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We theoretically argue that, in doped AB bilayer graphene, the electron-electron coupling can give
rise to the spontaneous formation of fractional metal phases. These states, being generalizations of
a more common half-metal, have a Fermi surface that is perfectly polarized not only in terms of
a spin-related quantum number, but also in terms of the valley index. The proposed mechanism
assumes that the ground state of undoped bilayer graphene is a spin density wave insulator, with a
finite gap in the single-electron spectrum. Upon doping, the insulator is destroyed, and replaced by
a fractional metal phase. As doping increases, transitions between various types of fractional metal
(half-metal, quarter-metal, etc.) are triggered. Our findings are consistent with recent experiments
on doped AB bilayer graphene, in which a cascade of phase transitions between different isospin

states was observed.

PACS numbers: 73.22.Pr, 73.22.Gk

I. INTRODUCTION

A usual metal demonstrates perfect symmetry with
regard to the carriers’ spin projection. This symme-
try manifests itself in the vanishing total spin magne-
tization and the Fermi-surface spin degeneracy. Yet
the symmetry can be spontaneously destroyed by suf-
ficiently strong electron-electron interaction, which may
result, for example, in the formation of two non-identical
Fermi surfaces for the two spin projections. In the ex-
treme case of the so-called half-metals (HM), one of
these projections is completely absent from the Fermi
surface, while all states at the Fermi energy have iden-
tical spin quantum numbert 2. Various rather dissimi-
lar materials Wlth transition-metal atoms are found to
be half-metals??. Several papers® 12 predicted the half-
metallicity in carbon-based systems as well. The exis-
tence of spin-polarized currents in such systems makes
them promising materials for applications in spintron-

ics313.

Graphene-based bilayer and multi-layer systems posses
additional quantum number, the valley index. In
these materials, besides the spin-related polarization, a
many-body state may demonstrate a valley polarization.
Therefore, for graphene-based materials, the notion of
a HM can be generalized to include the possibility of
a Fermi surface with perfect valley polarization as well.
Such a proposal was put forward in Ref. , where the
concept of a quarter-metal (QM) was formulated. A
Fermi surface of a QM state is perfectly polarized both in
valley and in spin-related indices. Furthermore, the lat-
ter paper explained that both an HM and a QM should
be viewed as specific instances of a more general notion,
‘a fractional metal’ (FraM). This many-body phase may
be realized in materials with degenerate Fermi surface.
The higher the degeneracy, the stronger fractionalization
of the Fermi surface can be achieved.

Since our publication!? the experimental observation
of a QM state in graphene trilayer has been claimed!2.
The experimental data of Ref. |16 suggest that a QM and
FraM states can be stabilized in a sample of AB bilayer
graphene (AB-BLG). Given these experimental successes
it appears important to develop a microscopic theoretical
framework that can explain the existence of the FraM
in the AB-BLG. In this paper, a suitable mechanism is
proposed and discussed.

II. MODEL

An elementary unit cell of the AB-BLG consists of
four atoms (sublattices A and B, and layers 1 and 2)
with the distance between neighboring carbon atoms
ap ~ 0.142nm and interlayer distance cyp =~ 0.335nm.
The hoping amplitude ¢ connecting the nearest A and B
sites in the layer is 2.5eV < ¢ < 3eV. The hopping be-
tween the nearest sites in different layers can be estimated
as 0.3eV <ty < 0.4eV. It is possible to introduce addi-
tional, longer-range, hopping amplitudes into the model.
We assume, however, that the effect of these amplitudes
is weak, and they are neglected.

The AB-BLG Brillouin zone is a regular hexagon, with
two non-equivalent Dirac points at
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It is convenient to measure momentum relative to the
Dirac points. Thus, we introduce q = k — K ».

