
Time-reversal invariant finite-size topology

R. Flores-Calderon,1, 2 Roderich Moessner,1 and Ashley M. Cook1, 2

1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
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We report finite-size topology in the quintessential time-reversal (TR) invariant systems, the quantum spin
Hall insulator (QSHI) and the three-dimensional, strong topological insulator (STI): previously-identified heli-
cal or Dirac cone boundary states of these phases hybridize in wire or slab geometries with one open boundary
condition for finite system size, and additional, topologically-protected, lower-dimensional boundary modes
appear for open boundary conditions in two or more directions. For the quasi-one-dimensional (q(2-1)D) QSHI,
we find topologically-protected, quasi-zero-dimensional (q(2-2)D) boundary states within the hybridization gap
of the helical edge states, determined from q(2-1)D bulk topology characterized by topologically non-trivial
Wilson loop spectra. We show this finite-size topology furthermore occurs in 1T’-WTe2 in ribbon geometries
with sawtooth edges, based on analysis of a tight-binding model derived from density-functional theory calcula-
tions, motivating experimental investigation of our results. In addition, we find quasi-two-dimensional (q(3-1)D)
finite-size topological phases occur for the STI, yielding helical boundary modes distinguished from those of the
QSHI by a non-trivial magneto-electric polarizability linked to the original 3D bulk STI. Finite-size topological
phases therefore exhibit signatures associated with the non-trivial topological invariant of a higher-dimensional
bulk, clearly distinguishing them from previously-known topological phases. Finally, we find the q(3-2)D STI
also exhibits finite-size topological phases, finding the first signs of topologically-protected boundary modes
of codimension greater than 1 due to finite-size topology. Finite-size topology of four or higher-dimensional
systems is therefore possible in experimental settings without recourse to thermodynamically large synthetic
dimensions.

I Introduction

The discovery of the first topological insulator (TI), the
quantum spin Hall insulator (QSHI) in HgTe quantum
wells [1, 2] heralded a paradigm shift in condensed matter
physics towards broad study of topological phases of matter.
Understanding and characterization of topology is now
central to the field, with major applications ranging from
fault-tolerant quantum computing [3, 4] to unconventional
superconductivity [5]. Consequently, searching for novel,
experimentally-accessible topological systems is a major
theme of the last few decades [2, 6–13]. These efforts
usually target experimental confirmation of a hallmark of
topological phases known as bulk-boundary correspondence:
a non-trivial topological invariant of the system bulk is
associated with topologically-robust, gapless boundary states.
While it has long been understood that a D-dimensional
bulk topology yields (D − 1)-dimensional gapless boundary
states for most topological phases [14], the recent discovery
of additional bulk-boundary correspondence even in the
canonical phases, known as finite-size topology [15], shows
this foundational aspect of topological physics is richer
than previously-thought. If a system is characterized by
a topological invariant computed in the D-dimensional
infinite bulk, but is finite in size and thin in one direction
as illustrated in Fig. 1 (for the QSHI D = 2 while for the
3D TI D = 3 ), such that topologically-protected boundary
states interfere with one another, this quasi-(D − 1)- or
q(D − 1)-dimensional bulk is characterized by an additional
topological invariant. When this additional invariant takes
non-trivial values, open boundary conditions in a second di-
rection yield an additional set of quasi-(D − 2)-dimensional,
topologically-protected boundary states localized on this
boundary of the quasi-(D − 1)-dimensional system. As
these quasi-(D − 2)-dimensional states are localized on the

boundary in correspondence with a non-trivial value for a
topological invariant of the quasi-(D − 1)-dimensional bulk,
and robust against local perturbations respecting the symme-
tries protecting the topological phase in the D-dimensional
infinite bulk, they constitute previously-unidentified topologi-
cal phases of matter.

Following the previous thinning process we end up with a
q(D−1)-dimensional bulk with topological edge states in one
less dimension, the situation is then just like at the start of the
program, but with D replaced by D − 1. Thus one may think
of applying the thinning process once again, now thinning the
xD−1 dimension and hybridizing the previous q(D− 2) edge
states. We then arrive at a q(D − 2) dimensional bulk with
q(D − 2 − 1) dimensional edge states which again can be
subjected to the same procedure. The general process is illus-
trated in Fig. 2, while Fig. 1 c) shows the specific case of the
3D TI q(3−2) bulk. We note that this procedure could in prin-
ciple be applied until there are no more number of dimensions
to thin down.

Although theoretical discovery of the Chern insulator [16]
preceded theoretical prediction of the TR-invariant QSHI
derived from it [17, 18], experimental confirmation of the
QSHI [2] occurred within one year of the prediction, while
more than two decades passed for the Chern insulator [19].
This reflects a broader trend in the field, of TR-invariant
topological insulators being confirmed experimentally more
quickly and easily than TR-symmetry-broken topological
insulators reliant on engineering particular magnetic or-
ders [2, 20, 21]. Following this idea in order to more rapidly
observe finite-size topology in experiment, we study the
time-reversal invariant finite-size topology of the QSHI
and the strong TI (STI), by considering these systems in
geometries as shown in Fig. 1. We also note that, due to
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FIG. 1. Schematic of the finite-size TRI systems studied. From left to right, a) QSHI wire, b) slab of 3D TI and c) 3D TI wire. Blue and red
cones are schematic of the gap openings of the 3D TI due to the hybridization of the the Dirac cones. Similarly blue and red helical edge states
get hybridized (yellow/purple) in the QSHI wire and the finite-size quasi-1D edge states (blue and red) get hybridized (yellow/purple) for the
3D TI wire. Topological edge states (pink) are present as quasi-0D modes or quasi-1D modes polarized in spin, for wire or slab configurations
respectively.
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FIG. 2. Schematic of the finite-size process for topological insulators. From left to right a D dimensional phase gets shrunk in one direction
xD to give rise to a quasi D − 1 dimensional phase. This phase can be further shrunk in a remaining xD−1 direction so that x1, x2, . . . xD−2

are still periodic directions and now a quasi D − 2 dimensional phase is realized.

the vast experimental studies in TI ultra-thin films [22–24],
Van der Waals heterostructures [25–28], and transition-metal
dichalcogenides in particular given their large spin-orbit
coupling [29, 30], there may already be signs of finite-size
topology in previous experiments. Past work, for instance,
indicates few-layer 1T’-MoTe2 is semi-metallic [31], while
the monolayer is predicted to be a quantum spin Hall insula-
tor [32], suggesting the few-layer topology derives from the
Weyl semimetal phase of the three-dimensional bulk, while
the monolayer topological phase has a distinct origin due to a
strictly two-dimensional bulk.

