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Topological qubits composed of unpaired Majorana zero-modes are under intense experimental and theoret-
ical scrutiny in efforts to realize practical quantum computation schemes. In this work, we show the minimum
four unpaired Majorana zero-modes required for a topological qubit according to braiding schemes and control
of entanglement for gate operations are inherent to multiplicative topological phases, which realize symmetry-
protected tensor products—and maximally-entangled Bell states—of unpaired Majorana zero-modes known
as multiplicative Majorana zero-modes. We introduce multiplicative Majorana zero-modes as topologically-
protected boundary states of both one and two-dimensional multiplicative topological phases, using methods
reliant on multiplicative topology to construct relevant Hamiltonians from the Kitaev chain model. We further-
more characterize topology in the bulk and on the boundary with established methods while also introducing
techniques to overcome challenges in characterizing multiplicative topology. In the process, we explore the
potential of these multiplicative topological phases for an alternative to braiding-based topological quantum
computation schemes, in which gate operations are performed through topological phase transitions.

Topological quantum computation schemes are central to
study of topological condensed matter and viewed as one of
their most important and practical applications. In partic-
ular, they hold great promise for overcoming challenges of
decoherence associated with scalable quantum computation
schemes1. These schemes rely upon realization of topolog-
ical qubits consisting of quasiparticles with non-Abelian ex-
change statistics, with the simplest and most widely-studied
of these quasiparticles being the unpaired Majorana zero-
mode (MZM)2. This area of research has expanded rapidly
in the last two decades, with many recent experimental
works reporting signatures associated with unpaired Majo-
rana zero-modes3,4, along with a tremendous number of the-
oretical proposals for experimental realization and practical
application5,6.

In order to construct a topological qubit from unpaired
Majorana zero-modes, two pairs of unpaired Majorana zero-
modes are required at minimum by proposals based on braid-
ing 7,8, and some gate operations required for topologi-
cal quantum computation utilize controlled entanglement9.
The recently introduced multiplicative topological phases
(MTPs)10—topological phases of matter corresponding to a
symmetry-protected tensor product structure in which mul-
tiple parent topological phases may be combined in a mul-
tiplicative fashion to realize novel topology—present an op-
portunity to elegantly meet these requirements. If two parent
topological phases, each realizing unpaired Majorana zero-
modes, are combined in this manner, states consisting of ten-
sor products of unpaired Majorana zero-modes are possible.
As shown in work introducing MTPs10, it is furthermore pos-
sible to selectively entangle topologically-protected boundary
modes while respecting symmetries protecting the multiplica-
tive topological phase in the bulk, which could potentially be
used to introduce entanglement in a controlled manner for the
purpose of gate operations.

For these reasons, we introduce multiplicative topological
phases constructed from parent phases realizing unpaired Ma-
jorana zero-modes in this work, and introduce the concept of a
multiplicative Majorana zero-mode (MMZM), a single quasi-

particle composed of two or more MZM states in a tensor
product—or maximally-entangled— at the simplest level. We
choose parent Hamiltonians to be instances of the canonical
Kitaev chain model11. We find that, for the models consid-
ered, MMZMs realize a variety of two-qubit states in different
regions of the phase diagram. This indicates MMZMs have
the potential to serve as an alternative platform for topologi-
cal quantum computation to braiding schemes, in which each
parent of the multiplicative phase provides a qubit, and the
minimum number of MZMs for a qubit is instead effectively
two.

We also explore the potential of multiplicative topology to
realize novel physics in this work of interest beyond quan-
tum computation schemes: while the Kitaev chain realizes
a one-dimensional topological phase, a multiplicative topo-
logical phase constructed from two parent Kitaev chains can
actually be one-dimensional or two-dimensional. We con-
sider both constructions in this work using Kitaev chain par-
ent phases, realizing one-dimensional and two-dimensional
multiplicative Kitaev chain (MKC) constructions, and study-
ing the multiplicative Majorana zero-modes resulting in each
case. To characterize the arising multiplicative phases, we
study the Wannier center spectrum of the MKC and find that
its eigenvalues are sums of the eigenvalues of the parent Wan-
nier center spectra. As a result, Wilson loops can fail to char-
acterize multiplicative topology in certain cases. We show,
however, that the MKC can be decomposed into parts, and
winding numbers for these components used to characterize
topological phases realized by the MKC.

We begin by first reviewing the Kitaev chain and its topo-
logical classification in section I. In section II we introduce
a one-dimensional MKC and present its spectrum and bound
states. Finally, in section III we introduce a two-dimensional
MKC, also characterizing its spectral properties and bulk-
boundary correspondence.

I Parent Hamiltonians

To realize topologically-protected states analogous to un-
paired Majorana zero-modes in multiplicative topological
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phases, we construct them from two parent Hamiltonians. The
latter are described by a Hamiltonian core to many leading
experimental proposals12–18 for realization of unpaired Ma-
jorana zero-modes and topological qubits known as the Ki-
taev chain19,20. Given the foundational nature of the Kitaev
chain in topological quantum computation11,21, our results are
broadly-relevant to study of quasiparticles in multiplicative
phases relevant to topological quantum computation. We fur-
ther show that phases in which multiplicative Majorana zero-
modes are realized exhibit a number of unique features of con-
siderable fundamental interest in study of topological phases
of matter and promising for topological quantum computation
schemes.

First, we review the Kitaev chain model and its signifi-
cance to platforms for topological quantum computation. The
one-dimensional Kitaev chain model is a foundational tight-
binding model describing spinless complex fermions hopping
between nearest-neighbor sites, with additional p + ip super-
conducting pairing19. More specifically, the real space Hamil-
tonian for the Kitaev chain (KC) takes the form11,

HKC =

N∑
j=1

−µc†jcj − t(c
†
jcj+1 + h.c.)

+ ∆(cjcj+1 + h.c.),

(1)

where here c†j creates an electron at site j, µ is the chemical
potential, t is the nearest-neighbor hopping integral, and ∆ is
the superconducting pairing strength.

The fermion number parity conservation of the supercon-
ductor yields two sectors of the Hilbert space, one with even
ground state parity and one with odd ground state parity11.
For odd parity and open boundary conditions (OBC) for the
chain, the ground state manifold is degenerate and composed
of states strongly-localized at its ends. Within the ground state
manifold, furthermore, states may be constructed with wave-
functions strongly-localized at only one end of the chain or the
other, which are of Majorana character11. These two Majo-
rana bound states constitute a physical fermion that allows in-
formation to be encoded non-locally, providing a robust plat-
form for quantum computing.

The single-particle sector of the model also displays the de-
sired unpaired Majorana zero-modes at the ends of the chain
for open boundary conditions and it is widely-studied and ex-
perimentally relevant22. This version is sufficient for the pur-
pose of introducing multiplicative topological phases based
upon the Kitaev chain and we restrict ourselves to this case
for the remainder of the manuscript.

We first consider the infinitely-long chain in the single-
particle regime with periodic boundary conditions. Fourier-
transforming the Hamiltonian and imposing particle-hole
symmetry (PHS) through a redundancy, we express the model
in terms of a Bogoliubov de Gennes Hamiltonian HBdG(k),

HKC =
1

2

∑
k

Ψ†kHBdG(k)Ψk, (2)

HBdG(k) =− (2t cos k + µ)τz + 2∆ sin kτy. (3)

Here, Ψk = (ck, c
†
−k)T with ck annihilating a complex,

spinless fermion with momentum k, reflecting the particle-
hole degree of freedom incorporated explicitly into the Hamil-
tonian, and τ j with j ∈ {x, y, z} is a Pauli matrix.

For this effectively mean-field description of a su-
perconductor, the Bloch Hamiltonian may be diago-
nalized to compute the bulk spectrum as ε±(k) =

±
√

(2t cos k + µ)2 + 4∆2 sin2 k. From this expression, we
see that the Bloch Hamiltonian is gapped for |µ| < 2t and
|µ| > 2t, with gap closings occurring at k = π (k = 0)
for µ = 2t (µ = −2t). A topologically non-trivial phase
is realized in the former regime, which may be characterized
in the bulk by various methods23 as well as explicit verifica-
tion of unpaired Majorana zero-modes. The latter is facili-
tated by considering the Majorana representation of the finite
Kitaev chain11. For now, we consider the latter and express
the BdG Hamiltonian in terms of Majorana operators with the
convention cj = 1

2 (γ+,j+iγ−,j), where {γα, γβ} = 2δαβ and
γ†α = γα, yielding the following expression for the Hamilto-
nian:

HKC =

N∑
j=1

−µ
2

(1 + iγj,+γj,−)

− t

2
(iγj,+γj+1,− + iγj+1,+γj,−)

+
∆

2
(iγj,+γj+1,− − iγj+1,+γj,−). (4)

Notice that for t = ∆ and µ = 0, we have [HKC , γ1,−] =
[HKC , γN,+] = 0, which implies we have two Majorana zero-
modes, each with zero energy and localized at one end of the
chain.

We will now construct multiplicative topological phases
(MTP) with two parent Kitaev chain Hamiltonians Hp,1(ki)
and Hp,2(kj), where ki and kj are momenta in directions i
and j. We take i and j to either be parallel (i and j are each
taken to be x and ki = kj = kx corresponds to momen-
tum in the x direction, for instance) or perpendicular (i and
j are taken to be x and y, for instance, with Hp,1(kx) de-
scribing a Kitaev chain parallel to the x-axis and Hp,2(ky)
describing a Kitaev chain parallel to the y-axis in the x-y
plane). In this way, we may realize multiplicative topolog-
ical phases that are either one-dimensional (i = j) or two-
dimensional (i 6= j). We express parent Hamiltonian α
(with α ∈ {1, 2}) using a vector of momentum-dependent
parameters d(k)α = (d(k)1α, d(k)2α, d(k)3α) dotted into a
vector of Pauli matrices τ = (τx, τy, τz) for parent 1 and
σ = (σx, σy, σz) for parent 2,

Hp,1(ki) = d(ki)1 · τ , (5a)

Hp,2(kj) = d(kj)2 · σ, (5b)

Hc
12(k) = d(ki)1 · τ ⊗ (−d(kj)12, d(kj)22,−d(kj)32) · σ,

(5c)
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and the momentum vector k = kiî+kj ĵ being simply k = kiî
for i = j. The tensor product structure is protected by a com-
bination of symmetries enforced on the child Hamiltonian and
symmetries enforced on the parent Hamiltonians as discussed
in Cook and Moore10. This results in the child Hamiltonian
possessing the following symmetries according to standard
analysis purely at the level of child24,25:

T = K, (6a)

P1 = I ⊗ σxK, (6b)

C1 = I ⊗ σx, (6c)

P2 = τxK ⊗ I, (6d)

C2 = τx ⊗ I, (6e)

where T , P and C correspond to time-reversal, particle-hole
and chiral symmetry, respectively. Besides the discrete sym-
metries, the child Multiplicative Kitaev Chain has a unitary
symmetry, given by U = τxσx. Such a unitary symmetry nat-
urally emerges in the child Hamiltonian by its tensor product
form in terms of the parent Hamiltonians and each parent pos-
sessing chiral symmetry. This permits block diagonalization
of the child Hamiltonian, as we show in this work. This moti-
vates further development of methods for symmetry analysis,
as such analysis at the level of the child and parents in com-
bination rather than strictly at the level of the child reveals
different information about the system useful in characteriz-
ing topological systems given the possibility of multiplicative
topology.

We comment briefly on the interpretation of the basis for the
child Hamiltonian, as there are two possible options. One pos-
sibility is to interpret the resultant Hamiltonian as quadratic,
describing an effectively non-interacting system. However,
we may also interpret the bases of the child Hamiltonians dis-
cussed here as tensor products of single-particle bases of the
parents, corresponding to a basis for the child that is purely
quartic. In this second interpretation, therefore, the Hamilto-
nian characterizes a strongly-correlated system. We focus on
the first interpretation in this work, and will explore the sec-
ond interpretation in greater detail in later work.

II Child Hamiltonian for parallel parent chains
We first consider the MKC for two parallel parent Kitaev
chains, corresponding to i = j above. We therefore take
ki = kj = k to simplify notation. The parent and child
Hamiltonians then take the following forms,

HKC,1(k) =− (2t1 cos k + µ1)τz + 2∆1 sin kτy,

HKC,2(k) =− (2t2 cos k + µ2)σz + 2∆2 sin kσy,

Hc
MKC,||(k) =[−(2t1 cos k + µ1)τz + 2∆1 sin kτy]

⊗ [(2t2 cos k + µ2)σz + 2∆2 sin kσy].

(7)

We characterize the MKC in this case first by studying the
bulk spectrum and then by studying bulk boundary correspon-
dence analytically and numerically.

A Bulk spectrum of the multiplicative Kitaev chain

The spectrum of the child Hamiltonian Hc
MKC,||(k) consists

of doubly-degenerate eigenvalues given by

E(k) = ±
√

(2t1 cos(k) + µ1)2 + (2∆1 sin(k))2√
(2t2 cos(k) + µ2)2 + (2∆2 sin(k))2.

(8)

This corresponds to the bulk gap closing under the following
conditions:

µ1,2 =


−2t1,2, if k = 0

+2t1,2, if k = π

−2 cos(k)t1,2, if ∆1,2 = 0.

(9)

We illustrate these in Fig. 1, where we show the MKC spec-
trum as a function of k for a set of representative points in a
phase diagram generated by fixing t1 = t2 = 1 and varying
µ1 and µ2. Figs. 1 (a-d) show that the bulk gap closing points
are inherited from the parents, as the eigenvalues of the MKC
correspond to the product of two Kitaev chains eigenvalues
for different configurations.

a)

c)

b)

d)

FIG. 1: Dependence of the bulk dispersion of the child
Hamiltonian Hc

MKC,||(k) in Eq. 7 on parameters of its parent
Hamiltonians HKC,1(k) and HKC,2(k). Example bulk
dispersions for Hc

MKC,||(k) are shown in (a),(b),(c), and (d)

for parameter values
(
µ1

t1
, µ2

t2

)
= (−2, 2), (2, 2), (−2, 0),

and (2, 0), respectively. The child bulk gap closes at k = 0
along the green line, at k = π along the blue line, and at
k = 0, π on the yellow dots in agreement with Eq. 9 for
∆1 6= 0,∆2 6= 0.

While the computation of bulk topological invariants for the
parent Kitaev chains is known, this is not the case for the topo-
logical invariants of the MKC. Although the topology of mul-
tiplicative phases can be understood in terms of their parents’
topological invariants, the methods for characterizing these
Hamiltonians, without knowledge of their decomposition into
parent Hamiltonians, have not been established.

One of the more robust methods for characterizing topol-
ogy is the analysis of the Wilson loop spectrum. The Wilson
loop26 is a unitary operator defined over a closed path as:

W = exp
[
i

∫
BZ

dk ·A(k)
]
, (10)
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whereA is the non-Abelian Berry connection:

Amn(k) = i 〈um(k)| ∇k |un(k)〉 . (11)

Here |un(k)〉 are Bloch states in the occupied subspace and
A is defined a Hermitian operator. Consequently,W is a uni-
tary operator whose eigenvalues are ei2πνj , where νj are the
Wannier centers of charge.

We compute the Wannier centers for topologically-distinct
regions of the phase diagram determined by the topological
invariants of the parents. Each parent Hamiltonian has a Z2

topological classification, so the child Hamiltonian has a Z2×
Z2 classification, with its invariant νC expressed in terms of
the parent invariants ν(1) and ν(2) as νC = (ν(1), ν(2)), where
ν(1,2) ∈ {0, 0.5} mod 1 indicates the topological phase of
each parent.

In the trivial phase the Wannier center of the occupied band
is located at the center (ν = 0) of the unit cell, and at the edge
(ν = 0.5) in the topological phase. Therefore, we calculate for
the MKC parallel case where we also have a single momentum
component, and find that the two eigenvalues show a shift of
the Wannier centers to the edge when only one of the parent
phases is topological but not both. This inability of the Wilson
loop method to detect some multiplicative phases results from
the multiplicative dependence of the child Wilson loop on the
Wilson loops of the parents.

The Wannier centers of charge of the MKC at half-filling
(M = 2 is the number of occupied orbitals) are shown in
Fig. 2. The doubly-degenerate occupied states correspond to
two equivalent Wannier centers ν1 and ν2, as shown by Fig. 2
(a) and (b). Unexpectedly, both a MKC with |µ1| = |µ2| < 2
and a MKC with |µ1| = |µ2| > 2 have the Wannier cen-
ters localized at the center of the unit cell (ν1 = ν2 = 0),
despite the fact that finite chains with the former set of pa-
rameters have bound states, while finite chains with the latter
set of parameters do not. It is only for parent Hamiltonians
of different topology that the Wannier centers of a half-filled
MKC localize at the edge (ν1 = ν2 = 0.5), showing that the
MKC Wilson loop eigenvalues correspond to the ones given
by the parents’ Wannier centers. This is analytically shown in
Appendix S2.

