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Accurate and efficient tools for calculating the ground state properties of interacting quantum
systems are essential in the design of nanoelectronic devices. The exact diagonalization method
fully accounts for the Coulomb interaction beyond mean field approximations and it is regarded as
the gold-standard for few electron systems. However, by increasing the number of instances to be
solved, the computational costs become prohibitive and new approaches based on machine learning
techniques can provide a significant reduction in computational time and resources, maintaining
a reasonable accuracy. Here, we employ pix2pix, a general-purpose image-to-image translation
method based on conditional generative adversarial network (cGAN), for predicting ground state
densities from randomly generated confinement potentials. Other mappings were also investigated,
like potentials to non-interacting densities and the translation from non-interacting to interacting
densities. The architecture of the cGAN was optimized with respect to the internal parameters of
the generator and discriminator. Moreover, the inverse problem of finding the confinement potential
given the interacting density can also be approached by the pix2pix mapping, which is an important
step in finding near-optimal solutions for confinement potentials.

I. INTRODUCTION

Machine learning (ML) has found extensive applica-
tions in multiple research fields in the last decade, bring-
ing along a new paradigm in science, based on a more effi-
cient and versatile analysis of experimental and simulated
data [1, 2]. Statistical models and high-end programming
have led to the build-up of deep learning techniques that
solve problems of clustering, regression and classification
[3]. In particular, material science and nanotechnology
have adapted ML algorithms in order to provide an ac-
celerated interpretation of data and reduce the resources
needed for materials [4–6] and device [7, 8] design, based
on calculated examples or experimental results. The field
of artificial intelligence has also extended to a variety of
topics such as predicting molecular electron densities [9],
reduction of the noise level in high-resolution electron
microscopy images [10] or more theoretical areas of con-
densed matter [11], such as quantum phase transitions
[12] and learning topological invariants [13].

The physics of nanoelectronic devices and quantum
information applications relies heavily on an accurate
and efficient description of many-body states. Tradition-
ally, the many-body systems have been approached by
mean-field theories like Hartree-Fock and density func-
tional theory (DFT), the latter being mostly employed
in the context of atomistic calculations. However, for
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applications that require q-bit level descriptions beyond
mean-field approaches, computationally more demanding
methods such as the exact diagonalization (ED) method
[14–16] are necessary. Many-electron states have been
previously analyzed in quantum dot (QD) systems with
top gate arrays [17], where the exponential increase in
the number of gate voltage configurations leads to a pro-
hibitively large computation effort. Efficiently solving
a large number of many-body Hamiltonian diagonaliza-
tions is typically required in the design of nanoelectronic
devices and this is a suitable task for ML approaches.
A lot of effort has been devoted to learning the elec-
tron densities, particularly in DFT frameworks, using the
local atomic environment [18], equivariant graph neural
networks [19] or by solving the many-body Schrödinger
equation using a PauliNet as a deep-learning wavefunc-
tion Ansatz [20] or trial wave-functions implementing
Pauli principle [21].

Visualization has always been essential for the under-
standing and interpretation of the data. In the context of
condensed matter, one idea is the use of graphs as means
to encode the information about atomic and molecular
structures [22–24]. Along with the development of ad-
vanced deep learning methods, it also became possible to
create algorithms that gain insights into raw representa-
tions such as pixels of an image. For this particular do-
main, convolutional neural networks (CNNs) have proved
to be decisive. In material physics, CNNs have been em-
ployed for a variety of applications, from the prediction of
the ionic conductivity of a ceramic material from image
quality maps [25] to the prediction of the space groups
and the crystallographic dimensionality of thin film ma-
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terials from XRD spectral inputs [26] and a lot of work is
now invested in explaining the mechanism through which
CNNs make accurate predictions [27, 28].

Autoencoders, which have CNNs embedded in their
architecture, were used to learn low-dimensional repre-
sentations of the data from a material database and sub-
sequently incorporate it in a data-driven solver to im-
prove efficiency [29]. Other methods, like flow-based
models have achieved significant results for variational
inference [30], while high quality image synthesis was
obtained using diffusion probabilistic models [31]. One
step further from conventional convolutional networks,
generative adversarial networks (GANs), are gaining im-
portance lately. Several research articles have focused
on using GANs for microstructure synthesis [32, 33] and
materials design, by capturing the characteristics of com-
plex materials and learning the mapping between latent
variables and the structure [34].

Another remarkable network architecture that is suit-
able for image processing is the conditional generative
adversarial network (cGAN), in which both the discrimi-
nator and generator are given additional information and,
from this point of view, are trained in a conditional set-
ting. cGANs have already been employed in the field of
many-body physics to genenerate quantum state tomo-
graphies [35] and even simulate the dynamical correlators
for many-body systems [36]. They have also been proved
to be efficient in the prediction of Ising spin configura-
tions at temperatures outside the training data set [37].

Based on this type networks, Isola et al proposed an
algorithm for image translation known as pix2pix, which
learns a loss function that adapts to the data and can be
applied to a wide range of image processing related tasks.
This type of model is a valuable tool in image dehazing
tasks, which aim to for improve the quality of images and
increase visibility [38]. Pix2pix is also already employed
in the field of medical imaging to generate lesion images
from tumor sketches for effective data augmentation[39],
for the detection, colorization and classification of tumor
images [40] and to generate synthetic CT images MRI
radiotherapy planning [41]. In the field of industry re-
search, pix2pix was employed for the purpose of gener-
ating new images with surface quality defects, relevant
in the production of metal workpieces [42]. Due to the
popularity of the algorithm, there is also considerable in-
terest to increase the speed of training and improve its
efficiency [43].