Since finite-size topological phases occur for the Kitaev
chain and Chern insulator [15], non-trivial finite-size topol-

ogy is expected for TR-invariant systems of the QSHI and
STI given concrete relationships between Hamiltonians for
these topological phases: the Kitaev chain Hamiltonian may
be used to construct the Chern insulator Hamiltonian, if many
chains are coupled forming a 2D system [33], and a Chern
insulator Hamiltonian and its time-reversed partner are the
basis of Hamiltonians for the QSHI[17, 18]. We find that
FST extends to these TRI topological phases. As Hamilto-
nians for TR-invariant topological phases are used to con-
struct Hamiltonians for other topological phases, these re-
sults also reveal that a larger set of topological phases har-
bor FST: a Weyl semimetal phase[34] Hamiltonian may be
constructed from magnetically-doped STI and trivial insulator
thin films stacked alternatingly, while a stack of QSHIs corre-
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sponds directly to the weak 3D TI [35, 36]. Topological crys-
talline phases may furthermore be constructed, for instance,
as Chern insulators within mirror subsectors or with the Chern
insulator bulk confined to a mirror-invariant plane of a three-
dimensional Brillouin zone [37]. More generally, topological
crystalline phases are characterized by considering symmetry-
protection by crystalline point group symmetries in addition
to the internal symmetries of the ten-fold way. On a technical
level this is accomplished by expressing the Hamiltonian in
a block diagonal form using the additional symmetry, in each
sub-sector internal symmetries are still present and thus can be
analyzed by classification schemes obtained from the ten-fold
way [38, 39].

In this manuscript, we first, section II, characterize finite-
size topology in a QSHI wire. We start by considering a
thin QSHI system with one open thin dimension and one in-
finite periodic dimension. The energy and Wilson loop spec-
tra of this q(2-1)D system reveal that the non-trivial zones in
phase space are a subset of the original 2D bulk topological
regions. Furthermore opening boundary conditions again in
the remaining periodic direction shows the presence of edge
states localized on the q(2-2)D boundaries. We end this sec-
tion by studying the response to on-site disorder and perturba-
tions, where the robustness of the edge states indicates a link
to the original 2D bulk gap. Afterwards in section III, we con-
sider a more realistic and experimentally accessible system
1T ′WTe2 in the QSHI phase. We find similarly that this mate-
rial realizes a finite-size topological phase with topologically-
robust q(2-2)D edge states for a sawtooth ribbon geometry,
the presence of this edge states is again verified to be pre-
dicted by a non-trivial Wilson loop spectrum. Extending our
analysis to the 3D case we consider in section IV the STI in
a q(3-1)D slab geometry. In this case, interference between
the STI Dirac cone surface states yields q(3-2)D edge states.
We show the Wilson loop spectrum of the q(3-1)D bulk dis-
plays topologically non-trivial signatures in correspondence
with these boundary states, indicating Wilson loop spectra are
a robust bulk diagnostic of finite-size topology. Additionally
we compute the magneto-electric polarizability, which should
be trivially zero if the system is just a 2D QSHI, instead we
encounter the response expected for the infinite 3D TI bulk.
This central result allows us to contemplate the idea of detect-
ing topological signatures of higher dimensional phases, say
the 4D TI, in quasi lower dimensional systems. Finally, we
study the case of a STI in a q(3-2)D wire geometry, where we
once again use the Wilson loop indicator to find a novel bulk-
boundary correspondence restricted to a subset of the original
3D topological phase diagram. In this final case the number
of edge states is seen to follow the number of ±π phases such
that only even numbers of distinct edge states appear. In sec-
tion VI we summarize our results and present some conclud-
ing remarks.

II QSHI wire

As a starting point of our analysis we consider a QSHI first
considering the canonical Bernevig-Hughes-Zhang Hamilto-
nian for HgTe quantum wells [1] where we also add a Rashba-
type spin orbit coupling. Thus the Hamiltonian in momentum

space has the form [40]:

h(kx, ky) =(u+ 2t(cos kx + cos ky))σz + sin ky σy (1)
+ sin kx szσx + c sxσy,

where si, σi are Pauli matrices in spin and orbital space
respectively. For simplicity we omit the identity in spin space
and denote the tensor product by placing two matrices next
to each other. The real number u corresponds to a staggered
potential, t to a hopping parameter and c is the spin orbit
coupling that breaks sz spin symmetry. The phase diagram
for this Hamiltonian includes both a region in which the
QSHI phase is realized and a region in which the Dirac
semimetal (DSM) phase is realized, as discussed in reference
[40] and plotted in Fig. 3 a) and b) . In the following analysis,
we first consider the QSHI regime, and then that of the DSM.

Next we consider what happens if we open boundary con-
ditions (OBC) in the x direction for a small number of lattice
sites N . Since the helical edge modes of the QSHI are not
completely localized at the boundary, but instead decay expo-
nentially into the bulk [41], these boundary states interfere in
systems of finite-width. The lattice second quantized Hamil-
tonian with open boundary conditions in the x̂-direction and
periodic boundary conditions in the ŷ direction is:

Ĥ =
∑
k,n

Ψ†k,n ((u+ 2t cos k)σz + sin k σy + c sxσy) Ψk,n

+ Ψ†ky,n+1

(
t σz +

i

2
szσx

)
Ψk,n + h.c. , (2)
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FIG. 3. a) Direct gap heat plot of the 2D bulk hamiltonian eq. (1)
as a function of potential u and spin-orbit coupling constant c, b)
Topological phase diagram of the 2D bulk , showing the QSHI phase
(yellow) and DSM gapless phase (blue) of the 2D bulk. c) Quasi-1D
dispersion for PBC in y and OBC (PBC) in x with N = 6 sites. The
parameters for the gap closing with OBC in x are u = 0.76, c =
0.8, t = 1/2 d) Spectrum for PBC in y as a function of the staggered
potential u and c = 0.8, t = 1/2.
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where k ≡ ky and n runs over the N sites of the open
x direction. Here, Ψk,n are four component spinor fermion
operators acting on the spin and orbit degrees of freedom.
We first examine the spectrum of Eq. 2 for small N on
the order of a few lattice constants. We first consider the
spectrum for a particular point in phase space as shown in
Fig. 3 c) for a small system with N = 6 with non-trivial
2D bulk invariant, as shown in Fig. 3 b). Comparing the
dispersion for the system with periodic boundary conditions
in each direction (black lines) to that of the system with open
boundary conditions only in the x̂-direction (red lines), we
see the periodic system is gapped, while the system with open
boundary conditions is instead gapless. While gapless bound-
ary states are expected due to the non-trivial bulk topology,
the gaplessness in this case is not topologically-robust: the
gapless boundary modes interfere in finite-size systems to
open a hybridization gap in general. Under certain conditions,
however, the boundary modes interfere destructively, corre-
sponding to a fine-tuned gapless state when hybridization
matrix elements pass through zero. Examining the spectrum
for the q(2-1)D bulk as a function of u as shown in Fig. 3
d) , we see this more general pattern of finite interference
gaps, with a discrete set of u corresponding to gap-closings
and destructive interference between the helical boundary
modes. We will show these gap-closings can correspond
to topological phase transitions, and some of these gapped
regions host finite-size topological phases.