The energy spectrum of undoped AB-BLG consists of
four bands, two electron and two hole ones. Since we are
interested in the low-energy spectrum of AB-BLG, ¢ <
2ty /3tap, we restrict our consideration to the effective
two-band model. It has one electron and one hole band,
both bands have quadratic dispersion. The bands touch

Ki=-—=(V3,1) and K;= (V3,-1)(1)
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at the Fermi energy. When the (small) trigonal warping
terms are ignored, the Hamiltonian for a single-electron
wave function readst?’ 19
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where the graphene Fermi velocity is vp = 3agt/2h and
¢ is the valley index. The value & = 1 corresponds to

K; and £ = —1 corresponds to Ky. In the second-
quantization formalism we can write
_ T
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where the spin projection is denoted by o, the index [
labels the electron (I = 1) or hole (I = 2) band, and yqis¢
is the corresponding second quantization operator. The
eigenenergies £q; of the Hamiltonian (2]) are

h2p2
Eql = (—1)Z+ITFQ2- (4)

Next we include the electron-electron repulsion into the
model. The latter is a highly non-trivial task. Clearly,
the low-energy two-band effective model (@) is incom-
patible with the bare Coulomb repulsion. Instead, an
effective interaction Hamiltonian must be derived. Un-
fortunately, a compact description of such an effective
interaction remains an elusive theoretical goal. Indeed,
due to multiple factors affecting the many-body physics
in graphene and graphene-based systems, an effective
interaction term is quite complex, with multiple cou-
pling constants, whose non-universal values are poorly
known2% 24, In this situation we prefer to adopt a semi-
phenomenological approach, keeping only the terms that
directly contribute to the spin-density wave (SDW) or-
dering. It is possible to identify three types of such terms.
The first term arises due to the forward-scattering
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where N, is the number of unit cells in the sample, and
Ve is an effective interaction constant whose value can be
potentially extracted from the low-temperature data22 34
on spontaneous symmetry breaking in AB-BLG. The for-
ward scattering is characterized by a small momentum
transfer |k — k'| < |K; — Ks|, and preserves the band
indices [ and I’ of the two participating electrons. Next,

one can define the backscattering term
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where a bar on top of a binary-valued index implies the

inversion of the index value (for example, if £ = 1 then

¢ = —1). For HP, the transferred momentum is large

[k —Kk'| ~ |K; — K>, thus we can assume that V2 < V.
Finally, the umklapp-type interaction
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represents scattering events in which both electrons
change their bands. It accounts for the coupling between
inter-layer dipole moments, which is also weaker than the
coupling between charge densities represented by H itm. In
principle, there is backscattering umklapp, which we do

not consider due to it being even weaker than HJ,.

IIT. MEAN-FIELD APPROXIMATION

We consider a zero-temperature SDW instability of
the AB-BLG. This is characterized by the spontaneous
generation of staggered spin magnetization violating the
spin-rotation symmetry. The direction of this magne-
tization is not fixed and there are several equivalent
choices for an SDW order parameter that differ by the
spin-magnetization direction. It is convenient to assume
that <71T<10£'7k2&5> # 0. This choice corresponds to the
magnetization in the zy-plane. Note also that the in-
troduced order parameter accounts for the coupling of
single-electron states in the same valley €.

Now, assuming that the backscattering (B) and the
umklapp (@) are weak, we apply the mean-field approxi-
mation to HY
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where the order parameter A,¢ and c-number B are
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In these expressions, the momentum cutoff for the inter-
action q¢ satisfies g0 < | K1 — Ka.

The mean-field Hamiltonian () does not conserve spin
(spin-rotation symmetry is spontaneously broken for non-
zero Ay¢). However, quasi-momentum q is conserved. In
addition to q, one can introduce valley and spin-flavor
operators
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which commute with the Hamiltonian Hy+ HME and are
good quantum numbers. Thus, in this approximation all
fermionic degrees of freedom can be grouped into four
uncoupled sectors, each sector having its own values of



spin-flavor index (—1)*!o and valley index . A sector
is characterized by its own order parameter Ay, and
single-particle spectrum
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The thermodynamic grand potential €2 can be expressed
as a sum

Q=) Q+B, (13)
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where (),¢ are four partial grand potentials correspond-
ing to specific sectors. At zero temperature, these are
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where p is the chemical potential.