In this paper, we investigate cGANs implemented in
pix2pix method for predicting many-body charge densi-
ties in the ground state, for randomly generated quantum
systems. In the training process of the cGAN, the map-
ping is performed between the confinement potentials
and the densities corresponding to Coulomb interacting
systems, calculated by ED method. A similar mapping
is performed to yield the non-interacting densities. In
this way, the exact diagonalization is bypassed, which
is a considerable advantage as diagonalizing many-body
Hamiltonians becomes prohibitive when the number of

FIG. 1. An interacting quantum system with random A-B
type domains. The corresponding potential map in a typical
configuration, Vxy, obtained using the procedure described
in the text, is shown below. The system is defined on a
two-dimensional square region of area L × L, with vanish-
ing boundary conditions for the wavefunctions. Starting from
a step potential (yellow regions), Vs = 0.5 eV, a connected
set of quantum wells (black regions), V0 = 0 eV, defines the
confinement potential for electrons.

systems grows too large. Using the pix2pix mapping, an
efficient and accurate prediction of the interacting den-
sities is achieved for new test systems. In addition, we
provide a proof-of-concept for the inverse problem, i.e.
generating a potential from an input density.

The paper is structured as follows. In Section II, the
class of model systems is described. In the next section,
the numerical implementations of the ED and pix2pix
methods are detailed and some measures for quality as-
sessment of generated images are indicated. The results
obtained for different types of pix2pix mappings, involv-
ing potentials, non-interacting and interacting densities,
are discussed in Section IV. Subsequently, a discussion
is provided in Section V, outlining the advantages and
limitations of the current approach. The accuracies of
the predicted densities are analyzed for several cGAN
configurations and optimal configurations are identified.
Moreover, the method is shown to produce accurate re-
sults for the inverse problem as well.

II. MODEL SYSTEMS

The quantum systems consist of N electrons confined
in randomly generated potentials Vxy, defined on a two-
dimensional square region, as depicted in Fig. 1. The
potentials Vxy correspond to connected groups of cir-
cular quantum wells (QWs) with different radii. These
potential configurations resemble systems of interacting
QDs such as two-dimensional self-assembled functional-
ized graphene QDs [44], randomly distributed QDs for
memristive elements [45] or random geometric graphs of
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QDs [46]. Monolayer graphene - hexagonal boron ni-
tride films can form arbitrary shaped A-B type domains
[47, 48], where A and B are conductive and insulating
domains, respectively. Moreover, the choice of random
potential maps also ensures a thorough evaluation of the
pix2pix method.

In order to get a balanced distribution of QWs in
given potential map, the following scheme was consid-
ered. Starting with a flat potential step of height Vs = 0.5
eV, a number of Nqw = 25 flat QWs are placed inside the
square region of linear size L = 30 nm, having the base
potential V0 = 0 eV. The centers of the QWs are ran-
domly chosen, and their radii are uniformly distributed
in the interval L/16 < R < L/8. When a new QW is
added, it is allowed to partly overlap with the current
QW, but no more than 3/4 of its area. If the new QW
is disconnected from the current QW, it is discarded and
new values for the position and radius are chosen. The
process continues until all Nqw are placed. Finally, if
more than 80% of the L2 area is covered by the QWs
(V0 = 0 eV), the potential map is discarded and the
process is started from the beginning. In this way, a con-
nected ensemble of QWs is formed, with a high degree
of variability. A total number of NV = 5000 potential
instances are generated.

III. COMPUTATIONAL METHODS

III.1. The exact diagonalization method

The non-interacting one-body Hamiltonian for an elec-
tron in a two-dimensional confinement potential V (r) is:

H0 = − ~2

2m∗
∂2

∂r2
+ V (r) , (1)

where m∗ is the effective mass and r ≡ (x, y) is the posi-
tion vector in two-dimensions.

The N -particle Hamiltonian is written as a sum of
the single particle operators and the two-body operator,
which describes the Coulomb interaction:

H =

N∑
i=1

Hi +
1

2

∑
i

∑
j

Vij , (2)

where

Hi = H0 (ri) , (3)

Vij = VC (ri, rj) =
e2

4πε0εr

1

|ri − rj |
. (4)

The Hamiltonian in the second quantization becomes:

H =
∑
a

εac
†
aca +

1

2

∑
abcd

Vabcdc
†
ac
†
bcdcc, (5)

where εa are the energies of the single-particle states and
the Vabcd coefficients corresponding to the Coulomb in-
teraction are calculated based on the orbital components
of the single-particle states, {φa,σz}:

Vabcd =

∫
dr

∫
dr′

∑
σz,σ′

z

φ∗a,σz
(r)φ∗b,σ′

z
(r′)

× e2

4πε0εr

1

|r− r′|
φc,σz

(r)φd,σ′
z

(r′) .

