
Structural spillage:
an efficient method to identify non-crystalline topological materials

Daniel Muñoz-Segovia*,1, 2, ∗ Paul Corbae*,3, 4 Dániel Varjas,5, 6
Frances Hellman,7, 4 Sinéad M. Griffin,4, 8, † and Adolfo G. Grushin2, ‡
1Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain

2Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
3Department of Materials Science, University of California, Berkeley, California 94720, USA

4Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
5Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden

6Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
7Department of Physics, University of California, Berkeley, California 94720, USA

8Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
(Dated: January 10, 2023)

While topological materials are not restricted to crystals, there is no efficient method to diagnose topology in
non-crystalline solids such as amorphous materials. Here we introduce the structural spillage, a new indicator
that predicts the unknown topological phase of a non-crystalline solid, which is compatible with first-principles
calculations. We illustrate its potential with tight-binding and first-principles calculations of amorphous bismuth,
predicting a bilayer to be a new topologically nontrivial material. Our work opens up the efficient prediction of
non-crystalline solids via first-principles and high-throughput searches.

Introduction-. Predicting which solids host non-trivial
electronic topological phases is a central problem in con-
densed matter physics. For crystalline solids, first principles
methods take advantage of crystal symmetries to identify topo-
logical materials [1–5]. However, symmetry-based methods
cannot be applied to diagnose non-trivial topology in ma-
terials that lack translational invariance such as amorphous,
polycrystalline, and quasicrystalline materials. In fact, given
the far greater ubiquity of non-crystalline materials in con-
densed matter, solving this challenge would open up several
new material classes far more numerous than crystals, with
both fundamental interest for novel phenomena unique to non-
crystalline matter [6–36], and for their possible greater ease of
integration into devices [37, 38].

Prior work on topology in non-crystalline materials used
convenient amorphous tight-binding models with average and
local symmetries [11, 14–16, 39], however these do not include
the full chemical and structural specificity found in real matter.
Similarly, real-space invariants [40–43], including Wannier-
based tight-binding formalism, require the system be treated
on a case-by-case basis and can be computationally costly.

To overcome this methodological problem, we introduce the
‘structural spillage’, which is inherently compatible with first-
principles approaches. Since the characterization of topol-
ogy in general relies on the comparison with a known refer-
ence [44], we propose that in our case the appropriate compar-
ison is between the wavefunctions of the non-crystalline target
system and a crystalline reference state. A similar approach
was proposed to identify topological band inversions in crys-
tals by Liu and Vanderbilt [45] who compared the wavefunc-
tion overlap in crystals with and without spin-orbit coupling
(the ‘spin-orbit’ spillage). Inspired by this idea, we define the
structural spillage as a measure of the overlap between wave-
functions with different structural configurations. By com-
paring this structural spillage for crystals, whose topological

characterization can be efficiently calculated using standard
symmetry-based methods [1–5], with those of non-crystalline
solids, the topological characterization of the latter can be
determined (Fig. 1).
We first define the general formulation of structural spillage

and how it can be used to diagnose topology in non-crystalline
systems once a known reference phase is identified. We next
exemplify its potential by diagnosing topological phase transi-
tions in amorphous bismuth, a previously identified non-trivial
amorphous system, using both a tight-binding model and den-
sity functional theory (DFT).Our results indicate that the struc-
tural spillage can accurately identify amorphous bismuthene as
topologically non-trivial [13, 46], and predicts that amorphous
bilayer bismuth is a novel topological material. By definition,
the structural spillage is applicable to generic non-crystalline
materials. It is suitable to establish a high-throughput cata-
logue of potential non-crystalline topological materials, using
currently available DFT codes based on plane waves in our
current formalism.
Structural spillage-. The total spillage γ measures the

mismatch between two projectors P and P̃ into occupied
states [45]

γ =
1

2
Tr
[(
P − P̃

)2]
= Tr

[
P (1− P̃ )

]
, (1)

where the trace acts on the entire Hilbert space, and the last
equality holds under the assumption that both systems have the
same total number of occupied statesNocc = Tr[P ] = Tr[P̃ ].
By definition, γ ≥ 0 and can be viewed as the variance between
two distributions with the same average. When P = P̃ the
spillage vanishes. However, when the overlap between the two
projectors is zero, it equals the total number of occupied states
Nocc. Therefore, γ acts as an indicator of band inversions
caused by the parameters that differ in P and P̃ [45].
To predict topological band inversions in crystals, Liu and
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Figure 1. (a) The spillage γ is high or low depending on whether
a test wavefunction |ψ〉 is in the same or different topological state
compared to a known reference wavefunction |ψ̃〉. (b) The spin-orbit
spillage [45] compares wavefunctions with and without SOC. The
structural spillage takes advantage of the knowledge of the topological
state of a crystalline solid to find the topological state of an amorphous
solid.

Vanderbilt [45] chose P and P̃ to be projectors onto the sub-
space of occupied states of crystalline insulators with and
without spin-orbit coupling (SOC), respectively. Lattice pe-
riodicity allows these to be written in Bloch momentum k as
P (k) =

∑
n∈occ |ψnk〉〈ψnk|, which defines ak-resolved spin-

orbit Bloch spillage, γB(k) = nocc − Tr[P (k)P̃ (k)], where
nocc = Nocc/Ncells is the number of occupied bands. The to-
tal spillage is recovered by summing over all momenta in the
Brillouin zone (BZ), γ =

∑
k γB(k). The spin-orbit Bloch

spillage γB(k) thus quantifies the band inversion caused by
SOC at each k; it is large at points in the BZ where the band
inversion is sizable. Ref. [45] showed that at certain points in
the BZ the spin-orbit Bloch spillage has to be larger than some
given value if the SOC induces a topologically non-trivial
phase from Wannier obstruction arguments. For instance, this

lower bound equals two for a time-reversal symmetric topo-
logical insulator.
From the above properties, γB(k) can be used to signal topo-

logical band inversions in crystals, and is straight-forward to
calculate using DFT [45]. Indeed, it has recently been applied
to high-throughput searches for topological crystals [47, 48].
We note, however, that a large spillage is a necessary but not
sufficient condition for non-trivial topology: in certain cases,
e.g., when many bands close to the Fermi level are slightly
mixed by SOC, the spillage may be fooled by trivial insula-
tors [45]. Consequently, more recent searches for topological
crystals favor symmetry-based methods. In most practical
cases, the spillage is expected to be an accurate indicator of
topology in crystals [45].
In this work, we propose a spillage that compares an amor-

phous system with a crystalline counterpart. In doing so,
we take advantage of the well-developed methods of sym-
metry indicators for the topological characterization of crys-
tals [2]. To this end, we now reformulate our spillage in a
plane-wave basis for incorporation into standard plane-wave
DFT codes. Moreover, it is also well defined for both crys-
talline and non-crystalline systems. We write the total spillage
γ in the plane wave basis |pα〉, where p is the plane-wave
momentum (not necessarily restricted to the first BZ) and α
denotes spin. To calculate the spillage, we need the projector
onto occupied states of the amorphous and reference systems,
P =

∑
N∈occ |ψN 〉〈ψN |, where |ψN 〉 are the eigenstates. By

projecting these onto plane waves, we then have access to
the projector matrix elements Pαβp,p′ = 〈pα|P |p′β〉, which
are well-defined for crystalline and non-crystalline systems.
Any plane-wave momentum p can be uniquely decomposed as
p = k +G, the sum of a crystal momentum k in the first BZ
plus a reciprocal lattice vectorG, both of the reference crystal.
Then, by substituting the plane-wave expansion into Eq. (1),
we can define the quasi-Bloch spillage as

γqB(k) =
1

2

∑

k′

∑

GG′

∑

αβ

[
Pαβk+G,k′+G′P

βα
k′+G′,k+G − P

αβ
k+G,k′+G′ P̃

βα
k′+G′,k+G

]
+
[
P ↔ P̃

]
= (2a)

=
1

2





[∑

Gα

Pααk+G,k+G

]
+ ñocc(k)−

∑

Gα

∑

G′β

[
Pαβk+G,k+G′ P̃

βα
k+G′,k+G + P̃αβk+G,k+G′P

βα
k+G′,k+G

]


 (2b)

In Eq. (2b) we have used the fact that the reference projector
P̃ corresponds to a crystal, which allows us to set k′ = k
in terms involving at least one P̃ , since there is no scattering
between different crystal momenta due to the discrete transla-
tional symmetry. Note that γqB(k) fulfills the same sum rule
as the Bloch spillage, γ =

∑
k γqB(k). Therefore, applied

to two insulating crystals, γqB(k) recovers the Bloch spillage.
Moreover, it can also be applied to semimetallic systems with
the advantage of it being bounded by zero, in contrast to recent

extensions to semimetallic materials [47, 48].

Our key result is that the structural quasi-Bloch spillage,
defined by Eq. (2), can be used as an efficient topological
indicator in non-crystalline systems. Crucially, it can be effi-
ciently computed with plane-wave-based DFT methods, since
the projector matrix elements are an output of the calcula-
tion. Consequently, thismethod is suitable for high-throughput
identification of non-crystalline topological materials.
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Figure 2. Structural spillage in the tight-binding approximation. (a)
Example of a real-space structure with a density of non-hexagonal
plaquettes ρnon-hex ' 0.53. (b) Structural quasi-Bloch spillage
γTB
qB (k) in the BZ comparing topological amorphous bismuthene

with ρnon-hex ' 0.53 and λ = 0.22tσ with a trivial crystal with
λ/tσ = ∞. (c), (d) Phase diagrams as a function of SOC λ and the
density of non-hexagonal plaquettes ρnon-hex. (c) Conductance in the
“armchair” ribbon configuration (see SM [49] A 3). (d) Structural
quasi-Bloch spillage γTB

qB (k = 0) comparing the amorphous system
to a trivial crystal with λ/tσ =∞.

Structural spillage in the tight-binding approximation-.
Defining a structural spillage that is useful in the tight-binding
approximation requires us to develop further Eq. (2). The
reason is that two issues emerge as we define plane wave
states projected into the tight-binding Hilbert space ofNsites as∣∣pα〉 = 1√

Nsites

∑
r e

ip·r∣∣rα〉, where r labels the position of
each site and α labels internal quantum numbers, such as spin
or the orbital type. First, because the tight-binding model’s
Hilbert space does not span the entire real space but only po-
sitions defined by the charge centers, our plane waves are non-
orthogonal. Therefore, their overlap depends on the atomic
positions, and therefore on the amount of structural disorder.
Since we expect continuous translational symmetry to be re-
covered after averaging over different disorder realizations, we
may solve this issue by neglecting the scattering between dif-
ferent momenta in Eq. (2), i.e. assuming that Pαβp,p′ ∝ δp,p′ .
This assumption has been successfully used to determine the
topology of non-crystalline systems using the effective Hamil-
tonian approach [14–16, 35].