Minimization of  over the order parameters allows
us to derive the following independent self-consistency
equations for the order parameters in the four sectors
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Since the model is electron-hole symmetric, we can limit
our discussion to the o > 0 case only. For positive chem-

ical potential: ©(u+ El,) — O(u — E},) = O(EL, — 1).
Introducing dimensionless variables
Vcto 4150[& 4t0Ag£
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we obtain from Eq. (5]
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It is evident that the gap in the spectrum of electrons in
the sector (o, &) arises only if Q¢ > Q(TE, that is, if the
number of the doped charge carriers in this sector is not
too large. One can perform the integration in Eq. (7))

and obtain that
Qe + \/ 0% + Q¢
. (19)
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In the weak coupling limit, g < 1, we have d,¢ < Q%
Consequently
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where
t2
Ay = ZTq a2e 19 (21)
is the mean-field gap of undoped AB-BLG. Further defin-

ing
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we can express Eq. ([20) in dimensionless form
doe = \/00(2m — o). (23)

For finite doping, Eq. (20) implies that the chemical po-
tential must satisfy ©1 > Age. Such a relation is naturally
expected: to start doping, the chemical potential must
exceed the gap.

Since experiments are performed at fixed doping, we
need to connect the values of A,¢ with doping. It is con-
venient to introduce partial doping, that is, the number
of electrons with speciﬁc values of (—1)"*1o and ¢:
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kdkO( E 24
VBZ Z M ka’f) ( )

op
The total doping z is equal to
x = Z Tog. (25)
53

If p > Age, we obtain the relation between the partial
doping and the chemical potential in the form

V3
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Otherwise, z,¢ = 0. As a result, we derive in the case of
NON-ZETO Te¢
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Equation (28) indicates that for x,¢ = x0/4 the order

parameter in the sector vanishes. That is, for z,¢ > x¢/4
one has

o = (29)
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Note that the chemical potential, as given by Eqs. (27)
and (B0), demonstrates non-monotonic behavior as a
function of z,¢. Of particular importance is the fact that,
for low doping, i = p(zs¢) is a decreasing function. This
means that the compressibility of the homogeneous phase
is negative and points to a possibility of the phase sepa-
ration of the electronic liquid. We will assume below that
the long-range Coulomb interaction is sufficiently strong
to arrest the phase separation, restoring the stability of
homogeneous states.

ANpe(2oe) =0, m = (30)



IV. QUARTER METAL STATE OF DOPED
AB-BLG

Disregarding the possibility of the phase separation,
we use Eqs. 27) and (28)) to characterize the thermo-
dynamics of the system. To describe the doped state of
the electronic liquid for a specific x, one must determine
partial dopings in all four sectors. To achieve this goal,
we calculate the free energy

F(z) = F(0)+ Y 0F(ze). (31)
of

In this formula F(0) is the free energy of the undoped
system, and 0F (z,¢) shows how much the sector (o, &)
contributes, for given partial doping z4¢, to the total free
energy F(x). The contribution 0F(z4¢) can be found
with the help of the relation

5F(0e) = / ey, (32)

and Eq. 7)) and [B0) that connect the chemical potential
and partial doping. Thus we derive
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The free energy (31 must be minimized over z,¢ under
the constraint (25)).

For a generic value of z, the particulars of such a min-
imization procedure might be somewhat cumbersome.
Yet for small doping = < z(/4, calculations simplify sig-
nificantly due to all partial dopings being limited by x/4
from above. In this regime one can demonstrate that F
is smallest when all charges are placed into a single sector

:ng/g/ :O7 fOI‘ O'I#O'OI' é.l#é. (34)

For the distribution (34), the doping-dependent part of
the free energy equals to

Tog = T,

Fopn = 4 (- "”_) . (35)

It is smaller, for example, than the free energy
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calculated for an equal distribution of doping between all
four sectors (z,¢ = x/4 for all o and &).