2 0 2
1

2

0

2

2

1 child

2 0 2
1

2

0

2

2

2 child

0.5

0.0

0.5

FIG. 2: Wannier centers for a child Hamiltonian at
half-filling with parents with parameters t1 = t2 and
∆1 = ∆2. These correspond to the Wilson loop eigenvalues
after integrating along kx.

B Quasiparticle velocities near critical points
For the case of the parallel MKC, we examine the Dirac
Hamiltonians near each of the gapless points. For both µ1 ∼
−2t1 and µ2 ∼ −2t2, the gap closes for k = 0, so that we get
the following Dirac Hamiltonian in its vicinity,

Hc
Dirac(k) =− (2t1 + µ1)(2t2 + µ2)Γzz

+ 2∆1(2t2 + µ2)kΓyz − 2∆2(2t1 + µ1)kΓzy

(12)
where Γij = τ iσj . Denote, mj = 2tj + µj , (j = 1, 2). The
energies are double degenerate and given as,

E(k) = ±
√

4(∆2m1 −∆1m2)2k2 +m2
1m

2
2. (13)

Notice, for the gapless point, µ1 = −2t1, or m1 = 0, we get
E(k) = ±2∆1m2k, and for the gapless point, µ2 = −2t1, or
m2 = 0, one has E(k) = ±2∆2m1k. One must notice that
if m1 = 0 = m2 at once, one must expand till the quadratic
order to get a k-dependence,

Hc
2(k) =− [m1m2 − (t1m2 + t2m1)k2]Γzz + 2∆1m2kΓyz

− 2∆2m1kΓzy + ∆1∆2k
2Γyy.

(14)
Denote t1m2 + t2m1 = M . The spectrum is given by the

4 eigenvalues,

E(k) = ±
[
[(M ∓∆1∆2)k2 −m1m2]2

+4k2(∆2m1 ∓∆1m2)2k2
] 1

2 .
(15)

Then, for the case, m1 = m2 = 0, we get quadratic disper-
sion relations,E = ±∆1∆2k

2. Note the spectrum is doubly
degenerate.

C Finite MKC parallel system with open boundary
conditions

Having presented the bulk spectrum of the multiplicative Ki-
taev chain, we now study bulk-boundary correspondence for
this system. To do so, we characterize the bound states real-
ized in topologically non-trivial regions of the phase diagram
analytically for the case of parallel parent Kitaev chains. We
then numerically study the low-energy spectrum as a function
of chain length L and chemical potentials µ1 and µ2 as well
as localization of bound states.

1 Analytical form of boundary modes

The procedure to get zero energy modes for the MKC paral-
lel case is similar to the KC where we need to find the null-
vectors of the Hamiltonian after the localization k → iq. The
details are worked out in the Supplementary section S1 which
yields the identity,

[(2t1 cosh q + µ1)2 − 4∆2
1 sinh2 q]

× [(2t2 cosh q + µ2)2 − 4∆2
2 sinh2 q] = 0

(16)

Here, one must use caution, since the boundary mode expres-
sions depend on the parametric regime of µ1 vs. µ2, espe-
cially if t1 6= t2. This fact is related to which solutions(s)
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we choose for Eq 16. For semi-infinite boundary conditions
Ψ(0) = Ψ(x → ∞) = 0, the general edge mode expression
if just one of the parents were topological, and the other trivial
is of the form,

Ψ(x) ∼
[(
∓µi +

√
µ2
i − 4(t2i −∆2

i )

2(∆i ± ti)

)x

−
(
∓µi −

√
µ2
i − 4(t2i −∆2

i )

2(∆i ± ti)

)x]abc
d

 .

(17)

where (i = 1, 2) corresponds to the parent which is topolog-
ical and depending on the parametric regime and assuming
∆i > 0, the ∓µi signs correspond to the regions sgn(ti) =
±sgn(∆i) which is basically the two sets of possible Majo-
rana edge modes. We keep aside the full expression for all the
possible cases along with the eigenvectors until we discuss the
MKC parallel Hamiltonian in the real space in Sec. D.

2 Spectral dependence on chain length

While the finite Kitaev chain realizes unpaired Majorana
zero-modes when these bound states do not overlap and hy-
bridize, in general there is a finite split in energy between
the topologically-protected bound states due to wavefunction
overlap. The dependence of the finite Kitaev chain spectrum
for open boundary conditions is therefore typically studied to
demonstrate that this splitting decreases exponentially with
increasing system size. We therefore study the spectral de-
pendence of the MKC with open boundary conditions as a
function of chain length for direct comparison.

For the topologically-protected pair of low-energy modes
localized on the boundary of the finite-length Kitaev chain de-
scribed by HBdG given in Eq. 3 for OBC to be at E = 0, the
parameters t, µ and ∆ need to be fine-tuned27. Otherwise, as
shown in Fig. 3a), these boundary mode energies oscillate as a
function of chain length Lwith a period determined by µ/∆27

while also decreasing overall in exponential fashion.
The finite multiplicative chain also presents an oscillatory

dependence on ground state energy with respect to chain
length when at least one of the parents is in the topologi-
cal phase. Fig. 3 shows the spectral dependence of the finite
multiplicative Kitaev chain Hc

MKC,||(k) in Eq. 7 for two key
cases:

1. The parameter set of parent 1, {t1,∆1, µ1}, and that
of parent 2, {t2,∆2, µ2}, are equal, meaning t1 = t2,
∆1 = ∆2, and µ1 = µ2, and each parent is topologi-
cally non-trivial. The low-energy spectrum of the par-
ents for this case is shown in Fig. 3 (a), and the corre-
sponding low-energy spectrum of the child Hamiltonian
is shown in Fig. 3(c) and (e).

2. Parent 1 is topologically non-trivial and Parent 2 is
topologically trivial. The low-energy spectra of parents
1 and 2 for this case are shown in Fig. 3 (a) and (b), re-
spectively. The corresponding low-energy spectrum of
the child Hamiltonian is shown in Fig. 3 (d) and (f).

In each case, the child Hamiltonian exhibits oscillations
in the two lowest-energy modes E2L+1 − E2L, indicating
splitting of the ground state degeneracy due to finite-size ef-
fects. A key difference is that the child exhibits negligible
Friedel oscillations relative to zero energy in case 1 as shown
in Fig. 3(c), although there is evidence of Friedel oscillations
in the splitting in energy between these two lowest energy
states as shown in Fig. 3(e). Friedel oscillations are much
more noticeable in the low-energy child spectrum for case 2
as shown in Fig. 3(d), although splitting in energy between the
two-lowest energy states is very similar to case 1 as shown in
Fig. 3(f).

b)a)

d)c)

f)e)

FIG. 3: Low-energy spectrum versus chain length L for the
Kitaev chain shown in (a) and (b) and for the parallel MKC
Hamiltonian Hc

MKC,||(k) shown in (c-f). Each plot shows
the spectrum only for even values of L. (a) The three
lowest-energy modes of the Kitaev chain Hamiltonian in the
topological phase with open boundary conditions,
corresponding to t = 1, ∆ = 0.08, µ = 0.09, as a function of
chain length L. (b) The three lowest-energy modes of the
Kitaev chain Hamiltonian in the trivial phase corresponding
to t = 1, ∆ = 0.08, µ = 2.09. (c) The six lowest-energy
modes of the MKC Hamiltonian with two parent Kitaev
chains that each have a parameter set corresponding to (a).
(d) The six lowest-energy modes of the MKC Hamiltonian
with a parent Kitaev chain with parameter set corresponding
to subfigure (a) and the second parent Kitaev chain with
parameter set corresponding to subfigure (b). (e-f) Energy
difference between the two lowest energies in subfigure (c-d),
indicating the non-degeneracy of these.
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3 Spectral dependence on chemical potential of finite
MKC

Tuning chemical potential is a physically-relevant mechanism
for exploring the phase diagram of parent Kitaev chains and
therefore also important in understanding behaviour of the
MKC. Much can be learned, in particular, by studying the
spectra of the parent Kitaev chains and MKC as a function of
chemical potential. These results are shown for the parent and
child in Fig. 4 (a) and (b), respectively, for a long chain length
of L = 80. Importantly, we observe a topological phase tran-
sition in the parent for µ1 = ±|2t1| due to closing of the bulk
gap as expected, with states dispersing linearly when tuning
µ1 away from these critial values. For −2t1 < µ1 < 2t1,
we see low-energy modes inside the bulk gap, corresponding
to the unpaired Majorana zero-modes localized at each end
of the chain. Comparing this to the spectrum for the MKC,
we see clear similarities for µ2 fixed in value to µ1 : the bulk
gap also closes at µ1 = ±|2t1| as the system undergoes topo-
logical phase transitions, with −2t1 < µ1 < 2t1 again cor-
responding to a topologically non-trivial phase and the pres-
ence of topologically-protected boundary modes. The spec-
trum instead disperses quadratically as µ1 and µ2 are tuned
away from the critical values, and the maximum bulk gap is
larger, being the product of the maximum bulk gaps of the
parents. This multiplicative structure also yields a four-fold
degeneracy of the in-gap states, compared with a two-fold de-
generacy of the in-gap states for the parents. More generally,
the degeneracy of states for the child is twice that of each par-
ent.

We also explore the dependence of the multiplicative spec-
trum on chemical potential for relatively short chain lengths,
where finite-size topology28 is more prominent. These results
are shown in Fig. 5. While the spectra for periodic bound-
ary conditions display bulk gap closings at the same values
of µ1 and states disperse linearly as µ1 is tuned away from
these critical values between the L = 80 case and L = 6
case, striking differences are observed for open boundary con-
ditions. In particular, gap-closings occur at µ1 = 0 rather
than µ1 = ±|2t1| in the parents, as shown in Fig. 5(a), due
only to destructive interference between states resulting from
bulk-boundary correspondence. In addition, the four-fold de-
generacy of the in-gap states for the child, shown in Fig. 5(b),
is split away from µ1 = 0, with the energy gap between two
states increasing more rapidly with increasing |µ1| than for
the other two states.

While the finite Kitaev chain is known to have exact zero
energy modes for discrete values of the chemical potential27

given by µn = 2
√
t2 −∆2 cos

(
nπ
L+1

)
with n ∈ {1, . . . , L},

which we refer to as Majorana points, the multiplicative finite
chain does not present exact zero energy modes for identi-
cal parent Hamiltonians with equal parameter sets such that
t1 = t2, ∆1 = ∆2, and µ1 = µ2, unless t1

∆1
= t2

∆2
= 1.

The latter configuration is represented in Fig. 5, where the
exact zero energy dependence on the chemical potential of a
multiplicative chain is qualitatively similar to the behavior of
its two identical parents. Finite-size effects can lead to more
significant differences between parent and child spectra, how-

b)a)

OBC PBC

FIG. 4: Spectra of the parent and child Hamiltonians as a
function of chemical potential for relatively long chain length
L = 80, shown in black for periodic boundary conditions and
blue for open boundary conditions, respectively. The spectra
for parent 1 and 2 are identical as their parameter sets are
identical, thus the spectrum for parent 1 is shown in (a), for
t1 = t2 = 1, ∆1 = ∆2 = 1, µ1 = µ2. The corresponding
child MKC spectrum is shown in (b) as a function of µ1, with
µ2 = µ1.

ever. As shown in Fig. 6 for
∣∣∣ t1∆1

∣∣∣ =
∣∣∣ t2∆2

∣∣∣ = 2, the pres-
ence of exact zero modes in both identical parents, shown in
Fig. 6(a,b) for different chain lengths, does not imply that a
finite multiplicative chain also possesses exact zero modes. In
fact, we observe in Fig. 6(c-f) that if ti 6= ∆i, the parents
must be non-identical for the child to have exact zero modes,
considering the example for which sign( t1µ1

) = −sign( t2µ2
).

Identical parents are shown by Fig. 6(c-d) for different chain
lengths. In these cases exact zero energies are not obtained in
finite chains.

b)a)

OBC PBC

FIG. 5: Spectra of the parent and child Hamiltonians as a
function of chemical potential for relatively short chain
length L = 6, with black lines depicting spectra for periodic
boundary conditions and blue lines depicting spectra for open
boundary conditions, respectively. The spectra for parent 1
and 2 are identical as their parameter sets are identical, thus
the spectrum for parent 1 is shown in (a), for t1 = t2 = 1,
∆1 = ∆2 = 1, µ1 = µ2. The corresponding child MKC
spectrum is shown in (b) as a function of µ1, with µ2 = µ1.

The spectral dependence on the chemical potential reveals
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some interesting differences between the multiplicative chain
and its parents. In the latter, the number of zero modes is
given by the chain’s length L (see Fig. 6a-b), while in the
former the parity of the number of the zero modes is always
even when the necessary conditions t1

∆1
6= 1 and t2

∆2
6= 1

for exact zero modes with distinct parents is satisfied, regard-
less of the chain length’s parity (see Fig. 6(e-f)). Furthermore,
dependence of the child spectra on free parameters shows
greater variety than expected: the spectra shown in Fig. 6(c)
and (d), for instance, display a quadratically dispersing child
spectrum, which results quite naturally from the child’s tensor
product combination of two linearly dispersing Kitaev Hamil-
tonians. This is a fairly general characteristic of multiplicative
models. However, a linear dispersion can be obtained when
sign( t1µ1

) = −sign( t2µ2
) as shown in Fig. 6(e) and Fig. 6(f).

Both the quadratic and linear dispersions are explained in Sup-
plementary section S4 in Eqn. (S82) and Eqn. (S84). Such re-
sults demonstrate the rich interplay between finite-size topol-
ogy and multiplicative topological phases.

4 Localization of topologically-protected boundary
modes of the MKC

Spectral properties of the Kitaev chain are generally stud-
ied in combination with additional characteristics of the un-
paired Majorana zero-mode states to more fully characterize
the topologically non-trivial phase of the model. In partic-
ular, probability density of the in-gap state wavefunctions is
an important measure of localization and robustness of the
Majorana zero-modes in the topologically non-trivial phase.
We therefore also compare and contrast the Kitaev chain and
the MKC in terms of probability density distributions for
topologically-protected in-gap states. These results are shown
in Fig. 7. Similarly to the Kitaev chain, we observe that the
MKC zero-modes can be spatially separated from each other,
with their probability densities peaking near opposite ends of
the chain and on sites of different parity. When there are four
degenerate zero-modes in the MKC, two are localized at each
end of the chain, instead of one zero-mode localized at each
end of the Kitaev chain.

Interestingly, two parent Hamiltonians with mid-gap states
that decay exponentially towards the bulk do not give rise to
the same behavior in the multiplicative chain. As shown in
Fig. 7, the boundary modes of the child Hamiltonian peak in
probability density away from the ends of the chain, though
still predominantly near one end or the other. The nature of the
decay depends on the size of the bulk gap, which is naturally
smaller for the multiplicative model than the parents for small
gaps.

5 Robustness of the MKC parallel MZMs:

Before proceeding further, one must check for the robustness
of the MZMs for the MKC parallel system to local disorder.
We know that for the two-band Kitaev Chain, the MZMs per-
sist when subject to local disorder proportional to σz and σy

in the particle-hole basis. Only when the local disorder is pro-
portional to σx in the particle-hole basis are the MZMs shifted
from zero energy. We similarly investigate effects of myriad
disorder terms for the MKC parallel system. We similarly

b)a)

d)c)

f)e)

OBC PBC2x degenerate OBC

FIG. 6: Child and parent spectrum dependence on the
chemical potential. Kitaev chain spectrum for parameters
|t| = 1, ∆ = 0.5 for even and odd chains (L = 6, 7) is shown
in (a) and (b), respectively. Multiplicative chain spectrum for
two identical parents as in (a) and (b) is shown in (c) and (d),
respectively. Multiplicative chain spectrum for two different
parents with t1 = −t2 = 1, ∆1 = ∆2 = 0.5 and even and
odd chains (L = 6, 7) is shown in (e) and (f), respectively.
The black curves correspond to solutions under periodic
boundary conditions, which are all doubly-degenerate for the
children. The blue curves correspond to open boundary
conditions, with double-degeneracy indicated by dashed
blue-orange curves.

investigate effects of myriad disorder terms for the MKC par-
allel system. We have both the particle-hole and spin basis in
this case, however, so we must check for all possible tensor-
product combinations of local disorder. We observe that the
MZMs persist at zero energy for local disorder proportional to
any of the combinations τ iσj , where i, j ∈ {0, y, z} if at least
one of the parents is topological. Also it is robust to local dis-
order proportional to τzσx, τxσz , τyσx, and τxσx if both the
parents are topological. The flat bands corresponding to the
MZMs only break down when the local disorder is propor-
tional to τxσx even if one of the parents is topological. This
suggests that the MKC parallel child MZMs are more robust
than those of its parents.
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b)a)

d)c)

FIG. 7: a) Bound states for the Kitaev chain in the
topological region with t = 1, ∆ = 0.08 and µ = 0. b)
Ground states for the Kitaev chain for t = 1, ∆ = 0.08 and
µ = 0.09. c) Bound states for a multiplicative chain with two
identical parents in the topological phase, each shown in
subfigure (a). Here Ψ1,2 = Ψ′1 ±Ψ′3 and Ψ3,4 = Ψ′2 ±Ψ′4
with Ψ′ an eigenvector of the finite Hamiltonian. d) Bound
states for a multiplicative chain with two identical parents in
the topological phase, each shown in subfigure (b). Here
Ψ1,2 = Ψ′1 ±Ψ′4 and Ψ3,4 = Ψ′2 ±Ψ′3 with Ψ′ an
eigenvector of the finite Hamiltonian.