A second issue of the tight-binding approximation is that
the projected plane waves form an over-complete set. A well-
defined basis for a crystal with Ns/c sites per unit cell consist
of a subset with momenta in Ns/c Brillouin zones. However,
there are different types of Brillouin zones depending on the
phase factor eiG·t, where t are the relative positions of the sites
inside the unit cell [50]. For instance, in the honeycomb lattice

there are 3 types of BZ, since e−iG·t = eia2π/3, with a ∈ Z3

(see Supplemental Material (SM) [49] C). This issue can be
handled by replacing the sum over reciprocal lattice vectorsG
by an average over the different types of G, and multiplying
by Ns/c.
With these modifications, the structural spillage Eq. (2) can

be defined in the tight-binding approximation as

γTB
qB (k) =

1

2

Ns/c

NBZs

∑

G∈BZs

tr
[(
Pk+G − P̃k+G

)2]
, (3)

where the sum over G runs over one BZ of each of the NBZs

types, the trace acts over the internal degrees of freedomα, and
we have defined the single-momentum projector Pαβp = Pαβp,p.
Eqs. (3) and (2) define the structural spillage to be used in the

tight-binding approximation and first-principles calculations,
respectively. In the remainder of the paper, we demonstrate
how they capture topological phase transitions of amorphous
systems, using low-dimensional bismuth as an example.
Tight-binding benchmark: bismuthene on a substrate-.

Crystalline bismuthene consists of a 2D honeycombmonolayer
of bismuth atoms. Experiments suggest it to be a quantum spin
Hall insulator with topological helical edge states when grown
on SiC(0001) [51] or Ag(111) [52] substrates. The effect of
the substrate is crucial: it filters the pz orbitals away from
the Fermi level leaving the px,y orbitals, resulting in a large
gap (∼ 0.67eV) and a non-zero strong Z2 topological index.
Moreover, amorphous bismuthene on a substrate is predicted
to remain topological via first-principles calculations [13, 46],
making it a convenient system to benchmark our proposed
structural spillage.
The low-energy physics of bismuthene is captured by a tight-

binding model with px,y orbitals in the honeycomb lattice,
coupled by nearest-neighbour hoppings tσ and tπ , a large on-
site SOC λ, and a substrate-induced Rashba SOC λR (which
we take proportional to λ) [51]. To extend this model to
amorphous structures while preserving the short-range order
expected in amorphous systems [37], we use the voronization
of a pointset [8, 14] (see SM [49]A 1). When the pointset is tri-
angular, the voronization produces its dual honeycomb lattice.
By randomly displacing the triangular pointset according to a
characteristic length r, the voronization produces lattices with
threefold coordination, as the honeycomb lattice, but with a
finite density of non-hexagonal plaquettes (see Fig. 2(a)) [53].
Therefore, r continuously controls how amorphous are our
lattices, allowing us to study the effect of structural disorder
on topological properties. In the following, we quantify how
amorphous our systems are by the (configuration-averaged)
density of non-hexagonal plaquettes ρnon-hex, which is in one-
to-one correspondence to the parameter r (see SM [49] A 1).
In Fig. 2 we present the topological phase diagram of amor-

phous bismuthene as a function of ρnon-hex and λ, benchmark-
ing γTB

qB (k) against the two-terminal conductance results. In
the crystalline limit (ρnon-hex = 0), the system starts as a Dirac
semimetal for vanishingλ, and a finiteλ opens up a topological
gap, similarly to graphene [54]. Above a critical λ, where the
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Figure 3. Bismuth bilayer supercells used in DFT calculations. (a)
and (b) show in-plane and out of plane views of the supercell, re-
spectively. The colors indicate different degrees of disorder: crystal
(blue), low disorder (green) and high-disorder (orange). (c) Radial
distribution function (RDF) showing the statistics of the bond lengths
in the disordered bismuth bilayer and their deviations from the per-
fect crystal (vertical dashed lines). The disorder is sampled from a
Gaussian distribution with a standard deviation of 0.15 Å for the low
disorder and 0.30 Å for the high disorder.

gap closes at the Γ point, the system becomes a topologically
trivial insulator, adiabatically connected to the atomic limit in
which only the onsite SOC is non-zero.

Both the conductance (Fig. 2(c)) and the structural quasi-
Bloch spillage (Fig. 2(d)) capture the topological transition,
even at finite structural disorder (ρnon-hex 6= 0). The conduc-
tance in the topological insulator phase is equal to 2e2/h,
originating from the helical edge states, while it reduces to
zero after the phase transition to the trivial insulator. Con-
comitantly, γTB

qB (k = 0) is large in the topological phase and
small in the trivial phase because we choose the reference sys-
tem to be a trivial crystal, only with non-zero onsite λ. Had
we chosen the topological state as reference, the magnitude
of the spillage in each phase would be inverted; see SM [49]
A 1. The critical λ at the transition for the crystal is correctly
predicted by γTB

qB (k = 0). In agreement with Refs. [13, 46],
we find that increasing disorder decreases the topological gap
and hence the critical λ. Nevertheless, the realistic value of
λ ' 0.22tσ [51] lies in the topological phase also in the amor-
phous case.

Lastly, Fig. 2(b) shows γTB
qB (k) for fixed λ = 0.22tσ and

ρnon-hex = 0.53. γTB
qB (k) is peaked around k = 0 with a

value ∼ 1.5, reminiscent of the crystalline topological band
inversion occurring at the Γ point.

Structural spillage in DFT: free-standing Bi bilayer-. To
show that Eq. (2) is well suited for high-throughput screening
of amorphous topological materials, we calculate the struc-
tural spillage from the output wavefunctions of first-principles

γqb 02

Low 
disorder

High 
disorder

Tight bindingDFT

a-SOC

x-SOC

x-noSOC

a-SOC

vs

vs

Figure 4. Structural quasi-Bloch spillage γqB(k) for the bismuth
bilayer. First row: comparison between an amorphous system with
SOC (a-SOC) and a crystalline system without SOC (x-noSOC).
Comparing an amorphous system without SOC with a crystalline
sample with SOC leads to similar results. Second row: comparison
between the amorphous and crystalline systemswith SOC (a-SOCand
x-SOC, respectively). γqB(k) is high at k = 0 for the first row while
small for the second row, indicating that amorphous bismuth bilayer
is a topological insulator. The last column shows a comparison with
the tight-binding quasi-Bloch spillage γTB

qB (k) (see SM [49] A 2).

calculations (see full details in SM). We choose previously-
studied free-standing bismuth (111) bilayer as an example.
This 2D bismuth allotrope, whose crystalline phase consists of
a buckled honeycomb lattice with lattice constant a = 4.33 Å,
is also predicted to be a strong topological insulator crystal
with Z2 = 1 [55–58]. However, no prediction exists for its
amorphous counterpart.
To represent amorphous structures given the periodic

boundary conditions of the calculations, we create 5 × 5 × 1
supercells comprising of 50 Bi atoms per bilayer. Their elec-
tronic structure is calculated for a single supercell momentum,
the center of the supercell BZ. Starting from a crystalline su-
percell, the structure is disordered by adding random displace-
ments in the x, y, and z directions, sampled from a Gaussian
distribution. The structures and their corresponding radial
distribution functions are shown in Fig. 3.
To predict the topological phase of amorphous Bi bilayer

with SOC we compute Eq. (2) with plane-wave-based DFT
(see SM [49] B) to compare it with its crystalline counterpart
without and with SOC. When SOC is not included, and hence
when it is topologically trivial (Fig. 4, first row), γqB(k) is
peaked at k = 0, with γqB(k = 0) > 2. Increasing disorder
smooths γqB(k), yet it remains peaked atΓwith a value greater
than 2. In contrast, when we include SOC in calculations of
both the disordered Bi bilayer and the pristine crystal (Fig. 4,
second row) the spillage is always small. Both rows together
show that amorphous bismuth bilayer with SOC is in the same
topological state as the crystal with SOC, a strong topological
insulator crystal with Z2 = 1.
We have performed a similar analysis using a tight-binding
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model for the amorphous Bi (111) bilayer (introduced in
SM [49] A 2). The results, displayed in the last column of
Fig. 4, show that for comparable disorder strengths γTB

qB (k) is
broader and its maximum value is smaller than γqB(k) in DFT.
It is thus apparent that, due to the approximations in the tight-
binding calculation of the spillage, which lacks information of
the real space extension of the orbitals, the spillage method is
more suitable for DFT, an advantageous feature compared to
other topological indicators available for non-crystalline sys-
tems.

Discussion-. We have introduced the structural spillage
as an efficient method to signal non-crystalline topological
phases, compatible with tight-binding and ab-initio simula-
tions. We have used it to predict amorphous Bi bilayer as a
novel topological insulator.

As was the case for spin-orbit spillage in crystals, we expect
the structural spillage to signal a large fraction of promising
materials, but not to be infallible: if multiple band inversions
are introduced upon amorphization, the spillage might also be
artificially large. However, unlike for crystals, the spillage is
currently the only systematic, model-independent method that
is compatible with ab-initio calculations. Additionally, we ob-
serve that, for different disorder realizations, its fluctuations
are smaller compared to scattering methods like calculating
the conductance. It can also be applied to systems without a
spectral gap, where the effective Hamiltonian approach [35]
can fail [14]. Lastly, while Eq. (2) is general, the definition
of the spillage is relatively versatile and can accommodate
less standard cases. For example, when no crystalline coun-
terpart exists, one may define a plane-wave-resolved spillage
(see SM [49] D) by using Eq. (2a) without the sum over G, a
modification worth studying in the future.

The structural spillage establishes a clear road-map to con-
struct a high-throughput catalogue of non-crystalline (amor-
phous, polycrystalline, quasicrystalline) topological materials
by screening existing amorphous databases, or by scrutinizing
realistic structures obtained using existing ab-initio molecu-
lar dynamics packages [59]. This methodology may enable
for the first time the systematic prediction and discovery of a
potentially large number of amorphous materials that are cur-
rently inaccessible, suitable to develop affordable and scalable
topological devices.
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Appendix A: Tight-binding models

This Appendix describes the method for generating the amorphous tight-binding models used in the maint text. We include as
well further calculation details and some additional discussion regarding the phase diagrams that one can obtain using different
reference systems of the structural spillage.

