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Over the last two decades, the hierarchical equations of motion (HEOM) of Tanimura and Kubo
have become the equation of motion-based tool for numerically exact calculations of system-bath
problems. The HEOM is today generalized to many cases of dissipation and transfer processes
through an external bath. In spatially extended photonic systems, the propagation of photons
through the bath leads to retardation/delays in the coupling of quantum emitters. Here, the idea
behind the HEOM derivation is generalized to the case of photon retardation and applied to the
simple example of two dielectric slabs. The derived equations provide a simple reliable framework
for describing retardation and may provide an alternative to path integral treatments.

I. INTRODUCTION

After the hierarchical equations of motion (HEOM)
were initially invented by Tanimura and Kubo [1, 2] to
solve numerically exactly the open quantum system prob-
lem with a Debye spectral density, the HEOM did not
immediately take off, since the limited numeric capa-
bilities did not allow for a versatile implementation at
the time. However, the idea of using the time constant
derivative of the Debye spectral density time correlation
function stuck. Recently, various implementations [2–7]
of HEOM followed after sufficient computing power be-
came available. Soon after its invention, many general-
izations using arbitrary spectral densities by decomposi-
tion into summed Debye form spectral densities were also
developed. For most system-bath approaches it provides
a well-established path to a numerically exact solution.

A different type of system-bath problem is the prop-
agation of quantum states, e.g., through a bath of pho-
tons or phonons [8–17]. A typical problem is describing
quantum interconnects for quantum computing and cryp-
tography applications. Recently, various applications of
these systems with a delay caused by the propagation
through the bath were investigated [8–17] including the
development of different methods. However, the number
of propagating photons is still limited, as it was for the
open quantum systems approaches until HEOM imple-
mentations became widespread, along with other meth-
ods such as tensor networks [14, 15, 18–33]. In this pa-
per, an analysis of the HEOM derivation in the context
of delay is carried out and HEOM analog equations for
systems with delay are derived. We demonstrate that the
approach leads to a systematic set of equations ordered
by the number of photons propagating through the bath.
In the future, combinations with, e.g., tensor networks
or automatic derivation may lead to an additional route
to solve problems involving delays.

∗ marten.richter@tu-berlin.de

The paper starts with a derivation of the HEOM ana-
log for open quantum systems with delay and illustrates
its potential with a simple photon propagation example.

II. DERIVATION OF HIERACHICAL
EQUATIONS OF MOTION (HEOM)

An HEOM analog with delay is derived for an open
quantum system with: H = Hs +Hb +Hsb. Here, Hs is
the Hamiltonian of the system, which consists of quan-
tum emitters in different spatially separated cavities. Hb

is the bath Hamiltonian containing the propagating pho-
ton modes. Finally, Hsb is the system-bath coupling
Hamiltonian. In open quantum systems, only the observ-
ables of the system are of interest, which can be calcu-
lated from the relevant density matrix ρs(t) = trB(ρ(t)).
Its calculation is the main objective of HEOM, where
we transfer the steps by Tanimura and Kubo [1] to sys-
tems with delay. We assume a factorized initial state
ρ(t0) = ρs(t0) ⊗ ρB , where ρB is a harmonic bath state.
The system dynamics obey:

ρs(t) = trB (T←U(t, t0)

exp

(
− i
~

∫ t

t0

dτU(t0, τ)Hsb,−(τ)U(τ, t0)

)
ρs(t0)⊗ ρB) , (1)

where ALρ = Aρ, ARρ = ρA, and A− = AL − AR
define the Liouville space operators acting on Liouville
operator ρ for any Hilbert space operator A [34] and

U(t, t0) = T←exp
(
− i

~
∫ t
t0

dτ(Hs,−(τ) +Hb,−(τ))
)

with

time ordering operator T←. Hs,−(τ) may also contain
Lindblad operators for describing external processes act-
ing on the joint system-bath state. Following the HEOM
derivation [1] and the path integral derivation from [17],
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we convert Eq. (1) to path integral form:

ρs(t) = trB (

T←

M∏
i=0

Ui,i−1exp

(∫ t0+εi

t0+ε(i−1)
dτU†i−1(τ)Hsb,−(τ)Ui−1(τ)

)
ρs(t0)⊗ ρB) (2)

with ε = (t − t0)/M and M → ∞ (in the fol-
lowing equations the limit is always assumed). Fur-
thermore, Ui,j = U(t0 + εi, t0 + εj) and Ui(τ) =
U(τ, t0 + ε(i)). For small ε, the approxima-

tion Ui,i−1 exp
(∫ t0+εi

t0+ε(i−1) dτU†i−1(τ)Hsb(τ)Ui−1(τ)
)
≈

Ui,i−1 + ε · Ui,i−1/2Hsb(t0 + ε(i − 1/2))Ui−1/2,i−1 =:

Ui,i−1 + ε · U (1)
sb (i) holds, yielding:

ρs(t) = trB

(
T←

M∏
i=0

(Ui,i−1 + ε · U (1)
sb (i))ρs(t0)⊗ ρB

)
.

We assume linear system-bath coupling: Hsb =∑
ijµ CijµAijBµ with system Aij and linear bath opera-

tor Bµ. For a system A and bath B Liouville operator

the relation (AB)− = A+B− + A−B+ holds, so U
(1)
sb (i)

can be written as a sum over products of the system

and bath operators U
(1)
sb (i) =

∑
lA

(1)
l (i)B

(1)
l (i), and we

define A
(0)
l = Usi,i−1δl,0 and B

(0)
l = U bi,i−1δl,0 with the

system and bath parts of Ui,i−1. With these relations,
we write ρS in terms of a system part S and an influence
functional (similar form as in [17]),

ρs(t) =

1∑
k1... kM=0

∑
l1... lM

(
M∏
i=1

εki

)
S(k1l1, ... , kM lM )

× I(k1l1, ... , kM lM ). (3)

The system part is still an operator S(k1l1, ... , kM lM ) =

T←
∏M
i=1A

(ki)
li

(i)ρs(t0), while the influence functional

Figure 1. (a) Model of two open QNM cavities with dissi-
pation rates γµ and effective inter-cavity coupling strength
Vµη. (b) 1D model with two slabs with constant permittivity
εR = π2 serving as QNM cavities, sitting against a back-
ground εB = 1. (c) Scheme of the HEOM depicting a process
including inter-cavity transfer and dissipation.