A Periodic system

To characterize the finite-size topological phases of this time-
reversal invariant system, we now re-interpret the original
model with OBC in the x̂-direction as a q(2-1)D bulk, and
characterize topology of this q(2-1)D bulk system similarly to
characterization of a d-dimensional bulk. We therefore first
compute a phase diagram for the minimum direct gap over
the Brillouin zone of the q(2-1)D bulk as a function of u, c for
fixed hopping t = 1/2, shown in Fig.4 a),b) for N = 6 and
N = 7 layers in the x̂-direction, respectively. A dome forms
in the phase diagram, consisting of a set of curved, stripe-like
regions of finite minimum direct gap separated by lines along
which the q(2-1)D minimum direct bulk gap is zero, with
these lines intersecting to form a checkerboard-like pattern at
larger values of c. As the number of lattice sites in the x̂-
direction increases, the number of gap-closing lines increases
while the regions of finite minimum direct gap decrease in
size. This pattern is consistent with a picture of gap-closings
due to interference between the helical boundary modes of the
QSHI: the boundary modes in this q(2-1)D system possess a
standing wave character, and the gap-closing lines correspond
to hybridisation matrix elements passing through zero with
tuning of system parameters. With increasing system size,
this interference pattern becomes denser as the difference in
wavelength between the oscillatory components of the helical
boundary modes generically decreases.

It is particularly interesting to compare these phase
diagrams for the q(2-1)D bulk with the counterpart phase
diagram of the 2D bulk shown in Fig. 3 a),b) , which reveals
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FIG. 4. Quasi-(2-1)D minimum direct bulk gap for a) N = 6, b)
N = 7 and t = 1/2. Plot of the number of ±π phases N±π (red is
2, black 0) in the Wilson loop eigenvalues for c) N = 6, d) N = 7

that different kinds of topological phases of the 2D bulk (and
corresponding different gapless boundary states) yield differ-
ent interference patterns as a function of u and c. Notably,
the checkerboard region of the phase diagram corresponds to
the DSM phase region of the corresponding phase diagram
for the 2D bulk, revealing that the DSM phase is generally
gapped out in the q(2-1)D regime, and exhibits more complex
interference pattern than does the QSHI.

As the 2D minimum direct bulk gap remains finite over the
region of the phase diagram where we observe this interfer-
ence pattern between helical boundary modes of the QSHI,
and the 2D minimum direct bulk gap remains closed due to
topologically-protected band-touchings of the DSM, topolog-
ical invariants of the 2D bulk do not change within these re-
gions. However, as subsets of each of these regions possess a
finite minimum direct gap in the q(2-1)D spectrum, it is possi-
ble to further characterize the topology of the q(2-1)D system
if suitable topological invariant(s) are identified. To further
characterize finite-size topology of this quasi-1D TRI system
with Wilson loop spectra, we compute the Wilson loop eigen-
values [42], which distinguish between topologically-distinct
phases of matter as they characterize holonomy in a system
due to parallel transport through non-contractible loops in the
BZ [43–45].

The Wilson loop spectra for the q(2-1)D system are com-
puted by integrating the Berry connection over the remaining
k ≡ ky momentum coordinate, using the following expres-
sion: [42]

W = Pe−
∫ π
−π dkA(k)

, (3)

where A(k) is the non-Abelian Berry connection over the
occupied bands and P is the path ordering operator. Since
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we compute the Wilson matrix for a tight binding system we
discretize Eq. (3). The set of Wilson loop eigenvalue phases
is the Wannier charge center spectrum characterizing polar-
ization. In a topologically non-trivial phase, Wannier charge
center(s) are fixed to value(s) of ±π, so we compute the num-
ber of these non-trivial phases as N±π . The phase diagrams
characterizing N±π vs. u and c are shown in Fig. 4 c), d)
for systems with N = 6 or N = 7 layers in the x̂-direction,
respectively.

These N±π vs. c and u phase diagrams shown in Fig. 4 c)
and d) reveal alternating regions of N±π = 0 and N±π = 2,
indicating the system undergoes a variety of topological phase
transitions. We even observe stripe-like regions at smaller
c, which intersect to form checkerboard patterns at larger c.
These lines across which N±π changes in value are in direct
correspondence with lines shown in Fig. 4 a) and b), respec-
tively, along which the q(2-1)D minimum direct gap goes to
zero. Taken together, these phase diagrams in Fig. 4 reveal
a topological phase transition occurs every time the q(2-1)D
minimum direct bulk gap goes to zero.

The phase diagrams for N = 6 layers differ dramatically
from those for N = 7 layers, reflecting the dependence of
this topology on finite-size effects. From the plots, one can
see that, as the number of layers in the x̂-direction increases,
the number of topologically-distinct regions also increases in
agreement with the number of lines along which the q(2-1)D
minimum direct bulk gap is zero. The topological phase
diagram of the 2D bulk Hamiltonian (1) studied in Ref. [40]
is therefore being further divided into topologically-distinct
regions in the q(2-1)D regime in a strongly N -dependent
manner, revealing that topological phase transitions due to
finite-size topology [15], may occur without the minimum
direct gap of the 2D bulk going to zero.