2.5 0.0 2.5
0.4

0.2

0.0

0.2

0.4

E

(a) x disorder

2.5 0.0 2.5

(b) y disorder

2.5 0.0 2.5

(c) z disorder

FIG. 8: Checking the robustness of Kitaev chain to disorder
proportional to (a)σx, (b)σy and (c)σz . MZMs are robust for
σy and σz disorder while they break off from zero energy for
σx disorder.

D Parallel MKC Hamiltonian in real-space

The lattice Hamiltonian in the Majorana representation shows
the different phases of the Kitaev Chain as well as the MKC
rewritten in terms of different SSH models. We utilise a dia-
grammatic approach in Fig. 10 to provide a clear description
about the position of the Majorana zero modes and also an
analytical explanation of the features we have shown numeri-
cally.

We have numerically observed that the MKC has unpaired
Majorana bound states in even quantities. We use this fact to
analytically characterize the MKC, by defining spinful Ma-
joranas via the following expression: cj,σ = 1

2 (γj,+,σ +
iγj,−,σ). We may then, for a given lattice site, group two
such Majoranas with opposite spins into the two-component
vectors, γj,+ = (γj,+,↑, γj,+,↓) and γj,− = (γj,−,↑, γj,−,↓)

T ,

1.0

0.5

0.0

0.5

1.0

E

(a) x x disorder (b) x y disorder (c) x z disorder

1.0

0.5

0.0

0.5

1.0

E

(d) y x disorder (e) y y disorder (f) y z disorder

2 0 2
1 = 2

1.0

0.5

0.0

0.5

1.0

E

(g) z x disorder

2 0 2
1 = 2

(h) z y disorder

2 0 2
1 = 2

(i) z z disorder

FIG. 9: Checking for robustness of the MKC parallel MZMs
in the presence of various onsite disorders with magnitude
0.2t. In the case µ1 = µ2, only the onsite disorder
proportional to τxσx perturbs the MZMs from zero energy,
signifying that the MZMs in the parallel MKC system are
naturally more robust than their consitutent parents.

so that we can visualize any analysis of the possible phases.
The MKC parallel Hamiltonian is then shown as follows,

Hc
MKC,|| =

i

2

∑
j

−γj,+[(µ1µ2 + 2t1t2)σz − 2i∆1∆2σ
y]γj,−

− γj,+[((t2µ1 + t1µ2)− µ2∆1)σz − iµ1∆2σ
y]γj+1,−

− γj+1,+[((t2µ1 + t1µ2) + µ2∆1)σz + iµ1∆2σ
y]γj,−

− (t1 −∆1)γj,+(t2σ
z − i∆2σ

y)γj+2,−

− (t1 + ∆1)γj+2,+(t2σ
z + i∆2σ

y)γj,−.

(18)

In this form, three kinds of interaction terms are distinguish-
able, which are the onsite-interaction, the nearest-neighbour
interaction and the next-nearest-neighbour interaction. The
matrix structure of the coefficients imply the presence of inter-
spin interactions.

To visualize the Majorana bound states, we perform a sim-
ilarity transformation, h → UhU†, γj,+ → γ̃j,+ = γj,+U

†

and γj,− → γ̃j,− = Uγj,− where, U = 1√
2
(σ0 − iσy), after

which the two components of γ̃j,± still satisfy the Majorana
anti-commutation relations, {γ̃j , γ̃k} = 2δjk. The transfor-
mation U changes σz to σx, so that the resulting Hamiltonian
is off-diagonal and it can be separated into two separate inter-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

=Majorana Zero Mode

FIG. 10: MKC parallel Hamiltonian in the Majorana basis. The exact Majorana zero modes for the cases where where one
parent is topological and the other trivial and the case where both parents are topological are shown schematically. The two
Hamiltonians H1,|| and H2,|| are represented in colors (black) and (blue) in (a) and (b) respectively. (c) and (d) refers to the
modified system when one imposes the condition, ti = ∆i, (i = {1, 2}). (f) and (g) show the respective systems when the first
parent is topological with µ1 = 0. (e) and (h) show the respective systems when the second parent is topological with µ2 = 0.
The last column shows different outcomes for the positions of Majorana Zero modes when the either only one parent is
topological or both of them are topological. The (red) square indicates the position of the Majorana Zero Mode.

spin coupling parts,

Hc
MKC,|| =

i

2

∑
j

[−(µ1µ2 + 2t1t2 − 2∆1∆2)γ̃j,↑,+γ̃j,↓,−

− (µ1(t2 −∆2) + µ2(t1 −∆1))γ̃j,↑,+γ̃j+1,↓,−

− (µ1(t2 + ∆2) + µ2(t1 + ∆1))γ̃j+1,↑,+γ̃j,↓,−

− (t1 −∆1)(t2 −∆2)γ̃j,↑,+γ̃j+2,↓,−

− (t1 + ∆1)(t2 + ∆2)γ̃j+2,↑,+γ̃j,↓,−]

+
i

2

∑
j

[−(µ1µ2 + 2t1t2 + 2∆1∆2)γ̃j,↓,+γ̃j,↑,−

− (µ1(t2 + ∆2) + µ2(t1 −∆1))γ̃j,↓,+γ̃j+1,↑,−

− (µ1(t2 −∆2) + µ2(t1 + ∆1))γ̃j+1,↓,+γ̃j,↑,−

− (t1 −∆1)(t2 + ∆2)γ̃j,↓,+γ̃j+2,↑,−

− (t1 + ∆1)(t2 −∆2)γ̃j+2,↓,+γ̃j,↑,−],

=H||,1 +H||,2.

(19)

It is thus possible to view the problem as two separate
systems as shown in Fig. 10(a) and (b) and then consider
a case-by-case approach. We denote these two commuting
parts, the component Hamiltonians, by H||,1 and H||,2. We
assume that ti = ∆i, i ∈ {1, 2} and explore the different
phases derived thereof from Fig. 10(c) and (d) corresponding

to the phases of the parent Hamiltonians.
Case 1: The first parent is topological with µ1 = 0 and ths
second one is trivial with µ2 > 2t2. This is illustrated in
Fig. 10(f), (k) and (g), (m) for components H||,1 and H||,2
respectively. The condition, µ2 > 2t2 implies that the KC in
(g) is topological with two Majorana zero modes and µ = 0
already provides two Majorana zero modes in (f). Therefore
we have four Majorana edge modes, all situated at the first
and last sites of the MKC parallel system.

Case 2: The second parent is topological with µ2 = 0
and the first one is trivial with µ1 > 2t1. This leads to a
similar situation as in Case 1 with respect to the position of
the Majorana zero modes and is illustrated by Fig. 10(e),
(i) and (h), (o) for components H||,1 and H||,2 respectively.
We again have four Majorana zero modes, two from each
component at the first and last sites of the MKC parallel
system. One must however notice that the spin configuration
at the first site and the last sites are parallel unlike Case 1
where the spins are anti-parallel.

Case 3: Both parents are topological, i.e. µ1 = 0,
µ2 < 2t2 and µ1 < 2t1, µ2 = 0. This case is illustrated
by Fig. 10(k), (m) and (n), (p) for the components H||,1 and
H||,2 respectively. Observe that no Majorana zero modes
are present in H||,2 while, for H||,1, we have Majorana zero
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modes at positions 1, 2 and L− 1, L for L sites.

1 Topology of the MKC parallel from the component
Hamiltonians:

It is possible to derive Bloch Hamiltonians from the compo-
nent Hamiltonians which should look like our usual two-band
Kitaev chains but with next-nearest neighbour coupling. We
define c̃j,σ = 1

2 (γ̃j,σ,+ + iγ̃j,σ,−), and then from Eqn. (19),
we write,

Hc
MKC,|| =

1

2

∑
k

c̃†k,1H||,1(k)c̃k,1 +
1

2

∑
k

c̃†k,2H||,2(k)c̃k,2,

(20)

H||,1(k) =− [2(µ1t2 + µ2t1) cos k + 2(t1t2 + ∆1∆2) cos 2k

+ µ1µ2 + 2t1t2 − 2∆1∆2]σz

+ [2(µ2∆1 + µ1∆2) sin k

+ 2(t2∆1 + t1∆2) sin 2k]σy = d1(k) · σ,
(21a)

H||,2(k) =− [2(µ1t2 + µ2t1) cos k + 2(t1t2 −∆1∆2) cos 2k

+ µ1µ2 + 2t1t2 + 2∆1∆2]σz

+ [2(µ2∆1 − µ1∆2) sin k

+ 2(t2∆1 − t1∆2) sin 2k]σy = d2(k) · σ,
(21b)

where c̃k,1 = (c̃k,↑, c̃
†
−k,↓)

T and c̃k,2 = (c̃k,↓, c̃
†
−k,↑)

T . Here,
each of the component Hamiltonians Eq. 21a and Eq. 21b
result in the non-degenerate energy dispersion E(k) from
Eqn. (8) which are equivalent to the MKC parallel disper-
sion. Next, we study the winding number for the two com-
ponent Bloch Hamiltonians by constructing the parametric
curves d1(k) and d2(k) from Eqn. (21a) and Eqn. (21b) when
k is varied in the interval [0, 2π). For each of the parent Ki-
taev chains, the system is said to be in the topological phase
with winding numberW = ±1 if the parametric curve winds
around the origin once. At the critical point, the parametric
curve intersects the origin while, in the trivial phase, it does
not wind around the origin at all. Based on similar views,
we try to infer the parametric curves due to our component
Hamiltonians.

From Fig. 11(a) and (b), we observe that for
t1 = t2 = 1 = ∆1 = ∆2, when both the parent KCs
are topological, i.e., µi < 2ti, i ∈ {1, 2}, the curve due to
d1(k) winds around the origin twice while the curve from
d2(k) does not wind around the origin at all, giving rise to
an overall winding number, W = 2 and this is exactly as
we expected from our earlier analysis from Fig. 10 which
shows that H||,1 contains two pairs of MZMs while H||,2
contains no MZMs. We also check all the three critical
points - when either one of the parents are critical or both
of them are, in which case both the parametric curves
intersect the origin, albeit in different configurations. For

5

0

5

d y

(a) 1 = 0, 2 = 1, t1 = 1 = t2
H||, 1

H||, 2

5

0

5

(b) 1 = 0, 2 = 1, t1 = 1 = t2

5

0

5

d y

(c) 1 = 0, 2 = 2, t1 = 1 = t2

5

0

5

(d) 1 = 0, 2 = 2, t1 = 1 = t2

10 5 0 5 10
dz

5

0

5

d y
(e) 1 = 0, 2 = 3, t1 = 1 = t2

10 5 0 5 10
dz

5

0

5

(f) 1 = 0, 2 = 3, t1 = 1 = t2

FIG. 11: Parametric curves d1(k) and d2(k) for the
Hamiltonian components, H||,1(blue) and H||,2(orange)
respectively as k is varied in the interval [0, 2π). The
winding of the curves around the origin show the different
topological characteristics for different values of µ2 with
µ1 = 0 for the cases, t1 = 1 = t2(first column, (a),(c),(e))
and t1 = −1 = t2(second column, (b),(d),(f)) at
∆1 = ∆2 = 1 for all cases.

example, Fig. 11(c) and (d) show the case when one parent
is topological while the other is critical. Finally, we consider
the case in which one parent is topological while the other is
trivial (µ1 < 2t1 and µ2 > 2t2 or vice-versa). The winding
for each component Hamiltonian in this case is shown in
Fig. 11(e) and (f). We see that both curves derived from
d1(k) and d2(k) each wind around the origin once, giving
rise to the winding number W = 1 ⊕ 1. This is again
consistent with our discussion due to Fig. 10 where each
of the component Hamiltonians carry one pair of MZMs each.

Here, one might think that the MZMs on the same site of
the MKC in the topological-trivial case should hybridize. But,
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in Sec. I, we had already discovered that we have an emergent
unitary symmetry. One may block diagonalize in the Bell-
state basis of this symmetry, U = τxσx to recover the exact
component Hamiltonians we have described in this section.
Hence, it the presence of this unitary symmetry which protects
the two MZMs on the same site of the MKC from hybridizing,
leading to separate winding number descriptions.

2 Explanation for Majorana points in the ti 6= ∆i case:

Using this diagrammatic approach, we can gain greater un-
derstanding of the exact zero-modes prominent for finite size
MKC. In Fig. 6(e) and (f), we observe that for the parame-
ters, |ti| = 2|∆i|, i ∈ {1, 2} and t1 = −t2, one gets bub-
bles for the two energy levels near zero vs. µ1 = µ2. No-
tably, there is a difference in the positions of the zero energy
or Majorana points between systems with an even vs. odd
number of lattice sites in a finite size MKC parallel system.
Systems with an even number of sites, as shown in Fig. 6
(e), exhibit a two-fold degeneracy in the spectrum, here high-
lighted by dashed blue and orange lines, while systems with
an odd number of sites exhibit more complex structure for the
low-energy states occurring for open-boundary conditions as
shown in Fig. 6 (f). The rich structure in this case results be-
cause the full chain consists of effectively two decoupled sub-
system chains derived in the schematic diagram Fig. 12 from
Fig. 10(b) corrsponding to H||,2. As shown in Fig. 6(a) and
(b), the number of Majorana points changes with chain length,
so the spectra of the two subsystem chains will not coincide
in this case.

As we can see, when µ1 = µ2 = µ, t1 = −t2 = −t,
∆1 = ∆2 = ∆, the component Hamiltonian, H||,2 in Eq.
(21b) possesses only next-nearest neighbour interactions and
thus can be split into two KCs so that the number of sites
add up to the number of sites for the original system. Then
for a system with 2L lattice sites, we get two KCs of length
L, while for a system with 2L + 1 sites, we get two KCs
of length L and L + 1 respectively. We know for an L-site
KC with parameters, µ′, t′ and ∆′, the zero energy Majorana
points are found at µ′ = 2

√
t′2 −∆′2 cos nπ

L+1 , where n ∈
{1, ..., L} i.e. there are LMajorana points. We apply a similar
calculation to our KCs with the mapping µ′ = µ2−2t2+2∆2,
t′ + ∆′ = −(t + ∆)2, t′ − ∆′ = −(t − ∆)2 derived from
Fig. 12. Then we get the following identity,

µ = ±
√

2(t2 −∆2)
(
1 + cos

nπ

L+ 1

)
, n ∈ {1, ..., L},

=⇒ µ = 2
√
t2 −∆2 cos

nπ

2L+ 2
, n ∈ {1, ..., 2L+ 2}.

(22)

for exact zero-modes in each of the split KC systems of
length L. The square root explains why only even number of
Majorana points are observed and why a KC of size L pro-
duces 2L Majorana points. From this calculation, we infer
that H||,2 with 2L sites corresponds to 2L Majorana points,
which are two-fold degenerate. Similarly, H||,2 with 2L + 1

+

+

=

=

7 sites

4 sites 3 sites

6 sites

3 sites 3 sites

(a)

(b)

(c)

FIG. 12: Schematic diagram of H||,2(a) for the particular
case, µ1 = µ2 = µ, t1 = −t2 = −t and ∆1 = ∆2 = ∆ and
t 6= ∆. Illustrating for the cases (b)L = 6 and (c)L = 7, the
system can now be broken down to two 3-site KCs or one
4-site and another 3-site KC. The zero energy Majorana
points can be explained from here.

sites produces 2L⊕2(L+1) Majorana points due to contribu-
tions from each of the two subsystem KCs. The set of µ val-
ues corresponding to Majorana points derived from Eq. (22),
{µi}, agrees with the Majorana points shown from the numer-
ical simulation in Fig. 6(e) and (f).