1. Model for bismuthene on a substrate

This section describes how to generate the amorphous bismuthene structure and tight-binding Hamiltonian that we have used
to benchmark the structural spillage method in Fig. 2.

a. Tight-binding Hamiltonian

Crystalline bismuthene consists of a 2D honeycomb monolayer of bismuth atoms [51]. An effective tight-binding of crystalline
bismuthene on a substrate was proposed by Ref. [51]. It consists of px and py orbitals in the honeycomb lattice, coupled by nearest-
neighbour hoppings, a large onsite SOC, and a substrate-induced Rashba SOC. In real space and in the basis {px↑, px↓, py↑, py↓},
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the Hamiltonian reads:

H =− 1

2

∑

〈ij〉

[
(tσ − tπ) τ0 + (tσ + tπ)

(
c
(2)
ij τz + s

(2)
ij τx

)]
σ0 +

∑

i

[λτyσz] +

+
∑

〈ij〉
i
{
λARτ0 [sijσx − cijσy] + λER [(cijτx − sijτz)σx − (cijτz + sijτx)σy]

}
,

(A1)

where we have defined cij = cos(θij), sij = sin(θij), c
(2)
ij = cos(2θij), and s

(2)
ij = sin(2θij), with θij the angle between the

bond joining site i to site j and the x axis. τµ and σµ are the Pauli matrices acting on the orbital {px, py} and spin {↑, ↓}
degrees of freedom, respectively. tσ and tπ are the sigma and pi nearest-neighbour hoppings, λ is the onsite SOC, and λAR and
λER are the orbital-independent and orbital-dependent Rashba SOC, respectively. As in Ref. [51], in this work we will assume
that λAR = λER = λR. The values used in Ref. [51] are tσ ' 2.0eV, tπ ' 0.21eV ' 0.11tσ , λ ' 0.44eV ' 0.22tσ , and
λR ' 0.032eV ' 0.074λ. In our calculations, we will take tσ as the unit of energy, we will use the same value for tπ = 0.11tσ ,
and we will vary both the onsite SOC λ as well as the Rashba SOC proportionally to the former, λR = 0.074λ.

The Hamiltonian (A1) can readily be applied to an amorphous lattice once we define which sites are nearest neighbours of each
other. In principle, it could be generalized to include a dependence on the distance in the hoppings, such as the Harrison law [60].
However, we will consider fixed values for the hoppings, which can be a good approximation for covalently-bonded amorphous
solids, which usually display a rather narrow distribution of bond distances [37]. Moreover, this approximation enables us to
isolate the effect of structural disorder.

b. Construction of amorphous structures

Covalently-bonded amorphous materials usually preserve local environments similar to the ones in the corresponding crystals,
since they are set by the strong covalent bonds. Therefore, most amorphous materials have average coordination numbers, bond
distances, bond angles, etc., which are centered around those of the crystal [37]. With this in mind, our amorphous models
preserve, for every site, the threefold coordination of the honeycomb lattice. This is achieved by applying the Voronoi method
similar to Ref. [14], but with a modification that enables us to control the degree of amorphization.

In particular, we first construct a pointset forming a triangular lattice with lattice constant a, whose points will be called seeds.
We then randomly displace the seeds from their initial positions following an exponential distribution with characteristic distance
r · a in the radial direction, and a uniform distribution in the angular direction. We thereafter compute their corresponding
Voronoi diagram, which is defined by the Voronoi cells, i.e., the regions consisting of all points closer to one seed point than to
any other. The vertices of such cells, called Voronoi vertices, form a threefold coordinated lattice with the edges of the Voronoi
cells corresponding to the nearest-neighbour bonds (only the vertices at the boundaries of the system have fewer than three
neighbours).

The lattices obtained in this way have large variances in the bond angle and bond length distributions, which might not be very
realistic. In order to reduce this artifact, we apply a simple iterative relaxation procedure. We select the threefold coordinated
sites one by one and displace them to the barycenter formed by their three nearest neighbours. We iterate this process until
convergence is reached, i.e., until the displacements are smaller than some small cutoff. This relaxation procedure tends to set
the bond angles as close as possible to the crystalline angle, 120◦. Finally, once the lattice is relaxed, we rescale the distances
so that the average nearest-neighbour distance is a/

√
3, which is the corresponding value in the crystalline honeycomb lattice.

Fig. S1(a) shows the resulting histograms of the relative positions of atoms for two amorphous structures with different disorder
strengths, r = 0.3 (top) and r = 0.5 (bottom). Both structures are isotropic at long distances, although for small disorder
the nanocrystalline domains (see for example Fig. 2(a) in the main text) give rise to broad nearest neighbour peaks around the
crystalline positions. For high disorder, the correlation hole for distances under a/

√
3 and an annular peak are visible.

The parameter r, characterizing the exponential distribution by which the seeds are displaced from the regular triangular lattice,
continuously controls the amorphousness of the resulting Voronoi lattice. Indeed, since the Voronoi diagram of a triangular
lattice is a honeycomb lattice, we recover the crystal in the r → 0 limit. Increasing r introduces non-hexagonal plaquettes in
the Voronoi lattice, at least until r & 1, when the seed becomes completely random (since all the information from the initial
triangular seed is lost). This can be observed in Fig. S1(b), which shows that the configuration-averaged standard deviations of
the distributions of bond angles, bond distances, and plaquettes start to saturate at about r & 0.6.
Structural disorder can be quantified by several properties. These include the standard deviations of the distributions of

nearest-neighbour distances, angles and plaquettes (normalized by the corresponding average values), as well as the density
of non-crystalline plaquettes (in our models, where the crystalline limit consists of a honeycomb lattice, the non-crystalline
plaquettes correspond to the non-hexagonal ones). In order to take into account the finite-size effects, for each parameter r, we
consider the configuration-average of these quantities over 100 realizations.
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(a) (b) (c) (d)

Figure S1. (a) Histograms of the relative positions of atoms for two amorphous structures with different disorder strengths, r = 0.3 (top) and
r = 0.5 (bottom). (b) Configuration-averaged structural quantities as a function of the parameter r controlling the amorphousness: standard
deviations (std) of the distributions of nearest neighbour bond angles, bond distances (both for the planar bismuthene as well as for the buckled
Bi bilayer), and plaquettes, as well as density of non-hexagonal plaquettes. For each disorder intensity r, the results have been averaged over
100 different realizations. (c) Distribution of the ratios of non-hexagonal plaquettes ρnon-hex obtained with 100 disorder realizations with fixed
disorder r = 0.3. (d) Distribution of plaquettes for a given disorder realization with r = 0.3 (corresponding to ρnon-hex ' 0.55).

As shown in Fig. S1(b), all these configuration-averaged quantities have the same qualitative dependence with the parameter r.
In particular, there exists a one-to-one correspondence between our control parameter r and any of these configuration-averaged
quantities. However, for particular disorder realizations in a finite system, there are fluctuations that make their relation to r
not one-to-one before performing the configuration average. This is illustrated by the distribution of ratios of non-hexagonal
plaquettes ρnon-hex shown in Fig. S1(c) for different realizations with fixed r = 0.3. Therefore, we have chosen to physically
characterize the amorphousness of a system by the configuration-averaged density of non-hexagonal plaquettes formed by the
nearest neighbour sites ρnon-hex. This measure could be generalized to other models whose crystalline limit consisted of lattices
other than the honeycomb. Finally, Fig. S1(d) shows an example distribution of plaquettes obtained for a particular disorder
realization with r = 0.3, which corresponds to ρnon-hex ' 0.55, while the configuration-average for this r corresponds to
ρnon-hex ' 0.53.

The above procedure generates structures with open boundary conditions, which is useful to compute e.g. the local density of
states at the edges or the longitudinal conductance once some leads have been attached. However, for spectral quantities such as
the spillage, we can reduce the possible finite-size effects by imposing periodic boundary conditions, or equivalently by putting
the system on a torus. An amorphous system might have a different number of atoms at opposite edges, so the periodic boundary
conditions cannot be imposed directly, but rather before computing the Voronoi tessellation, as described below.

Before explaining the procedure to impose the periodic boundary conditions, let us note that our periodic systems consist of
a rectangular supercell with sides Lx and Ly . In order for the periodic boundary conditions to be applicable to systems with
an arbitrary amount of structural disorder, including the crystalline limit, Lx and Ly are restricted to the values such that the
supercell is commensurate with the initial crystalline unit cell. In our models, where the crystalline limit is a honeycomb lattice,
the previous condition imposes that Lx = nxa and Ly = ny

√
3a, where a is the lattice constant, and nx, ny are integer numbers.

Taking this into account, let us now describe the procedure to impose periodic boundary conditions on a system with an
arbitrary amount of disorder. First, we generate a triangular seed within the supercell x ∈ [0, Lx), y ∈ [0, Ly), and we disorder
choosing a finite value of r. Then, we repeat this initial seed in the eight nearest-neighbour supercells, i.e., we copy the seed
points displaced from their initial positions x to x + L = x + (nxLx, nyLy), with nx, ny ∈ {1, 0,−1}. Then, the Voronoi
tessellation of the whole system (composed by the nine supercells) is determined. This gives rise to a threefold coordinated
lattice with the following convenient feature: the supercell defined by the sites inside the region x ∈ [0, Lx), y ∈ [0, Ly) has the
same number of sites in opposite sides. Therefore, the periodic boundary conditions can be now applied to this supercell (all
the sites outside this supercell are discarded). Finally, we carry out the relaxation procedure of this supercell, being careful to
preserve the periodic boundary conditions.

To conclude this section, let us mention that we generate the systems with open boundary conditions starting from a system
with periodic boundary conditions, by first removing the bonds at the edges of the supercell and then removing the dangling sites.
This way, the bulk of the periodic structure where the spillage is computed is the same as the bulk of the open system where the
conductance is determined, which allows us to safely compare their predictions of the topological phase.
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(a) (b) (c) (d)

Figure S2. Phase diagrams of different quantities as a function of SOC λ and amorphousness ρnon-hex for the bismuthene model. (a) Density of
states at the Fermi level of the system with periodic boundary conditions. (b) Two-terminal longitudinal conductance in the “zigzag” ribbon.
(c) Structural quasi-Bloch spillage γTB

qB (k = 0) comparing the amorphous system with a topological bismuthene crystal with λ = 0.1tσ . (d)
Structural quasi-Bloch spillage γTB

qB (k = 0) comparing the amorphous system with SOC λ to the corresponding crystal with the same SOC λ.

c. Additional results: density of states and structural spillage for different reference systems

In this section we discuss further different phase diagrams that may be obtained for the bismuthene tight-binding model and its
spillage in the tight-binding approximation. Fig. S2 shows phase diagrams for the density of states, conductance and structural
spillage corresponding to the same bismuthene structures as the ones presented in the main text in Fig. 2. In particular, Fig. S2(a)
shows that the density of states at the Fermi level increases with ρnon-hex when the SOC is such that the crystal is in the topological
phase (λ . 1.3tσ). This is due to the band broadening due to the disorder, and also from the appearance of low-energy states
induced by a sublattice imbalance in a bipartite lattice [61]. At high disorder, this induces the band inversion that drives the
system from topological to trivial at a smaller SOC than in the crystal.

In order to show that the quantized conductance does not arise from disorder-robust trivial edge states present in one particular
crystalline direction, we display in Fig. S2(b) the longitudinal two-terminal conductance along the direction perpendicular to the
one displayed in the main Fig. 2 (the edges here would correspond to a zigzag ribbon in the crystalline case). As expected, both
conductances coincide, which is a signature of the topological helical edge states, which live at all the boundaries of the system.