The state described by Eq. (34)) is metallic, with (al-
most) circular Fermi surface whose radius kp = kp(z) is
set by the equation
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This Fermi surface, however, is quite unique: all single-
electronic states reaching the Fermi energy are perfectly
polarized in terms of S and SY. In other words, they
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have an identical value of (—1)"*'o, and the Fermi sur-
face is located within a single valley K¢. Since among
four possible Fermi surface sheets of the non-interacting
theory, only one sheet emerges in the system, it is nat-
ural to designate such a conducting state as a QM. To
appreciate the difference between a metal with equal dis-
tribution of charges between the sectors on one side and a
QM on the other side, one can compare pages (a) and (b)
of Fig. [

V. CASCADE OF PHASE TRANSITION
BETWEEN DIFFERENT SYMMETRY-BROKEN
PHASES

The QM state described above remains stable only for
sufficiently low z: one sector cannot accommodate too
much doping. Indeed, when z = x¢/2, Eq. 30) implies
that © = Ag. Doping a single sector beyond this point is
impossible: adding more charge to this sector increases
the chemical potential beyond Ag, unavoidably placing
charges into the remaining sectors as well. As a result,
a cascade of doping-driven phase transitions emerges.
The transitions connect different metallic states, each
state being characterized by a number of doped sectors:
1, 2, 3, or 4 [paramagnetic (PM) state| sectors.

Let us briefly describe this cascade of transitions (see
Figs.Mand2]). At zero doping the system is gapped with
the gap equal to Ay in all sectors. For small z, the system
absorbs all extra charge carriers into a single sector [say,
sector (o =1, & = +1)]. This is a QM state [Fig. DI(b)].
The order parameter in this sector gradually decreases
with doping. At the same time, the chemical potential
decreases with doping indicating the possibility of the
phase separation. However, we assume that the long-
range Coulomb repulsion totally arrests the phase sepa-
ration and the electronic state remains homogeneous. At
x = /4, the order parameter in doped sector vanishes,
and a second order phase transition inside the QM state
takes place. This transition is characterized by the com-
plex order parameter and a presence of the developed
Fermi surface.

Beyond x = x¢/4, order parameter Aqyyq is zero. Yet,
the QM state remains stable for z < x¢/2. At higher
doping, the extra charge comes to some other sector [for
definiteness, we assign this to be (¢ =7, £ = —1); other
configurations are equiprobable]. However, one can show
that the state when the order parameter of this sector
is greater than 0 but less than Ay is metastable one.
The stable state corresponds to A+_; = 0. As a result,
there appears a first order phase transition between QM
state with Aqy; = 0 (other sectors are gapped) and HM
state with A4+ = Av_; = 0 (other sectors are gapped)
[Fig. Dic)]. It happens at © = /2. This critical doping
is found by comparison of the free energies of correspond-
ing states.

As x increases further, one reaches the point where
the HM energy becomes equal to that of a 3/4 metal



FIG. 1.

Fermi surface structure of different metallic states. Filled (blue) hexagon is the Brillouin zone of AB-BLG. Dirac
points K 2 are marked. Solid and dashed (red) arks near the Dirac points are the Fermi surface segments. The segments with
double degeneracy over the spin-flavor index are shown as solid curves. Non-degenerate Fermi surface sheets are represented by
dashed arcs. Diagrams inside callouts depict schematically the quasiparticle dispersion near a specific Dirac point. Horizontal
(red) dashed line represents chemical potential level. Degenerate bands are shown by solid (blue) double curves. When this
degeneracy is lifted, as in panels (b), (c), and (d), the bands touching or moving closer to one another, are plotted by dotted
(green) curve. Vertical arrows represent the spin-flavor index (—1)""!o. Ordinary metallic state in panel (a) has a Fermi surface
sheet in both valleys. However, within framework of our model, its energy is higher than the energy of FraM states (at fixed
doping). Panel (b) depicts the quarter-metal phase, which is stable at not-too-large doping. For this state, the available Fermi
surface is located in one valley only, and is non-degenerate. Note that QM is nematic (violates rotation symmetry). A specific
example of a half-metal state is shown in panel (¢). Here the Fermi surface is present in both valleys, but it is non-degenerate.
Panel (d) corresponds to 3/4-metal. The Fermi surface is in both valleys, however, in one valley the Fermi surface sheet is

degenerate, in the other it is not. Because of this, this phase is nematic.

(2M) state [Fig.d(d)]. In such a state, three sectors [say,
(0 =1, &= +1), (0 =1, € = —1), and (0 =}, € = +1)] are
doped, and the fourth sector, (¢ =|, £ = —1), is gapped,
with the extra charge carriers being equally distributed
among the three doped sectors. Again, one can show that
the state corresponding to 0 < A1 < Ay is metastable
one. In the stable %M state the order parameters in all
three doped sectors vanish. As a result, there appears a
first order phase transition between HM and %M states.
Comparing the free energies of these two states, one finds
the point of the transition. It appears at © = /3 /4.