3 Edge states of the MKC parallel system from the com-
ponent Hamiltonians and entanglement:

As the topologically-protected bound states obtained from
the MKC parallel system are distinct from the topologically-
protected bound states of the constituent parents, both in their
existence in parameter space and their entanglement struc-
ture, we define them separately as Multiplicative Majorana
Zero Modes or MMZMs in short. We are finally in the posi-
tion to discuss the full analytical expressions for the MMZMs.
The component Hamiltonians H||,1 and H||,2 derived from
the MKC parallel system each satisfy conditions for the null
eigenvalue such that the four conditions outlined in Sec. II C 1
are subdivided into two conditions at a time for each of the
component systems. As derived in S1 A, after localization
k → iq, H||,1 and H||,2 are given as,

H||,1(iq) =− [(µ1 + 2t1 cosh q)(µ2 + 2t2 cosh q)

+ 4∆1∆2 sinh2 q]σz

+ i[2∆1 sinh q(µ2 + 2t2 cosh q)

+ 2∆2 sinh q(µ1 + 2t1 cosh q)]σy

(23a)
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H||,2(iq) =− [(µ1 + 2t1 cosh q)(µ2 + 2t2 cosh q)

− 4∆1∆2 sinh2 q]σz

+ i[2∆1 sinh q(µ2 + 2t2 cosh q)

− 2∆2 sinh q(µ1 + 2t1 cosh q)]σy

(23b)

The condition to get null eigenvalues from the above expres-
sions is,

[(2t1 cosh q + µ1)∓ 2∆1 sinh q]

× [(2t2 cosh q + µ2)∓ 2∆2 sinh q] = 0.
(24)

for the component H||,1 and,

[(2t1 cosh q + µ1)∓ 2∆1 sinh q]

× [(2t2 cosh q + µ2)± 2∆2 sinh q] = 0.
(25)

for the componentH||,2. From the schematic diagram Fig. 10,
it may be observed that based on the topological nature of
the two parents, the MMZMs are localized in different ways.
Let us consider the condition Eqn. 24 for sgn(ti) = sgn(∆i),
i ∈ {1, 2},

[(2t1 cosh q + µ1)− 2∆1 sinh q]

× [(2t2 cosh q + µ2)− 2∆2 sinh q] = 0.
(26)

If both the parents are topological we have 2t1 cosh q+µ1 =
2∆1 sinh q and 2t2 cosh q + µ2 = 2∆2 sinh q, which if sub-
stituted into Eqns. 23a and 23b shows thatH||,2 vanishes. The
full basis of the MKC parallel system is given by four degrees
of freedom, (c̃k,↑, c̃k,↓, c̃

†
−k,↑, c̃

†
−k,↓)

T , by combining the de-
grees of freedom of the two components. In this basis, the null
eigenvectors derived fromH||,1(iq) are given as,

|Ψ〉MMZM = { 1√
2

(|00〉 − |11〉), |01〉 , |10〉}, (27)

where |0〉 = (1, 0)T , |1〉 = (0, 1)T .
Again, say only parent 1 is topological and parent 2 is trivial,
i.e. we only have the condition 2t1 cosh q + µ1 = 2∆1 sinh q
to fulfil. Substituting into Eqns. 23a and 23b, the null eigen-
vectors in the full basis with four degrees of freedom are
shown to be,

|Ψ〉MMZM = { 1√
2

(|00〉 − |11〉), 1√
2

(|01〉 − |10〉)}. (28)

We would get the same null eigenvectors if parent 2 had been
the only one topological. Detailed calculations can be found
in Supplementary section S1 A. The interesting point to note
here is that by changing the topological character of one of
the parents it is possible to transition from a product state
to a maximally entangled Bell state. We list all the possible
eigenvectors for different combinations of topology of the
parents and signs of ti compared to ∆i in Table I. Here it
is important to remember that in each case, one has four
MMZMs. The table lists only the MMs at edge x = 0. The
eigenvectors at the other edge can be found by changing,
sqn(ti)

sgn(∆i)
from + to − and vice-versa for both the parents. We

will recover a total of four eigenvectors with two common
eigenvectors for both signs when both parents are topological.

4 Spatial distribution of MMZM wavefunctions forN -site
MKC

We now further characterize MMZM wavefunctions in the
MKC parallel lattice with N sites by computing the associ-
ated spatially-resolved probability density for these states. For
the specific Majorana point, µ1 = µ2 = 0 for t1 = ∆1 and
t2 = ∆2, the wavefunction must be a delta function at the
two edges (site indices j = 1 and j = N ). As seen from the
schematic diagram Fig. 10, two more delta functions at site
indices j = 2 and j = N − 1. We illustrate this with a nu-
merical simulation for this specific case in Fig. 13. For cases

0 10 20 30 40 50 60 70 80
sites

0.0

0.2

0.4

0.6

0.8

1.0

|
|2

MZM at x=1
MZM at x=2
MZM at x=79
MZM at x=80

FIG. 13: MMZMs for the MKC parallel system with N = 80
sites for the parameter values µ1 = µ2 = 0, t1 = ∆1 = 1 and
t2 = ∆2 = 1 obtained numerically. We observe MMZMs at
site indices 1, 2, 79 and 80 as inferred previously from the
schematic diagram.

where t1 6= ∆1 and/or t2 6= ∆2, in finite size lattices, we have
already seen numerically in Fig. 6(c) and (d), that there are
no Majorana zero points for the case t1 = t2 and ∆1 = ∆2.
We therefore construct the wavefunction for the case where
we have Majorana points available, namely Fig. 6(e) and (f)
where t1 = −t2 and ∆1 = ∆2. We illustrate just for the case
highlighted in Eqn. 26. Here, we obtain four values for e−q ,

namely −µ1±
√
µ2
1−4(t21−∆2

1)

2(t1+∆1) and µ2±
√
µ2
2−4(t22−∆2

2)

2(t2+∆2) . We re-
quire standing wave solutions for the finite size lattice, which
require that we write down our four e−q values as R1e

±iθ1

and R2e
±iθ2 respectively. We hence propose a general form

for the wavefunction,

Ψ(l) =A1R
l
1e
ilθ1 +A2R

l
1e
−ilθ1

+B1R
l
2e
ilθ2 +B2R

l
2e
−ilθ2 ,

(29)

where A1, A2, B1 and B2 are constants, and l is the site in-
dex. From recurrence relations derived from Eqn. 26(via the
alternative equivalent chiral decomposition)29, one can have
open boundary conditions at the artificial sites outside the lat-
tice, i.e., Ψ(l = 0) = Ψ(l = −1) = 0 = Ψ(l = N + 1) =
Ψ(l = N + 2). From these four boundary conditions it is
possible to derive a quantization condition for the existence of
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Parent 1 Parent 2 MZM Eigenvectors
Phase sgn(t1)

sgn(∆1)
Phase sgn(t2)

sgn(∆2)

topo

+

topo

+ { 1√
2
(|00〉 − |11〉), |01〉 , |10〉} or { 1√

2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}

+ - { 1√
2
(|01〉 − |10〉), |00〉 , |11〉} or { 1√

2
(|01〉 − |10〉), 1√

2
(|00〉+ |11〉)}

- + { 1√
2
(|01〉+ |10〉), |00〉 , |11〉} or { 1√

2
(|01〉+ |10〉), 1√

2
(|00〉 − |11〉)}

- - { 1√
2
(|00〉+ |11〉), |01〉 , |10〉} or { 1√

2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉)}

topo + triv { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}

- { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉)}

triv topo + { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉+ |10〉)}

- { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉 − |10〉)}

TABLE I: Null eigen-vectors of the MKC parallel system for different topological characterizations of the two parent systems,
ratio of signs of ti and ∆i, i ∈ {1, 2}, and boundary conditions.

any MMZM standing wave eigen-function on a finite lattice
of size N ,

R
2(N+2)
1 +R

2(N+2)
2 − 2RN+2

1 RN+2
2 cos(2(N + 2)θ+)

R2
1 +R2

2 − 2R1R2 cos 2θ+

=
R

2(N+2)
1 +R

2(N+2)
2 − 2RN+2

1 RN+2
2 cos(2(N + 2)θ−)

R2
1 +R2

2 − 2R1R2 cos 2θ−
,

(30)

where θ± = 1
2 (θ1 ± θ2). We have explained in the previ-

ous subsection, why we get Majorana points at all for the
parameter values t1 = −t2 = −t, ∆1 = ∆2 = ∆ and
µ1 = µ2 = µ. For this specific case, R2e

iθ2 = R1e
iπeiθ1 de-

rived from the conditions for component Hamiltonian 2. Sub-
stituting this into the quantization condition Eqn. 30 above, we
can obtain the same values of µ one obtained in sub-section
II D 2 with µ = 2

√
t2 −∆2 cos nπ

N+2 , n ∈ {1, ..., N + 1} for
N = even and µ = 2

√
t2 −∆2 cos nπ

N+1 n ∈ {1, ..., N} and
µ = 2

√
t2 −∆2 cos nπ

N+3 n ∈ {1, ..., N + 2} for N = odd.
One may look into the Supplementary materials S1 A for more
detailed calculations. Hinging on the same schematic founda-
tion, and adjusting with the form Eqn. 29, one can show that
we get two eigen-functions for the MMZMs at the Majorana
points are of the form,

Ψ1(l) ∼ Rl1(1 + (−1)l)eilθ
1
1 −Rl1(1 + (−1)l)e−ilθ

1
1 , (31a)

Ψ2(l) ∼ Rl+1
1 (1+(−1)l+1)ei(l+1)θ21−Rl+1

1 (1+(−1)l+1)e−i(l+1)θ21 ,
(31b)

where for N = even, we have θ1
1 = θ2

1 = nπ
N+2 and for

N = odd, we have θ1
1 = nπ

N+1 and θ2
1 = nπ

N+3 . The above
expressions include only eigenfunctions localised at or near
the left edge of the system. The eigenfunctions for the multi-
plicative Majoranas localised at or near the right edge can be
derived analogously by the transformation, l → N + 1 − l.
Here it remains to be said that the quantization condition is
a much more general statement than the specific case we just
dealt with and one can derive conditions for µs at different
values of θ2 − θ1 = δ for R1 = R2 which is found for
|t1/∆1| = |t2/∆2|. We illustrate the case for δ = 2π

3 , in
the Supplementary materials S1 A.
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FIG. 14: We compare the numerically and analytically
derived wavefunction probability density for the MMZMs in
the parameteric range t1 = −t2 = −1, ∆1 = ∆2 = 0.5, and
µ1 = µ2 = 2

√
t21 −∆2

1 cos(π/(N + 2)) for a lattice size,
N = 30. We see that the numerical and analytical
expressions match.

5 Quantum gate operations without braiding

According to Table I, myriad separable and maximally-
entangled two-qubit states are realized by the MKC. For in-
stance, if each parent KC is in the topological phase and
the sign of ti

∆i
is + for each i, with i ∈ {1, 2}, one real-

izes the Bell state, 1√
2
(|00〉 − |11〉) and the separable states

{|01〉 , |10〉}. This situation can be easily reversed by chang-
ing the sign of t2

∆2
to −, so that Bell state instead takes the

form, 1√
2
(|01〉 − |10〉), while the separable states are instead

{|00〉 , |11〉}. Other combinations of separable state sets or
maximally-entangled states are possible, although only one
parity possesses entanglement at a given point in phase space
when both the parent systems are topological. Moreover, if
one wants to retain the entanglement of the complement parity
while converting the separable set of states to a Bell state, one
tunes one of the parents through phase space until it undergoes
a topological phase transition to its trivial phase. As trans-
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port of the MKC through phase space corresponds to prepa-
ration of particular two-qubit states, including qubit entangle-
ment, multiplicative topological phases have some potential
as platforms for topologically-protected quantum computa-
tion schemes. First, there is the interesting possibility of using
the degenerate manifold of states for the case of each parent
topological, in braiding-based topological quantum computa-
tion schemes, despite the resultant MKC corresponding to an
even number of particles in the ground state. Second, there
also appears to be the potential for topological quantum com-
putation schemes based on tuning the system through topo-
logical phase transitions of the parents in combination with
changes in parity of certain parameter ratios. This possibility
of “phase space” topological quantum computation schemes
will be explored in future work.

III Child Hamiltonian for perpendicular parent chains
To further explore the potential for multiplicative phases to re-
alize exotic phenomena, we now characterize an MKC Hamil-
tonian with the two parent Kitaev chains which are perpen-
dicular to one another, constructing a two-dimensional rather
than one-dimensional MKC. That is, we take one parent Ki-
taev chain to lie along the x̂-axis, and the second parent Kitaev
chain to lie along the ŷ-axis, respectively. The parent Hamil-
tonians and child Hamiltonian then take the following forms:

Hp,1(kx) = −(2t1 cos kx + µ1)τz + 2∆1 sin kxτ
y, (32a)

Hp,2(ky) = −(2t2 cos ky + µ2)σz + 2∆2 sin kyσ
y, (32b)

Hc
⊥(kx, ky) =[−(2t1 cos kx + µ1)τz + 2∆1 sin kxτ

y]

⊗ [(2t2 cos ky + µ2)σz + 2∆2 sin kyσ
y]

(32c)

This system is significantly different from the parallel MKC
not only because the perpendicular orientation of the two par-
ent chains yields next-nearest-neighbor (NNN) hopping along
(x̂ ± ŷ) and −(x̂ ± ŷ) directions, but also due to the absence
of correlation between the two parent Hamiltonians in the ex-
pression for the edge modes as we shall show. We character-
ize the perpendicular MKC specifically by starting with the
bulk spectrum and then trying to infer about its topology via
the Wilson loop method. The quasiparticle velocities near the
critical points are mentioned next after which we delve into
the perpendicular MKC under open boundary conditions. We
start to analyse the Majorana zero modes which might be ob-
tained as edge modes in this situation in specific parametric
windows but we must instead look into the real space de-
scription to actually understand how the edge modes are lo-
calized which are further explained both schematically and
numerically. The analytical expressions for the edge states
and the corresponding quantization conditions then naturally
arise from the real space decomposition. We will observe that
although MZMs in this case are more attuned to the para-
metric regimes of the constituent parents, it is similar to the
MMZMs we encountered in the MKC paralle case, so that
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FIG. 15: The dispersion for (a) parent KC 1 (t1 = 1.0,
µ1 = 1.5, ∆1 = 1.0) along the kx axis, (b) parent KC 2
(t2 = 1.0, µ2 = 1.5, ∆2 = 1.0) along the ky axis, and (c) the
MKC perpendicular child Hamiltonian from the two parents.

we may also refer to the MZMs obtained for the perpendic-
ular case as MMZMs. We of course defer it to a later part
after it similarity with the MMZM in the paralle case has been
proven.

A Bulk spectrum of perpendicular multiplicative Ki-
taev chain

Similarly to the case of the parallel MKC, we first character-
ize spectral properties of the perpendicular MKC bulk. We
consider the simplest case here of two parent Hamiltonians
with identical parameter sets but differing in that one is a
function of momentum in the x̂-direction, kx, and the other
is a function of momentum in the ŷ-direction, ky . Each par-
ent KC is in the topologically non-trivial phase, with a min-
imum direct gap of 2(2ti − µi), (i=1,2) at the edge of the
Brillouin zone which is 1 in this case, as shown in Fig. 15
(a) and (b). Bands disperse quadratically near high-symmetry
points 0 and π, respectively. The minimum direct band gap of
the perpendicular MKC is analogously at (kx, ky) = (π, π),
and 2(2t1 − µ1)(2t2 − µ2), which in this case is 0.5. This
already shows greater variety in spectra of the perpendicu-
lar MKC when compared with the parallel case, where the
eigenvalues of the MKC in the bulk are products of eigenval-
ues of the parent Kitaev chains in the bulk. The direct gap
widens at (kx, ky) = (π, 0) and (0, π), approximately match-
ing the value of each of the parent direct gaps, at kx = π or
ky = π, respectively. However, the direct gap widens sig-
nificantly beyond the maximum direct gap of the parents at
(kx, ky) = (0, 0). This value reflects the multiplicative nature
of the spectrum, being the square of the maximum direct gap
of each parent.

B Wilson loops and Wannier spectrum for the perpen-
dicular MKC

As in the case of the parallel MKC, we now characterize topol-
ogy of the child Hamiltonian without assuming knowledge of
how the child Hamiltonian is constructed from parent Hamil-
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tonians, nor how its topology is determined by topological in-
variants of the parents. For this reason, we calculate the Wan-
nier spectra for the different topological phases of the perpen-
dicular MKC. For one-dimensional systems, a Wilson loop is
expressed as in Eqn. (10), but can be generalized for the two-
dimensional Brillouin zone of the perpendicular MKC as the
Wilson loop across the kx BZ for a given ky and across the ky
BZ for a given kx. We use the alternative definition of Wilson
loop matrix in terms of the occupied state projectors,

Wmn = 〈um(k0)| lim
R→∞

1∏
i=R

P (ki) |un(k0)〉 , (33)

and calculate the matrix components for the case with loop
along the kx BZ for a given ky as shown explicitly in Supple-
mentary Section in Eqn. (S75),

W11 = 〈v1+(kx0)| lim
R→∞

[ 1∏
i=R

P1+(kxi)

]
|v1+(kx0)〉 ,

W22 = 〈v1−(kx0)| lim
R→∞

[ 1∏
i=R

P1−(kxi)

]
|v1−(kx0)〉 ,

W12 =W21 = 0.