(6)

Solving the time independent Schröedinger equation

HΨn = EnΨn, (7)

one obtains the eigenvalues En and eigenvectors Ψn ≡
Ψn (r1, s1, . . . , rN, sN ). Then, the particle density in the
ground state is:

n0(r) = N
∑
s1

· · ·
∑
sN

∫
dr2 · · ·

×
∫
drN |Ψ0 (r, s1, r2, s2, . . . , rN, sN ) |2. (8)

The numerical implementation of the ED method is
described in detail in Ref. [17]. Choosing an appropriate
single-particle basis, which fulfills the boundary condi-
tions, we first solve the one-particle problem for a given
two-dimensional potential, using a basis size N2

b = 322,
on a grid Nx × Ny = 64 × 64. Next, using the single-
particle eigenfunctions, {Φi(r)}, an N -particle basis of
Slater determinants is assembled in the occupation num-
ber representation. By diagonalizing the two-particle
Hamiltonian one obtains the ground state particle den-
sity:

n0(r) =
∑
k

|C0k|2
N∑
p=1

[
|φip(k),↑(r)|2 + |φip(k),↓(r)|2

]
,

(9)
where C0k is the expansion coefficient corresponding to
the k-th Slater determinant and φip(k),↑(r), φip(k),↓(r)
are the orbital components of the single-particle states
Φip(k)(r), with spin up and spin down, respectively.

III.2. cGAN implementation with pix2pix

The method developed by Isola et al. [49] makes use
of a cGAN for general-purpose image-to-image transla-
tion. Like in other cGAN approaches, the generator-
discriminator architecture of pix2pix is set to optimize a
global goal, namely that the generated output is made in-
distinguishable from the reference (ground truth). How-
ever, the main differences compared to other cGAN type
approaches consists in the use of a U-Net architecture
for the generator and a PatchGAN for the discrimina-
tor, which is more sensitive to local details. In Fig. 2, a
diagram showing the training and testing phases of the
cGAN is presented.
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FIG. 2. The workflow of the cGAN method, outlining the roles of the generator and discriminator networks, as a combined
model, trained on (potential, density) pairs. The learning procedure for the total generator loss is indicated, according to the
min-max problem described by Eq. 11. In the testing phase, the generator network provides the predicted densities from the
input potentials and these are compared with the reference densities obtained by ED method.

We employ this approach to create three mappings of
type α 7→ β, as follows: (i) Vxy 7→ ñ0, (ii) Vxy 7→ ñint,
(iii) n0 7→ ñint, where Vxy = V (x, y) is the confinement
potential, n0(x, y) and ñ0(x, y) are the calculated and
generated non-interacting particle densities, respectively,
and ñint(x, y) is the generated interacting particle den-
sity, which shall be compared to the calculated interact-
ing particle density, nint(x, y).

Following the standard pix2pix approach [49], the
generator G performs a mapping from an input quantity-
image α ∼ Vxy or n0 to an output quantity-image β ∼ ñ0
or ñint, except, of course, the trivial n0 7→ ñ0 mapping.
The generator is trained to produce better and better
images. On the other hand, the discriminator, D, is ad-
versarially trained to classify the input it receives as real
or fake. Previous cGAN methods [50] employ a random
(Gaussian) noise vector, denoted by γ, so we may de-
scribe the generator mapping as G : {α, γ} 7→ β. How-

ever, as the generator typically learns to ignore the noise
introduced by the random vector γ, it is implemented in
form of dropout in some layers of the generator and its
overall influence is rather small. Therefore, the stochas-
ticity of the predicted images by pix2pix becomes neg-
ligible and can be completely excluded if the dropout is
removed.

In the original paper of Isola et al. [49] the objective
function of the cGAN is expressed using the binary cross
entropy as:

LcGAN(G,D) = Eα,β [logD(α, β)]

+ Eα,γ [log(1−D(α,G(α, γ))]. (10)

The objective G∗ is found as G tries to minimize LcGAN

and D tries to maximize it and, in addition, an LL1
loss,

representing the difference between generated and refer-
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ence images, is included:

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1

(G), (11)

where LL1
(G) = Eα,β,γ [‖β −G(α, γ)‖1]. The parameter

λ = 100 sets the relative importance between LcGAN and
LL1

.
In the min-max GAN problem, the generator loss

would correspond to Eα,γ [log(1−D(α,G(α, γ)))], which
should be minimized. However, the generator loss tends
to saturate due to the vanishing gradients. This poses
a challenge in training the generator at early stages,
which causes the discriminator to outperform the gen-
erator and the model cannot optimally train. Instead, a
non-saturating generator loss [51] can provide a signifi-
cant improvement:

LGAN

G = −Eα,γ [log(S(D(α,G(α, γ))))], (12)

where S(x) is the sigmoid function. Then, the total gen-
erator loss is LGAN

G + λLL1
(G). The discriminator loss is

defined as usual [52]:

LGAN

D = −Eα,β [log(S(D(α, β)))]−Eα,γ [log(1−S(D(α,G(α, γ))))].
(13)

The architecture of the cGAN is specified by a num-
ber of parameters corresponding to the generator and
discriminator networks. We shall first assume a typi-
cal configuration, called reference configuration, which
is then modified for further optimizations. The cGAN
translates grid-quantities set on Nx×Ny = 64×64 pixels,
which are potentials and charge densities. The generator
has an encoder-decoder configuration with 6 downsam-
pling convolutional layers and 6 upsampling deconvolu-
tional layers, all with strides SG = 2, which keeps the
size of the output equal to the size of the input. The dis-
criminator receives two pairs of images, (input image,
reference image) and (input image, generated image),
which should be classified as real and fake, respectively.
Its architecture includes 5 convolutional layers with the
strides-sequence SD = (2, 2, 2, 1, 1), which reduces the
input to an output of 6×6. This corresponds to a convo-
luted response of patch classification in real or fake, the
patch size being dependent on the discriminator’s archi-
tecture. The resulting patch size is Npt×Npt = 70×70 is
larger than the size of the image, in which case the cGAN
is referred to as ImageGAN [49]. Decreasing the number
of layers in the discriminator, the patch size decreases in
the sequence Npt = 34, 16, 7, 4, 1, where the limiting case
with Npt = 1 is termed PixelGAN. The kernel size for
both G and D is κ = 4. A comprehensive list of model
parameters, training and testing procedures is presented
in Table I.