Let us now explore how the structural spillage changes when we choose a topological reference system, as opposed to a trivial
reference system used in the main text, Fig. 2. Fig. S2(c) shows the structural quasi-Bloch spillage when the reference system is
a topological crystal with SOC λ = 0.1tσ . Contrary to the trivial reference case shown in the main in Fig. 2, now the spillage
is small in the topological phase and large in the trivial one, as expected from Fig. 1. Importantly, the transition is predicted at
approximately the same SOC irrespective of the reference system, which shows the robustness of the spillage.

Finally, in order to isolate the effect of the structural disorder on the topological band inversion from the effect of SOC, we
have also computed the structural quasi-Bloch spillage comparing each amorphous system with amorphousness ρnon-hex and SOC
λ to a reference crystal with the same SOC λ, shown in Fig. S2(d). This choice highlights the regions where disorder induces a
topological band inversion. For example, if the reference crystal is topological for a given λ, this spillage will have a large value
if the disorder induces a trivial state. Therefore, interpreting Fig. S2(d) requires knowledge of the topological phase of the crystal
at each λ. For λ . 1.3tσ , the reference crystal is topological. Since the spillage is small for λ . 1.1tσ , the amorphous system
is topological for λ . 1.1tσ . However, at high disorder, the spillage becomes large between λ ' 1.1tσ and λ ' 1.3tσ , which
indicates that the disorder induces a trivial phase. Lastly, for λ & 1.3tσ , the reference crystal is trivial, and the spillage is low,
indicating that the amorphous system is also trivial.

In conclusion, all phase diagrams Fig. S2 (b-d) agree qualitatively. The spillage is able to predict the topological phase
transition independent of the reference system.

2. Model for free-standing bismuth (111) bilayer

In this section, we introduce a tight-binding model for the amorphous bismuth bilayer, for which we study the structural
spillage. After introducing the model and describing the method to generate the amorphous structures, we analyze its topological
phase diagram to further benchmark the structural spillage. Finally, we compare the tight-binding results and DFT calculations,
as shown in Fig. 4. We conclude that, while both qualitatively agree, the structural spillage method works better in DFT.
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a. Tight-binding Hamiltonian

Crystalline bismuth (111) bilayer consists of a buckled honeycomb lattice of bismuth atoms, where each sublattice has a
different height [57]. An effective tight-binding of crystalline Bi bilayer was introduced by Ref. [62], where the three p orbitals
are relevant due to the absence of the substrate in this case. Their model consists of spinful px, py and pz orbitals in the buckled
honeycomb lattice with up to third nearest-neighbour hoppings. For simplicity, we will restrict ourselves to nearest-neighbour
hoppings and onsite SOC. In real space and in the basis {px↑, px↓, py↑, py↓, pz↑, pz↓}, the Hamiltonian reads:

H =
∑

〈ij〉


tπτ0σ0 − (tσ + tπ)




(dij · ux)
2

(dij · ux) (dij · uy) (dij · ux) (dij · uz)
(dij · uy) (dij · ux) (dij · uy)

2
(dij · uy) (dij · uz)

(dij · uz) (dij · ux) (dij · uz) (dij · uy) (dij · uz)2


σ0


+

+
∑

i


E0z




0 0 0
0 0 0
0 0 1


σ0 + λL · σ


 ,

(A2)

where E0z is the difference between the onsite energy of the pz and px,y orbitals, dij is the unit vector along the bond from site
i to site j, and ua, a = x, y, z, are the unit vectors along the three cartesian axes. We have also defined the angular momentum
matrices La, which act on the orbital subspace {px, py, pz}:

Lx =




0 0 0
0 0 −i
0 i 0


 ; Ly =




0 0 i
0 0 0
−i 0 0


 ; Lz =




0 −i 0
i 0 0
0 0 0


 . (A3)

In our calculations, we will take tσ as the unit of energy, and fix the value of tπ = 0.25tσ and E0z = −0.4tσ . We vary the
onsite SOC λ. From the DFT-derived tight-binding model of Ref. [62], we can estimate that the actual SOC for the Bi bilayer is
λ ∼ 0.7tσ . The height of the bilayer enters via the vectors dij . Different DFT calculations have predicted heights ranging from
dz = 0.35a to dz = 0.40a [57, 58, 62, 63]. In this work, we will use dz = 0.9a/

√
6 ' 0.37a.

b. Construction of amorphous structures

Our structures of amorphous Bi bilayers are constructed in a similar way to monolayer bismuthene. Indeed, the first step is
generating an amorphous bismuthene lattice following the procedure outlined in Appendix A 1 b. We then have to assign different
heights to the sites. In the crystalline limit, each sublattice has a different fixed height because of the buckling. Sublattices are
no longer well-defined in an amorphous lattice, but we can still define some effective sublattices. One differentiating property
between the two sublattices in a crystalline honeycomb lattice is the direction of their nearest-neighbour bonds: if the bonds
from sublattice A point at polar angles θA1 = π/2, θA2 = −11π/12 and θA3 = −π/12, then the ones from sublattice B point
at θB1 = −π/2, θB2 = π/12 and θB3 = 11π/12. Therefore, η(S) = sign

[(∑
l θ
S
l mod 2π

)
− π

]
is equal to +1 for sublattice

S = A and −1 for S = B. Using η(S) = ±1 to define the effective sublattices in the amorphous structures, we then assign
a height ±dz/2. Finally, we add some random disorder to the height of each site sampled from a Gaussian distribution with
standard deviation rz ·a. In particular, we choose the height disorder rz proportional to r, the parameter that controls the in-plane
amorphousness. In the calculations presented in this work, we take rz = rdz/(4a) ' 0.09r. Fig. S3(a) shows the top and side
views of a representative structure.

c. Topological phase diagrams

In this section, we study the topological phase diagram of the amorphous Bi bilayer tight-binding model (A2), and show that,
as for Bimsuthene, the structural spillage correctly predicts the topological band inversion in this model.

Before analyzing the results, let us briefly review the current status regarding the topological characterization of crystalline Bi
(111) bilayer. In the crystalline case with SOC, the Bi bilayer has been predicted to be a strong topological insulator [55–58].
Our model can also describe other materials with the same lattice, such as the antimony (111) bilayer. Due to the smaller SOC,
the Sb bilayer becomes a strong topological insulator only when strained [64]. Therefore, our model in the crystalline case starts
as a Z2 = 0 insulator for vanishing λ. A band inversion occurs at a finite value of λ, driving the system to a Z2 = 1 topological
insulating phase. For the parameters used in this work (see Appendix A 2 a), this band inversion in the crystal occurs at Γ for
λ ' 0.27tσ .
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(c)

(e)(d)

(b)(a)

Figure S3. Bi bilayer tight-binding model structure and phase diagrams as a function of SOC λ and amorphousness ρnon-hex. (a) Top and side
views of an example structure for amorphousness ρnon-hex = 0.53 (r = 0.3). Sites are colored according to their out-of-plane positions: red/blue
indicates the effective sublattice, and the color intensity scales with the actual out-of-plane position. The positions in the out-of-plane direction
have been rescaled by a factor 10 for visualization purposes. (b) Momentum resolved tight-binding quasi-Bloch spillage for ρnon-hex = 0.53
(r = 0.3) and SOC λ = 0.7tσ . These parameters are equal to those in Fig. 4, with a change in color to match that of (e). (c) Phase diagram
of the density of states at the Fermi level of the system with periodic boundary conditions. (d) Phase diagram of the two-terminal longitudinal
conductance in the “armchair” ribbon configuration. (e) Phase diagram of the structural quasi-Bloch spillage γTB

qB (k = 0) comparing the
amorphous system with SOC λ to a topological crystal with λ = tσ .

As shown in Fig. S3(b), the structural quasi-Bloch spillage γTB
qB (k) of the amorphous system with amorphousness ρnon-hex =

0.53 (r = 0.3) and SOC λ = 0.7tσ is maximum at k = 0, with a value > 0.75, when the reference system is a trivial crystal
with λ = 0. Per our topological criterion, explained in detailed in Appendix C 4, this indicates that there is still a band inversion
at k = 0 in the presence of disorder.

Let us now analyze the topological phase diagram of the amorphous Bi bilayer tight-binding model. Figs. S3(d) and (e) show
the conductance and the structural quasi-Bloch spillage, computed for a reference topological crystal with λ = tσ , respectively,
as a function of amorphousness, ρnon-hex, and SOC, λ. Both phase diagrams show a transition from a trivial insulator at
λ ∼ 0.2− 0.3tσ .

First, note that the conductance shows a metallic region around the transition, also in the crystalline case. This is an artifact
of the finite precision in computing the Fermi level with the kernel polynomial method, compounded with finite-size effects (see
Appendix A 3). These effects also broaden the otherwise sharp transition in the structural spillage at low disorder. We have
checked that this transition region is reduced upon increasing the kernel polynomial method precision and the system size. Note
that these issues only appear as one approaches the transition, where the gap is increasingly small. For further related details,
see also the discussion of Fig. S8 in Appendix C.

Let us now focus on the phases away from the transition. The trivial insulator phase at small λ, characterized by a vanishing
conductance and a large spillage (since the reference crystal is topological), survives with amorphousness up to slightly higher
λ than in the crystalline case. On the other hand, the topological insulator phase, indicated by a quantized 2e2/h conductance
and a small spillage, only survives for small disorder, and the system seems to become slightly metallic for higher disorder. This
metallic phase is further signaled by the finite density of states at the Fermi level shown in Fig. S3(c). Notice that, despite the
absence of Rashba SOC in this model, the onsite λ is already spin-non-conserving, and therefore a metallic phase can be the
ground state. Nevertheless, we cannot discard the possibility that the metallic conductance is arising from finite-size effects with
an Anderson localized bulk but with a localization length longer than the system sizes considered. A scaling study would be
needed to discern the nature of this metallic conductance, but this lies beyond the scope of this work. In any case, the spillage is
not specifically designed to capture such metallic feature, and it just indicates that the topological band inversion still (partially)
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occurs for high disorder. Nevertheless, the larger spillage at high disorder, where the disorder induces this potential metallic
phase starting from a topological state, provides a signature for the partial loss of this band inversion. This partial melting of the
band inversion is also compatible with the increasing density of states at the Fermi level shown in Fig. S3(c).

In summary, both conductance and spillage phase diagrams agree qualitatively and predict the topological phase transition.
Quantitative differences only arise in the metallic regions, where the band inversion is just partial. As for bismuthene, we have
also checked that the conductance with leads in the perpendicular direction and the spillages with other reference systems give
similar results.

d. Comparison with DFT

In this section, we comment on the comparison of the results of the previous section with the DFT results presented in the
main text. In particular, let us compare the latter to the tight-binding results for the realistic SOC λ ' 0.7tσ . As shown in Fig. 4,
the structural spillage predicts a topological band inversion in the amorphous Bi bilayer in both DFT and tight binding. Both
methods also agree on the fact that, above a certain disorder, the spectral gap closes (see Figs. S3 and S5). Crucially, because
we are forced to neglect the momentum scattering in the tight-binding approximation (see Appendix C), the structural spillage
in DFT takes higher values and it is also less broad. Consequently, the structural spillage not only is a topological indicator
compatible with DFT, but it works better in DFT than in tight-binding modeling.