(34)

One can similarly work out the alternative case where the loop
is along the ky BZ for a given kx and the final Wannier spectra
is given as

νi = νx =ν(1)mod 1 for BZ along kx and given ky,

νi = νy =ν(2)mod 1 for BZ along ky and given kx,
(35)

where ν(j), j ∈ {1, 2} is the Wannier spectra due to the i-th
parent Hamiltonian.
Topology of two-dimensional phases is then characterized in
terms of the winding of these two Wilson loops as a function
of kx and ky , respectively. We find, however, that these two
quantities are each constant as a function of kx or ky , and we
therefore may characterize the topology entirely withW(kx)
(W(ky)), with kx (ky) fixed and integration over ky (kx). We
therefore compute Wannier center charge spectra for Wilson
loops computed by integrating over kx (ky) for each ky (kx)
and shown in Fig. 16. We find the spectra exhibit topolog-
ically non-trivial Wannier charge center values when one of
the parent Hamiltonians is in a topologically non-trivial state.
The spectra are topologically trivial when both parents are
topologically trivial, but also when both parents are topolog-
ical, and the child is also actually topologically non-trivial.
In the regime, when both the parents are topological, we have
(νx, νy) ≡ (0.5, 0.5), where νx/y refer to the Wannier spectra
derived from Wilson loop operatorsWx andWy respectively.

C Quasiparticle velocity near critical points:

The two band KC Dirac Hamiltonian near a critical point, say
µ ∼ −2t, with k → 0 has quasi-particles which propagate
with fixed velocity along the length of the system. For the
MKC with perpendicular axes, on the other hand, one has the
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FIG. 16: Wannier spectra νx/y(colorbar) for MKC
perpendicular system derived from Wilson loop operators,
Wx((a) and (b)) andWy((c) and (d)) respectively. We also
plot νx ± νy in row 3((e) and (f)) in the left and right
respectively.

following Dirac Hamiltonian, say for µ1 ∼ −2t1 with kx →
0,

HD,x(kx, ky) =−m1(2t2 cos ky + µ2)Γzz

+ 2∆1(2t2 cos ky + µ2)kxΓyz

− 2m1∆2 sin kyΓzy + 4∆1∆2kx sin kyΓyy,

(36)

where m1 = 2t1 + µ1 and Γij = τ iσj . The quasi-particles at
this critical point corresponding to the parent 1 system. The
doubly degenerate energy is given as,

E(kx, ky) = ±
√

4∆2
1k

2
x +m2

1

×
√

4∆2
2 sin2 ky + (2t2 cos ky + µ2)2.

(37)

Again expanding in the vicinity of the critical point derived
from parent 2 system, say µ2 ∼ −2t2 with ky → 0, the Dirac
Hamiltonian is shown to be,

HD,y(kx, ky) =−m2(2t1 cos kx + µ1)Γzz + 2m2∆1 sin kxΓyz

− 2∆2(2t1 cos kx + µ1)kyΓzy

+ 4∆1∆1ky sin kxΓyy,

(38)

where m2 = 2t2 + µ2. The doubly degenerate energy in this
case is,

E(kx, ky) = ±
√

4∆2
1 sin2 kx + (2t1 cos kx + µ1)2

×
√

4∆2
2k

2
y +m2

2.
(39)
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Finally we expand the MKC perpendicular Hamiltonian at the
vicinity of the critical point, µ1 ∼ −2t1 and µ2 ∼ −2t2 with
both kx, ky → 0, so that the Dirac Hamiltonian is found to be,

HD,x,y(kx, ky) =−m1m2Γzz − 2m1∆2kyΓzy + 2∆1m2kxΓyz

+ 4∆1∆2kxkyΓyy.

(40)

Again, from the last expression, the doubly degenerate energy
is shown below,

E(kx, ky) = ±
√

4∆2
1k

2
x +m2

1 ·
√

4∆2
2k

2
y +m2

2. (41)

As evident from all the Dirac Hamiltonian energies, the group
velocity of the quasi-particles have both x and y components.
We illustrate for the last case when both the parents are near
criticality, when the group velocity turns out to be,

v(kx, ky) = ±4∆1∆2(kyex + kxey). (42)

The velocity field in the k-space for this case looks like an
anti-vortex structure and may be helpful in creating further
exotic phases by stacking a similar Bloch Hamiltonian struc-
ture as the MKC perpendicular system with coupling in the
z-direction, as done in the case of the KC Bloch Hamiltonian
while constructing a Chern insulator.

D Perpendicular multiplicative Kitaev chain with
open boundary conditions

To begin characterizing the perpendicular MKC with open
boundary conditions, we consider a slab geometry, with open
boundary conditions in the x̂-direction, and system width
of Lx finite, while keeping boundary conditions in the ŷ-
direction periodic and Ly infinite. We first characterize spec-
tral properties of the system with these boundary conditions,
finding evidence of additional topologically-protected bound-
ary modes under these conditions. We then characterize these
topologically-protected boundary states in greater detail fo-
cusing on localization of the states. We support numeri-
cal findings with additional analytical characterization of the
boundary modes in a variety of limiting cases.

1 Spectrum for open boundary conditions

For comparison with the bulk properties, we also study spectra
of the perpendicular MKC for open boundary conditions, first
considering wide slab geometries with open boundary condi-
tions in the x̂-direction, corresponding to Lx = 80. These
results are shown in Fig. 17.

2 Edge modes for the perpendicular parent chains

We will first consider edge modes for the cases where the per-
pendicular MKC is finite in a single direction. The details of
this process have been worked out in the Supplementary ma-
terials S1 B.

• For the Hamiltonian above, let us first have OBC in the
x̂-direction. To find the edge state expressions, we as-
sume a bound-state ansatz wavefunction for the MKC
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FIG. 17: Slab spectra with Lx = 80 for OBC along x
direction(black) and PBC along x-direction(blue) for (a)
Parent KC with t = 1 = ∆ vs. µ, and (b) Child MKC
perpendicular with t1 = t2 = 1 = ∆1 = ∆2 and ky = 0 vs.
µ1 = µ2.

perpendicular Hamiltonian, by taking kx → iqx, and
then looking for the null vectors. We arrive at the fol-
lowing condition for the existence of zero energy states,

2t1 cosh qx + µ1 = ±2∆1 sinh qx. (43)

The expression for the zero energy edge states taking
into account the boundary conditions at x = 0 and x→
∞ are derived in Supplementary materials Sec. S1 B,
and are provided below,

Ψ(j, ky)± ∼
[(
−µ1 +

√
µ2

1 − 4(t21 −∆2
1)

2(∆1 ± t1)

)j

−
(
−µ1 −

√
µ2

1 − 4(t21 −∆2
1)

2(∆1 ± t1)

)j]
eikyy

a1

a2

a3

a4

 .

(44)

It is interesting to notice here that the translational invari-
ance along the y-direction indicates that Majorana modes are
localized along the two edges parallel to the y-axis. Imple-
menting PBCs in the y-direction simply quantizes the mo-
menta ky and does not affect the analytical form of the edge
states.

One can similarly calculate the edge state expressions for
OBCs in the y-direction by the localization, ky → iqy , as
done in Supplementary materials Sec. S1 B. In this case, one
arrives at the following relation for zero energy,

2t2 cosh qy + µ2 = ±2∆2 sinh qy. (45)

In this case, we define M1 = −(2t1 cos kx + µ1) and R1 =
2∆1 sin kx for ease of notation, and find edge states of the
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form, for the two signs in Eqn. (45),

Ψ(kx, l)± ∼eikxx
[(
−µ2 +

√
µ2

2 − 4(t22 −∆2
2)

2(∆2 ± t2)

)l

−
(
−µ2 −

√
µ2

2 − 4(t22 −∆2
2)

2(∆2 ± t2)

)l]b1b2b3
b4

 .

(46)

Here, we notice that translational invariance in the x-direction
(instead of the y-direction as in the previous case) corre-
sponds to Majorana modes along the whole edge from left
to right. Implementing PBC along x again does not change
the analytical form of the edge mode expressions but simply
quantizes kx.

Finally, we consider OBC along both the x and y directions
by localizing kx → iqx and ky → iqy . As derived in Supple-
mentary materials Sec. S1 B, we get the relation,

[(2t1 cosh qx + µ1)2 − 4∆2
1 sinh2 qx]

× [(2t2 cosh qy + µ2)2 − 4∆2
2 sinh2 qy] = 0.

(47)

The above condition yields four sign combinations so that the
null vectors for the localized Hamiltonian are given as follows,

Φ =
1

2

(
1
±1

)
⊗
(

1
∓1

)
. (48)

But there is also another set of eigen-vectors comprising the
maximally entangled Bell states due to our tensor product
structure. This ambiguity will be clarified once we derive the
explicit form of the MZM eigen-vectors after working out the
real space Hamiltonian for the MKC perpendicular system un-
der different boundary conditions in Sec. E.

E Perpendicular MKC Hamiltonian in real-space

For convenience again, we redefine our notation from section
II D, γj,+ = (γj,+,↑, γj,+,↓) and γj,− = (γj,−,↑, γj,−,↓)

T .
Then one can express the MKC Hamiltonian in the case of
perpendicular parents as follows,

Hc
MKC,⊥ =

1

2

∑
i,j

−(t1 −∆1)iγi,j,+(t2σ
z − i∆2σ

y)γi+1,j+1,−

− (t1 + ∆1)iγi+1,j+1,+(t2σ
z + i∆2σ

y)γi,j,−

− (t1 −∆1)iγi,j,+(t2σ
z + i∆2σ

y)γi+1,j−1,−

− (t1 + ∆1)iγi+1,j−1,+(t2σ
z − i∆2σ

y)γi,j,−

− µ2(t1 −∆1)iγi,j,+σ
zγi+1,j,−

− µ2(t1 + ∆1)iγi+1,j,+σ
zγi,j,−,

− µ1iγi,j,+(t2σ
z − i∆2σ

y)γi,j+1,−

− µ1iγi,j+1,+(t2σ
z + i∆2σ

y)γi,j,−

− µ1µ2iγi,j,+σ
zγi,j,−.

(49)

We execute the same similarity transformation as done in the
MKC parallel case, which changes the Hamiltonian expres-
sion to,

Hc
MKC,⊥ =

i

2

∑
i,j

[−(t1 −∆1)(t2 −∆2)γ̃i,j,↑,+γ̃i+1,j+1,↓,−

− (t1 + ∆1)(t2 + ∆2)γ̃i+1,j+1,↑,+γ̃i,j,↓,−

− (t1 −∆1)(t2 + ∆2)γ̃i,j,↑,+γ̃i+1,j−1,↓,−

− (t1 + ∆1)(t2 −∆2)γ̃i+1,j−1,↑,+γ̃i,j,↓,−

− µ2(t1 −∆1)γ̃i,j,↑,+γ̃i+1,j,↓,−

− µ2(t1 + ∆1)γ̃i+1,j,↑,+γ̃i,j,↓,−

− µ1(t2 −∆2)γ̃i,j,↑,+γ̃i,j+1,↓,−

− µ1(t2 + ∆2)γ̃i,j+1,↑,+γ̃i,j,↓,− − µ1µ2γ̃i,j,↑,+γ̃i,j,↓,−]

+
i

2

∑
i,j

[−(t1 −∆1)(t2 + ∆2)γ̃i,j,↓,+γ̃i+1,j+1,↑,−

− (t1 + ∆1)(t2 −∆2)γ̃i+1,j+1,↓,+γ̃i,j,↑,−

− (t1 −∆1)(t2 −∆2)γ̃i,j,↓,+γ̃i+1,j−1,↑,−

− (t1 + ∆1)(t2 + ∆2)γ̃i+1,j−1,↓,+γ̃i,j,↑,−

− µ2(t1 −∆1)γ̃i,j,↓,+γ̃i+1,j,↑,−

− µ2(t1 + ∆1)γ̃i+1,j,↓,+γ̃i,j,↑,−

− µ1(t2 + ∆2)γ̃i,j,↓,+γ̃i,j+1,↑,−

− µ1(t2 −∆2)γ̃i,j+1,↓,+γ̃i,j,↑,− − µ1µ2γ̃i,j,↓,+γ̃i,j,↑,−],

=H1,⊥ +H2,⊥.

(50)

Based on the diagram shown in Fig. 18, it is possible to de-
duce the possibility and placement of Majorana zero modes
even if the system has finite length and width. We introduce
all the interactions present with respect to one site in Fig. 18(a)
and (b) for the component Hamiltonians H⊥,1 and H⊥,2 and
then we prioritize the case for which t1,2 = ∆1,2 (Fig. 18(c)
and (d)), where we find Majorana zero modes parent Hamil-
tonian for suitable µ1,2.

• Case 1: We first look at the case when parent 1 is topo-
logical, with µ1 = 0, while parent 2 is trivial with
µ2 > 2t2. Fig. 18(f) and (g) show that both H1,⊥ and
H2,⊥ have Majorana zero-modes running along both
the edges parallel to the y-axis of the square lattice.
Numerical simulation in Fig. 19(a) agrees with this an-
alytical calculation. The schematic diagram further il-
lustrates that the states localized along each edge are
two-fold degenerate, as each component Hamiltonian
in Eqn. (50) contributes a Majorana edge state.

• Case 2: Now, we consider parent 2 in the topological
phase, with µ2 = 0, and parent 1 in the trivial phase
by requiring that µ1 > 2t1. From Fig. 18(e) and (f)
forH1,⊥ andH2,⊥ respectively, one observes Majorana
zero modes in the square lattice along the two edges
parallel to the x-axis. Again, each Hamiltonian com-
ponent contributes one Majorana state localized at each
edge, yielding a two-fold degeneracy of the Majorana
zero modes. Numerical simulations in Fig. 19(d) are
consistent with our analytical expressions.
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=Majorana Zero Mode

(a) (c)

(d)

(e)

(f)

(g)

(h)

(b)

(i)

(j)

(k)

(l)

FIG. 18: Schematic representation of the MKC perpendicular system in terms of Majorana fermionic interactions using the
same color scheme and symbols as in Fig. 10, (a) for t1 = ∆1 and (b) for t1 = ∆1 and µ1 = µ2 = 0. One can see that for
translational symmetry in the y-direction, one gets Majoarana edge modes along the whole y-axis for finite slab in the
x-direction, as discussed beforehand.

• Case 3: Finally, we consider the case in which each
parent is topologically non-trivial. This is illustrated in
Fig. 18(i), (j) and (k), (l) for µ1 = 0, µ2 < 2t2 and
µ1 < 2t1, µ2 = 0, respectively. Notice the alterna-
tively connected dashed and solid lines which indicates
a number of decoupled Kitaev chains. The conditions
µ1 < 2t1 in Fig. 18(i) and (l) and µ2 < 2t2 in Fig. 18(j)
and (k) then naturally imply that each of the decoupled
Kitaev chains are topologically non-trivial and hence
have Majorana zero modes at the edges. The interesting
fact to notice is however that the whole perimeter of the
finite size system now has Majorana zero modes with a
two-fold degeneracy (Each of H1,⊥ and H2,⊥ provide
one MZM). This also agrees with our numerical simula-
tion in Fig. 19(g) and (h). In addition, the corners seem
to host three degenerate Majoranas. This may indicate
the presence of higher-order30 topological edge modes,
but we defer this discussion to a later article.

We next discuss the topological invariants derived from the
component Bloch Hamiltonians of the MKC perpendicular
system in Eqns. 52a and 52b.