I(k1l1, ... , kM lM ) = trB(T←
∏M
i=1B

(ki)
li

(i)ρB) is just a
number. Since ρB is assumed to be a harmonic bath equi-
librium state, Wick’s theorem allows us to factorize the
influence functional I into expectation values of two bath

operators B
(1)
l (·). Furthermore, for small ε, the system

propagator is roughly Usi,i−1 ≈ Ids − i
~εHs,−(t0 + ε(i −

1/2)). Using the approximations of the time propagators
and using Wick’s theorem we obtain,

ρs(t+ ε) ≈ ρs(t)− ε
i

~
Hs,−(t0 + ε(M + 1/2))ρs(t)

+
∑
lM+1

T←εA
(1)
lM+1

∑
k1... kM

∑
l1... lM

(
M∏
i=1

εki

)
Akili (i)ρs(t0)

×
M∑
m=1

trB(B
(1)
lM+1

(M + 1)UBM,m+1B
(1)
lm

(m)ρB)δkm,1

I(k1l1, ... , km−1lm−1, 00, km+1lm+1... , kM lM ),

including only the terms at most linear in ε. Collecting
the terms linear in ε yields the derivative of ρs[1]:

∂tρs(t) = − i
~
Hs,−(t)ρs(t) (4)

+
∑
ll̃

A
(1)
l (t)

∫ t

t0

dt1〈B(1)
l (t)B

(1)

l̃
(t1)〉Bρ(1)sl̃ (t, t1),

where 〈A〉B = trB(AρB) and the bath correlation func-
tion is in the interaction picture, and the first order
auxiliary density matrix (ADM) ρ(1) reads

ρ
(1)
sl (t, t̃) = δkm1δlml

〈
T←

M∏
i=1.i6=m

B
(ki)
li

(i)

〉
B∑

k1...kM

∑
l1...lM

T←A
(1)
l (m)

 M∏
i=1,i6=m

εkiA
(ki)
li

(i)

 ρs(t0),

with t̃ = mε + t0. Here, the derivation deviates from
the original recipe of Kubo and Tanimura, since the as-
sumption of a spectral density in Debye form (simple
exponential e−γt in time) is not compatible with systems
including delay. Generalizations of HEOM usually rely
on a decomposition of the spectral density into a sum of
exponential functions to recover the Debye form. How-
ever, an expansion of the correlation function for the de-
lay case using e−γ|t−tdelay| does not yield the advantages
of Kubo’s and Tanimura’s approach, since the original
relies on a time constant derivative of the Debye spec-
tral density time correlation function. Instead, a delayed
correlation of the above form introduces a sign change at
t = tdelay, so that a dependence of ρ(n) on earlier inte-
gration times is unavoidable in the case with delay. Thus
the integration over t1 is not included in the definition
of ρ(1) in contrast to the original HEOM [1]. Keeping
the general form of the bath correlation function is more
flexible than using a special form, which would simplify
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the equations of motion in the following. ρ
(1)
sl (·, t1) de-

scribes bath disturbances to the system density matrix,

which are initially caused by an interaction with A
(1)
l at

time t1 (similar to the auxiliary dimensions in extended
TCL [35]). Of course, the additional time argument pre-
vents direct numerical implementations for increasing n.
But specific bath correlation functions together with an-
alytic calculation or tensor network methods [14, 15, 29–
33, 36–40] will allow solutions nevertheless. Using the
same technique as for ∂tρs(t) yields:

∂tρ
(1)
sl1

(t, t1) = − i
~
Hs,−(t)ρ

(1)
sl1

(t, t1)

+
∑
l2 l̃2

A
(1)
l2

(t)

∫ t

t0

dt2〈B(1)
l2

(t)B
(1)

l̃2
(t2)〉Bρ(2)sl1 l̃2(t, t2, t1)

+ δ(t− t1)A
(1)
l1

(t1)ρs(t1 − 0+). (5)

where we use the interaction picture for the bath correla-

tion function. Instead of an initial condition ρ
(1)
sl1

(t1, t1) =

Al1(t1)ρs(t1 − 0+), the δ term at the time of the initial

condition is included, i.e., ρ
(1)
sl1

(·, t1) is equal to zero (in

the delta case) or not defined (in the initial condition
case) before time t1. Note that t1, t2 of the second order
ADM ρ(2)(t, t2, t1) are not time ordered since different
delay/retardation times can occur in open quantum sys-
tems.

The form of ρ(2) points to a general definition of the
n-th order ADM ρ(n) starting with ρ(0)(t) = ρs(t):

ρ
(n)

sl̃1... l̃n
(t, t̃n, ... , t̃1) =

∑
k1...kM

∑
l1...lM

T←

 n∏
j=1

A
(1)

l̃j
(mj)δl̃j ,lmj

δk̃mj 1


 M∏
j=1,∧ni=1j 6=mi

εkjA
(kj)
lj

(j)

 ρs(t0)

〈
T←

M∏
j=1,∧ni=1j 6=mi

B
(kj)
lj

(j)

〉
B

, (6)

with t̃i = miε+ t0. Analogous to ρ(1), this yields:

∂tρ
(n)
sl1... ln

(t, t1, ... , tn) = − i
~
Hs,−(t)ρ

(n)
sl1... ln

(t, t1, ... , tn)

+
∑

ln+1 l̃n+1

A
(1)
ln+1

(t)

∫ t

t0

dtn+1〈B(1)
ln+1

(t)B
(1)

l̃n+1
(tn+1)〉B

ρ
(n+1)

sl1...ln l̃n+1
(t, t1, . . . , tn+1)

+

n∑
p=1

δ(t− tp)A(1)
lp

(tp) (7)

× ρ(n−1)sl1... lp−1lp+1... ln
(tp − 0+, t1, ... , tp−1, tp+1, ... tn+1).