If doping is continued even further, the %M state is
replaced by the PM state [Fig.Ia)]. This is yet another
first-order transition, and the last one in the transition
cascade. It occurs at x = 4/3/2z¢. The value of this
doping is found by comparison of the free energies of
%M and PM states. The phase diagram of the system is
shown in Fig. In this figure only the electron doping
is shown. Due to electron-hole symmetry of our model,
the phase diagram at hole doping is equivalent to that
shown in Fig. 2 up to the replacement x — —z.

VI. DISCUSSION

We would like to stress here several important points.
One must remember that the HM state realized in our
model upon sufficiently strong doping is not the con-
ventional HM*2 whose Fermi surface demonstrates per-
fect spin polarization. Instead, we now have a spin-
flavor HM2% 38 with perfect spin-flavor polarization of
the Fermi surface. This means that the electron (hole)

single-particle states reaching the Fermi energy have their
spin projection being equal to o (to &). (The related
feature of the QM state was already mentioned above.)
In a model with electron-hole symmetry a spin-flavor-
polarized FraM state does not accumulate net spin po-
larization. However, a finite spin polarization may ac-
company a finite spin-flavor polarization3® when such a
symmetry is absent. The spin polarization was indeed
observed in Ref. [16.

We argued above that the relative stability of vari-
ous metallic states is affected by doping, triggering the
transitions between them. Doping is not, however, the
only factor that influence the competition between the
FraM phases. Particular model’s ingredients favoring
HM states are the umklapp and backscattering interac-
tion terms. Specifically, the umklapp couples two sectors
with unequal (—1)'o, the backscattering, on the other
hand, connect the sectors with non-identical values of the
¢ index. Thus, in the presence of either strong H{} or
strong Hilflt only two (not four) decoupled sectors of the
mean-field Hamiltonian can be defined, promoting the
HM phase over other FraM’s. Therefore, in more realistic
models, the critical doping values are no longer propor-
tional to xg, with universal proportionality coefficients.
Instead, they become functions of the backscattering and
umklapp coupling constants. Finally, one must remem-
ber that our single-electron Hamiltonian is based on the
simplest effective model of AB-BLG. It unavoidably ig-
nores some details of the AB-BLG band structure, such
as the trigonal warping caused by a longer-range hop-
ping termst718. Specifically, the trigonal warping acts to
replace the parabolic dispersion of the Hamiltonian (2)
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FIG. 2. Cascade of the doping-driven phase transitions between different FraM states with different valley and/or spin-flavor
(isospin) polarizations. Only the region of electron doping is shown. For hole doping the picture is identical up to a replacement
x — —x. Vertical solid (dashed) lines represent first (second) order transitions.

with four Dirac cones, depleting the density of states
at the Dirac points. The latter, in turn, reduces the
transition temperature, making the transition itself even
more dependent on the strength of the interaction. For-
tunately, there is ample experimental evidence suggest-
ing that electron-electron interaction in AB-BLG is suffi-
ciently strong to cause low-temperature ordering. Thus,
as the simple approximation, these band effects can be
ignored, and Hamiltonian (2] can be used. Yet, for more
detailed modeling of the transition cascade a more accu-
rate band description is necessary.

The qualitative agreement between the remarkable re-
cent experiments reported in Ref. and our formalism
is very encouraging. The proposed theory can account

for such experimentally observed features as the cascade
of phase transitions, magnetization, and valley polariza-
tions. Yet one must keep in mind that the experiments
were performed at finite electric field applied transverse
to a sample. In our formalism, this field is assumed to be
zero. Further research is needed to understand the role
of this field.

To conclude, we proposed a mechanism responsible for
the formation of the FraM states in doped AB-BLG. We
argue that, as doping increases, this system demonstrates
a cascade of phase transitions between various metallic
phases that differ in terms of spin-flavor and valley polar-
izations of their Fermi surfaces. Our theoretical findings

compare favorably to very recent experimentsi® on AB-
BLG.
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