III.3. Error and accuracy measures for generated
densities

In many applications of image-to-image translation like
e.g. maps 7→ aerial photographs or the opposite, a per-
ceptual validation is often employed [49]. Assessing the

quality of the generated images or comparing them with
target images is generally not an easy task.

A quantitative approach often employed is the struc-
tural similarity index measure (SSIM), which com-
bines luminance, contrast and structure components [53].
However, for the current aim of mapping the charge den-
sities in quantum systems, the stochasticity of the model
is limited and a strict comparison based on L1, L2 and
L∞ norms also becomes a suitable assessment with a
transparent interpretation. The L1 norm reflects the
amount of displaced charge in generated vs. reference
systems, L2 is related to the root mean squared error
and L∞ corresponds to a local maximum error in the
evaluation of the charge densities.

In order to evaluate the difference between the gener-
ated and reference grid-based quantities, denoted by β
and βref , we consider the L1, L2 and L∞ norms as pos-
sible measures, the first two being scaled by the number
of grid points (pixels):

L1 =
1

Nx ×Ny
‖β − βref‖1 (14)

L2 =
1√

Nx ×Ny
‖β − βref‖2 (15)

L∞ = ‖β − βref‖∞ (16)

On the other hand, SSIM can provide further assessment
on the structural differences between the generated and
target densities. In addition, we calculate a mean SSIM
(MSSIM) employing a uniformly weighted 8 × 8 square
window. In the subsequent analysis, for the calculation
of SSIM and MSSIM we use the typical parameters sug-
gested in Ref. [53].

The prediction accuracy in an ensemble of Nsys gener-
ated and reference pairs, {(βi, βref,i)}, can be described
by the R2 coefficient of determination, calculated from
the residual sum of squares, SSres, and the total sums of
squares, SStot :

R2 = 1− SSres

SStot
, (17)

with

SSres =

Nsys∑
i=1

‖βref,i − βi‖22, (18)

SStot =

Nsys∑
i=1

‖βref,i − β̄ref,i‖22, (19)

where β̄ref = 1
Nsys

∑Nsys

i=1 βref,i. In the vector space of the

grid-based quantities {βi}, we define βi±βj as pixel-wise
addition and subtraction, respectively.

IV. RESULTS

The quantum systems considered here consist of
N particles confined in randomly generated potentials
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nint

n0

Vxy

n0 7→ ñint

Vxy 7→ ñint

Vxy 7→ ñ0

Reference Predicted

FIG. 3. Non-interacting and interacting densities generated
by the pix2pix cGAN, for a two-particle system confined in
a random potential Vxy: (i) Vxy 7→ ñ0, (ii) Vxy 7→ ñint, (iii)
n0 7→ ñint mappings, indicated by red, green and blue arrows,
respectively. The left column shows the images of the calcu-
lated grid-based quantities: Vxy, n0, nint. In the right column
the generated images are depicted: ñ0 and ñint, the latter be-
ing determined from either Vxy or n0. The solid lines indicate
the actual mapping, while the dashed lines indicate an associ-
ation between the calculated (reference) data and generated
(predicted) images.

{Vxy} following the scheme described in Section II. Start-
ing with N = 2 and using the reference cGAN configura-
tion we perform the three mappings, as shown in Fig. 3
for a typical instance: (i) Vxy 7→ ñ0, (ii) Vxy 7→ ñint, (iii)
n0 7→ ñint, where the ’∼’ symbol denotes generated quan-
tities. The potentials {Vxy} are readily available as input
data, while the non-interacting densities, {n0}, can be
determined by one-particle calculations. The interacting
densities, {nint}, are determined using the ED method,
using the non-interacting many particle states obtained
in the previous step, which are used to set up the two-
particle basis. The first two mappings produce densities
directly from the input potentials and, in particular, the
second one, Vxy 7→ ñint, is of the highest importance,
as it yields the interacting density without any diagonal-
ization procedure after the model is trained. The third
mapping starts from the non-interacting density, rather
than the confinement potential, and it is performed for
comparison.

Evaluated by visual inspection, all three mappings de-
picted in Fig. 3 reproduce quite well the key features
of the reference (calculated) densities. In a typical non-
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Lo
ss

Generator L1 loss

0 10000 20000 30000 40000

Steps

0

10

20

30

40

50

60

70 Generator total loss

FIG. 4. Generator and discriminator loss functions vs. the
number of steps in a typical training run, for the mapping
Vxy 7→ ñint (thin lines). A smoothing is applied to all four
data sets using the Savitzky-Golay filter with 3rd degree poly-
nomial and a window of 40 points, to better illustrate the
trends (thick lines). In spite of the relatively large fluctua-
tions, typical for cGAN architectures, the loss functions tend
to stabilize.

interacting calculation, the ground state charge density,
n0, is mostly localized in the quantum well region where
the confinement is weaker, i.e. the wider part of the quan-
tum well, so that the kinetic energy is minimized. In this
case, the two electrons with opposite spins occupy the
same space. However, when the Coulomb interaction is
considered, the charge density in the ground state, nint, is
more delocalized, being distributed in the quantum well
of arbitrary shape, also in regions with stronger confine-
ment. Qualitatively, the distribution of nint is set by the
tradeoff between the larger kinetic energy in stronger con-
finement regions and the Coulomb interaction between
the particles occupying the same space in a region with
weaker confinement. Fig. 3 shows that the cGAN is able
to learn the non-trivial features, so that the target quan-
tities are reproduced with a high degree of accuracy. Ad-
ditional examples are indicated in Fig. A.1 and A.2 in
the SI, for mappings from potentials and non-interacting
densities, respectively.