3. Calculation details

This section describes in detail the methods used to solve the tight-binding models, and some related subtleties.
We use the Kwant software package [65] to generate the tight-binding Hamiltonians and perform the calculations. To be able

to treat larger system sizes, we apply the kernel polynomial method (KPM) [66] to estimate the density of states (DOS) and the
projector onto the occupied states. The projector is computed following the procedure of Ref. [67] and using plane waves as
initial KPM vectors, which allows us to calculate the projector matrix elements 〈pα|P |pβ〉. We use a KPM energy resolution of
0.01tσ (645 moments) for the bismuthene structures, and of 0.005tσ (887 moments) for the bilayer ones. The DOS is computed
by performing a KPM stochastic trace with 50 and 100 random vectors in the cases of bismuthene and bilayer, respectively. The
system sizes considered are 21a× 12

√
3a for the bismuthene case and 41a× 24

√
3a for the Bi bilayer one. Both the resolution

and the size of the Bi bilayer system are taken to be larger than those of bismuthene since the gap in the former case is smaller,
and therefore finite-size effects are larger. Additionally, our model for the Bi bilayer displays some trivial edge states that affect
the calculation of the Fermi level considerably.

The structural quasi-Bloch spillage is computed in the systems with periodic boundary conditions using Eq. (3), which reduces
to Eq. (C24) in our models, since the crystalline phase has a honeycomb lattice. On the other hand, the conductance is determined
with the Kwant software in the systems with open boundary conditions. In order to avoid possible artifacts arising from trivial
edge states in some particular termination, the conductance is calculated using leads in both x and y directions, such that in the
crystalline case the edges are zigzag and armchair, respectively. Since the aim of the conductance is to identify the insulating and
topological insulating regions, which have a quantized conductance of 0 and 2e2/h, respectively, regardless of the shape of the
leads, we use leads consisting of a 2D planar square lattice with nearest-neighbour hoppings such that their bandwidth is larger
than that of the system. These leads are attached to all the atoms on the corresponding edge of the system. Fig. S4 shows two
example configurations with the leads in the y (armchair) and x (zigzag) directions.
Our Bi bilayer models, display at low disorder some trivial edge states close to the Fermi level over a wide range of values

of SOC, which appear in both zigzag and armchair edges. These change the Fermi level of a finite system with open boundary
conditions Eopen

F with respect to the one computed with periodic boundary conditions Eperiodic
F . For the system sizes we are able

to treat numerically the change in the Fermi level Eopen
F is enough for it to lie outside of the bulk gap, since the thermodynamic

gap in the crystal is rather small (∼ 0.1tσ). Therefore, the conductance computed at Eopen
F in the crystal would show metallic

regions even in the insulating and topological insulating phases due to this artifact. In order to avoid this issue, in the Bi bilayer
systems we compute the conductance at Eperiodic

F determined with periodic boundary conditions. We note that this problem does
not appear in the bismuthene models. It is also worth highlighting that the metallic phase observed at large SOC and disorder is
not an artifact (see Appendix A 2), since we observe that the trivial edge states merge into bulk states in this region and therefore
Eperiodic
F ' Eopen

F .
Lastly, to compute the phase diagrams we only need a single disorder realization for each r. The reason is twofold. First, we

noticed that for sufficiently large systems sizes, as the ones considered in this work, the fluctuations of the structural spillage
for different disorder realizations are rather small. Indeed, they are smaller than the fluctuations in the conductance, which is
another convenient feature for the use of the structural spillage in high-throughput searches for topological amorphous materials.
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(a) (b)

Figure S4. Examples of Bi bilayer systems with leads where conductance is calculated. (a) Top and side views of a system with leads in the
x axis, which would correspond to a zigzag ribbon in the crystalline case. (b) Top and side views of a system with leads in the y axis, which
would correspond to an armchair ribbon in the crystalline case.

Second, while extracting a precise topological phase diagram from the conductance would require a configuration average, it is
not strictly necessary if we just aim to use it as a benchmark for the structural spillage.

Appendix B: DFT calculation details

We performed Density Functional Theory (DFT) calculations using the projector augmented wave (PAW) formalism in the
Vienna ab-initio Simulation Package (VASP) [68, 69]. The exchange-correlation potentials were treated within the generalized
gradient approximation (GGA) of Perdew-Burke-Ernzerbof (PBE) [70]. The wavefunctions were expanded in plane waves to an
energy cutoff of 700 eV. SOC was added self-consistently for all calculations in which it was used. For supercell calculations, we
performed Gamma point only calculations. For self-consistent calculations of the unit cell, we used a k-point grid of 21x21x1
with Gamma for the BZ sampling. We then sampled the 25 k-points ( n1

N1
b1 + n2

N2
b2) that would backfold to Gamma in the

5x5x1 supercell. To compare the same momenta between the unit cell and the supercell, the two must be commensurate and the
supercell lattice vectors must be multiples of the unit cell lattice vectors. If this were not the case, one could linearly interpolate
the coefficients of the supercell wavefunctions at the appropriate momenta from the closest supercell reciprocal lattice vectors.

Unlike in the tight-binding approximation, the structural spillage of Eq. (2) can be directly implemented in DFT. Here, the
overlap between two systems is well-defined irrespective of them having atoms at different positions. However, strictly speaking,
the continuous set of plane waves is always overcomplete in any numerical scheme. Nevertheless, the structural spillage of Eq. (2)
is still well-defined in DFT implemented with both a plane-wave or a localized basis. On the one hand, plane-wave-based DFT
codes feature discretized momenta (imposed by the periodic boundary conditions of the supercell) and a high-momentum cutoff.
These features do not constitute any fundamental problem for comparing two systems with different atomic structures, as long as
one has access to (or can interpolate) the information at the same momenta in both systems. On the other hand, implementations
of DFT with a localized basis, such as Gaussian or hydrogenic orbitals, do not directly output the information in plane-wave
momentum space. However, knowing the shape of the orbitals, a Fourier transform gives access to it, and no problem appears
regardless of the atomic structure.

To calculate the structural spillage in DFT using Eq. (2), we extract the projector matrix elements on an orthonormal plane wave
basis. The pseudo-wavefunctions generated with VASP are orthonormal with respect to an overlap operator [71]. Therefore, by
using the PAWapproach, we perform a transformation to an orthonormal basis that spans the same space as the full wavefunctions.
Future improvements could use norm-conserving pseudopotentials, reconstructed full wavefunctions, or all-electron approaches.
Besides imposing this orthonormality, we rearrange the wavefunction coefficient arrays of the amorphous supercell so that we
compare the same momenta between both the amorphous supercell and the crystalline unit cell.

To corroborate that the spillage Eq. (2) is correctly implemented, we compared a crystalline supercell to a crystalline unit cell,
which should recover the exact Bloch spillage. In particular, we considered crystalline Bi2Se3 as well as crystalline BiTeI, and
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SOC

No SOC

Crystal Low-disorder High-disorder

Figure S5. Orbital-resolved density of states (DOS) of the Bi (111) bilayer calculated with DFT, showing the contributions of the Bi p
orbitals near the Fermi level (indicated by a vertical dashed line). First row: DOS without SOC. Second row: DOS with SOC. Each column
corresponds to a different structure: crystal in the the first column, low-disorder structure (standard deviation of 0.15Å) in the second column,
and high-disorder system (standard deviation of 0.30Å) in the third column (see Fig. 3 in the main text for a real space view of these lattice
structures). SOC drives a band inversion that occupies the pz orbital and empties the px,y orbitals.

our method accurately diagnosed the band inversion in both systems. In crystalline Bi2Se3 a band inversion at Gamma leads to
a topological insulator phase which results in a spillage value of 2.12 [45]. When comparing the crystalline Bi2Se3 supercell to
the unit cell we obtain a spillage of 2.09 which exactly matches the result given by pymatgen [72]. For the case of disordered
BiTeI, previous work showed that small amounts of disorder in the atomic positions cause the system to undergo a topological
phase transitions from a trivial insulator (crystal) to a topological insulator (disordered) as a result of an induced band inversion
[24]. This is caused by the modified crystal field of the orbitals near the Fermi level which pushes these states closer together
when disordered. In the latter case, all point group symmetries are broken but translational symmetry is still present. In this
case, we find a spillage value of 5.17 at the A point where the band inversion occurss, and values of 3.03 at other BZ points
indicating there is a larger orbital spillage throughout the BZ. The method still captures the topological band inversion in this
case and exactly matches the results given by pymatgen.

Finally, let us comment further on the results obtained for the Bi (111) bilayer. The disordered structures, shown in Fig. 3,
are obtained by randomly displacing the atoms from their high-symmetry crystal positions following a Gaussian distribution.
We choose the standard deviations to be 0.15Å and 0.30Å for the low and high disorder systems, respectively. For standard
deviations of 0.15Å the deviation from equilibrium position is small which preserves the bulk electronic gap while demonstrating
our method works in the presence of disorder. Standard deviations of 0.30Å lead to an average atomic displacement of 0.41Å
which is similar to atomic displacements seen in topological materials in the presence of disorder [24]. The structural spillage,
shown in Figs. 3 and S6, demonstrate that SOC drives a band inversion at the Gamma point with the result that all the crystalline
and the disordered structures are topologically non-trivial. This band inversion is confirmed by the density of states of Fig. S5,
which further illustrates that the band inversion occurs between the pz and the px,y orbitals. Indeed, the crystal and the amorphous
systems display an increased occupation of the pz orbital after SOC is included. Additionally, Fig. S5 illustrates that the Bi bilayer
becomes metallic for sufficiently high structural disorder, in agreement to the tight-binding model (see section A 2). However,
studying whether the amorphous system is extended or localized for strong disorder lies beyond the scope of this work.
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Figure S6. Calculated structural spillage of the crystalline Bi bilayer from DFT. The value of 2 at the Gamma point indicates that the crystalline
Bi bilayer with SOC is topological.

Appendix C: Defining the structural spillage in the tight-binding approximation

1. General remarks and motivation

In the main text we use the tight-binding spillage as a benchmark, and argue that the structural spillage is most useful within
DFT calculations. For completeness, in this appendix we give a pedagogical justification of Eq. (3) for computing the structural
quasi-Bloch spillage in the tight-binding approximation. It is aimed to aid future studies in understanding the approximations
that go into applying the structural spillage to tight-binding models, as alternative to topological markers. Thus it can be skipped
by readers only interested in applying Eq. 2.