B Bulk-boundary correspondence and disorder

Having characterized finite-size topology of the q(2-1)D
bulk of Hamiltonian Eq. (1) with open boundary conditions
in the x̂-direction and periodic in ŷ, we now explore the
additional bulk-boundary correspondence of finite-size
topological phases. We first study the spectral signatures of
this bulk-boundary correspondence that appear for non-trivial
Wilson loop spectra in accordance with the modern theory
of polarization of Ref. [46]. N±π 6= 0 for the q1D bulk
corresponds to topologically-protected, q0D bound states for
open boundary conditions in the ŷ-direction in addition to
open boundary conditions in the x̂-direction. With system
size in the ŷ-direction of Ly , such a bulk-boundary corre-
spondence characterized in the q1D bulk by N±π is clear for
Ly � Lx as shown in Fig. 5 a) b). In this case, one finds
in-gap states close to zero energy within the q(2-1)D bulk gap
of the energy spectrum. The separation in energy between
these states decreases exponentially to zero as a function of
Ly , realizing a four-fold degenerate manifold of zero-energy
states. Such states are not present for periodic boundary
conditions in the ŷ-direction, further indicating they appear
as a consequence of bulk-boundary correspondence for the
finite-size topological phase.
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FIG. 5. a) Spectrum for OBC (red)in both directions, PBC in y
(black) as a function of the staggered potential u and c = 0.6, t =
1/2, N = 6. b) Spectrum for OBC (red) in both directions, PBC in
y (black) as a function of the staggered potential u and c = 0.8, t =
1/2, N = 6 with a particle-hole symmetry and sublattice symmetry
breaking on-site potential 0.1 cos(2πn/N)σx. c) Disorder-averaged
spectrum for N = 6 sites and u = 1, t = 1/2 as a function of c for
200 uniformly distributed random particle hole symmetric potentials
of strength κ = 0.5u. d) Disorder-averaged spectrum with the same
parameters but for 200 particle-hole symmetry-breaking disorder po-
tentials of strength κ = 0.2u. e) 2D minimum direct bulk gap as a
function of c for u = 1. f)Density profile of q(2-2)D state for the
same number of sites, c = 0.8, u = 1.0 and Ly = 300.

To further explore the extent to which these in-gap states are
due to an additional bulk-boundary correspondence of finite-
size topological phases, we compute the probability density
for these in-gap states. We find these states are localized at
the boundaries of the q1D system as shown in Fig. 5 f). Prob-
ability density peaks at the corners of the system as seen in
Fig. 5 f) and decays over fifteen to twenty unit cells to zero
for x approaching the q(2-1)D bulk. As the system is time-
reversal invariant, we also compute the spin polarization for
these q(2-2)D boundary modes. We find the q(2-2)D bound-
ary modes are spin-polarized in the ±ẑ direction, with a spin
up/down pair localized at each end of the q(2-1)D system.

We also study the robustness of the in-gap q(2-2)D bound-
ary states against symmetry-breaking due to disorder. We
introduce disorder in the q(2-1)D system for OBC as a uni-
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form random potential, with strength κ. The disorder average
spectrum for 200 disorder realizations of the form κns0σz is
shown in Fig. 5 c) as a function of spin-orbit coupling c for
κn ∈ (−0.2u, 0.2u). The q(2-2)D states are present over a
wide range in c. Surprisingly, they survive even for disorder
strengths κn greater than the q(2-1)D minimum direct bulk
gap for the QSHI phase. The edge states may move away
from zero energy, if the perturbation breaks particle-hole
symmetry, such effect is shown in Fig. 5 b) as a function of u,
where an onsite perturbation 0.1 cos(2πn/N)s0σx is present.
For disorder effects we considered a term of the form Vis0σ0,
the spectrum is thus shown in Fig. 5 d) where the edge modes
deviate from zero energy, as in the case of an SSH chain with
next nearest neighbours studied in reference [47]. However,
the q(2-2)D boundary modes persist and remain strongly
localized, with their pair degeneracy preserved.

Interestingly, the topological invariant remains fixed at
non-trivial values even when a particle-hole breaking term is
present in the Hamiltonian. This reflects the dependence of
this non-trivial topology on the presence of the topologically-
protected boundary states of the higher-dimensional phase,
which require only time-reversal symmetry to remain robust
up to the minimum direct 2D bulk gap going to zero. We
further find N±π still predicts the existence of edge states
in the nontrivial region. The validity of the invariant and
bulk-boundary correspondence in the absence of particle
hole symmetry will be further verified for the case of the
1T ′-WTe2 wire. The phase is therefore protected by time-
reversal symmetry alone while particle-hole symmetry is
required only to anchor the in-gap states to zero energy. This
analysis parallels the one on ref. [47] where analogously the
invariant and phase are protected by only inversion symmetry
while both inversion and particle-hole symmetry secure the
zero-energy value. For particle-hole-symmetric disorder
Fig.5 c) the perturbation strength is protected not by the
q(2-1)D gap but rather the 2D bulk gap of the system, which,
for c = 0.8, u = 1.0, is ∆ ≈ 0.5 as seen in Fig. 5 e). If
the perturbation breaks time reversal symmetry, however, the
Kramers degeneracy of the q(2-2)D bound states is broken as
expected.

We conclude from this analysis that the q(2-1)D wire with
spinful time-reversal symmetry, realized for a system with a
2D bulk and open boundary conditions in one direction, ex-
hibits finite-size topological phases for subsets of the topo-
logically non-trivial regions of the 2D bulk topological phase
diagram. In these subsets, bounded by lines along which the
minimum direct q(2-1)D bulk goes to zero rather than the
minimum direct 2D bulk gap, in general, the wire harbors
topologically-protected q(2-2)D boundary modes for open
boundary conditions in two directions appearing in Kramers
pairs. In the quasi-1D bulk, these subsets correspond to Wil-
son loop spectra with some Wilson loop eigenvalue phases
fixed to ±π, protected by spinful time-reversal symmetry.
These signatures of non-trivial topology are therefore asso-
ciated with time-reversal invariant, q(2-1)D finite-size topo-
logical phases due to interference between topologically-

protected gapless boundary modes resulting from 2D bulk
topology, either of the quantum spin Hall insulator or the
2D Dirac semimetal. In contrast, the ten-fold way classifi-
cation scheme of topological phases of matter determines a
1D system in class AII [48] has trivial topological classifi-
cation. These results are therefore evidence of topologically
non-trivial phases of matter outside of the ten-fold way clas-
sification scheme.

III 1T ′-WTe2 wire

Although the previous model is based on the celebrated
HgTe quantum wells, which allowed for the discovery of the
first QSHI, it may not be most suitable for the experimental
discovery of finite-size topology. The need for a small sample
size in one direction may be easier to achieve for monolayers
such as the 1T ′-TWe2 QSHI [49]. We thus consider the model
studied in reference [50] which combines density-functional
theory calculations, symmetry considerations and fitting to
experimental data. Since the finite-size topology comes from
the hybridization of the edge states, we consider only the
lattice termination which results in a Dirac crossing near the
Fermi energy. That is we study the sawtooth y ribbon with
open boundary conditions in the x direction. The 1T ′-WTe2

Hamiltonian is presented in the Supplementary Material.