The training process of the cGAN was performed us-
ing Ntrain = 4800 image pairs, using a batch size of 1
(instance normalization), while a number of Nval = 100
and Ntest = 100 distinct samples were used for valida-
tion and test. For the relatively large training set, the
averages of the potentials, non-interacting and interact-
ing densities indicate a balanced distribution, as shown
in Fig. A.3 of the SI. These averages are later used to
calculate the R2 coefficient.

During the training process, we monitor the loss func-
tions of the generator and discriminator, which are de-
picted in Fig. 4 for a typical case. In contrast to the usual
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FIG. 5. The evolution of SSIM and MSSIM during training
for the mapping Vxy 7→ ñint, for a group of 30 test instances.
Histograms of all SSIM and MSSIM values collected during
training are depicted on the right hand sides of each plot. It
is worth noting that the norms L1, L2 and, in part, L∞ are
closely correlated with SSIM and MSSIM.
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FIG. 6. Prediction accuracies obtained with different cGAN
architectures, based on tuning several key parameters, the
number of convolutional layers in the discriminator network
and the kernel size, resulting in the different patch sizes, Npt.
Depending on Npt values with respect to the image size, three
groups of networks can be identified: ImageGAN (Npt > 64),
PatchGAN (1 < Npt < 64) and PixelGAN (Npt = 1).

deep learning architectures, where the loss functions are
specified, in cGANs the discriminator loss is learned from
the input data, which usually brings large fluctuations.
Therefore, instead of seeking the minima, the model be-
comes suitably trained when the loss functions are stabi-
lized. This also poses a problem for the train-stopping-
criterion, which is often optimized by visually checking a
sequence of steps at the end of the training.

In order to assess the quality of the generated den-
sities in the Vxy 7→ ñint mapping, we calculate SSIM
and MSSIM for a group of 30 samples from the test set
and monitor their individual evolution as the model is
trained. The data shown in Fig. 5 tends to overlap, indi-
cating that high values (up to ∼ 0.9995) for both SSIM
and MSSIM can be obtained, when the generated den-
sity becomes very similar to the target density, while at
beginning of the training these values are below ∼0.3,
when the first generated densities resemble the input po-
tentials. However, a number of outliers are evidenced for
which this procedure would produce somewhat worse re-
sults. These instances are described in Fig. A.4 of the
SI. It is important to note that SSIM and MSSIM are
in close correlation with the error measures based on L1,
L2 and L∞, which are also represented in Fig. 5 for the
same instances.

The overall accuracy of generated grid-based quantities
on a set of examples is evaluated by the R2 coefficient of
determination. The evolution of R2 for the test set vs.
time step is depicted in Fig. 6 for several cGAN architec-
tures. We focus on the discriminator’s architecture and
vary the number of convolutional layers and the kernel
size, which determines the patch sizes. The PixelGANs
(Npt = 1) perform better compared to an ImageGAN in
the standard configuration, with 3+2 convolutional layers
and a kernel k = 4. However, overall, there are relatively
small differences between all these configurations, with
R2 values in the interval 0.78 – 0.84.

Although, in contrast to standard (dense or convolu-
tional) artificial neural networks, the utility of validation
in GANs is questionable, we observe a systematic cor-
relation between the training and a separate validation
set, as indicated in Fig. 7(a). This is particularly useful
as one difficulty observed in the training of the cGANs
consists in the sharp variations of the loss functions with
the time step. The correlation between the training and
validation sets enables us to optimize the training inter-
val (Nsteps), i.e. it provides a stopping criterion so that
the model produces accurate results. Then, the model is
frozen and new densities are generated for the test set.
Decreasing the number of input images the R2 parameter
is reduced, as one can see from Fig. 7(b), while the rela-
tively high values reflect the overall resemblance between
the potential and the associated density.

We also investigated possible optimizations of the
cGAN approach. First, we account the effect of random
jitter by resizing the images to Nresize ×Nresize and then
randomly cropping back to the original size, 64×64. This
procedure was employed in a number of image transla-
tion problems discussed in Ref. [49], like Map ↔ aerial
photograph, day → night images. In other cases, like
black/white → color images no jittering was applied. A
systematic investigation with respect to Nresize taking
values from 64 to 80 in steps of 2 pixels shows that, for the
nint 7→ Ṽxy mapping, no-resize (Nresize = 64) leads to the
best results, R2 ∼ 0.9, and it decreases for larger Nresize

values, as it can be seen in Fig. 8. This is further con-
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FIG. 7. Accuracies measured by R2 during training: (a) R2 for training, validation and test sets, for the mapping Vxy 7→ ñint,
with the standard cGAN configuration; (b) R2 values for the test set, while varying the number of training examples, Ntrain.
The improvement of the final generated image for different sizes of the train sets is shown. For Ntrain < 100, the generated
density merely resembles the potential (input image), while for Ntrain > 800 two individualized maxima can be observed, while
further fine-tuning occurs for larger Ntrain.

firmed by L1, L2 and L∞ norms, where the first two are
well correlated, while, as expected, there are larger fluc-
tuations for the L∞ norm. The quality of the generated
images is also consistent with this trend, as the charge
distribution becomes less diffuse. Secondly, we tested
several values of the λ parameter, which mixes LGAN

G and
LL1 losses and found a similar behavior as reported in
Ref. [49]. Small values (λ < 50) tend to produce im-
age artifacts, e.g. misplaced peaks in the charge density,
while large ones (λ > 100) introduce broadening effects
in the charge distribution. These trends are illustrated
in Fig. A.5 in the SI.

