1

k
−1

2
,−n+1

k
−1

2
; 1−n; tanh2(λ)

)
. (E11)

These expressions exhibit a general pattern: the ab-
sorption rate of any nonzero peak increases when the
anisotropy λ increases. Recall from Sec. VI B that a sim-
ilar behavior occurs for elliptic droplets. In fact, one can
verify that Eqs. (E10) and (E11) reproduce the simple
result (83) in the harmonic case k = 2.
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