The last term is again a replacement to an initial condi-

tion: ρ
(n)
sl1... ln

(tp, t1, ... , tn) = Alp(tp)ρ
(n−1)
sl1... lp−1lp+1ln

(tp −

0+, t1, ... , tp−1, tp+1, ... , tn) with tp = maxi(ti), and it is

clear that ρ
(n)
sl1... ln

(t, t1, ... , tn) = 0 for t < tp. So for the
last term only p with the largest time tp contributes. Fur-

thermore, the ADM ρ(n) is invariant under permutations
of t1, ... , tn including their corresponding l1, ... , ln.
The HEOM analog scales exponentially with n in both
the number of indices li, which contain the possible states
involved in the initial interaction at time ti, as well as in
the number of additional time arguments ti. The num-
ber of possible initial states per li and the number of
necessary timesteps per ti enter into the base of this
exponential scaling. For specific applications (e.g., the
delta-like correlation functions used in the example be-
low), the number of necessary timesteps can be signifi-
cantly reduced to include only a short timeframe (e.g.,
the delay time).
The physics behind Eq. (7) is very accessible: Under
the rotating wave approximation and for a bath with
negligible initial photon number, n corresponds to the
maximum number of photons propagating between two
systems through the bath at a given time t, so an exact
truncation of the equations based on the traveling pho-
tons is possible. For cases where these assumptions do
not hold, such an intuitive physical interpretation of the
ADMs is not possible. Note, the photons on the left and
right side states of the density matrix count accumulat-
ing, so a transfer of a single photon density requires two
traveling photons (left and right side of density matrix),
as opposed to one traveling photon for a single photon
coherence. For other open quantum system equations
of motion techniques such as Nakajima-Zwanzig [41] or
time convolution less (TCL) equations [41], the gener-
ators K in the equations of motion contain the system-
bath coupling in any order. A calculation of higher-order
contributions from K is generally cumbersome involving
higher products of system-bath correlation functions as
well as a truncation at a given photon number. For the
HEOM analog, only one system-bath correlation function
appears in the second term of Eq. (7) cleanly separating
on photon number. The first term of Eq. (7) describes
the system dynamics. The second term represents the
absorption of a bath photon, which entered the bath at
time tn+1. The last term describes photon emission into
the bath.

III. APPLICATION TO PHOTON
PROPAGATION

As a benchmark for the new approach, we consider
two spatially separated quasinormal mode (QNM) cavi-
ties, coupled to a common photonic bath (Fig. 1(a)). The

QNMs f̃µ are an open system analog to normal modes,
which solve the Helmholtz equation under an outgoing
radiation condition [42–48]. QNMs have complex eigen-
frequencies ω̃µ = ωµ−iγµ with photon decay rate γµ > 0.
Here, two dielectric slabs serve as QNM cavities as in
Fig. 1(b). We assume an effective 1D problem with ho-
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mogenous continuation in the y, z direction. The model
allows the analytical calculation of the modes (assuming
a constant real permittivity εR) and coupling elements
(cf. Appendix A). We include only the lowest energy
QNM, assuming that all other modes are off-resonance.
Since the slabs are identical, both have the same fre-
quency ω̃A = ω̃B = ω̃1. However, we keep the indices
for generality. The slabs are separated by the distance
R, which is large enough for a separate quantization of
the modes without direct inter-cavity coupling. Instead,
the QNMs couple to a common surrounding bath. This
interaction is described by the Hamiltonian

HSB = ~
∑

µ=A,B

∫
dx

∫ ∞
0

dωgµ(x, ω)ĉ(x, ω)â†µ + H.a.,

(8)

where âµ are the QNM operators for slab µ. The bath
operators ĉ(x, ω) are assumed to be Bosonic. The deriva-
tion of the Hamiltonian and coupling elements gµ(x, ω)
are shown in Appendix A.

A. Equations of motion for two traveling photons

As a first step, we limit the dynamics to cases with
at most two propagating photons (one on each side or
two on one side of the density matrix). Therefore, the
hierarchy truncates at the second order ADM, i.e., ρ(n) =
0, n > 2, and:

ρ
(2)
s,l1,l2

(t, t1, t2) =

Θ(t1 − t2)Us(t, t1)A
(1)
l1

(t1)ρ
(1)
s,l2

(t1 − 0+, t2)

+ Θ(t2 − t1)Us(t, t2)A
(1)
l2

(t2)ρ
(1)
s,l1

(t2 − 0+, t1), (9)

using the initial conditions for ρ(2). Inserting Eq. (9) into
Eq. (5), we obtain:

∂tρ
(1)
sl1

(t, t1) = − i
~
Hs,−(t)ρ

(1)
sl1

(t, t1)

+
∑
l2 l̃2

A
(1)

l̃2
(t)

∫ t1

t0

dt2〈B(1)

l̃2
(t)B

(1)
l2

(t2)〉B

× Us(t, t1)A
(1)
l1

(t1)ρ
(1)
sl2

(t1 − 0+, t2)

+
∑
l2 l̃2

A
(1)

l̃2
(t)

∫ t

t1

dt2〈B(1)

l̃2
(t)B

(1)
l2

(t2)〉B

× Us(t, t2)A
(1)
l2

(t2)ρ
(1)
sl1

(t2 − 0+, t1)

+ δ(t− t1)A
(1)
l1

(t1)ρs(t1 − 0+). (10)

Eqs. (10) and (4) form a closed set of equations of mo-
tion for the system density matrix that are exactly solv-
able (cf. Appendix B) for at most two traveling photons.
Fig. 1(c) illustrates connections between the equations
with one photon traveling from time t1 = t − τ until t

Figure 2. Dynamics of photon exchange between two dielec-
tric slabs. (a) Single-photon occupations in the slabs for an
initial state with one photon in slab A. The dotted lines show
the full wave function solution. (b) Two-photon coherences.
(c) Approximate dynamics of the occupations with initially
two excitations in slab A. In all cases, the QNM frequen-
cies of the slabs are identical ω̃1 = (0.06 − 0.0124i) eV, with
coupling strength VBA = VAB = 0.0062 eV, and delay time
τ ≈ 44 ps.

through the bath, requiring the calculation of ρ(1). In-
termittently a second photon is emitted into the bath at
t2.