Further, we employed this method for larger num-
bers of particles, namely N = 3 and N = 4. Fig. 9
shows the calculated and predicted ground densities for
N = 1, 2, 3, 4, using the same potential as in Fig. 3. As
the particle number increases, the number of many parti-
cle states also becomes considerably larger and the exact
diagonalization calculations are even more computation-
ally expensive. In the case of N = 3, the number of many
particle states is NMES = 560, while for N = 4 we have
NMES = 1820. We did not impose any cut-off for the ba-
sis dimension in order to maintain the highest accuracy
for the charge density calculation. The distribution of
the training, validation and test data was maintained the
same and the order of the randomly generated potentials

was not altered. Also, the training parameters and the
architecture of the networks remain unchanged. In this
manner, we can compare the performance of the pix2pix
method as the number of electrons confined in the same
potential configuration is varied. We focused only on the
mapping Vxy 7→ ñint, predicting the interacting charge
density from the two-dimensional potential. As more
electrons are added to the two-dimensional system, we
notice the number of maxima in the charge density pro-
file increases, while the charge becomes more extended in
the connected quantum wells. In the ground state, the
expectation value of the Hamiltonian (the total energy)
is minimized, so there is a competition in decreasing the
Coulomb energy between the electrons and their kinetic
energy, which is directly related to the effective confine-
ment length. The interpretability of the many particle
states is less obvious as one adds more fermions to the
quantum system, particularly in the case of random po-
tentials. However, the values of R2 coefficients for three
and four particles are 0.93 and 0.95, respectively. While
the accuracy in identifying the charge density maxima
slightly decreases as the number of particle is increased,
the determination coefficient has higher values. This can
be explained by the fact that the charge is more delo-
calized and it gradually takes the shape of the confining
potential, which facilitates the prediction process. Ad-



9

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

R
2

Resize: 64px
Resize: 66px
Resize: 68px

Resize: 70px
Resize: 72px
Resize: 74px

Resize: 76px
Resize: 78px
Resize: 80px

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

L 1

0 10000 20000 30000 40000
Steps

0.1

0.2

0.3

0.4

0.5

0.6

L 2

Resize: 64px
Resize: 66px
Resize: 68px
Resize: 70px
Resize: 72px

Resize: 74px
Resize: 76px
Resize: 78px
Resize: 80px

0 20000 40000
Steps

0.6

0.8

1.0

1.2

L ∞

Real 64 66 68 70 72 74 76 78 80(a)

(b) (c)

FIG. 8. Analysis of the random jitter by applying resizing to Nresize ×Nresize and then randomly cropping the images to the
initial size. (a) The generated densities shows that the best results are obtained for no-resize (Resize = 64 px). (b) The R2
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FIG. 9. Mapping potentials to charge densities for different
number of particles, N = 1, 2, 3 and 4, according to the map-
ping Vxy 7→ ñint. Increasing N , the charge densities have a
larger spread towards the extremities of the confinement po-
tential due to the Coulomb interaction, while several peaks
develop.

ditional instances illustrated in Fig. A.6 further confirm
these trends. For even larger number of particles one
expects that the description of the quantum system be-
comes closer to a mean field approximation.

The inverse problem, i.e. mapping an input den-

sity to a generated potential, is highly important from
both fundamental and technological perspectives. How-
ever, not every proposed ground state density can be
obtained from a potential, which is known as the V-
representability problem [54]. Therefore, the inverse

mapping nint 7→ Ṽxy is here performed starting from
computed densities, rather than arbitrary ones. This
provides a proof-of-concept for a solution to the inverse
problem based on pix2pix approach, if the target poten-
tial exists. As shown by Kohn in Ref. [55] small enough
deviations from a V-representable density is still in the
same class, leading to a slightly different potential.

A typical nint 7→ Ṽxy, starting from an ED-computed
density is shown in Fig. 10. We use the same pair
(Vxy, nint), but this time nint serves as input and the

generated image contains the potential Ṽxy. Then, we
recalculate the density corresponding to the generated

potential, Ṽxy, which is denoted by n
(r)
int . Comparing Ṽxy

with Vxy and n
(r)
int with nint, i.e. generated vs. input

quantities, one observes a large degree of similarity. To
further support this, we plotted additional instances in
Fig. A.2(b) in the SI. There are still some small differ-
ences visible in the generated potentials compared to the
original ones. In most cases, these differences occur for
the regions with high confinement that are isolated from
the main quantum well [e.g. as it is found in the instances
5 and 6 from Fig. A.2(b) in the SI], which contain a small
amount of localized charge. Consequently, as these QW
regions are removed in the pix2pix-generated potential

by the cGAN model, the recalculated charge, n
(r)
int , will

not differ much from the input density, nint. Note that
even the small islands present in some of the generated
potentials are well represented compared to the originals.
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Then, as expected, the largest deviations occur at the
boundaries, in particular at the edges of the square re-
gion, where the wavefunction vanishes.

n
(r)
int

Vxy

Ṽxy

nint

ED

ED

pix2pix

FIG. 10. The inverse problem: generating potentials from in-
teracting charge densities, according to the mapping nint 7→
Ṽxy. Choosing an input potential, we calculate the interact-
ing density by ED, which becomes the input image for the
pix2pix approach. The resulting potential, Ṽxy, is tested by

computing its corresponding density, n
(r)
int , which is very sim-

ilar to the initial density nint, calculated from Vxy.