Let us first highlight the problem of applying the general formulation of the structural spillage of Eq. (2) in the tight-
binding approximation. By tight-binding approximation we refer to the phenomenological tight-binding models where the only
information about the wavefunctions is the position of their Wannier charge centers (and possibly their transformation properties
under symmetries), but their spatial structure is unknown and therefore considered to be a Dirac delta. An implicit assumption
of Eq. (2) is that the Hilbert space of the system is the whole real space (in addition to the spin space), in which the plane
waves constitute an orthonormal basis. While this is applicable in DFT (see Appendix B), it is not true in the tight-binding
approximation, where the Hilbert space is just spanned by the positions of the Wannier charge centers (with the internal degrees
of freedom of spin and orbital type). The fundamental problem for comparing two tight-binding systems with different lattice
structures, as done by the structural spillage, stems from the fact that their Hilbert spaces are different, and therefore their overlap
is ill-defined. When projected to the tight-binding Hilbert space, the plane waves constitute a non-orthogonal and overcomplete
set. The overlap between these projected plane waves depends on the lattice structure, and therefore the usual formalism of
non-orthogonal bases (see e.g. [73]) cannot be applied.

However, by using the plane waves and the approximations described in this Appendix, one can derive a physically motivated
expression for the structural spillage in the tight-binding approximation, Eq. (3). The line of the argument for solving this
problem works as follows. The structural spillage (2) contains the matrix elements of the products of two projectors in the plane
wave basis. By neglecting the momentum scattering, i.e., by assuming that these operators are diagonal in momentum space,
the fundamental problem of the disorder-dependent plane-wave overlaps is circumvented. However, this introduces some new
issues. To bypass these, we choose the solution which, in the crystalline limit, gives results closer to the exact ones. Our solution
gives the exact results for the quantities containing matrix elements of just one projector. In the case of the structural spillage,
which contains matrix elements of the product of two projectors, our results in the crystalline limit are not exact. However, we
argue and numerically show for selected models that the results are similar in absolute value, and more importantly that the sharp
changes in the spillage that signal topological transitions still show up.

In order to separately understand the different issues that appear in the tight-binding, let us first consider the simple case of
a system whose corresponding crystalline limit has a single site per unit cell, where the majority of problems suffered by the
structural spillage in the tight binding do not appear. Then, we will analyze the general multi-site case.
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2. System with a single site per unit cell

a. Setting the stage: crystalline system

Consider a crystalline tight-binding system with Ncells unit cells and one site per unit cell, i.e., only one Wyckoff position
with multiplicity one is occupied by an atom, Ns/c = 1. Therefore, the number of sites is the same as the number of cells,
Nsites = Ncells. The number of internal degrees of freedom (orbitals and spins) at each site does not influence the discussion
below, so we omit this internal index for simplicity in the notation. In the tight-binding approximation, Wannier functions are
unknown in real space, and therefore considered to be Dirac delta distributions, i.e., the Wannier function |φR〉 at the lattice site
R has wavefunction:

φR(r) = 〈r|φR〉 = δ(r −R). (C1)

We will always assume that the Wannier functions are orthonormal:

〈φR′ |φR〉 = δR,R′ . (C2)

The plane wave with momentum p projected to the tight-binding Hilbert space is a state with a phase p ·R at the siteR, and
normalized in the total volume of the system. Then, the Wannier functions in the plane wave basis read:

φR(p) = 〈p|φR〉 =
1√
Nsites

e−ip·R. (C3)

Moreover, the Bloch states defined at crystal momentum k in the first BZ are:

|φk〉 =
1√
Ncells

∑

R

eik·R|φR〉, (C4)

The overlap between the Bloch states and the plane waves is thus:

〈p|φk〉 =
1

Nsites

∑

R

ei(k−p)·R =
∑

G

δp,k+G, (C5)

where G are the reciprocal lattice vectors, i.e., G · R/2π ∈ Z. Therefore, all the BZs are exactly equivalent in a crystalline
one-atom tight-binding, since

〈k +G|φk〉 = 1 (C6)

does not depend on G. In other words, 〈p|p +G〉 = 1 for the crystal, i.e., both plane waves are projected to the same state,
which is exactly the Bloch state at k too.
Finally, as a side remark, it is worth mentioning that even if there is a single site per unit cell, the BZs of a crystal are no longer

equivalent if the orbitals have a finite spread in real space. Indeed, in this case, the overlap between the Bloch state and the plane
waves is:

〈k +G|φk〉 =
1

Ncells

∑

R

eik·R〈k +G|φR〉 =
1

Ncells

∑

R

e−iG·R〈k +G|φ0〉 = φ0(k +G), (C7)

where φ0(k +G) is the Fourier transform of the orbital located at the origin, which is generically not constant.

b. Spillage comparing two crystals

Let us remember that plane waves are an overcomplete set in the tight-binding Hilbert space. In this single-site case, the
Hilbert space dimension is Nsites, which is the number of linearly independent plane waves needed for a basis. One possible
choice is selecting all the Ncells = Nsites momenta in one BZ (e.g. the first BZ). These are linearly independent and orthogonal
in the crystalline case (and also for an amorphous structure in the infinite size limit). Therefore, this choice constitutes an
orthonormal basis. Therefore, in this basis we can directly apply Eq. (2b) for the spillage, choosing to compare two crystals,
with the particularity that the sums over reciprocal lattice vectors G disappear since there is only one in the basis. The key
difference from the general multi-site case is that observables are the same irrespective of the BZ where the momenta for the
basis are chosen, i.e., irrespective of the G chosen in the basis. Moreover, thanks to the equivalence between plane waves and
Bloch states in this single-site case, observables projected to a plane wave p are equal to the crystalline quantities computed at
Bloch momentum k = pmodG. In particular, the quasi-Bloch spillage (2), which is equal to the Bloch spillage because we are
comparing two crystals, is also equal to the quasi-Bloch spillage without scattering (3) in this crystalline one-site case.
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c. Structural spillage comparing an amorphous system to a crystal

The previous basis choice is also orthonormal for an amorphous system in the infinite-size limit. Consequently, unlike in
the multi-site case that will be analyzed in the next section, the issue of the overlap between plane waves being different for
the amorphous and crystalline systems does not appear. Therefore, the structural quasi-Bloch spillage including scattering of
Eq. (2) can also be applied for comparing the amorphous structure with a crystalline one in this single-site tight-binding case
(again the sums over reciprocal lattice vectors G drop out in this single-site case). As mentioned in the previous section, when
comparing two crystals with a single site per unit cell, the quasi-Bloch spillage including scattering of Eq. (2) coincides with the
one without scattering of Eq. (3). This is no longer true when comparing an amorphous structure to a crystal, since the scattering
resummation over k′ in the amorphous projector, which is carried out in Eq. (2), is neglected in Eq. (3).
Now, although the structural quasi-Bloch spillage including scattering of Eq. (2) could in principle be applied, this would entail

a high computational cost. Indeed, other methods to indicate the topology in the tight-binding would be equally efficient (such
as the local topological markers [40–43]), questioning the usefulness of the structural spillage applied to a tight-binding model.
Therefore, to implement efficiently the structural spillage, we assume the no-scattering approximation of Eq. (3). Because we
neglect the scattering resummation over k′, the structural spillage of Eq. (3) becomes much more computationally efficient.

However, an important inconvenience arising from neglecting the scattering is that the spillage depends on the BZ where the
momenta for the plane wave basis are chosen. This is because momenta from different crystalline BZs will no longer lead to
equivalent results in the amorphous system, unlike in the single-site crystal. In fact, |p +G〉 and |p〉 no longer project to the
same state (〈p|p+G〉 = 0 for the amorphous case in the infinite size limit), and the quantities projected in |p+G〉 differ from
those projected onto |p〉.
This problem raises the question of how to compute correctly the structural spillage in the no-scattering approximation

between an amorphous material and a crystal, even in this single-site case. Although there is no unique answer, we now provide
a justification for using momenta just in the first BZ. The tight binding has no information about the spatial extent of the orbitals,
although we know that they are exponentially localized around the atom. Therefore, the tight-binding approximation captures
well long-distance physics, but there is a short-distance-cutoff below which the tight-binding results are no longer reliable. It is
reasonable to assume that this cutoff is of the order of the nearest-neighbour distance rnn, which coincides with the lattice constant
a in the crystalline single-site tight-binding. Therefore, only plane-wave momenta below∼ 2π/a are reliable. Consequently, the
quasi-Bloch spillage computed just with plane-wave momenta in the first BZ is a sensible option (optionally, one could average
over the first BZ and second BZs). Considering just the first BZ, the structural quasi-Bloch spillage without scattering reads

γsingle-site-TBqB (k) =
1

2
tr
[(
Pk − P̃k

)2]
, (C8)

which is just Eq. (3) in the single-site case because, as mentioned before, all BZs are equivalent in the crystal, and therefore there
is a single type of BZ, NBZs = 1.

3. System with several sites per unit cell

In this section, we will show that if there are more than one site in the unit cell, then a phase factor depending on the relative
positions of the sites appears in the observables. Unlike in the single-site case, this leads to some BZs being inequivalent in the
crystal, requiring us to upgrade the single-site structural spillage Eq. (C8).

a. Crystal: definitions and types of Brillouin zones

Consider a crystal with Ncells unit cells at positions R and Ns/c sites per unit cell at positions tA with respect to the center of
the cellR, so that the total number of sites is Nsites = Ncells ·Ns/c. The Bloch states with a definite sublattice are, therefore:

|φAk 〉 =
1√
Ncells

∑

R

eik·(R+tA)|φAR〉. (C9)

The projection of the Wannier functions onto plane-waves reads:

φAR(p) = 〈p|φAR〉 =
1√
Nsites

e−ip·(R+tA). (C10)
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Figure S7. BZ types for the honeycomb lattice. Colors are different for each type. Red corresponds to a = 0 mod 3, and therefore a phase
e−iG·tAB = eia2π/3 = 1. Blue represents a = 1 mod 3, i.e., a phase ei2π/3. Finally, green refers to a = 2 mod 3, i.e., a phase e−i2π/3.