1 Topology of the perpendicular MKC characterized via
chiral decomposition:

It is possible to derive two separate Bloch Hamiltonians for
each of the component Hamiltonians,H⊥,1 andH⊥,2 by com-
paring the form of the Hamiltonian in the Majorana basis for
each of the component Hamiltonians to that of the 2-band 2d
Kitaev chain with next-nearest neighbour interactions,

Hc
MKC,⊥ =

1

2

∑
k

c̃†k,1H⊥,1(k)c̃k,1 +
1

2

∑
k

c̃†k,2H⊥,2(k)c̃k,2,

(51)

H⊥,1(k) =− [2µ2t1 cos kx + 2µ1t2 cos ky

+ 2(t1t2 + ∆1∆2) cos(kx + ky)

+ 2(t1t2 −∆1∆2) cos(kx − ky) + µ1µ2]σz

+ [2µ2∆1 sin kx + 2µ1∆2 sin ky

+ 2(t2∆1 + t1∆2) sin(kx + ky)

+ 2(t2∆1 − t1∆2) sin(kx − ky)]σy = d1(k) · σ,
(52a)



19

0 10
0

10

20

30

40

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) µ1 = 0, µ2 = 3
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(b) µ1 = 1, µ2 = 3
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(c) µ1 = 2, µ2 = 3
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(d) µ1 = 3, µ2 = 0
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(e) µ1 = 3, µ2 = 1
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(f) µ1 = 3, µ2 = 2
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(g) µ1 = 0, µ2 = 0
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(h) µ1 = 1, µ2 = 1
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(i) µ1 = 2,µ2 = 2

FIG. 19: Density plots for zero energy Majorana modes for a
finite 20× 50 slab of MKC perpendicular system at different
values of µ1 and µ2. All the systems have t1 = t2 = 1 and
∆1 = ∆2 = 1.

H⊥,2(k) =− [2µ2t1 cos kx + 2µ1t2 cos ky

+ 2(t1t2 −∆1∆2) cos(kx + ky)

+ 2(t1t2 + ∆1∆2) cos(kx − ky) + µ1µ2]σz

+ [2µ2∆1 sin kx − 2µ1∆2 sin ky

+ 2(t2∆1 − t1∆2) sin(kx + ky)

+ 2(t2∆1 + t1∆2) sin(kx − ky)]σy = d2(k) · σ,
(52b)

where c̃k,1 = (c̃k,↑, c̃
†
−k,↓)

T and c̃k,2 = (c̃k,↓, c̃
†
−k,↑)

T .
It has been shown31 that for 2d Kitaev chains, the topology is
characterized by vortices due to the Bloch vector as one varies
kx and ky . But a Bloch vector field like representation in the
2d Brillouin Zone might not be suitable way to properly visu-

alize these vortices. Rather we still stick to the winding num-
ber characterization for the MZMs and show that it is possible
to figure out the topology as well as the number of the MZMs
existing along a certain edge in OBC. We will work with the
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FIG. 20: Winding from the Bloch vectors (d1,y, d1,z)(red)
and (d2,y, d2,z)(blue dashed) with PBC along both x and y
directions. (a), (c), (e) are the closed curves due to PBC
Lx = 100 and Ly = 6 where the 6 circles show the situation
along the edge in the y-direction for (a) µ1 = 1, µ2 = 0
(MZMs present), (c) µ1 = 2, µ2 = 0 (critical), (e) µ1 = 3,
µ2 = 0 (trivial along y edge) respectively. Similarly, (b), (d),
(f) are the closed curves due to PBC Lx = 8 and Ly = 100
where the 8 circles show the situation alon the edge in the
x-direction for (b) µ1 = 0, µ2 = 1(MZMs present), (d)
µ1 = 0, µ2 = 2(critical), (f) µ1 = 0, µ2 = 3(trivial along x
edge). The Bloch vectors d1 and d2 overlap so that the
situation is similar for both the component Hamiltonians. All
the cases assume t1 = 1 = t2 = ∆1 = ∆2.

matrices, d1,y/z(kx, ky) and d2,y/z(kx, ky) with PBC in both
the x and y-directions so that the matrix element, d1,2(n,m)
is given by kx = 2πn

Lx
and ky = 2πm

Ly
for n ∈ {0, ..., Lx} and

m ∈ {0, ..., Ly}, Lx and Ly being the number of sites in the
x and y-directions respectively(we take Lx + 1 or Ly + 1 val-
ues for n and m respectively just to close the curve, only the
first Lx and Ly values are considered for discussion). We then
plot the n-th row of d1,y vs. n-th row of d1,z and similarly for
d2,y and d2,z . Since we have varying kx with given ky along a
given row, we get the MZMs along the edge in the y-direction
in the form of Ly closed curves which enclose the origin if
µ1 < 2t1, touch the origin if µ1 = 2t1 and do not contain the
origin if µ1 > 2t1. We show this, for the sake of clarity for
Lx = 100 and Ly = 6 in Fig. 20 (a), (c) and (e) which cor-
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responds to Fig. 18(g) and (h). Also for the case, t1,2 = ∆1,2

where the closed curve is a circle in the 2-band KC, here we
see that the polygon created by joining the centers of the 6
circles also encloses the origin if µ2 < 2t2, intersects the ori-
gin(only for Ly even, otherwise may not exactly intersect if
Ly is odd) if µ2 = 2t2 and does not enclose the origin if
µ2 > 2t2. From this one might imply that the windings of the
MZMs in one direction are modulated by the winding in the
perpendicular direction both in angle and radii. This does not
however show the number of MZMs in the other direction -
to provide an answer to this, one must plot the m-th column
of d1,y vs. the m-th column of d1,z and similar for d2,y and
d2,z . Again we show the plot for Lx = 8 and Ly = 100 for
the sake of clarity in Fig 20(b), (d) and (f), which by com-
paring for varying ky and given kx shows the 7 closed curves
encircling the origin corresponding to the 7 MZMs along the
edge in the x-direction for µ2 < 2t2 as shown schematically
in Fig. 18(e) and (h).
The locus of the curves is shown at t1 = ∆1 for varying
kx and constant ky as follows (detailed calculation in Sup-
plementary materials S3),

2t1

√
M2

2 +R2
2 = (cos θd1,y + sin θd1,z)

2

+

(
cos θd1,z − sin θd1,y + µ1

√
M2

2 +R2
2

)2

,
(53)

where we denote, M2 = M2 + 2t2 cos ky , R2 = 2∆2 sin ky
and tan θ = R2

M2
. Essentially, θ here is the Bloch angle for

the 2nd parent Hamiltonian. We observe that the winding
curve is given as a circle in a rotated coordinate space and
modulated by the dispersion at that ky value. This however
does not affect the condition for non-zero winding number,
which can still be written down as |µ1| < 2t1. The locus for
the alternate case can be similarly calculated.
One must observe here the difference in the winding number
characterization between the MKC parallel system and the
MKC perpendicular system. For the MKC parallel system,
Fig. 11 has shown that the winding number flows between the
two component Hamiltonians so that even if at least one of the
parent systems is topological, the sum of the absolute value of
winding derived from both the systems adds up to two. How-
ever, this flow is absent in the MKC perpendicular system.
The winding curves of both the component Hamiltonians
overlap, so that the component Hamiltonians always have
equal winding, given we are varying the momenta along a
certain direction. The difference here, one can notice, is in the
nature of the winding when one varies the kx direction com-
pared to the ky direction, keeping of course, the perpendicular
momenta constant for a given curve. Even Fig. 18 agrees
that we must get MZMs along the same edge for both the
component Hamiltonians for the same set of parameter values.

2 Edge states of the MKC perpendicular system from the
component Hamiltonians and entanglement:

One can finally develop the explicit form of the edge state ex-
pressions obtained previously in Sec. III D 2 with the edges
from the component Bloch Hamiltonians in Eqns. 52a and
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FIG. 21: Winding from the Bloch vectors (d1,y, d1,z)(red)
and (d2,y, d2,z)(blue dashed) with PBC along both x and y
directions. We see more clearly the modulation of the
winding curves in one direction due to its perpendicular part
and the curves are actually polygons if both edges are
smaller. But since the winding depends on the bulk this
should not change the final outcome. (a), (c), (e) are the
closed curves due to PBC Lx = 10 and Ly = 6 where the 6
circles show the situation along the edge in the y-direction
for (a)µ1 = 3, µ2 = 1(MZMs along x, trivial along y),
(c)µ1 = 1, µ2 = 3(MZMs along y trivial along x),
(e)µ1 = 3, µ2 = 3(trivial along both edges) respectively.
Similarly, (b), (d), (f) are the closed curves due to PBC
Lx = 8 and Ly = 10 where the 8 circles show the situation
alon the edge in the x-direction for (b)µ1 = 3, µ2 = 1(MZMs
along x, trivial along y), (d)µ1 = 1, µ2 = 3(MZMs along y
trivia along x), (f)µ1 = 0, µ2 = 3(trivial along both edges).
The Bloch vectors d1 and d2 overlap so that the situation is
similar for both the component Hamiltonians. All the cases
assume t1 = 1 = t2 = ∆1 = ∆2.

52b. We have worked out the relations for zero energy ob-
tained from H⊥,1 and H⊥,2, respectively, in Sec. S1 B of the
supplementary materials. Here we assume OBC in both the
x and y directions so that one can implement localization in
both the directions as kx → iqx and ky → iqy .

[(2t1 cosh qx + µ1)± 2∆1 sinh qx]

× [(2t2 cosh qy + µ2)± 2∆2 sinh qy] = 0,
(54a)

[(2t1 cosh qx + µ1)± 2∆1 sinh qx]

× [(2t2 cosh qy + µ2)∓ 2∆2 sinh qy] = 0.
(54b)

We assume the number of sites along the x-direction is Lx
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FIG. 22: Spectrum E vs. µ1 = µ2 for OBC(blue) and
PBC(black) along both x and y directions with Lx = 6 and
Ly = 7 for t1 = t2 = 1 and ∆1 = ∆2 = 0.5. We see 6
gapless points corresponding to OBC along x with 7-fold
degeneracy and 7 gapless points corresponding to OBC along
y with 6-fold degeneracy.

and along the y-direction is Ly . Taking into account boundary
conditions at x = 0, Lx + 1 for each y, and y = 0, Ly + 1 for
each x, where the wavefunction needs to vanish irrespective
of the other perpendicular axis site, we have, for H⊥,1 for the
sign (+,+),

Ψ(j, l) ∼ [pj1,+ − p
j
1,−][sl1,+ − sl1,−], (55)

and for H⊥,2 for the sign (+,−),

Ψ(j, l) ∼ [pj1,+ − p
j
1,−][sl2,+ − sl2,−], (56)

where we have p1,± =
−µ1±

√
µ2
1−4(t21−∆2

1)

2(t1+∆1) , p2,± =

−µ1±
√
µ2
1−4(t21−∆2

1)

2(t1−∆1) , s1,± =
−µ2±

√
µ2
2−4(t22−∆2

2)

2(t2+∆2) , and

s2,± =
−µ2±

√
µ2
2−4(t22−∆2

2)

2(t2−∆2) . The boundary conditions at
x = Lx + 1 and y = Ly + 1 again imply,

µ1 = 2
√
t21 −∆2

1 cos
nxπ

Lx + 1
, nx ∈ {1, ..., Lx}

µ2 = 2
√
t22 −∆2

2 cos
nyπ

Ly + 1
, ny ∈ {1, ..., Ly}.

(57)

Then the plot of energy, E vs. µ1 = µ2 = µ should include
a total of Lx × Ly gapless points with the gapless points due
to µ1 being Ly-degenerate(degenerate by the number of sites
along the y-edge) and the gapless points due to µ2 being Lx-
degenerate(degenrate by the number of sites along the x-axis)
as we observe in Fig. 22.

As in the case of the MKC parallel system, the Majorana
zero modes (MZMs) can be shown to be entangled or product
states based on the topological nature of the parent Hamiltoni-
ans or the boundary conditions one imposes. Unlike the MKC
parallel system, the MKC perpendicular system has the added
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(a) µ1 = 0, µ2 = 3,
t1 = t2 = 1,∆1 = 0.5, ∆2 = 1.0
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(b) µ1 = 0, µ2 = 3, t1 = t2 = 1,
∆1 = 0.33, ∆2 = 1.0
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(c) µ1 = 3, µ2 = 0,
t1 = t2 = 1,∆1 = 1, ∆2 = 0.5
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(d) µ1 = 3, µ2 = 0, t1 = t2 = 3,
∆1 = 1, ∆2 = 0.33

FIG. 23: Density plots for zero energy Majorana modes for a
finite 20× 50 slab of MKC perpendicular system at different
values of µ1,µ2 and t1, t2. All the systems have
∆1 = ∆2 = 1.

advantage that even if both the parents are topological, it is
possible to change the entanglement by gluing together or not
opening one of the edges. We again start with the localiza-
tion, kx → iqx and ky → iqy along both the directions, so
that H⊥,1 and H⊥,2 are given as,

H⊥,1(iqx, iqy) =− [(µ1 + 2t1 cosh qx)(µ2 + 2t2 cosh qy)

+ 4∆1∆2 sinh qx sinh qy]σz

+ i[2∆1 sinh qx(µ2 + 2t2 cosh qy)

+ 2∆2 sinh qy(µ1 + 2t1 cosh qx)]σy

(58a)

H⊥,2(iqx, iqy) =− [(µ1 + 2t1 cosh qx)(µ2 + 2t2 cosh qy)

− 4∆1∆2 sinh qx sinh qy]σz

+ i[2∆1 sinh qx(µ2 + 2t2 cosh qy)

− 2∆2 sinh qy(µ1 + 2t1 cosh qx)]σy

(58b)
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To get null-eigenvalues from the above expressions, we must
satisfy the conditions,

[(2t1 cosh qx + µ1)∓ 2∆1 sinh qx]

× [(2t2 cosh qy + µ2)∓ 2∆2 sinh qy] = 0,
(59)

for the component H⊥,1 and,

[(2t1 cosh qx + µ1)∓ 2∆1 sinh qx]

× [(2t2 cosh qy + µ2)± 2∆2 sinh qy] = 0,
(60)

for the component H⊥,2. The schematic diagram Fig. 18
shows that the edges where the MZMs are localized depend
on the topological nature of the parents. But if one of the
directions remain unopened or with periodic boundary condi-
tions, one will not observe the MZMs although the relevant
parent is topological. Let us consider the condition Eqn. 59
for sgn(ti) = sgn(∆i), i ∈ {1, 2},

[(2t1 cosh qx + µ1)− 2∆1 sinh qx]

× [(2t2 cosh qy + µ2)− 2∆2 sinh qy] = 0.
(61)

If there exists OBC along both x and y directions and both
the parents are topological, we have, 2t1 cosh qx + µ1 =
2∆1 sinh qx and 2t2 cosh qy+µ2 = 2∆2 sinh qy , which when
substituted into Eqns. 58a and 58b shows thatH⊥,2 vanishes.
We are actually working in the full basis of the MKC per-
pendicular system, given by the four degrees of freedom,
(c̃k,↑, c̃k,↓, c̃

†
−k,↑, c̃

†
−k,↓)

T . which combines the degrees of
freedom of the two components. In this basis, the null eigen-
vectors derived fromH⊥,1(iqx, iqy) are given as,

|Ψ〉MZM = { 1√
2

(|00〉 − |11〉), |01〉 , |10〉}, (62)

where |0〉 = (1, 0)T and |1〉 = (0, 1)T .
Now, say if parent 1 is topological while parent 2 is trivial
while we retain OBC in both x and y directions, we must only
satisfy the condition, 2t1 cosh qx + µ1 = 2∆1 sinh qx. Sub-
stituting the identity into Eqn. 58a and 58b, the null eigen-
vectors in the full basis with four degrees of freedom is shown
to be,

|Ψ〉MZM = { 1√
2

(|00〉 − |11〉), 1√
2

(|01〉 − |10〉)}. (63)

One must note that the above eigen-vectors are also valid if
the y-direction is unopened or in PBC so that the topologi-
cal nature of the second parent does not matter. Then only
the condition 2t1 cosh qx + µ1 = 2∆1 sinh q holds. Detailed
calculations can be found in Supplementary section S1 B. The
extra part here compared to the MKC parallel system is that
one can control the entanglement between maximally entan-
gled Bell states and product states, not only via the topologi-
cal nature of the parents but also by the boundary conditions
along the two directions. We provide a small table (Table
II) showing all the possible MZM eigen-vectors under vari-
ous parent topology and boundary conditions. The table lists
only the MMZM eigenvector at edges x = 0 and y = 0.

The eigenvectors at the other edges can be found by chang-
ing, sqn(ti)

sgn(∆i)
from + to − and vice-versa for both the parents.

We will recover a total of four eigenvectors with two common
eigenvectors for both signs when both parents are topolog-
ical. Thus, the MZMs obtained in this case have a similar
entanglement structure as the Multiplicative Majorana Zero
Modes(MMZMs) in the parallel case so that one may refer to
the MZMs in the MKC perpendicular system as Multiplicative
Majorana Zero Modes(MMZMs) as well.