The dynamics of a specific system are determined by

the system-bath correlation function 〈B(1)

l̃2
(t)B

(1)
l2

(t1)〉B ,

which describes the emission of a photon into the bath at
time t1 and reabsorption at time t. For applications, the

abstract operators B
(1)
l have to be replaced with opera-

tors adapted to the problem. Comparing the system-bath
Hamiltonian from Eq. (8) to the abstract form suggests
the replacements

Al(t)→ Âαν1ν2(t),

Bl(t)→ (11)∑
µ=A,B

〈ν1|âµ|ν2〉
∫

dx

∫ ∞
0

dωg∗µ(x, ω)ĉ†α(x, ω) + H.a.,

where Âν1ν2 = |ν1〉〈ν2| with system states |νi〉, and
α = L,R for left/right Liouville space operators. The
resulting correlation function thus reads

〈B(1)

l̃2
(t)B

(1)
l2

(t1)〉B → Cαν1ν2ν3ν4(t, t1),

with CLν1ν2ν3ν4(t, t1) =
∑
µη〈ν1|â†µ|ν2〉〈ν3|âη|ν4〉Cµη(t −

t1) and CRν1ν2ν3ν4(t, t1) =
(
CLν1ν2ν3ν4(t, t1)

)∗
. The index α

refers to the interaction at time t1. The QNM correlation
function Cµη for the two coupled dielectric slabs from
Fig. 1(b) reads (cf. Appendix A)

Cµη(t− t′) ≈ 2Vµη~2 (Θ(t− t′)δ(t− t′ − τ)

+ Θ(t′ − t)δ(t− t′ + τ)) . (12)
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The coupling strength is given by Vµη = (1 + δµη)γ1/2
with the cavity decay rate γ1. Due to the topology of
the system, the inter-cavity coupling is exactly half the
dissipation rate. For the 1D case, a photon emitted away
from the other cavity will not return, while a photon
emitted towards the other cavity can be transferred into
that cavity. In higher dimensions, the inter-cavity cou-
pling will generally be much smaller than the dissipation
rate. The delay time τ in Eq. (12) depends implicitly on
the involved cavities, with τ = (1− δµη)R/c.

B. Exact inter-cavity dynamics using HEOM

For one initial excitation (one photon on each side
of the density matrix), three system states |A〉 =
|10〉, |B〉 = |01〉, |0〉 = |00〉 contribute, with the exci-
tation in slab A or B, or both slabs in the ground state,
respectively. For this setup, the truncation of the HEOM
is exact since the maximal number of propagating pho-
tons at any time is set by the initial conditions. Inserting
Eq. (12) into Eq. (4) yields the equations of motion. As
an example, the occupation in slab A 〈A|ρs(t)|A〉 evolves
as (cf. Appendix B):

∂t〈A|ρs(t)|A〉 = −2γA〈A|ρs(t)|A〉

− 2V ∗BAeiωBτ 〈0|ρ(1)Ls,0B(t, t− τ)|A〉+ c.c. (13)

For the auxiliary density matrix ρ(1), starting from
Eq. (10) and switching to a rotating frame (cf. Appendix
B) results in:

∂t〈0|ρ(1)Ls,0B(t, t1)|A〉 = δ(t− t1)〈B|ρs(t1)|A〉

− γA〈0|ρ(1)Ls,0B(t, t1)|A〉

− 2VBAe−iωBτ 〈B|ρ(1)Rs,B0(t1, t− τ)|0〉

− 2VBAe−iωAτ 〈0|ρ(1)Ls,0B(t− τ, t1)|A〉. (14)

The remaining equations for the occupation in B, the co-
herences, and matrix elements for ρ(1) are of a similar
form (cf. Appendix B). Time-local processes such as cav-
ity photon dissipation are included in the zeroth step of
the hierarchy. For time-non-local interactions, the sys-
tem density matrix in Eq. (13) only couples to the first
auxiliary density matrix ρ(1).

Fig. 2(a) shows the time dynamics of the single-photon
occupations in slabs A and B. The model system allows a
calculation using the wave function (cf. Appendix C) as
a benchmark. The HEOM (solid lines) and exact wave
function (dotted lines) results agree perfectly. Over time
the single excitation in slab A will dissipate into the bath.
However, some photons are transferred to the QNM of
slab B with delay τ ≈ 44 ps. For the used parameters,
the occupation in B is even larger than the occupation
in A after some time. Eventually, the system arrives at
a trapped state [14, 49–54] due to interference from the
inter-cavity transfer.

Note that the HEOM allows in principle the inclusion
of Lindblad terms (e.g. for pumping), which the wave
function does not. Also, an extension to two-photon pro-
cesses is feasible for the HEOM. Fig. 2(b) shows the two-
photon coherences (two photons on one side of the den-
sity matrix, none on the other) for the two slabs from
Fig. 1(b), which includes at most two traveling photons,
resulting in a calculation analogous to Fig. 2(a)(cf. Ap-
pendix B). The amplitudes of the intra-cavity coherences
〈20|ρs|00〉/〈02|ρs|00〉 resemble the dynamics of the den-
sities in Fig. 2(a), since in principle the same indepen-
dent processes are involved. The inter-cavity coherence
〈11|ρs|00〉 requires the transfer of just one photon and
thus shows a rapid increase after t = τ . In the final
equilibrium state, the probability (coherence squared) of
the inter-cavity contribution matches the sum of the two
intra-cavity probabilities.