Although, in general, the ML methods are not very
transparent with respect to their inner workings, it is
interesting to observe the evolution of generated images
representing densities and potentials. Fig. 11 shows the
sequential improvement of the generated images starting
from the input images, as the model is improved. In the
first row, the initial assumption for the density resem-
bles the potential, with larger values outside the region
corresponding to the quantum well. This is reversed in
less than 10 steps and the charge is spread rather evenly
inside the quantum well region. Starting with 200-300
steps, the density begins to localize inside the quantum
well, while continuously changing its shape towards the
target density, with two localized maxima. For the in-
verse problem, the evolution is shown in the second row
of snapshots in Fig. 11. This time, the input is the in-
teracting charge density and the first generated potential
resembles it closely. However, in less than 10 steps, two
quantum wells are individualized, then extending and
merging in the first 100 steps. Subsequently, the shape of
the generated potential becomes gradually closer to the
target potential, which is depicted in Fig. 10. The capac-
ity of the method to reproduce the desired quantities is
further confirmed by the SSIM values calculated for the
pairs generated - reference, as shown in Fig. A.7 in the
SI.

Overall, the pix2pix approach provides an accurate
and efficient alternative to predict the ground state den-
sity from the input potential or, conversely, to gener-

ate a potential from a given density, known to be V-
representable, once the cGAN is trained on a distinct set
of calculated examples. Further investigations on excited
states, as well as on quantum systems with larger num-
bers of particles can be pursued in a similar way.

V. DISCUSSION

The proposed cGAN based on the pix2pix method
is an Ansatz-free approach, which makes no a priori
assumption about the many-body wavefunction, which
is usually done by setting Slater determinants or other
trial functions. It directly provides a mapping between
the random potentials and observable quantities like the
ground state charge densities. Similarly, it could yield
spin density maps for Hamiltonians which contain spin-
orbit interaction and magnetic field contributions. The
Ansatz-free approach may be advantageous particularly
for problems where a suitable basis set is not easy to
obtain, e.g. mesoscopic random structures.

The mappings are achieved by learning a loss function
that makes the generated images as close as possible to
reality, which corresponds to the reference charge maps.
This means that on a given class of potentials, the algo-
rithm learns rather subtle features concerning the charge
localization effects in the confinement potential, in the
context of an interacting system. The generator loss com-
bines the LGAN

G loss with the LL1
loss. On one hand, the

LGAN

G loss tends to produce rather sharp images resem-
bling the reference ones, since these are not identified as
fakes, but artifacts may be generated, e.g. with respect
to the positioning of the charge density maxima. On
the other hand, the LL1

minimizes the average error per
pixel with respect to the reference and typically results
into more consistent and blurred images.

In its current form, the algorithm lacks stochasticity,
which is an advantage for generating a deterministic out-
put. Even though in other applications a highly stochas-
tic generated output is desired, here the ground state
charge density is uniquely determined by the confinement
potential and particle number. In this respect, by re-
moving the dropout in the generator layers, the pix2pix
method becomes fully deterministic. With respect to ef-
ficiency, similar to other ML approaches, the formulated
problem should assume a relatively large set of many-
body systems. A large variability in the class of poten-
tials with respect to the total number of instances will
pose a limitation to the current approach. Also, as the
number of particles grows larger, the number of many
particle states increases rapidly and the diagonalizations
become feasible if an energy cut-off is imposed on the
many-body basis set.

Another important advantage of the current method
is that the inverse problem, i.e. mapping the confine-
ment potential from a given density, can be approached
in a similar way. The V-representability problem of the
charge density can be circumvented by testing the gen-
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FIG. 11. Evolution of the generated grid-based quantities ñint (first row) and Ṽxy (second row), according to the mappings

Vxy 7→ ñint and nint 7→ Ṽxy, respectively. In the two mappings, the initially generated images resemble the input potential
and input density. Then, the images are gradually transformed, becoming more and more similar to the target density and
potential, respectively.

erated potential. If the calculated density, using the ED
technique, fits the input density well, then the gener-
ated potential can be adopted as a solution to the in-
verse problem, otherwise it shall be dismissed. Given
the importance and difficulty of solving inverse quantum
many-body problems the topic will certainly deserve fu-
ture investigations.

VI. CONCLUSIONS

We introduced an image-to-image translation approach
based on the pix2pix method to predict N -particle
charge densities from the confinement potentials. The
quantum systems are defined on two-dimensional square
region with randomly generated potentials and the cor-
responding ground state densities are determined by ex-
act diagonalization method. A large number of pair im-
ages is generated, corresponding to the confinement po-
tentials and calculated interacting densities. Using the
cGANs implemented in pix2pix we perform three types
of mappings: potential to non-interacting density, poten-
tial to interacting density and non-interacting to interact-
ing density. Although all three mappings result in accu-
rate predictions, the focus is on generating an interacting
density from a given potential. Several cGAN architec-
tures have been considered, by varying the number of
convolutional layers and kernel size in the discriminator
network. This analysis shows that a PixelGAN is most

accurate, although other configurations yield comparable
results.