3 Parallel quantum gates without braiding:

The MMZMs of the perpendicular MKC system can also be
entangled states and separable two-qubit states via variation
of the system parameters at a given parity. In this case, how-
ever, there is the potential to perform parallel gate operations:
since the number of MMZM pairs the perpendicular system
has is proportional to the perimeter of the system (when there
are open boundary conditions in each direction), it is possible
to carry out CNOT operations simultaneously on a large num-
ber of MMZM pairs. The full potential for universal quantum
computation schemes by manipulating multiplicative topolog-
ical phases in combination with this potential for parallelized
gate operations warrants further investigation, but this is be-
yond the scope of this work.

IV Discussion and Conclusion

In this work, we introduce the concept of a multiplica-
tive Majorana zero-mode(MMZM), a zero-energy, symmetry-
protected tensor product state or maximally-entangled Bell
state composed of one or more unpaired Majorana zero-
modes. We find that the recently-introduced multiplicative
topological phases10 realize such zero-modes through bulk-
boundary correspondence, specifically considering a canon-
ical Hamiltonian for realizing such multiplicative topologi-
cal phases consisting of a symmetry-protected tensor product
of two Kitaev chain Hamiltonians. While considerable im-
portant work currently focuses on smoking-gun experimen-
tal confirmation of unpaired Majorana zero-modes and indi-
vidual topological qubits in experiment, it remains important
to identify practical platforms for scalable topological quan-
tum computers. Results discussed here are relevant to realiz-
ing such scalable systems of many topological qubits, given
that multiplicative Majorana zero-modes are individual states
composed of multiple symmetry-protected unpaired Majorana
zero-modes. Additionally, results here indicate there are op-
portunities for controlled introduction of entanglement be-
tween degrees of freedom derived from both parents in the
Majorana eigenvectors, potentially useful for performing gate
operations of topological quantum computation schemes.

We demonstrate the richness of multiplicative topologi-
cal phases by constructing one-dimensional but also two-
dimensional multiplicative Kitaev chain models capable of re-
alizing myriad topologically non-trivial phases. These mod-
els consist of either two parent Kitaev chain Hamiltonians that
depend on the same momentum component, or perpendicular
momentum components, combined in a symmetry-protected,
tensor product construction. We lay the groundwork for
studying these systems by characterizing bulk topology and
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Parent 1 Parent 2 MZM Eigenvectors
Phase sgn(t1)

sgn(∆1)
x-BC Phase sgn(t1)

sgn(∆1)
y-BC

topo

+ OBC

topo

+ OBC { 1√
2
(|00〉 − |11〉), |01〉 , |10〉}

+ OBC - OBC { 1√
2
(|01〉 − |10〉), |00〉 , |11〉}

- OBC + OBC { 1√
2
(|01〉+ |10〉), |00〉 , |11〉}

- OBC - OBC { 1√
2
(|00〉+ |11〉), |01〉 , |10〉}

topo

+ OBC

topo

+,- PBC { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}

- OBC +,- PBC { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉)}

+,- PBC + OBC { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉+ |10〉)}

+,- PBC - OBC { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉 − |10〉)}

topo + OBC triv { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}

- OBC { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉)}

triv topo + OBC { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉+ |10〉)}

- OBC { 1√
2
(|00〉+ |11〉), 1√

2
(|01〉 − |10〉)}

TABLE II: Eigen-vectors of the MKC perpendicular system for different topological characterizations of the two parent
systems, ratio of signs of ti and ∆i, i ∈ {1, 2}, and boundary conditions.

corresponding topologically-protected boundary states, focus-
ing on the dependence of the resultant multiplicative topolog-
ical phases on the topology of the parents.

We characterize the bulk of multiplicative Kitaev chains
first by demonstrating that eigenvalues of the bulk spectrum
are products of the eigenvalues of the parent Kitaev chain
bulk spectra, indicating topological phases of the child are
stable up to gap-closing of either parent. We also explore
characterization of multiplicative topology in the bulk, and
find that Wilson loop spectra successfully characterize some
multiplicative topological phases, but can also indicate trivial
topology in the case when each parent is topologically non-
trivial. We show, however, that it is possible to decompose
the MKC into chiral subsectors to more fully characterize the
topology under certain conditions. This exploits the fact that
the degrees of freedom of these Hamiltonians are symmetry-
constrained, locking together into pseudospins yielding wind-
ing numbers that successfully characterize all topologically
non-trivial states realized through different combinations of
trivial and non-trivial parents considered here. Fully charac-
terizing multiplicative topological phases, however, is an im-
portant issue to explore in future works.

Topologically-protected boundary states possible for the
multiplicative Kitaev chain Hamiltonians are varied. We con-
sider child Hamiltonians, which can be block-diagonalized
into chiral subsectors. Based on the topology of the parents,
the MMZMs of the child may either possess a tensor product
or maximally-entangled Bell state structure. We characterize
topology of the child chiral subsectors in the bulk by com-
puting winding numbers for the parallel case, which seem to
possess an algebra as one might infer from addition of angular
momentum. We find a relationship between the winding num-
bers of the child chiral subsectors in the case of two parallel
parent Kitaev chains. Schematically, from real space Hamilto-
nian expressions, we show that for suitable parametric condi-

tions, MMZMs are localized at the outermost and second out-
ermost sites for 1d (parallel) case or along two or four edges
for the 2d (perpendicular) case.

Similarly, we illustrate a winding number calculation for
the perpendicular case which accurately reflects the number
of MMZMs and the edge along which they are localized.
A quantization condition for the existence of topologically-
protected boundary modes in finite size MKC systems has
also been obtained, and we have shown that it agrees with
our numerical results for one of the simpler cases. More com-
plicated cases may still be studied, such as one example in
Sec. S1 A of the Supplementary Materials. This shows that
a topologically-protected, multiplicative Majorana zero-mode
of the child MKC, in both the parallel and the perpendicular
case, is not just a tensor product of parent Hamiltonian states
in general. Instead, they can more generally possess emer-
gent properties evident in their localization, entanglement and
topological robustness.

Future work will explore topological characterization in
systems with lower symmetry, for which the multiplica-
tive Majorana zero-modes are expected to take more gen-
eral forms, as well as control of the entanglement properties,
which hold great promise for developing more robust and ver-
satile topological quantum computation schemes. This could
include further study of the potential for braiding schemes,
with the degenerate manifold of zero-energy states for the
case of each parent topologically non-trivial being a partic-
ularly interesting case for such future study, as well as further
study of the potential for alternatives to braiding schemes for
topologically-protected quantum computation.
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25 Dániel Varjas, Tómas Ö Rosdahl, and Anton R Akhmerov,
“Qsymm: algorithmic symmetry finding and symmetric hamil-
tonian generation,” New Journal of Physics 20, 093026 (2018).

26 A. Alexandradinata, Xi Dai, and B. Andrei Bernevig, “Wilson-
loop characterization of inversion-symmetric topological insula-
tors,” Phys. Rev. B 89, 155114 (2014).

27 Nico Leumer, Magdalena Marganska, Bhaskaran Muralidharan,
and Milena Grifoni, “Exact eigenvectors and eigenvalues of the
finite kitaev chain and its topological properties,” Journal of
Physics: Condensed Matter 32, 445502 (2020).

28 A. M. Cook and A. E. B. Nielsen, “Finite-size topology,” submit-
ted (2022).

29 Nico Gerhard Leumer, Spectral and transport signatures of 1d
topological superconductors of finite size in the sub-and supra-
gap regime: An analytical study, Ph.D. thesis (2021).

30 Frank Schindler, Ashley M Cook, Maia G Vergniory, Zhijun
Wang, Stuart SP Parkin, B Andrei Bernevig, and Titus Neu-
pert, “Higher-order topological insulators,” Science advances 4,
eaat0346 (2018).

31 KL Zhang, Peng Wang, and Zhi Song, “Majorana flat band edge
modes of topological gapless phase in 2d kitaev square lattice,”
Scientific reports 9, 1–9 (2019).

32 R. D. King-Smith and David Vanderbilt, “Theory of polarization
of crystalline solids,” Phys. Rev. B 47, 1651–1654 (1993).

33 David Vanderbilt and R. D. King-Smith, “Electric polarization as
a bulk quantity and its relation to surface charge,” Phys. Rev. B
48, 4442–4455 (1993).

34 A. Alexandradinata, Zhijun Wang, and B. Andrei Bernevig,
“Topological insulators from group cohomology,” Phys. Rev. X
6, 021008 (2016).
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S1 Calculations for finite size KC and MKC:

The KC Bloch Hamiltonian, HKC(k) = −(2t cos k + µ)τz + 2∆ sin k anti-commutes with the Chirality operator Π = τx so
that we have eigen-states ψ and τxψ with energy E and −E respectively. In the position basis, the KC Hamiltonian may be
expressed as,

HKC =
1

2
[−µτz ⊗ I− tτz ⊗M+ − i∆τy ⊗M−], (S1)

where M+ = δi+1,j+δi,j+1 and M− = δi,j+1−δi+1,j . We therefore perform a chiral decomposition of the KC Hamiltonian.
With the similarity transformation, S = 1√

2
(I − iτy)⊗ I,

H̃KC = SHKCS† = τ+H̃KC,R + τ−H̃KC,L, (S2)

where τ± = 1
2 (τx ± iτy) and

H̃KC,R =
1

2
(−µI− tM+ −∆M−),

H̃KC,L =
1

2
(−µI− tM+ + ∆M−).

(S3)

Alternatively, one may perform the chiral decomposition via the transformation, k → iq. This corresponds to localization, so
that we search for the eigenvectors Φ of,

HKC(iq) = −(2t cosh q + µ)τz + 2i∆ sinh qτy, (S4)

so that HKC(iq)Φ = 0 which should lead us to the expressions for the Majorana zero modes at the edges. Since HKC(iq) is of
the form d(iq) · σ, the condition for zero eigenvalues is |d(iq)| = 0, which gives rise to two conditions,

2t cosh q + µ = ±2∆ sinh q. (S5)

Substituting these conditions into HKC(iq), we want null vectors of τz ∓ iτy , which are given as

Φ ∼
(

1
±1

)
.

The function form for the zero modes requires, however that we solve for e−q which are a natural conversion from the plane
waves to a localized wavefunction, eikx → e−qx. We illustrate for one of the conditions,

2t cosh q + µ− 2∆ sinh q = 0,

=⇒ (t+ ∆)e−2q + µe−q + (t−∆) = 0,

=⇒ e−q± =
−µ±

√
µ2 − 4(t2 −∆2)

2(t+ ∆)
.

This condition is equivalent to solving for the zero energy eigenfunction for H̃KC,L with the ansatz, sj ∼ (e−q)j For the
two-band Kitaev chain,the functional form of the Majorana zero energy states then must be of the form,

Ψ(j) = αsj+ + βsj−, (S6)
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where s± = e−q± . A finite chain with only N sites implies that the boundary conditions Ψ(0) = 0 = Ψ(N + 1) must hold.
This means,

α+ β = 0,

αsN+1
+ + βsN+1

− = 0.
(S7)

It is not possible to satisfy both the conditions unless the wave function is oscillatory, which implies |µ| < 2
√
t2 + ∆2, which

leads to the following equation,

α

(
sN+1

+ − sN+1
−

)
= 0,

=⇒
(
− µ

2(t+ ∆)
+ i

√
4(t2 −∆2)− µ2

2(t+ ∆)

)N+1

−
(
− µ

2(t+ ∆)
− i
√

4(t2 −∆2)− µ2

2(t+ ∆)

)N+1

= 0,

=⇒ RN+1(ei(N+1)θ − e−i(N+1)θ) = 0,

=⇒ sin((N + 1)θ) = 0,

=⇒ cos θ = cos
nπ

N + 1
,

(S8)

where, R =
√

t−∆
t+∆ and cos θ = µ

2
√
t2−∆2

. Then, one can have oscillatory zero energy Majorana modes only at,

µ = 2
√
t2 −∆2 cos

nπ

N + 1
, (n = 1, ..., N). (S9)

A MKC parallel zero energy modes:
One can similarly work out the null vectors and zero mode functional form for the MKC parallel system,

HMKC,||(k) =[−(2t1 cos k + µ1)τz + 2∆1 sin kτy]⊗ [(2t2 cos k + µ2)σz + 2∆2 sin kσy],

=d1(k) · τ ⊗ d2(k) · σ·
(S10)

Carrying out the transformation for the localization, k → iq,

HMKC,||(iq) = [−(2t1 cosh q + µ1)τz + 2i∆1 sinh qτy]⊗ [(2t2 cosh q + µ2)σz + 2i∆2 sinh qσy] (S11)

we will have zero eigenvalues if we have |d1(iq)| × |d2(iq)| = 0, as evident from the tensor product structure. We then have
the conditions,

((2t1 cosh q + µ1)2 − 4∆2
1 sinh2 q)((2t2 cosh q + µ2)2 − 4∆2

2 sinh2 q) = 0. (S12)

From the four conditions due to different sign combinations, it is easy to infer that we get the following eigenvectors,

Φ =
1

2

(
1
±1

)
⊗
(

1
±1

)
. (S13)

The problem with this approach is that for our composite system, there is another possibility for the eigenvectors, namely the
Bell states which also conserve the respective parities of the full system. It is therefore better to consider consequences of the
four constraints on the two component Hamiltonians, H||,1 and H||,2. The component Bloch Hamiltonians,

H||,1(k) =− [2(µ1t2 + µ2t1) cos k + 2(t1t2 + ∆1∆2) cos 2k + µ1µ2 + 2t1t2 − 2∆1∆2]σz

+ [2(µ2∆1 + µ1∆2) sin k + 2(t2∆1 + t1∆2) sin 2k]σy = d1(k) · σ,
(S14)

H||,2(k) =− [2(µ1t2 + µ2t1) cos k + 2(t1t2 −∆1∆2) cos 2k + µ1µ2 + 2t1t2 + 2∆1∆2]σz

+ [2(µ2∆1 − µ1∆2) sin k + 2(t2∆1 − t1∆2) sin 2k]σy = d2(k) · σ.
(S15)
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After localization, k → iq the condition for null eigenvalues yield,

[2(µ1t2 + µ2t1) cosh q + 2(t1t2 + ∆1∆2) cosh 2q + µ1µ2 + 2t1t2 − 2∆1∆2]

= ±[2(µ2∆1 + µ1∆2) sinh q + 2(t2∆1 + t1∆2) sinh 2q],

=⇒ [(2t1 cosh q + µ1)∓ 2∆1 sinh q][(2t2 cosh q + µ2)∓ 2∆2 sinh q] = 0,

(S16a)

[2(µ1t2 + µ2t1) cosh q + 2(t1t2 −∆1∆2) cosh 2q + µ1µ2 + 2t1t2 + 2∆1∆2]

= ±[2(µ2∆1 − µ1∆2) sinh q + 2(t2∆1 − t1∆2) sinh 2q],

=⇒ [(2t1 cosh q + µ1)∓ 2∆1 sinh q][(2t2 cosh q + µ2)± 2∆2 sinh q] = 0.

(S16b)

After localization, k → iq, the respective component Bloch Hamiltonians are,

H||,1(iq) =− [(2t1 cosh q + µ1)(2t2 cosh q + µ2) + 4∆1∆2 sinh2 q]σz

+ [2∆1 sinh q(2t2 cosh q + µ2) + 2∆2 sinh q(2t1 cosh q + µ1)]σy,
(S17a)

H||,2(iq) =− [(2t1 cosh q + µ1)(2t2 cosh q + µ2)− 4∆1∆2 sinh2 q]σz

+ [2∆1 sinh q(2t2 cosh q + µ2)− 2∆2 sinh q(2t1 cosh q + µ1)]σy.
(S17b)

Depending on whether the parents are topological or trivial, we have two cases. We show here for one of the conditions,

[(2t1 cosh q + µ1)− 2∆1 sinh q][(2t2 cosh q + µ2)− 2∆2 sinh q] = 0. (S18)

The other conditions follow similarly. The basis of the full system is c̃k = (c̃k,↑, c̃k,↓, c̃
†
−k,↑, c̃

†
−k,↓)

T . We therefore combine
the bases c̃k,1 = (c̃k,↑, c̃

†
−k,↓)

T for H||,1 and c̃k,2 = (c̃k,↓, c̃
†
−k,↑)

T for H||,2 and search for the null eigenvectors of the 4 × 4
matrix derived from the full basis.