C. Approximate truncation of multi-photon
processes

A feasible calculation of the exact solution as shown
here is limited to a small number of photons by the ex-
ponential scaling of the numerical complexity with the
number of excitations. For systems requiring a higher
number of traveling photons, a calculation of the higher
steps in the hierarchy via matrix product states or other
tensor networks [14, 15, 29–33, 36–40] may be possible as
well as analytic calculations in special setups.
The HEOM also allows a perturbative truncation of the
hierarchy for systems with a small system-bath coupling.
Thus, at least an approximate solution is possible for
higher excitation numbers. Such an approximative solu-
tion is shown in Fig. 2(c) for the case of the two slabs with
an initial population of two excitations in slab A. In prin-
ciple, this setup can show up to four propagating photons
(two on each side of the density matrix). For small inter-
cavity couplings Vµη, however, the timescale on which
photons are exchanged between the cavities is longer than
the propagation time τ of the photons. Therefore assum-
ing at most two photons traveling through the bath at
any time, a truncation of the hierarchy at the second step,
i.e., ρ(n) = 0 for n > 2, may give good results. Under
this assumption, the equations of motion reduce to the
closed set of equations from Sec. III A, and the dynam-
ics are calculated in the same way as for the one-photon
densities (cf. Appendix B). Here, the two-photon pop-
ulation in slab A 〈20|ρs|20〉 decays exponentially while
emitting photons into the bath. Because of this instant
emission, the occupation 〈10|ρs|10〉 with one photon in
slab A and the ground state 〈00|ρs|00〉 with no photons in
the cavities increase immediately. In contrast, the states
〈11|ρs|11〉 with one photon in each slab and 〈01|ρs|01〉
with one photon in slab B only increase after t = τ ,
since the photons need to travel R = cτ between the
slabs. However, the density 〈02|ρs|02〉 only increases af-
ter t = 2τ . This is an artifact of the two-photon trun-
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cation of the HEOM since the transfer from 〈20|ρs|20〉
to 〈02|ρs|02〉 requires four propagating photons (two on
each side). In contrast, the transfer of the two-photon
coherence from Fig. 2(b) requires only two photons on
one side, so that the coherence 〈02|ρs|00〉 increases al-
ready after t = τ , even though the density 〈02|ρs|02〉
takes twice as long to increase. If the photon transfer
rate and delay time are small enough, this error is ex-
pected to be small, if few enough photons are transferred
at once during the time τ . However, a small, qualitative
difference to the exact solution is unavoidable. For larger
coupling strengths or delay times, the approximate solu-
tion will deviate increasingly from the real solution and
additional steps in the hierarchy must be included.

IV. CONCLUSION

In conclusion, we analyzed the derivation of hierar-
chical equations of motion and transferred the idea to
open quantum systems with delay. The resulting equa-
tions allow a natural, easy truncation on the number of
excitations in the bath, which is otherwise cumbersome
for Nakajima-Zwanzig or time convolution-less equations.
The first implementation for single- and multi-photon
transfer between two cavities demonstrated the feasibility
of the approach. We expect that in the future more de-
manding implementations including tensor network ap-
proaches may allow the simulation of several photons
traveling through complex quantum networks.

Appendix A: Analytic coupling elements

We use analytic expressions of the mode frequencies,
decay constants, and coupling elements for numeric eval-
uation. For linearly polarized waves and assuming a ho-
mogeneous continuation in y, z-direction, the problem re-
duces to the 1D model from Fig. 1(b). The QNM within
each slab is given by [48, 55]

f̃µ(x)
∣∣∣
|x|<L/2

= einRkµx + e−inRkµx+iµπ, (A1)

where nR =
√
εR is the refractive index of the slab and

kµ = ω̃µ/c is the QNM wavenumber. The QNM fre-
quency ω̃µ is [48, 55]

ω̃µL/c =
2πµ+ iln

(
(nR − nB)2/(nr + nB)2

)
2nR

. (A2)

Thus, the frequency of the first QNM f̃1(x) is

ω̃1 = ω1 − iγ1 = (1− i0.21)L/c. The second QNM f̃2(x)
has a resonance frequency that is twice as large. Hence,
as a first approximation, we take only the first QNM in
our calculations.
Outside of the cavity (|x| > L/2), we re-
place the QNMs with regularized modes [56]

F̃µ(x, ω) =
∫ L/2
−L/2 dx′GB(x, x′, ω)∆ε(x′)f̃µ(x′) =

(x/|x|)Mµ(ω)eiω|x|/c, where ∆ε(x) = εR − εB , |x| < L/2,
and 0 otherwise, and

Mµ(ω) =
i

2
L(π2 − 1)

[
si

(
(ω + πω̃µ)L

2c

)
−si

(
(ω − πω̃µ)L

2c

)]
(A3)

is an analytical factor that vanishes for ω → ∞.
si(x) = sin(x)/x is the unnormalized sinc-function.

GB(x, x′, ω) = ie−iω|x−x
′|/c/2 is the vacuum Green’s

function for the case of linearly polarized waves, solving
the Helmholtz equation

(
∂2x +

ω2

c2

)
GB(x, x′, ω) =

ω2

c2
δ(x− x′). (A4)

We locate the slab A at x = 0 and slab B at x = R (cf.

Fig. 1(b)), so that f̃1(x) = f̃A(x) and f̃B(x) = f̃A(x−R).
We quantize the QNMs following the procedure laid out
in [47], with minor adjustments due to the 1D nature of
the problem, e.g., taking the 1D analog of the electric
field quantization and QNM Green’s function instead of
the 3D expressions that were used in [47]. Since the QNM
quantization relies on a complex permittivity, we add a
constant imaginary part to the permittivities of the slabs
and background medium: εα = εR/B + iακ (cf. [57]) so
that the original values are retained in the limit α → 0.
Taking the 1D analog of the quantization in dissipative
media from [58], we find the electric field operator to be

Eα(x) =

∫ ∞
0

dω

∫
dx′

i

ωε0
Gα(x, x′, ω)ĵα(x′, ω) + H.a.,

(A5)

where G(x, x′, ω) is the Greens function of the dissipa-

tive medium and ĵα(x, ω) = ω
√

(~ε0/π)εαI (x, ω)b̂(x, ω)

is the noise-current density operator, with b̂(x, ω) a
Bosonic photon annihilation operator. εI is the imag-
inary part of the permittivity, which is frequency in-
dependent in the model from Fig. 1(b), but we keep
the frequency dependence for generality. We use the
Green’s function expansion in terms of QNMs [43, 55, 56]