Under such circumstances we expect the Dirac crossing
to gap out in general on larger and larger energy scales as
the system size in the x direction Nx decreases. Such a gap
opening does occur for the original material parameters for
even Nx values ranging from 4 to 20. It is worth noting
that the gap still exists even for larger Nx but its magnitude
becomes very small compared to other material energy
scales. Such a gapped system may then host topological
q(2-2)D edge states if the Wilson loop spectrum is nontrivial.
Specifically, we find that for Nx = 8, 10, 12 the gap has a ±π
phase in the Wilson loop spectrum. Even in the case where
the spectrum is trivial, for example at Nx = 6, we may still
tune the system so that a gap closing occurs and a nontrivial
Wilson loop phase appears. To do so, we may apply an
electric field perpendicular to the monolayer corresponding to
addition of a symmetry-allowed Rashba spin-orbit coupling
term to the Hamiltonian. Since the original model already
includes such couplings, we further include a change of the
in-plane SOC parameters by a quantity ∆λSOC.

For the case of Nx = 6, we obtain a phase diagram for the
number of Wilson loop eigenvalues with phase ±π, N±π , vs.
spin-orbit coupling anisotropy, ∆λSOC , showing a change in
N±π from 0 to 1 with increasing ∆λSOC as shown in Fig. 6
a). Based on our previous results for a canonical toy model
of the QSHI, we expect q(2-2)D edge states to appear if we
open boundary conditions in the ŷ-direction as well. Such
edge states due to an additional bulk-boundary correspon-
dence characterized by N±π of the q(2-1)D bulk do exist, as
shown in Fig. 6 b)corresponding to a line of four-fold degen-
erate, in-gap states as a function of ∆λSOC . The four-fold de-
generacy corresponds to a two-fold Kramers degeneracy due
to spinful time-reversal symmetry, and two-fold degeneracy
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FIG. 6. a) Energy spectrum (eV) as a function of the change in
Rashba spin orbit coupling ∆λSOC for a Nx = 6 saw-tooth termi-
nated 1T ′-TWe2 wire. b) Energy spectrum (eV) for the system with
Nx = 12 as a function of ∆λSOC showing edge states at zero field.
c) Number of Wilson loop spectrum ±π phases for Nx = 6 as a
function of ∆λSOC d) Wave function probability density for one edge
state at ∆λSOC = 0.35eV and Nx = 6, Ny = 200 for the same
saw-tooth terminated 1T ′-TWe2 wire.

corresponding to boundary modes localized at the left and
right edge as in the previous simple model of eqref. (1). For a
fixed Rashba spin orbit coupling change of ∆λSOC = 0.35eV ,
we find that the edge states localize on each end of the wire as
shown in Fig. 6 c).

IV 3D TI slab

We now study the finite size topology of the quintessen-
tial 3D TI in symmetry class AII [39, 48]. The classifica-
tion in this case is dictated by four Z2 topological invariants
(ν0; ν1, ν2, ν3) [35, 36] , where the last three invariants are
related to the translational invariance of the system classify-
ing the weak TI phase (WTI) while the ν0 parameter classifies
the strong TI phase (STI). In the following, we study the STI
phase with trivial lower-dimensional invariants corresponding
to (1; 000), which is realized in the model Bloch Hamiltonian
[51]:

H(k) = −2λ
∑
µ

sin kµσzsµ + σxs0(M − t
∑
µ

cos kµ),

(4)

where the Pauli matrices {σi},{sj} act on orbital and spin
degrees of freedom respectively, λ is a spin orbit coupling
parameter that breaks spin conservation, M is an onsite
staggered potential, and t is a nearest-neighbor hopping
integral. In the following, we take all energies to be in units
of t by setting t = 1, and consider the regime in which
1 < M < 3 and λ positive, for which the model realizes the

desired strong TI phase. First, we specialize to the case of
a thin slab in the x̂-direction of N layers. In that case, we
expect in analogy to the QSHI that the Dirac cones from the
upper and lower surfaces interfere due to the thin bulk and
hybridize to open a gap even for open boundary conditions.

The hybridization gap, just as in the previous 2D case, is
expected to sometimes protect a non-trivial finite size topolog-
ical phase. To study this, we once again characterize topology
using the Wilson loop spectrum, now as a function of ky or
kz with OBC in x to characterize topology first of a q(3-1)D
bulk, in regions of the phase diagram where the 3D bulk cor-
responds to the strong TI. As the isotropy of the Hamiltonian
Eq. (4) suggests, there is no difference between the Wilson
loop eigenvalues ofW (ky) andW (kz), thus we consider only
W (kz), where each Wilson loop matrix is now defined as:

W(ky) = Pe−
∫ π
−π dkzAz(ky, kz), (5)

W(kz) = Pe−
∫ π
−π dkyAy(ky, kz). (6)

A typical Wannier charge center spectrum vs. the remain-
ing momentum component, kz , is plotted in Fig. 7, which
shows the spectral flow a) characteristic of a TR invariant
topological insulator for some values and a trivial spectrum
b) for others within the (1; 000) 3D bulk phase classification.

The non-trivial spectral flow only appears for certain
parameter regimes: these regions can be distinguished in a
systematic way by counting the number of fixed ±π phases
in the Wilson loop spectrum, as in the previous case. This
regions of parameter space which have an energy gap are
again the ”bubbles” observed in the QSHI case. We plot the
phase diagram as a function of the model parameters in Fig. 8
a),b) for N = 5, 6 layers, respectively. The phase diagram
changes dramatically for each value of N , the number of
layers, indicative of the finite-size topology [15]. The pattern
of trivial and nontrivial regions is entirely contained with the
non-trivial region of the 3D bulk topological phase diagram
for Hamiltonian (4), indicating the 3D minimum direct bulk
gap remains finite during these topological phase transitions
of the q(3-1)D bulk. We remark that the sudden changes in
color near λ = 0 seem to be just an artifact of the numerical
precision when approaching the STI gap-closing in the 3D
bulk.