Therefore, the overlap between the Bloch states and the plane waves is:

〈k +G|φAk 〉 =
1√
Ns/c

e−iG·tA . (C11)

However, the band eigenvectors are combinations of these Bloch states in different sublattices:

|ψnk〉 =
∑

A

cnAk |φAk 〉, (C12)

and, therefore, their overlap with the plane waves reads:

〈k +G|ψnk〉 =
1√
Ns/c

∑

A

cnAk e−iG·tA , (C13)

Let us now show that observables projected to a plane wave with momentum p = k+G depend on the phase factors e−iG·tAB ,
where tAB = tA− tB are the relative positions of the different sublattices. For concreteness, let us start considering the simplest
observable, that will be a building block for e.g. the spillage: the projector onto band n at crystal momentum k, Pnk =

∣∣ψnk〉〈ψnk
∣∣:

〈k +G
∣∣Pnk

∣∣k +G〉 =
∣∣〈k +G

∣∣ψnk〉
∣∣2 =

1

Ns/c

∑

A,B

cnAk
(
cnBtk

)∗
e−iG·tAB =

1

Ns/c


1 +

∑

A6=B
cnAk

(
cnBk

)∗
e−iG·tAB


 , (C14)

which is different from tr [Pnk ] = 1 in general. These phase factors, which depend on G, lead to at least some BZs being
inequivalent even if the orbitals are still Dirac deltas. Therefore, the types of BZs in the multi-site crystal can be classified by
the set of phase factors

{
e−iG·tAB

}
. In general, some BZs become inequivalent whenever there is structure inside the unit cell,

irrespective of whether it comes from spatially-extended orbitals or from several sites.
As an example, consider the honeycomb lattice, where there areNs/c = 2 sublatticesA andB such that tAB = −a

[
0, 1/
√

3
]
.

The reciprocal lattice basis vectors are G1 = 4π/
√

3a
[√

3/2, 1/2
]
, and G2 = 4π/

√
3a [0, 1]. A general reciprocal lattice

vector G = n1G1 + n2G2, with n1, n2 ∈ Z, satisfies G · tAB = −4π/3(2n2 + n1) = 2π/3 · 2(2n2 + n1). Therefore,
e−iG·tAB = eia2π/3, with a ∈ Z3, so there are NBZs = 3 different types of BZs depending on the value of this phase factor. If
we consider all possible momenta, from zero to infinity, then the multiplicity in momentum space of each type of BZ is the same.
On the other hand, if we only consider momenta up to a cutoff pmax, then the multiplicity in momentum space of each type of
BZ can be different. Fig. S7 shows the type of the first BZ and the six nearest-neighbour second BZs. Note that the first BZ has
G = 0, and therefore it is always characterized by a = 0, i.e., by a phase e−iG·tAB = eia2π/3 = 1.

b. Crystal: recovering the exact results using plane waves

We now ask the question of how to recover the exact values of the observables in the crystalline tight binding, this time using
the plane waves. We also keep in mind that we want to later extend our definitions to the amorphous case.

First, we have to choose a basis of plane waves for this crystalline multi-site case. The tight-binding Hilbert space has
dimensionNsites = Ns/c ·Ncells. Therefore, a possibility is to selectNcells plane waves inNs/c inequivalent BZs. Decomposing
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the plane-wave momenta as p = k +G, we find that plane waves with different k are orthogonal. However, in contrast to the
single-site case, plane waves with the same k but differing in a reciprocal lattice vectorG are generically neither orthogonal nor
equivalent in the crystalline case. It is only when the differing reciprocal lattice vector G verify

{
e−iG·tAB

}
= {1}, i.e., when

the BZs are equivalent, that the projected plane waves are equivalent states.
For instance, in the honeycomb lattice, where Ns/c = 2, we can choose the basis in the first BZ (G0 = 0) and in the

G1 = 4π/
√

3a(0, 1) BZ. In this example, the overlap between plane waves is |〈k + G0|k + G1〉| = |〈k|k + G1〉| = 0.5.
Therefore, we have to use the formalism of non-orthogonal bases (see, e.g., Ref. [73]) and properly modify the quasi-Bloch
spillage of Eq. (2a). Within this formalism, the closure relation reads:

1 =
∑

k

∑

GG′

∣∣k +G〉
(
S−1

)
G,G′ 〈k +G′

∣∣, (C15)

where the overlap matrix is defined as SG,G′ = 〈k + G
∣∣k + G′〉, which depends only on the difference G′ −G. Also, the

sums over the reciprocal lattice vectorsG run over the Ns/c BZs chosen in the basis. In the previous example of the honeycomb
lattice, they would run overG0 = 0 andG1 = 4π/

√
3a(0, 1). Using this expression for the closure relation, we can derive the

expressions for the observables in this non-orthogonal plane-wave basis. For example, the trace of the projector onto band n at
crystal momentum k, tr [Pnk ], becomes

tr [Pnk ]non-orth =
∑

GG′

〈k +G
∣∣Pnk

∣∣k +G′〉
(
S−1

)
G′,G

, (C16)

Importantly, Eq. (C16) recovers the expected crystalline value tr [Pnk ] = 1, irrespective of the chosen plane-wave basis.
Furthermore, in this non-orthogonal basis, the quasi-Bloch spillage is given by the appropriate generalization of Eq. (2a):

γnon-orthqB (k) =
1

2

∑

k′

∑

G1G2G3G4

∑

αβ

[
Pαβk+G1,k′+G2

(
S−1

)
G2,G3

P βαk′+G3,k+G4

(
S−1

)
G4,G1

−

−Pαβk+G1,k′+G2

(
S−1

)
G2,G3

P̃ βαk′+G3,k+G4

(
S−1

)
G4,G1

]
+
[
P ↔ P̃

]
.

(C17)

Crucially, when comparing two crystals, Eq. (C17) exactly recovers the Bloch spillage, regardless of the plane wave basis chosen.

c. Comparing an amorphous system to a crystal using the structural spillage: no-scattering approximation

Let us now try to compute the structural spillage between a crystalline and an amorphous structure. Aside from the issues
already discussed for the single-site case, here is where comparing two tight bindings with sites at different positions becomes
problematic. The reason is that overlap between the plane waves is different in the crystal and in the amorphous cases. In the
crystal, as discussed in section C 3 a, some plane waves

∣∣p + G〉 are different states from
∣∣p〉, yet their overlap is non-zero,

〈p
∣∣p + G〉 6= 0. In the amorphous system, in the limit of infinite size, all plane waves are inequivalent (as in the single-site

case), and more significantly, they are orthogonal. In the structural spillage of Eq. (C17), the crystalline and the amorphous
projector appear sandwiched between the overlap matrices, but this overlap depends on the system. Therefore, we cannot apply
the previous non-orthogonal formalism.

As explained in the main text, this issue can be avoided by neglecting the momentum scattering, i.e., by setting k′ = k and
G′ = G in Eq. (2a). Such approximation has been used previously to determine the topology of an amorphous system using
other methods such as the effective Hamiltonian approach [14, 35]. It is also inspired by the fact that continuous translational
symmetry is recovered after averaging over different disorder realizations.

Let us now write the expressions for the projector and the spillage within this approximation. On the one hand, the trace of the
projector into band n at crystal momentum k simplifies to:

tr [Pnk ]no scatt =
∑

G

〈k +G
∣∣Pnk

∣∣k +G〉, (C18)

where the sums over the reciprocal lattice vectors G again run over the Ns/c BZs chosen in the plane wave basis. On the other
hand, the corresponding expression for the structural quasi-Bloch spillage without scattering, which is obtained by setting k′ = k
andG′ = G in Eq. (2a), reads:

γno scattqB (k) =
1

2

∑

G

tr
[(
Pk+G − P̃k+G

)2]
, (C19)
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where the trace acts over the internal degrees of freedom α, and, as in the main text, Pαβp = 〈p|P |p〉. Eq. (C19) is not yet the
definite expression of Eq. (3) for the structural spillage in the tight-binding approximation, since it still suffers from a problem
that we detail below.

d. Taking into account different types of Brillouin zones

In contrast to the single-site case, the values of the observables computed within this no-scattering approximation depend on
the BZs chosen in the basis even in the crystal. The reason is the presence of different types of BZs (see Appendix C 3 a). In this
section, we will provide a method to circumvent this issue based on the condition that, when applied to crystals, it leads to values
as close as possible to the exact crystalline values, where rigorous proofs exist [45].

In short, our solution consists of computing a observable without scattering, performing an average over the NBZs different
types of BZs, and then multiplying by the number of sites per unit cell Ns/c in the crystal. First, let us show that our proposal
recovers the correct crystalline result for the observables that depend only on one projector. Indeed, the BZ-averaged Eq. (C18)
representing the trace of the projector into the band n at crystal momentum k becomes:

tr [Pnk ]
BZ av
no scatt =

Ns/c

NBZs

∑

a∈BZs

〈k +Ga

∣∣Pnk
∣∣k +Ga〉 = 1 +

∑

A6=B
cnAk

(
cnBk

)∗
[

1

NBZs

∑

a∈BZs

e−iGa·tAB

]
= 1, (C20)

where the sum over a runs over a representative BZ of each type, and we have used Eq. (C14) and the fact that the term inside the
square brackets vanishes identically forA 6= B. If there is a finite numberNBZs of BZ types, this term vanishes because theNBZs

phases e−iGa·tAB are the 1/NBZs roots of unity. If there are infinite BZ types, which might occur, e.g., if the sites are located
at a generic nonsymmetric Wyckoff position incommensurate with the reciprocal lattice vectors, then this term vanishes due to
the infinite sum of a continuum of phases. In the example of the honeycomb lattice, where NBZs = 3 and e−iGa·tAB = eia2π/3

with a ∈ Z3 if A 6= B, and e−iGa·tAB = 1 if A = B, we obtain, as expected:

1

3

∑

a=0,1,2

e−iGa·tAB = δAB . (C21)

We have also verified that the correct crystalline results are obtained numerically in our bismuthene and Bi bilayer tight-binding
models. Indeed, Fig. S8 shows the number of occupied states per unit cell

∑
n∈occ tr [Pnk ]

BZ av
no scatt at k = 0 as a function of the

onsite SOC for crystalline bismuthene and Bi bilayer. In both models, this number of occupied states (or filling) is constant and
equal to 4 and 6, as expected, since they correspond to half-filling in bismuthene and Bi bilayer, respectively. Note that the filling
artificially deviates from these values close to the topological transition. However, this is an artifact stemming from the finite
KPM resolution. Indeed, this artifact only appears close to the transition, which is where the bulk gap is smaller, and therefore
is where the required precision to obtain the correct results is higher. We have checked that the deviations from the exact filling
shrink when increasing the KPM precision and the system size.

In summary, we have shown that, by averaging over the BZ types and multiplying by Ns/c, we recover the correct values in
the crystal for the quantities that involve the trace of one projector. This exact result is recovered despite neglecting both the
scattering by different reciprocal lattice vectors and the non-orthogonality of the plane waves. This means that the scattering
does not play a crucial role in the quantities that involve the trace of only one projector.

e. Structural spillage without scattering in the tight-binding approximation

Now, let us consider quantities that involve the trace of two projectors, such as the spillage. Unlike in the quantities involving
just one projector, here scattering plays an important role. Indeed, we will show that scattering should be included to obtain the
exact result in the crystalline limit (see, e.g., Eq. (2b), where the sum overG′ represents the scattering). However, as explained
in Appendix C 3 c, the scattering has to be neglected in order to be able to use the structural spillage to compare amorphous and
crystalline systems. Nevertheless, we will also show that, even if the crystalline results are not exactly recovered, our method
gives reasonably good results, which allows the structural spillage to work as a topological indicator also in the tight-binding
approximation.