G(x, x′, ω) =
∑
µ=A,B Aµ(ω)f̃µ(x)f̃µ(x′), where Aµ(ω) =

ω/(2(ω̃µ − ω)), and the QNM functions f̃µ are replaced

with regularized modes F̃µ outside their respective cav-
ity volumes. Inserting the QNM Green’s function into
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Eq. (A5), we find QNM operators analogous to [47]:

ãA =

√
2

πωA

∫ ∞
0

dωAA(ω)

×

[∫ L/2

−L/2
dx
√
εαI (x, ω)f̃αA(x)b̂(x, ω)

+ lim
λ→∞

∫ λ

L/2

dx
√
εαI (x, ω)F̃αA(x, ω)b̂(x, ω)

+ lim
λ→∞

∫ −L/2
−λ

dx
√
εαI (x, ω)F̃αA(x, ω)b̂(x, ω)

]
,

(A6)

which depend implicitly on α → 0. In the first integral,
the limit α → 0 can be carried out immediately, so that
this contribution vanishes, because limα→0 ε

α
I = 0. In

the other two integrals, the order of the limits cannot be
exchanged, as pointed out in [57], so the limit λ→∞ has
to be taken first. The operators for the QNMs of cavity
B are defined analogously, just spatially shifted by R.
The QNM operators defined in Eq. (A6) are non-Bosonic,

with
[
ãA, ã

†
A

]
= SAA, and

SAA =
2

πωA

∫ ∞
0

dωAA(ω)A∗A(ω)

×

[
lim
λ→∞

∫ λ

L/2

dxεαI (x, ω)F̃αA(x, ω)F̃ ∗,αA (x, ω)

+ lim
λ→∞

∫ −L/2
−λ

dxεαI (x, ω)F̃αA(x, ω)F̃ ∗,αA (x, ω)

]
.

(A7)

Analogous to [57], we employ the Helmholtz equation of
the background Green’s function (Eq. (A4)) to reduce the
integral over x to the value of the modes at the limits of
the integration volume. Taking the limit λ → ∞ first
and then α→ 0, we find

SAA =
2c

γ1
|M1(ω̃1)|2 , (A8)

where we used ω̃A = ω̃1.
The overlap integral [ãA, ã

†
B ] = SAB is calculated ac-

cordingly. We make use of the fact that the two slabs are
identical except for their spatial separation and hence
ω̃A = ω̃B = ω̃1, to obtain

SAB =
2c

γ1
|M1(ω̃1)|2 Re

{
ω̃1

2ω1
e−iω1R/c

}
e−γ1R/c. (A9)

Since
∣∣Re

{
ω̃1e−iω1R/c/(2ω1)

}∣∣ < 1, it follows that

|SAB/SAA| < e−γ1R/c, due to the retarded interaction
between the slabs. The QNMs penetrate through the
boundary of the slab so that there is a non-zero overlap
even without time delay. However, the mode is concen-
trated at the cavity so that the overlap is small if the

slabs are well enough separated. Below, the correlation
functions are discussed for the case with finite time delay.
The QNM wavelength is λ1 = 2L, so a separation of a
few dozen wavelengths, as used in the main text, leads
to negligible contributions of the overlap.
Thus, the QNM operators are symmetrized indepen-
dently within their respective cavities similar to the
single-cavity case in [47]:

âµ =

∫
dx

∫ ∞
0

dωLµ(x, ω)b̂(x, ω), (A10)

with

Lµ(x, ω) = S−1/2µµ

√
2εI(x, ω)

πωµ
Aµ(ω)f̃µ(x), (A11)

and the mode function f̃µ is replaced by the regularized

mode F̃µ outside the slab volume. The imaginary part
of the permittivity and the bounds of the spatial integral
include implicit limits, as discussed above.

We now define continuum operators ĉ(x, ω) = b̂(x, ω) −∑
µ=A,B L

∗
µ(x, ω)âµ [59], which commute with the sym-

metrized Bosonic QNM operators and serve as the bath.
While they are generally non-Bosonic, as a first ap-
proximation, we neglect the non-Bosonic contributions.
This allows us to decompose the full Hamiltonian H =

~
∫

dx
∫∞
0

dωωb̂†(x, ω)b̂(x, ω) into system and bath parts
[59]:

HS = ~
∑

µ=A,B

ωµâ
†
µâµ,

HB = ~
∫

dx

∫ ∞
0

dωωĉ†(x, ω)ĉ(x, ω),

HSB = ~
∑

µ=A,B

∫
dx

∫ ∞
0

dωgµ(x, ω)ĉ(x, ω)â†µ + H.a.

(A12)

The coupling elements gµ(x, ω) = −S−1/2µµ ×√
εI(x, ω)/(2πωµ)ωf̃µ(x), are derived from the pro-

jectors Lµ(x, ω), with the pole at ω = ω̃µ removed
during the derivation, as shown in [59].
To derive the coupling strength of the interaction
between the slabs mediated via the bath, we calculate
the correlation function [34, 60] that characterizes the
system-bath interaction in the HEOM formalism:

Cµη(t− t′) = ~2
∫ ∞
0

dω

∫ ∞
0

dω′
∫

dx

∫
dx′e−iω(t−t

′)

×gµ(x, ω)g∗η(x′, ω′)
〈
ĉ(x, ω)ĉ†(x′, ω′)

〉
B
.

(A13)

For ρB = |0〉〈0| (no initial photons), the expectation
value results in a delta function, so only an integral over
the coupling elements remains. This is calculated simi-
larly to [59], i.e., by assuming that the coupling is sharply
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peaked at the QNM frequency, so that∫
dxgµ(x, ω)g∗η(x, ω) ≈ S−111

2c

γ1
|M1(ω̃1)|2 γ1

2π

×
(

eiωRµη/c + e−iωRµη/c
)
, (A14)

where |Rµη| is R if µ 6= η and 0 otherwise. Using S11 =
2c|M1(ω̃1)|2/γ1, and defining the retardation time τ =
Rµη/c as an implicit function of µ and η, the correlation
function becomes

Cµη(t− t′) =
γ1~2

2π

∫ ∞
0

dω
(
eiωτ + e−iωτ

)
e−iω(t−t

′),

(A15)

As a final approximation, we extend the lower limit to
−∞ [59], to obtain the correlation function in Eq. (12).