One of the consequences of the system being in a topolog-
ically non-trivial regime, according to the Wilson loop spec-
tra of the q(3-1)D bulk, is an additional bulk-boundary corre-
spondence: opening boundary conditions in a second direc-
tion in these regions of phase space, we find topologically-
protected q(3-2)D states that now are localized at the edges
of the slab, as shown in Fig. 8 c). These q(3-2)D states ap-
pear within the q(3-1)D bulk gap similarly to the case of q(2-
2)D boundary states appearing in the q(2-1)D bulk gap of the
QSHI. A topological phase diagram for the q(3-1)D system
with open-boundary conditions in the ŷ-direction as a func-
tion of M is also shown in Fig. 8 d), demonstrating the di-
rect correspondence of the topologically-protected boundary
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modes with the topologically non-trivial regions of the q(3-
1)D bulk in Fig. 8 a). This indicates that N±π , the number of
±π phases in the Wilson loop eigenvalue spectrum, character-
izes finite-size topological phases resulting from interference
of the topologically-protected Dirac cones of the 3D TI, in
addition to characterizing finite-size topological phases due to
interference between the helical boundary modes of the QSHI.
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z
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FIG. 7. a) Wilson loop nontrivial eigenvalue spectrum as a function
of kz for OBC in x and PBC in y, z. The parameters are M =
2.0, λ = 0.2 and N = 6 layers. b) Wilson loop trivial eigenvalue
spectrum as a function of kz for OBC in x and PBC in y, z. The
parameters are M = 1.6, λ = 0.1 and N = 6 layers.

While the finite-size topological phase in the q(3-1)D
system exhibits helical boundary modes analogous to those of
the QSHI, this topological phase is not just a QSHI. Notably,
the 3D minimum direct gap remains finite in this region of the
phase diagram where non-trivial finite-size topological phases
occur, so the 3D bulk is still in the topological phase (1; 000).
The finite-size topological phase therefore exhibits signatures
associated with a non-trivial intrinsically 3D topological
invariant. This is indicated by adding perturbations to the
system to probe the magneto-electric polarizability of the
system, which depends on the intrinsically 3D topological
invariant, a connection identified in previous work by Essin et
al. [52].

We then compare the result to a q(3-1)D stack of 2D QSHI
in the x direction with the same perturbation to demonstrate
the finite-size topological phase of the q(3-1)D system is
distinct from a QSHI. The type of perturbations we consider
to determine the magnetoelectric polarizability in these two
cases are TRS-breaking terms in the form of weak Zeeman
field in only the uppermost and lowest layers i.e. V = κ · s
with | κ |≈ 0.1. This could correspond to ferromagnetically-
ordered magnetic dopants in just these layers. This situation
is illustrated schematically in Fig. 9 a). We first consider
a Zeeman field oriented in the yz-plane and labeled κ‖ as
shown in Fig. 9 a) for both the (1; 000) system (q(3-1)D STI)
and the (0; 001) system (q2D WTI, or stack of QSHIs). In
this case, these systems react similarly, their spectra gapping
out as shown in Fig.9 b). This is expected, as the perturbation
breaks TR symmetry.

However, the responses of the two systems are strikingly
distinct if we instead consider an applied Zeeman field
oriented along the x̂-axis, or field κ⊥ as shown in Fig. 9 a).
In the case of the (1; 000) system (q(3-1)D STI), two of the
q1D boundary states gap out, leaving two gapless boundary
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FIG. 8. Phase diagram from wilson loop spectrum for a slab with
a) N = 5, b) N = 6, black-0, yellow-2 ±π phases. c)Quasi-1D
dispersion for OBC in x N = 6, PBC in z and OBC (PBC) in y as a
function of kz . The parameters are M = 1.8, λ = 0.1. d) Spectrum
for OBC in x, y as a function of M , for discretized values of kz with
N = 5 and 100 sites in the remaining directions, λ = 0.1.

modes remaining. They constitute chiral boundary modes of
a QHE on each surface as shown in Fig. 9 c), corresponding
to a layer-dependent Hall conductivity σxy as shown in
Fig. 9 d). This is a known manifestation of the quantized
magnetoelectric polarizability of the STI, resulting from the
non-trivial value of the strong invariant, these results can be
directly compared with past work for systems with a 3D bulk
rather than q(3-1)D bulk [52]. Notably, the layer-dependent
Hall conductivity exhibits this non-trivial response only for
topologically non-trivial finite-size topological phases as
characterized by N±π . This agrees with the response theory
of previously-studied finite-size topological phases, and
reflects the fact that only occupied states of the non-trivial
bubbles carry Berry phase contributions to the underlying 3D
topological invariant.

In constrast, there is no topological magnetoelectric effect
and no QHE in the surface layers of the QSHI stack. Instead,
the states maintain their degeneracy and helicity, for small
fields, which is consistent when we view the field as paral-
lel to the edge surfaces hosting the helical boundary states of
the QSHI layers. Therefore, although the spectrum of q(3-1)D
STI slab appears to be similar to the spectrum of a QSHI stack,
its response to TRS-breaking perturbations reveals that it is a
finite-size topological phase arising from (1; 000) topology of
the 3D bulk.

V 3D TI wire

We finally consider a q(3-2)D wire geometry for the STI,
demonstrating that finite-size topology arises from inter-
ference between topologically-protected boundary states of
finite-size topological phases, as well as interference be-
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FIG. 9. a) Diagram of perturbations and edge states (pink) on a q(3-
1)D STI slab, parallel field (purple) and perpendicular field (black),
we consider the perturbations for OBC in x, y and PBC in z. b)
Spectrum of STI slab with OBC in x and y, Nx = 5, Ny = 100. A
constant Zeeman field ordering κ = 0.1 parallel to the slab top and
bottom layers is present. The parameters are M = 1.8, λ = 0.1.
c) Same parameters as in c) but now with a perpendicular field the
system exhibits a QHE.d) Layer conductivity (Chern number) for
Nx = 6, M = 2.0,λ = 0.2 .

tween the topologically-protected boundary states of topologi-
cal phases in the ten-fold way. We therefore consider the same
Hamiltonian Eq. (4) as considered in the previous section, but
now with open boundary conditions in x̂- and ŷ-directions and
periodic boundary conditions in the ẑ-direction, with the num-
ber of lattice sites in the x̂- and ŷ-directions, Nx and Ny , re-
spectively, each much less than Nz , the number of lattice sites
in the ẑ-direction (so Nx, Ny � Nz).

According to the ten-fold way classification scheme for
topological phases of matter, this is an effectively 1D sys-
tem in class AII, which is topologically-trivial [38, 39, 48].
Here, we show finite-size topological phases are nonetheless
possible in this system, first characterizing finite-size topol-
ogy of the q1D bulk through analysis of Wilson loop spectra,
and then by demonstrating an additional bulk-boundary corre-
spondence yielding q(3-3)D topologically-protected boundary
modes in the q1D wire, ultimately resulting from interference
between the topologically-protected Dirac cone surface states
of the STI.