Consider, the trace of (Pnk )
2, which should be equal to one if Pnk is a projector. If we include scattering and average over
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(a) (b)

Figure S8. Sum over occupied bands of the trace of one and two projectors,
∑
n∈occ tr [P

n
k ]BZ av

no scatt and
∑
n∈occ tr

[
(Pnk )2

]BZ av
no scatt, as a function

of onsite SOC, computed using the formalism of Eqs. (C20) and (C23) at k = 0. (a) Bismuthene crystal. (b) Bi bilayer crystal. On the one
hand, the filling

∑
n∈occ tr [P

n
k ]BZ av

no scatt recovers the exact crystalline result, except close to the transition due to finite precision effects. On the
other hand, the trace of the projector square

∑
n∈occ tr

[
(Pnk )2

]BZ av
no scatt, which should be equal to the filling, is just slightly (∼ 8− 25%) smaller

due to neglecting the momentum scattering.

Brillouin zones this exact condition is fulfilled for the crystal, as can be checked explicitly:

tr
[
(Pnk )

2
]BZ av

scatt
=

Ns/c

NBZs

∑

a∈BZs

Ns/c

NBZs

∑

a′∈BZs

[
〈k +Ga

∣∣Pnk
∣∣k +Ga +Ga′〉〈k +Ga +Ga′

∣∣Pnk
∣∣k +Ga〉

]
=

=
∑

A,B,C,D

cnAk
(
cnBk

)∗
cnCk

(
cnDk

)∗ 1

NBZs

∑

a∈BZs

e−iGa·(tAB+tCD) 1

NBZs

∑

a′∈BZs

e−iGa′ ·tCB =

=
∑

A,B,D

cnAk
∣∣cnBk

∣∣2 (cnDk
)∗ 1

NBZs

∑

a∈BZs

e−iGa·tAD =
∑

A,B

∣∣cnAk
∣∣2∣∣cnBk

∣∣2 = 1.

(C22)

However, including scattering is not possible in general, unlike BZ averaging. As explained above, the scattering cannot be
taken into account when the two projectors belong to systems with a different lattice structure. Therefore, when computing
two-projector quantities we still perform the BZ average on the external sum over Ga, but are forced to neglect the scattering
resummation overGa′ :

tr
[
(Pnk )

2
]BZ av

no scatt
=

Ns/c

NBZs

∑

a∈BZs

[
〈k +Ga

∣∣Pnk
∣∣k +Ga〉〈k +Ga

∣∣Pnk
∣∣k +Ga〉

]
=

=
1

Ns/c

∑

A,B,C,D

cnAk
(
cnBk

)∗
cnCk

(
cnDk

)∗ 1

NBZs

∑

a∈BZs

e−iGa·(tAB+tCD) =

=
1

Ns/c

∑

A,B,C,D

cnAk
(
cnBk

)∗
cnCk

(
cnDk

)∗
δtAB+tCD,0.

(C23)

Although this equation does not exactly recover the crystalline value, we have numerically verified that the sum over occupied
bands of this Eq. (C23),

∑
n∈occ tr[(Pnk )2]BZ av

no scatt, gives values just ∼ 8 − 25% smaller than
∑
n∈occ tr[Pnk ]BZ av

no scatt in the crystal,
as shown in Fig. S8. Therefore, we take this as a reasonable approximation, especially taking into account that this quantity can
also be computed when one of the projectors corresponds to an amorphous structure. Applying this method to the structural
quasi-Bloch spillage, we arrive at Eq. (3).

In order to implement the tight-binding spillage of Eq. (3) we need to account for a final detail: the choice of a representative
BZ of each type. This is a requirement because we introduced the average over BZ types in Eqs. (C20)-(C23). To perform this
average, one has to select one representative for each type of BZ. To this end, let us consider the example of the honeycomb
lattice relevant to our Bi models, which has NBZs = 3 types of BZ, as sketched in Fig. S7. Due to the argument which lead
us to Eq. (C8) in Appendix C 2 c, the optimal criterium for choosing the BZ representatives is to consider the ones whose
reciprocal lattice vector is smaller in modulus. For example, the first BZ will always be chosen as the representative of the BZs
characterized by a phase eiG·tAB = 1. There can still be several options, such as the three possibilities for the BZs with phases
eiG·tAB = e±i2π/3. In this case, one can choose any of them. A better choice however is to perform an angular average over
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them. Indeed, while the crystal is anisotropic, the amorphous structure is effectively isotropic. In particular, although the total
traces in the crystal are exactly the same in all equivalent BZs, some orbital-resolved quantities might vary. For instance, in
the honeycomb lattice, if the occupied eigenstate at G = 4π/

√
3(0, 1) is of py character, the eigenstate at the threefold rotated

Ĉ3G = 4π/
√

3(−
√

3/2,−1/2) is of the threefold rotated −(
√

3/2)px − (1/2)py character. On the other hand, for sufficiently
large samples, amorphous structures are expected to be isotropic in momentum space. Therefore, one would ideally perform an
angular average over the G corresponding to equivalent BZs with the same modulus, but pointing in a different direction. In
the honeycomb lattice, the quantity corresponding to the BZs with phase eiG·tAB = e+i2π/3 would be an average over the three
BZs shown in blue in Fig. S7. Consequently, when the corresponding crystal displays a honeycomb lattice, the angle-averaged
Eq. (3) for the structural quasi-Bloch spillage in the tight-binding approximation reads:

γTB
qB (k) =

2

3





1

2
tr
[(
Pk+G0 − P̃k+G0

)2]
+

1

3

∑

Gm
1

1

2
tr
[(
Pk+Gm

1
− P̃k+Gm

1

)2]
+

1

3

∑

Gm
2

1

2
tr
[(
Pk+Gm

2
− P̃k+Gm

2

)2]


 ,

(C24)
where:

G0 = 0 ⇒ e−iG0·tAB = 1, (C25)




G0
1 = 4π/

√
3(0, 1)

G1
1 = Ĉ3G

0
1 = 4π/

√
3(−
√

3/2,−1/2)

G2
1 = (Ĉ3)2G0

1 = 4π/
√

3(
√

3/2,−1/2)



⇒ e−iG

m
1 ·tAB = ei2π/3, (C26)





G0
2 = 4π/

√
3(0,−1)

G1
2 = Ĉ3G

0
2 = 4π/

√
3(
√

3/2, 1/2)

G2
2 = (Ĉ3)2G0

2 = 4π/
√

3(−
√

3/2, 1/2)



⇒ e−iG

m
2 ·tAB = e−i2π/3. (C27)

Eq. (C24) is a specific instance of the general Eq. (3) that we used for computing the spillage in our bismuthene and Bi bilayer
tight-binding models. However, we have also checked that in these models, for the system sizes considered, performing the
angular average or not does not noticeably change the results.

In summary, our proposed method for computing two-projector quantities, such as the structural spillage, consists of neglecting
the momentum scattering, performing an average over the different types of BZs, and multiplying by the number of sites per unit
cell in the corresponding crystal. Applying this method to the structural quasi-Bloch spillage, we arrive at the final expression for
the structural spillage in the tight-binding approximation, Eq. (3) of the main text. To conclude, we highlight that, in the specific
case when the number of types of BZs is infinite or very large, (3) would involve reciprocal lattice vectors |G| � 2π/a, with a
the crystalline lattice constant. In this case, as in the single-site case, we may introduce a momentum cutoff and consider only
the reciprocal lattice vectorsG smaller than this cutoff.

4. Phase transition criterion in the tight-binding approximation

In this section we define our criterion to choose the topological transition. To this end it is important to note first that, as
mentioned above, Eq. (3) does not exactly recover the values of the Bloch spillage when applied to two crystals with and without
SOC, because we neglected scattering. However, we have numerically verified that it results in similar values. In particular,
the maximum spillage without scattering is max

[
γTB
qB (k = 0)

]
= 1.5 in the two models, which is a factor of 4/3 smaller than

the exact spillage max [γqB(k = 0)] = 2 that would be recovered after considering the scattering. This is related to the fact

that
∑
n∈occ tr

[
(Pnk=0)

2
]BZ av

no scatt
is a factor of 4/3 smaller than

∑
n∈occ tr [Pnk=0]

BZ av
no scatt in the topological and trivial phases for

the bismuthene and Bi bilayer tight-binding models, respectively (see Fig. S8). There is no reason to believe that this factor is
universal, and thus we consider it model dependent.

With this in mind, in order to identify the topological phases in a tight-binding phase diagram, we take the criterion that the
topological transition occurs when the quasi-Bloch spillage of Eq. (3) equals to half the maximum value of the spillage between
two topologically different crystals when scattering is neglected. In both our models, this critical value equals 0.75. However,
in general, this critical value of the tight-binding structural spillage will be model-dependent, and must be determined in a
case-to-case basis.
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Appendix D: Absence of a corresponding crystal: spin-orbit plane-wave spillage

One of our assumptions for applying the structural quasi-Bloch spillage of Eqs. (2)-(3) is that there exists a crystalline structure
with similar local environments to the non-crystalline one. While this is a quite generic feature [37], there are also some
amorphous and quasicrystalline structures whose local environment is different to any crystalline phase of the same material.
In this case, while the structural quasi-Bloch spillage could still be calculated, it would probably not be very indicative of the
topology, since many possibly trivial band inversions could occur.

In this case, one could again resort to computing the spin-orbit Bloch spillage comparing an amorphous supercell with and
without SOC, as proposed for crystals by Liu and Vanderbilt [45]. However, as mentioned in the main text, this would always
be a large quantity due to the big size of the supercell. Liu and Vanderbilt proposed to fix this issue by analyzing valence- and
conduction-band-resolved spillages. However, these are not gauge-invariant, and a careful analysis is required to discern the
topological character using this method. These solutions are not practical from the point of view of a performing high-throughput
screening of amorphous materials, where it is desirable to define a quantity that is easily implemented and analyzed using
ab-initio codes.

For such cases without a crystalline counterpart, we propose instead a plane-wave-resolved spin-orbit spillage comparing an
amorphous system with and without SOC. This spin-orbit plane-wave spillage γpw(p) is defined as in Eq. (2a) but without the
sum over crystalline reciprocal lattice vectorsG:

γpw(p) =
1

2

∑

p′

∑

αβ

[
Pαβp,p′P

βα
p′,p − P

αβ
p,p′ P̃

βα
p′,p

]
+
[
P ↔ P̃

]
(D1)

where p and p′ are plane-wave momenta. For a supercell Gamma calculation in DFT, p and p′ would be the supercell reciprocal
lattice vectors. Now, since both systems that are being compared have the same structure, Eq. (D1) can also be applied within a
tight-binding approximation. However, for the latter approximation, one could first compute the much more efficient plane-wave
spillage without scattering, which would read:

γno scattpw (p) =
1

2
tr
[(
Pp − P̃p

)2]
, (D2)

We however leave the benchmarking of the plane-wave spillage for future work.
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