Appendix B: Calculation of the equations of motion

For equations of motion of the density-matrix ele-
ments, we use the replacements from Eq. (11) to convert
Eq. (4) to a more explicit form:

∂tρs(t) = − i
~
Hs,−(t)ρs(t)

+
∑

α,β=L,R

∑
ν1...ν4

(−1)α+βÂαν1ν2(t)

×
∫ t

t0

dt1C
β
ν1ν2ν3ν4(t, t1)ρ(1)βs,ν3ν4(t, t1), (B1)

where the sign is negative if α 6= β. For brevity, we use
|A〉, |B〉, |0〉 as defined in the main text, above Eq. (13).
To derive Eq. (13), we take the expectation value with
respect to state |A〉 on (B1) to obtain,

∂t〈A|ρs(t)|A〉 = − i
~
〈A|Hs,−ρs(t)|A〉

+
∑

α,β=L,R

∑
ν1...ν4

(−1)α+β
∫ t

t0

dt1C
β
ν1ν2ν3ν4(t, t1)

× 〈A|Âαν1ν2(t)ρ(1)βs,ν3ν4(t, t1)|A〉.
(B2)

Since the |νi〉 are orthogonal, only certain combinations
of states and α, β survive. The integral and the sums are
eliminated using the definition of the QNM correlation
function (Eq. (12)) and the initial conditions for ρ(1). To
avoid fast-rotating terms, we move to a rotating frame,
where we use a rotating-frame representation of ρ(1) with
respect to its time arguments, e.g.,

〈0|ρ(1),Ls,0B (t, t1)|A〉 → eiω1(t−t1)〈0|ρ(1),Ls,0B (t, t1)|A〉, (B3)

where we have used ωA = ωB = ω1. This results
in the first-order equation of motion given in Eq. (13).

Similarly, we obtain an equation for the coherence
〈A|ρs(t)|B〉:

∂t〈A|ρs(t)|B〉 = −(γA + γB)〈A|ρs(t)|B〉

− 2V ∗BAeiωBτ 〈0|ρ(1)Ls,0B(t, t− τ)|B〉+ c.c.(A↔ B). (B4)

The equations for the occupation in slab B and the second
coherence term are obtained from Eq. (13) and Eq. (B4),
respectively, by exchanging A↔ B.
For Eq. (14), we insert Eq. (11) into Eq. (10) and
again use the rotating frame. Within the rotating-frame,

〈0|ρ(1),Ls,0B (t, t1)|A〉 evolves according to Eq. (14). In the
same manner, we derive:

∂t〈A|ρ(1)Rs,A0(t, t1)|0〉 = δ(t− t1)〈A|ρs(t1)|A〉

− γA〈A|ρ(1)Rs,A0(t, t1)|0〉

− 2V ∗BAeiωBτ 〈0|ρ(1)Ls,0B(t1, t− τ)|A〉

− 2V ∗BAeiωBτ 〈B|ρ(1)Rs,A0(t− τ, t1)|0〉. (B5)

The last six matrix elements of ρ(1) are derived from
Eq. (14) and (B5) by complex conjugation or exchanging
the indices A and B. Note that ρ(1)(t, t1) vanishes for
t < t1 or t1 < 0. Furthermore, only ρ(1)(t, t− τ) appears
in Eq. (13) and Eq. (B4). Therefore, the last terms in
Eq. (14) and Eq. (B5), respectively, do not contribute to
the dynamics of ρs.

For the two-photon coherences, we obtain (following a
similar derivation as for the single-photon occupation):

∂t〈20|ρs(t)|00〉 = −2γA〈20|ρs(t)|00〉

−
√

8V ∗BAeiωAτ 〈10|ρ(1)Ls,0B1B
(t, t− τ)|00〉, (B6)

where we use 0B and 1B to indicate that the initial
system-bath interaction involves the transition of cavity
B from the one-photon state to the ground state. Anal-
ogously, 〈02|ρs(t)|00〉 = (〈20|ρs(t)|00〉)(A↔ B) and

∂t〈11|ρs(t)|00〉 = −(γA + γB)〈11|ρs(t)|00〉

−
√

8V ∗BAeiωAτ 〈01|ρ(1)Ls,1B2B
(t, t− τ)|00〉

−
√

8V ∗ABeiωBτ 〈10|ρ(1)Ls,1A2A
(t, t− τ)|00〉

− 2V ∗BAeiωAτ 〈01|ρ(1)Ls,0B1B
(t, t− τ)|00〉

− 2V ∗ABeiωBτ 〈10|ρ(1)Ls,0A1A
(t, t− τ)|00〉. (B7)

The equations for the matrix elements of ρ(1) in the rotat-
ing frame read (keeping only those terms that contribute
to ρs):

∂t〈10|ρ(1)Ls,0B1B
(t, t1)|00〉 = δ(t− t1)〈11|ρs(t1)|00〉

− γA〈10|ρ(1)Ls,0B1B
(t, t1)|00〉

−
√

8V ∗BAeiωAτ 〈01|ρ(1)Ls,1B2B
(t1, t− τ)|00〉

− 2V ∗BAeiωAτ 〈01|ρ(1)Ls,0B1B
(t1, t− τ)|00〉, (B8)
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and

∂t〈10|ρ(1)Ls,0A1A
(t, t1)|00〉 = −γA〈10|ρ(1)Ls,0A1A

(t, t1)|00〉

− 2V ∗BAeiωAτ 〈10|ρ(1)Ls,0B1B
(t1, t− τ)|00〉,

∂t〈10|ρ(1)Ls,1A2A
(t, t1)|00〉 = δ(t− t1)〈20|ρs(t1)|00〉

− γA〈10|ρ(1)Ls,1A2A
(t, t1)|00〉. (B9)

The remaining three matrix elements are again obtained
by exchanging A ↔ B. The general equation for arbi-
trary states reads in the interaction picture:

∂t〈ν1|ρs(t)|ν2〉 = −
∑
µ,ν3

γµ
[
〈ν1|â†µ|ν3〉〈ν3|âµ|ν1〉

+ 〈ν2|â†µ|ν3〉〈ν3|âµ|ν2〉
]
〈ν1|ρs(t)|ν2〉

+ 2
∑
µ,ν3ν4

γµ〈ν1|âµ|ν3〉〈ν3|ρs(t)|ν4〉〈ν4|â†µ|ν2〉

− 2
∑

µη,ν3ν4ν5

(1− δµη)V ∗ηµeiω1τ 〈ν4|âη|ν5〉

×
[
〈ν1|â†µ|ν3〉〈ν3|ρ(1),Lν4ν5 (t, t− τ)|ν2〉

− 〈ν1|ρ(1),Lν4ν5 (t, t− τ)|ν3〉〈ν3|â†µ|ν2〉
]

− 2
∑

µη,ν3ν4ν5

(1− δµη)Vηµe−iω1τ 〈ν4|â†η|ν5〉

×
[
〈ν1|ρ(1),Rν4ν5 (t, t− τ)|ν3〉〈ν3|âµ|ν2〉
− 〈ν1|âµ|ν3〉〈ν3|ρ(1),Rν4ν5 (t, t− τ)|ν2〉

]
. (B10)

Here, â
(†)
µ are the QNM creation and annihilation opera-

tors from Eq. (A10). µ, η are system indices and νi is an
arbitrary system state. The general equation for ρ(1) is
obtained in the same manner and reads, in the rotating
frame and keeping only terms that contribute to ρs:

∂t〈ν1|ρ(1),Lν3ν4 (t, t1)|ν2〉 = δ(t− t1)δν1ν3〈ν4|ρs(t1)|ν2〉

−
∑
µ,ν5

γµ
[
〈ν1|â†µ|ν5〉〈ν5|âµ|ν1〉+ 〈ν2|â†µ|ν5〉〈ν5|âµ|ν2〉

]
× 〈ν1|ρ(1),Lν3ν4 (t, t1)|ν2〉

+ 2
∑
µ,ν5ν6

γµ〈ν1|âµ|ν5〉〈ν5|ρ(1),Lν3ν4 (t, t1)|ν6〉〈ν6|â†µ|ν2〉

− 2
∑

µη,ν5ν6ν7

(1− δµη)V ∗ηµeiω1τ 〈ν6|âη|ν7〉

×
[
δν3ν5〈ν1|â†µ|ν3〉〈ν4|ρ(1),Lν6ν7 (t1, t− τ)|ν2〉

− δν1ν3〈ν4|ρ(1),Lν6ν7 (t1, t− τ)|ν5〉〈ν5|â†µ|ν2〉
]

− 2
∑

µη,ν5ν6ν7

(1− δµη)Vηµe−iω1τ 〈ν6|â†η|ν7〉

×
[
δν1ν3〈ν4|ρ(1),Rν6ν7 (t1, t− τ)|ν3〉〈ν3|âµ|ν2〉
− δν3ν5〈ν1|âµ|ν3〉〈ν4|ρ(1),Rν6ν7 (t1, t− τ)|ν2〉

]
. (B11)

Appendix C: Wave function approach

For initially one excitation in slab A from Fig. 1(b),
the general wave function has the form

|ψ〉 = NA|A〉|0〉+NB |B〉|0〉+

∫
dx

∫ ∞
0

dωNx,ω|0〉|x, ω〉.

(C1)

The first state in the product state refers to the sys-
tem, and the second is the bath with continuous spatial
and frequency indices x, ω. N is the time-dependent am-
plitude of a particular state, with the initial conditions
NA(0) = 1, NB(0) = Nx,ω(0) = 0. In the interaction
picture, the dynamics of the states are governed by the
Schrödinger equation with the system-bath interaction
Hamiltonian from Eq. (A12). The QNM and bath op-
erators carry the free evolution of the system and bath:
âµ(t) = e−iωµtâµ and ĉ(x, ω, t) = e−iωtĉ(x, ω).
Multiplying the Schrödinger equation for (C1) with
〈0|〈A| from the left yields an equation for NA:

i~∂tNA(t) = ~
∫

dx

∫ ∞
0

dωNx,ωgA(x, ω)e−iωteiωAt.

(C2)

Similarly, we obtain the equation for Nx,ω:

i~∂tNx,ω(t) = ~
(
NAg

∗
A(x, ω)e−iωAt

+NBg
∗
B(x, ω)e−iωBt

)
eiωt,

which we integrate formally and insert the result back
into Eq. (C2) to find:

∂tNA(t) = − 1

~2

∫ t

0

dt′
(
CAA(t− t′)NA(t′)

+ eiωAt−iωBt
′
CAB(t− t′)NB(t′)

)
, (C3)

where we have inserted the definition of the QNM cor-
relation function from Eq. (A13). Using Eq. (12) and
ωA = ωB , we arrive at:

∂tNA(t) = −γANA(t)− 2V ∗BAeiωBτNB(t− τ)Θ(t− τ).
(C4)

An analogous derivation for NB yields a similar equation,
with the indices switched (A ↔ B). The density matrix
elements are calculated by multiplying the amplitudes
with their complex conjugates, e.g., 〈A|ρs|A〉 = |NA|2.
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[32] F. A. Schröder, D. H. Turban, A. J. Musser, N. D.
Hine, and A. W. Chin, Tensor network simulation of
multi-environmental open quantum dynamics via ma-
chine learning and entanglement renormalisation, Nature
communications 10, 1 (2019).

[33] A. D. Somoza, O. Marty, J. Lim, S. F. Huelga, and M. B.
Plenio, Dissipation-assisted matrix product factorization,
Phys. Rev. Lett. 123, 100502 (2019).

[34] V. Chernyak and S. Mukamel, Collective coor-
dinates for nuclear spectral densities in energy
transfer and femtosecond spectroscopy of molecu-
lar aggregates, J. Chem. Phys. 105, 4565 (1996),
https://doi.org/10.1063/1.472302.

[35] M. Richter and A. Knorr, A time convolution less density
matrix approach to the nonlinear optical response of a
coupled system–bath complex, Annals of Physics 325,
711 (2010).
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