For the q(3-2)D bulk of the STI with periodic boundary
conditions only in the ẑ-direction, we compute Wilson loop
spectra by integrating over this one good momentum com-
ponent, similarly to the Wilson loop spectra calculations for
the q(3-2)D bulk of the QSHI in Section II. The topological
phase diagrams of the STI q(3-2)D bulk are then determined
by computing the number of eigenvalues in the Wilson
loop spectrum with ±π phases, or N±π . Although in the
previous cases the spectrum only had two ±π phases or none
corresponding to nontrivial and trivial regions, we find for
the 3D TI wire that some regions of the phase diagram have
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FIG. 10. a) Phase diagram for the same finite size parameters but
PBC in z, red reflects 4 ±π phases, yellow 2, blue 0. with Nx =
Ny = 4 b) Heat plot of direct gap for the same system parameters.
c),d) and e),f) same as before, but for Nx = 4, Ny = 5 and Nx =
Ny = 6 respectfully.

four ±π phase eigenvalues as shown in red in Fig. 10 a) for
Nx = Ny = 4. In the case of Nx = Ny = 6, the phase
diagram changes again and now there are not only two and
four ±π phases but also six ±π phases as shown in blue in
Fig. 10 e). The change of invariant is consistent with a gap
closing of the q(3-2)D bulk as shown in Fig.10 b),f) where
the gap closings coincide with the change of number of ±π
phases in the Wilson loop spectrum.
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FIG. 11. a) Spectrum for OBC in x,y,z as a function of M , with
Nx, Ny = 4 and Nz = 50 sites in the remaining directions with
λ = 0.1. b) Same plot but for Nx = 4, Ny = 5 and Nz = 100.
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As in previous cases, we find the topological phase dia-
grams for the q(3-2)D bulk of the STI depend strongly on
system size. In the case of Nx = 4, Ny = 5, we find that
the region with four ±π phases occurs for smaller parameter
regions and is furthermore shifted in M and skewed relative
to the corresponding regions in the Nx = Ny = 4, reflecting
the difference between x and y directions in phase space. The
skewness is also more prominent as we increase the number
of sites as seen for Nx = Ny = 6 in Fig. 10 e). In this case,
even though the topologically non-trivial regions diminish
in size, they are more strongly skewed. The deformation is
such that, starting in a trivial region according to N±π near
M = 1.75, with almost zero λ, we can drive the system
into a topologically non-trivial regime as determined by
N±π by increasing the spin-orbit coupling to λ ≈ 0.1. A
comparison of the phase diagrams in Fig. 10, indicates that,
as the number of sites increases, the regions present originally
in Nx = Ny = 4 remain for Nx = Ny = 6 although now
shifted to greater M and reduced in size over phase space.
We notice also that the new regions appear from the left.

The topological phase diagram and corresponding q(3-2)D
minimum direct bulk gap phase diagram for Nx = Ny = 6
are shown in Fig. 10 e), f), respectively. While there are
similarities between results for this system size and the
smaller ones, there is a topological region for which six
Wilson loop eigenvalues have phases fixed to ±π. The
regions of greater N±π appear to be subsets of regions with
lesser N±π: the blue region is contained within a red region,
and red regions are contained within yellow regions. The
states again localize at the boundaries of the wire and states
occur in Kramers pairs. These results indicate the number of
±π phases in the Wilson loop spectrum, N±π , corresponds
to half the number of zero energy edge states N(E = 0) in
the q(3-2)D STI system with OBC in all directions. We can
verify this relation appears to hold for the q(2-1)D QSHI wire
and the q(3-1)D STI slab as well. As N±π > 2 occurs for the
q1D STI wire, this comes to suggest an integer classification
2Z for the q(3-2)D STI finite-size topological phases, to be
explored in greater detail in future work.

Based on the topological phase diagrams for the q(3-
2)D bulk, we now check for a finite-size topological bulk-
boundary correspondence in this geometry by opening bound-
ary conditions in the ẑ-direction, searching for topologically-
protected boundary modes localized at the ends of the q(3-2)D
wire. In analogy to the q(2-1)D QSHI wire, we study the non-
trivial number of±π eigenvalues in the Wilson loop spectrum,
Fig. 11 a),b). The system withN±π = 4 phases has now eight
edge states within the q(3-2)D bulk gap. These states occur in
Kramers pairs, with each state in a given Kramers pair local-
ized at the same edge There are, however, differences between
these states observable in the probability density distributions.
We show the probability densities as a function of layer index
in each of the ẑ- and ŷ-directions, respectively,for four of the
in-gap states, in Figs. 12 a) and b), respectively. The cor-
responding probability densities as a function of layer in the
ẑ-direction and ŷ-direction for the other four in-gap states are

shown in Figs. 12 c) and d), respectively. We see that the sec-
ond set of four are distinguished from the first four by their
localization: the second set of four are pushed inwards from
the edge in both the ẑ- and ŷ-direction relative to the first four
in-gap states. We find similar physics forNx = Ny = 6 in the
N±π = 6 phase: there are 12 q(3-3)D edge states at zero en-
ergy within the q(3-2)D bulk gap. This change in localization
suggests that there is a distinction between edge states which
may give way to distinct phases not distinguished by just the
parity of the number of edge states.
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FIG. 12. a) Probability density plot for one q(3-3)D edge mode as
a function of wire length z with M = 1.25, λ = 0.1,Nx = Ny =
4, Nz = 80 b) same edge state as a function of site index y , c)
Probability density for another quasi-0D edge mode within the same
model parameters as a function of wire length d) now as a function
of site index y.

VI Concluding remarks
In this work, we have studied finite-size topology in time-
reversal invariant systems, emerging from the hybridization
of helical boundary modes in QSHIs and of Dirac cones in the
strong TI. In the case of the QSHI, we find the helical bound-
ary modes generically interfere to realize regions in phase
space where the q(2-1)D bulk spectrum (periodic boundary
conditions in one direction and open boundary conditions in
the other) is gapped. These regions are separated from one
another by critical points at which the q(2-1)D minimum
direct bulk gap is zero. We characterize the topology of these
gapped regions by computing Wilson loop spectra, finding
topologically non-trivial gapped phases of the q(2-1)D
bulk corresponding to a non-trivial number of Wilson loop
eigenvalues with phase fixed to ±π.