The possibility to perform an inverse mapping, i.e.
starting from a density and generating a potential, is out-
lined. Here, we considered as input a calculated density,
which ensures the V-representability. The generated po-
tential is then tested and confirmed by calculating the
ground state density associated with it and comparing
this density with the original one.

The cGAN based approach provides an efficient
solution for predicting non-interacting and interacting
ground state densities when a large set of systems from
a given class is required to be solved. Interestingly,
the inverse problem can also be approached using this
technique, which is important for the design of nano-
electronic devices. The pix2pix method is shown to
be accurate for describing interacting quantum systems
and appears to be further well suited for a range of
condensed matter problems.
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Appendix A: Supplementary information

TABLE I. Architecture details and model parameters in the cGAN implementation (reference configuration) and prediction
accuracy measures:

Model element / Method Description / Property / Value

1. Generator architecture

Network type Decoder-Encoder (U-Net)

Encoder Number of layers = 6

Activation function = LeakyReLU, slope = 0.3

Input size = 64× 64× 1 (one RGB channel)

Convolution: padding = same, strides = 2

Decoder Number of layers = 6

Activation function = ReLU (tanh for the last layer)

Transposed Convolution: padding = same, strides = 2

Dropout (optional): fraction = 0.5

Generator (GAN) loss LGAN
G = −Eα,γ [log(S(D(α,G(α, γ))))],

for a more robust minimization of

Eα,γ [log(1− S(D(α,G(α, γ))))] [51, 52]

Total generator loss LGAN
G + λLL1 ,

where LL1(G) = Eα,β,γ [‖β −G(α, γ)‖1] and λ = 100

2. Discriminator architecture

Network type PatchGAN classifier

Number of layers = 5

Input size = 64× 64× 2 (potential-density pairs)

Convolution: zero-padding, strides-sequence SD = (2, 2, 2, 1, 1)

Patch size = 70× 70 (ImageGAN)

Discriminator (GAN) loss LGAN
D = −Eα,β [log(S(D(α, β)))]− Eα,γ [log(1− S(D(α,G(α, γ))))] [52]

3. Training

Optimizer Adam optimizer, with learning rate = 10−4

and momentum parameters β1 = 0.5, β2 = 0.999

Batch size Instance normalization (batch size = 1)

Initializer Gaussian distribution, with zero mean

and standard deviation 0.02

4. Prediction accuracy measures

R2 Coefficient of determination for image data sets

SSIM Structural Similarity Index Measure [53]

MSSIM mean-SSIM, using a window of 8× 8 pixels
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Potential Non-Interacting Predicted Error Potential Interacting Predicted Error

FIG. A.1. Mapping from potentials to (left) non-interacting and (right) interacting densities. The error maps correspond to
differences between the target and predicted distributions (in absolute value).
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Non-Interacting Interacting Predicted Error Interacting Potential Predicted Error

FIG. A.2. Mapping from charge densities: (left) non-interacting to interacting densities, n0 7→ ñint and (right) the inverse

problem, nint 7→ Ṽxy. The error maps correspond to differences between the target and predicted distributions (in absolute
value).
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V̄xy n̄0 n̄int

FIG. A.3. Averages of confinement potential (V̄xy), non-interacting density (n̄0) and interacting density (n̄int) calculated using
the training set (Ntrain = 4800). These average maps are used in the calculation of R2. All three images indicate the balanced
distribution of potential shapes. The average non-interacting density is more concentrated in the center of the square compared
to the interacting density.

Potential Interacting Predicted Error

FIG. A.4. Three examples of outliers, which exhibit the largest deviations from the reference, as identified by the SSIM analysis
in Fig. 5.
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λ= 0

λ= 50

λ= 100

λ= 300

λ= 1000

Only L1

λ= 0

λ= 50

λ= 100

λ= 300

λ= 1000

Only L1

FIG. A.5. The effect of the LGAN
G and LL1 mixing on the total generator loss. We considered λ = 0, 50, 100, 300 and 1000,

which includes the limiting cases of sole LGAN
G contribution (λ = 0) and sole LL1 contribution. The optimal values are identified

around λ ≈ 100. Two different potential instances are presented. Smaller values tend to produce artifact-localizations of the
charge density, while large values introduce an artificial broadening of the charge distributions.
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N = 1

Potential ED Method Predicted Error

N = 2

N = 3

N = 4

N = 1

Potential ED Method Predicted Error

N = 2

N = 3

N = 4

N = 1

Potential ED Method Predicted Error

N = 2

N = 3

N = 4

N = 1
Potential ED Method Predicted Error

N = 2

N = 3

N = 4

FIG. A.6. Mapping potentials to interacting charge densities for different number of particles, N = 1, 2, 3 and 4, considering
four different potentials.
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FIG. A.7. SSIM values for pairs of densities and potentials. One pair consists of the reference instance (index i0 = 3236)
from the test set, described in Figs. 3 and 10, and one other instance in the set of 5000 instances: (a) (nint,i0 , nint,i) and (b)
(Vxy,i0 , Vxy,i), depicted by black dots. For i = i0 we have SSIM = 1. The red dots indicate the comparisons between reference

and generated quantities, for (a) densities (nint,i0 , ñint,i0), SSIM=0.993 and (b) potentials (Vxy,i0 , Ṽxy,i0), SSIM=0.957, showing

that the generated density (ñint,i0) and potential (Ṽxy,i0) have higher similarity with their references compared to any other
instance in the set.
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