For open boundary conditions in each direction and a q(2-
1)D wire geometry, these Wilson loop eigenvalues with phase
±π correspond to topologically-protected q(2-2)D boundary
modes localized at the ends of the wire. These q(2-2)D bound-
ary modes occur in Kramers pairs and are robust against dis-
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FIG. 13. a) Schematic diagram of a 4D topological phase consisting of some x, y, z real space directions and an Lz orbital degree of freedom
which gets thinned in the orbital direction. In this case the quasi-3D slab spectrum from the 4D bulk results from the hybridization of
the original 3D boundary modes. b) The previous q(4-1)D slab possess an additional bulk-boundary correspondence when additional open
boundary conditions in the z direction are considered. This results in q(4-2)D boundary modes.

order respecting spinful time-reversal symmetry, maintaining
a fourfold degeneracy for particle-hole symmetric disorder,
and splitting into doubly-degenerate Kramers pairs for disor-
der breaking particle-hole symmetry. In these cases, the in-
gap, q(2-2)D modes are still topologically-robust in that they
must correspond to time-reversal invariant charge transfer in
an aperiodic Thouless pump from valence bands to conduc-
tion bands, and this connectivity between q(2-1)D bulk va-
lence and conduction bands is observed in topological phase
diagrams.

We first observe this finite-size topology of the QSHI for
a canonical Hamiltonian describing HgTe quantum wells,
but also find the finite-size topological phase occurs in a
tight-binding model for 1T’-WTe2 ribbons with sawtooth
edges derived from density functional theory calculations,
thus potentially relevant to experiment. In the case of the
strong topological insulator protected by time-reversal sym-
metry, we find finite-size topological phases both for q(3-1)D
slab geometries and q(3-2)D wire geometries. Wilson loop
spectra are used to characterize the topology of the q(3-1)D
and q(3-2)D bulk: the winding of the Wilson loop eigenvalue
phases characterizes the q(3-1)D topology, similarly to
characterization of 2D topological phases in the bulk, while
the q(3-2)D wire topology in this case is also characterized
by the number of ±π Wilson loop eigenvalue phases as in
the case of the q(2-1)D QSHI. For open boundary conditions
in two directions, the q(3-1)D STI slab exhibits helical

boundary modes in the finite-size topological phase, but
also exhibits signatures of the magneto-electric polarizability
of the STI, distinguishing this finite-size topological phase
from the QSHI. In the case of the q(3-2)D wire, q(3-3)D
boundary modes occur for open boundary conditions in all
three directions, similarly to those of the q(2-1)D QSHI.
However, results indicate that topological classification for
the q(3-2)D STI is integer rather than Z2, with unusual
localization of the quasi-0D topological boundary modes.
Importantly, these results show that finite-size topology yields
topologically-protected boundary modes of codimension
greater than 1.

We close by pointing out an intriguing possible extension
of the work to a system with dimension D > 3. For example,
a four-dimensional topological phase is expected in a q(4-1)D
setting, as pictured schematically in Fig. 13 for a small sys-
tem size in some fourth dimension. These extra non-spatial
dimensions could come from physical degrees of freedom,
typically considered for three-dimensional systems, such as
a p orbital degree of freedom as considered in Fig. 13 a). One
could now imagine an infinite 4D bulk defined by the x̂-, ŷ-
, ẑ-, and L̂z (angular momentum)-axes. For non-trivial 4D
bulk topological invariant, open boundary conditions in the
L̂z-direction and a large system size in the L̂z-direction, three-
dimensional topologically-protected boundary modes are re-
alized. For the physical scenario of small system sizes in the



12

L̂z-direction as shown in Fig. 13 a), these three-dimensional
boundary modes could interfere to realize a topologically non-
trivial FST phase, such that additional topologically-protected
boundary modes are realized when boundary conditions are
additionally opened in a second real-space direction, such as

the ẑ-direction as shown in Fig. 13 b). This raises the possibil-
ity of topologically-protected boundary states for systems in
one to three-dimensions reflecting higher-dimensional,D > 3
bulk topology.
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S1 Tight-binding model for 1T ′-WTe2

In the main text we discussed a realistic model for realizing finite-size topology in a 1T ′ −WTe2 monolayer. We adapted the
finite-size calculation from the model explored and derived in reference [50]. The model predicts that the four bands closest to
the Fermi level are composed mainly of contributions from two 3dx2−y2 type orbitals centered at W and two 5px type orbitals
centered at a subset of Te. With this information at hand and some experimental fitting the authors construct a minimal tight
binding model that includes also a spin orbit interaction given by:

HWTe2(k) =s0

([µp
2

+ tpx cos (akx) + tpy cos (bky)
]

Γ−1 +
[µd

2
+ tdx cos (akx)

]
Γ+

1 + tdABe
−ibky (1 + eiakx

)
eik·∆1Γ+

2

+ tpAB
(
1 + eiakx

)
eik·∆2Γ−2 + t0AB

(
1− eiakx

)
eik·∆3Γ3 − 2it0x sin (akx)

[
eik·∆4Γ+

4 + e−ik·∆4Γ−4
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+ t0ABx
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eik·∆3Γ3 + H.c.

)
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5 +
[(
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sin (akx)

]
Γ−5

− iλy0ABsy
(
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×
(
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4 − eibkye−ik·∆4Γ−4
)

+ H.c., (S1)

,where si are Pauli matrices representing the spin degree of freedom and they defined the gamma matrices as:

Γ0 = τ0σ0 (S2)

Γ±1 =
τ0
2

(σ0 ± σ3) (S3)

Γ±2 =
1

4
(τ1 + iτ2) (σ0 ± σ3) (S4)

Γ3 =
1

2
(τ1 + iτ2) iσ2 (S5)

Γ±4 =
1

4
(τ0 ± τ3) (σ1 + iσ2) (S6)

Γ±5 =
τ3
2

(σ0 ± σ3) (S7)

Γ6 =
1

2
(τ1 + iτ2)σ1 (S8)

,where τi, σi are Pauli matrices acting in sublattice and orbital degrees of freedom respectively. Finally the constants from the
previous Hamiltonian that reproduce the experimental results are:

µp −1.75eV λy0AB 0.011eV
µd 0.74eV λy0 0.051eV
tpx 1.13eV λz0 0.012eV
tdx −0.41eV λ′y0 0.050eV
tpAB 0.40eV λ′z0 0.012eV
tdAB 0.51eV λypx −0.040eV
t0AB 0.39eV λzpx −0.010eV
t0ABx 0.29eV λydx −0.031eV
t0x 0.14eV λzdx −0.008eV
tpy 0.13eV
a 3.477Å b 6.249Å
rAd (−0.25a, 0.32b) rBp (0.25a, 0.07b)
rAp (−0.25a,−0.07b) rBd (0.25a,−0.32b)

(S9)
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Finally we extended the model with an inclusion of a perpendicular electric field in the weak limit where the effect manifests
itself as a change of Rashba spin orbit interaction, in the previous Hamiltonian this is modelled as a replacement λi → λi + ∆λ,
with i = x, y.
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