• Case 1: If both the parents are topological, we have (2t1 cosh q + µ1) = 2∆1 sinh q and (2t2 cosh q + µ2) = 2∆2 sinh q
in separate situations except if the parameters of both the parents are proportional to each other, i.e.,

∣∣µ1

t1

∣∣ =
∣∣µ2

t2

∣∣ and∣∣ t1
∆1

∣∣ =
∣∣ t2

∆2

∣∣. If such cases, say µ1

t1
= µ2

t2
and t1

∆1
= t2

∆2
, we get + signs on the right-hand side (rhs) for the first lines in

Eqns. (S16a) and (S16b) but also the− sign for Eqn. (S16b). Just substituting for 2t1 cosh q+µ1 and 2t2 cosh q+µ2 into
Eqn. (S17a) and (S17b) implies that the incidence of both + and − sign on the rhs of Eqn. (S16a) is equivalent to getting
H(iq) = 0. Therefore, our MZM eigenvectors in this case must be null eigenvectors of the matrix, d1,z(iq) 0 0 d1,z(iq)

0 0 0 0
0 0 0 0

−d1,z(iq) 0 0 −d1,z(iq)

 , (S19)

which are given as, { 1√
2
(|00〉 − |11〉), |10〉 , |01〉}. If the parents, on the other hand, do not have such related parameters,

we substitute the conditions (2t1 cosh q + µ1) = 2∆1 sinh q and (2t2 cosh q + µ2) = 2∆2 sinh q one by one, so that our
MZM eigenvectors are eigenvectors of the matrix, d1,z(iq) 0 0 d1,z(iq)

0 d2,z(iq) d2,z(iq) 0
0 −d2,z(iq) −d2,z(iq) 0

−d1,z(iq) 0 0 −d1,z(iq)

 , (S20)

which are given as, { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}.

• Case 2: If one of the parents, say parent 1, is topological and parent 2 is trivial, we have only 2t1 cosh q+µ1 = 2∆1 sinh q.
The MMZM eigenvectors must then be null eigenvectors of the matrix, d1,z(iq) 0 0 d1,z(iq)

0 d2,z(iq) d2,z(iq) 0
0 −d2,z(iq) −d2,z(iq) 0

−d1,z(iq) 0 0 −d1,z(iq)

 , (S21)

which are given as, { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}.
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For both cases, we have used |0〉 = (1, 0)T and |1〉 = (0, 1)T . as the Majorana eigenvectors. Then for the chosen signs, (+,+)
on the two rhs, we get the following non-zero null eigenvectors,

(+,+) : |Ψ〉 =
1√
2

(|00〉 − |11〉), 1√
2

(|01〉 − |10〉), (S22)

where These are the maximally-entangled Bell states. We have provided all of the Bell state combinations that arise due to the
different chosen signs in the main text.
Now we look into the functional form for our Bell state MMZMs. We get four solutions for e−q from Eq. (S17),

e−q =
−µ1 ±

√
µ2

1 − 4(t21 −∆2
1)

2(t1 + ∆1)
,
−µ2 ±

√
µ2

2 − 4(t22 −∆2
2)

2(t2 + ∆2)
. (S23)

The functional form for the Majorana edge modes, Ψ(j), must then be a linear combination of e−qj , where j corresponds to the
discrete lattice site index. This is, of course, subject to the following boundary conditions for a chain length, N ,

Ψ(0) = 0, Ψ(N + 1) = 0, Ψ(−1) = 0, Ψ(N + 2) = 0. (S24)

The last two conditions arise because we have considered next-nearest neighbour interactions. They can be derived if one
considers the recurrence relation arising out of the chiral decomposition of the Bloch Hamiltonian, as we have previously shown
for the two-band Kitaev chain. Since the chain is finite in length, we must have complex roots of e−q for oscillating solutions,

so that one may write, e−q =
−µl±i

√
4(t2l−∆2

l )−µ
2
l

2(tl+∆l)
= Rle

±iθl , l ∈ {1, 2}. We then write down the following ansatz,

Ψ(j) = A1R
j
1e
ijθ1 +A2R

j
1e
−ijθ1 +B1R

j
2e
ijθ2 +B2R

j
2e
−ijθ2 , (S25)

whereby the boundary conditions are given as follows,

A1 +A2 +B1 +B2 = 0, R−1
1 cos θ1 −R−1

2 cos θ2 −R−1
1 sin θ1 −R−1

2 sin θ2

RN+1
1 cos((N + 1)θ1)−RN+1

2 cos((N + 1)θ2) RN+1
1 sin((N + 1)θ1) RN+1

2 sin((N + 1)θ2)

RN+2
1 cos((N + 2)θ1)−RN+2

2 cos((N + 2)θ2) RN+2
1 sin((N + 2)θ1) RN+2

2 sin((N + 2)θ2)

 A1 +A2

i(A1 −A2)
i(B1 −B2)

 = 0.

(S26)

Equating the determinant for the above matrix to zero provides the quantization condition,

R
2(N+2)
1 +R

2(N+2)
2 − 2RN+2

1 RN+2
2 cos(2(N + 2)θ+)

R2
1 +R2

2 − 2R1R2 cos 2θ+
=
R

2(N+2)
1 +R

2(N+2)
2 − 2RN+2

1 RN+2
2 cos(2(N + 2)θ−)

R2
1 +R2

2 − 2R1R2 cos 2θ−
, (S27)

where θ± = θ1±θ2
2 . We check if this quantization condition holds true by applying it to the case µ1 = µ2, t1 = −t2 and

∆1 = ∆2. Here one can simply calculate that R2e
iθ2 = −R1e

iθ1 . Substituting into the above equation, we get,

1− (−1)N+2 cos 2(N + 2)θ1 = (1− (−1)N+2) cos2 θ1. (S28)

We calculate separately for N odd and N even,

(N = odd) 2 sin(N + 3)θ1 sin(N + 1)θ1 = 0, =⇒ θ1 =
nπ

N + 1
,
mπ

N + 3
n ∈ {1, ..., N + 1},m ∈ {1, ..., N + 3}

(N = even) 2 sin2(N + 2)θ1 = 0, =⇒ θ1 =
nπ

N + 2
n ∈ {1, ..., N + 2}.

(S29)

We see that the result derived via a schematic approach and the one from this quantization condition both indicate that we should
observe two chains of even length based on which the Majorana points must be calculated.
We calculate the eigen-function for the above case using the physical basis provided by the schematic approach. Consider first
that we have an MKC parallel system with N = 2L sites with t1 = −t2 = −t and ∆1 = ∆2 = ∆. For the above case, the
MZM wavefunction for each of the two L-sized KC is given as,

ψ(j) =

[
t−∆

t+ ∆

]j
sin

(
nπj

L+ 1

)
, n ∈ {1, ..., L}. (S30)

In terms of site index l in the MKC parallel system, we have two eigen-functions, and taking into account that only nearest
neighbour interactions are present, the wave-function of one of the constituent KC maintains a zero value in the site-index
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belonging to the other KC in the full MKC parallel lattice. Therefore, site index l for the full MKC parallel lattice is related to
the site index j for the first constituent KC as 2j = l and for the second KC as 2j − 1 = l.

Ψ1(l) =

{ [
t−∆
t+∆

] l
2 sin

(
nπl

2L+2

)
=
[
t−∆
t+∆

] l
2 sin

(
nπl
N+2

)
, if l = even,

0, if l = odd.
(S31a)

Ψ2(l) =

{
0, if l = even,[
t−∆
t+∆

] l+1
2 sin

(nπ(l+1)
2L+2

)
=
[
t−∆
t+∆

] l+1
2 sin

(nπ(l+1)
N+2

)
, if l = odd.

(S31b)

In terms of the general wavefunction, Eqn. S25 of the MZMs for the MKC parallel system, this can be represented as A1 = B1

and A2 = B2 with A1 = −A2, for Ψ1(l),

Ψ1(l) ∼ Rl1(1 + (−1)l)eilθ1 −Rl1(1 + (−1)l)e−ilθ1 , (S32)

where θ1 = nπ
N+2 , {n = 1, ..., N + 2} from the quantization condition we proved a while back. For Ψ2(l), a similar calculation

can be done or it can simply be read as a shifted Ψ1, so that Ψ2(l) = Ψ1(l+ 1) so that it is shifted one step to the left. Similarly,
for MKC parallel lattice of size N = 2L+ 1, one can show from the schematic diagram that the following holds,

Ψ1(l) =

{ [
t−∆
t+∆

] l
2 sin

(
nπl

2L+2

)
=
[
t−∆
t+∆

] l
2 sin

(
nπl
N+1

)
, if l = even,

0, if l = odd.
(S33a)

Ψ2(l) =

{
0, if l = even,[
t−∆
t+∆

] l+1
2 sin

(nπ(l+1)
2L+4

)
=
[
t−∆
t+∆

] l+1
2 sin

(nπ(l+1)
N+3

)
, if l = odd.

(S33b)

Again, we get the same expression as in Eqn. S32 for Ψ1(l) with θ1 = nπ
N+1 and Ψ2(l) = Ψ1(l + 1) but with θ1 = nπ

N+3 .
Let us now extrapolate to the case when R1 = R2. This is possible if t1

∆1
= ± t2

∆2
. Consider now R2e

iθ2 = R1e
iδeiθ1 , which

implies θ2 − θ1 = δ. This is a generalization of the previous case, where we had δ = π. The quantization condition in this case
is,

1 + (eiδ)2(N+2) − 2(eiδ)N+2 cos(2(N + 1)θ1)

1 + e2iδ − 2eiδ cos 2θ1
=

1 + (eiδ)2(N+2) − 2(eiδ)N+2

1 + e2iδ − 2eiδ1
. (S34)

Let us consider the next simplest case i.e., the phase difference is the third root of unity, denoted as δ = ei
2π
3 = ω. Following

our previous analysis, we must consider three kinds of system sizes, N = 3L, 3L+ 1 and 3L+ 2,

• Case 1:(N=3L) From the Eqn. S34, we get,

1 + ω − 2ω cos(2(N + 2)θ1)

1 + ω2 − 2ω cos 2θ1
= ω, =⇒ 4ω2 sin((N + 1)θ1) sin((N + 3)θ1) = 0,

=⇒ θ1 =
nπ

N + 1
,
mπ

N + 3
, n ∈ {1, ..., N},m ∈ {1, ..., N + 2}.

(S35)

• Case 2:(N=3L+1) From Eqn. S34, we get,

2− 2 cos(2(N + 2)θ1)

1 + ω2 − 2ω cos 2θ1
= 0, =⇒ 4 sin2((N + 2)θ1) = 0,

=⇒ θ1 =
nπ

N + 2
, n ∈ {1, ..., N + 1}.

(S36)

• Case 3:(N=3L+2) From Eqn. S34, we have,

1 + ω2 − 2ω cos((N + 2)θ1)

1 + ω2 − 2ω cos 2θ1
= 1, =⇒ 4ω sin((N + 1)θ1) sin((N + 3)θ1) = 0,

=⇒ θ1 =
nπ

N + 1
,
mπ

N + 3
, n ∈ {1, ..., N},m ∈ {1, ..., N + 2}.

(S37)
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B MKC perpendicular zero energy modes:
Here, we compute the zero energy modes for the MKC perpendicular system given by the Hamiltonian,

HMKC,⊥(kx, ky) =[−(2t1 cos kx + µ1)τz + 2∆1 sin kxτ
y]⊗ [(2t2 cos ky + µ2)σz + 2∆2 sin kyσ

y],

=d1(kx) · τ ⊗ d2(ky) · σ.
(S38)

Localizing the Hamiltonian in the x̂-direction via kx → iqx,

HMKC,⊥(iqx, ky) = [−(2t1 cosh qx + µ1)τz + 2i∆1 sinh qxτ
y]⊗ [(2t2 cos ky + µ2)σz + 2∆2 sin kyσ

y], (S39)

the null condition must be,

((2t1 cosh qx + µ1)2 − 4∆2
1 sinh2 qx)((2t2 cos ky + µ2)2 + 4∆2

2 sin2 ky) = 0,

=⇒ 2t1 cosh qx + µ1 = ±2∆1 sinh qx.
(S40)

As we show for the KC case, the edge states must be of the form, Ψ(j, ky) ∼ (e−qx,+j − e−qx,−j)eikyyΦ, where Φ is derived
from the null vectors of HMKC,⊥(iqx, ky). Denoting M2 = 2t2 cos ky + µ2 and R2 = 2∆2 sin ky , the two signs in Eqn. (S40)
imply,

Φ± =
1

2
√
M2(M2 ±

√
M2

2 +R2
2)

(
1
±1

)
⊗
(
M2 ±

√
M2

2 +R2
2

iR2

)
. (S41)

We obtain two solutions for e−qx from each of the two signs in Eqn. (S40),

+ : e−qx =
−µ1 ±

√
µ2

1 − 4(t21 −∆2
1)

2(t1 + ∆1)
, − : e−qx =

−µ1 ±
√
µ2

1 − 4(t21 −∆2
1)

2(t1 −∆1)
. (S42)

Similarly, localizing only along the y-direction, ky → iqy ,

HMKC,⊥(kx, iqy) = [−(2t1 cos kx + µ1)τz + 2∆1 sin kxτ
y]⊗ [(2t2 cosh qy + µ2)σz + 2i∆2 sinh qyσ

y], (S43)

the null condition stands as,

((2t1 cos kx + µ1)2 + 4∆2
1 sin2 kx)((2t2 cosh qy + µ2)2 − 4∆2

2 sinh2 qy) = 0,

=⇒ 2t2 cosh qy + µ2 = ±2∆2 sinh qy.
(S44)

Similar to the previous case, the edge states must be of the form, Ψ(kx, j) ∼ eikxx(e−qy,+j − e−qy,−j)Φ. Denoting M1 =
−(2t1 cos kx + µ1) and R1 = 2∆1 sin kx, for the two signs of Eqn. (S44) respectively, the null vector is given as,

Φ± =
1

2
√
M1(M1 ±

√
M2

1 +R2
1)

(
M1 ±

√
M2

1 +R2
1

iR1

)
⊗
(

1
∓1

)
. (S45)

We obtain two solutions for e−qy from each of the two signs in Eqn. (S44),

+ : e−qy =
−µ2 ±

√
µ2

2 − 4(t22 −∆2
2)

2(t2 + ∆2)
, − : e−qy =

−µ2 ±
√
µ2

2 − 4(t22 −∆2
2)

2(t2 −∆2)
. (S46)

Again, if we localize along both the x̂- and ŷ-directions, kx → iqx, ky → iqy ,

HMKC,⊥(iqx, iqy) = [−(2t1 cosh qx + µ1)τz + 2i∆1 sinh qxτ
y]⊗ [(2t2 cosh qy + µ2)σz + 2i∆2 sinh qyσ

y], (S47)

the null condition is realized as,

((2t1 cosh qx + µ1)2 − 4∆2
1 sinh2 qx)((2t2 cosh qy + µ2)2 − 4∆2

2 sinh2 qy) = 0. (S48)

This relation does not provide the conditions which occur simultaneously, for which we need to consider the component Bloch
Hamiltonians for the MKC perpendicular,

H⊥,1(k) =− [2µ2t1 cos kx + 2µ1t2 cos ky + 2(t1t2 + ∆1∆2) cos(kx + ky) + 2(t1t2 −∆1∆2) cos(kx − ky) + µ1µ2]σz

+ [2µ2∆1 sin kx + 2µ1∆2 sin ky + 2(t2∆1 + t1∆2) sin(kx + ky) + 2(t2∆1 − t1∆2) sin(kx − ky)]σy

= d1(k) · σ,
(S49)
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H⊥,2(k) =− [2µ2t1 cos kx + 2µ1t2 cos ky + 2(t1t2 −∆1∆2) cos(kx + ky) + 2(t1t2 + ∆1∆2) cos(kx − ky) + µ1µ2]σz

+ [2µ2∆1 sin kx − 2µ1∆2 sin ky + 2(t2∆1 − t1∆2) sin(kx + ky) + 2(t2∆1 + t1∆2) sin(kx − ky)]σy

= d2(k) · σ,
(S50)

Performing localization kx → iqx and ky → iqy then provides the following conditions,

[2µ2t1 cosh qx + 2µ1t2 cosh qy + 2(t1t2 + ∆1∆2) cosh(qx + qy) + 2(t1t2 −∆1∆2) cosh(qx − qy) + µ1µ2]

= ±[2µ2∆1 sinh qx + 2µ1∆2 sinh qy + 2(t2∆1 + t1∆2) sinh(qx + qy) + 2(t2∆1 − t1∆2) sinh(qx − qy)],

=⇒ [(2t1 cosh qx + µ1)± 2∆1 sinh qx][(2t2 cosh qy + µ2)± 2∆2 sinh qy] = 0,

(S51a)

[2µ2t1 cosh qx + 2µ1t2 cosh qy + 2(t1t2 −∆1∆2) cosh(qx + qy) + 2(t1t2 + ∆1∆2) cosh(qx − qy) + µ1µ2]

= ±[2µ2∆1 sinh qx − 2µ1∆2 sinh qy + 2(t2∆1 − t1∆2) sinh(qx + qy) + 2(t2∆1 + t1∆2) sinh(qx − qy)],

=⇒ [(2t1 cosh qx + µ1)± 2∆1 sinh qx][(2t2 cosh qy + µ2)∓ 2∆2 sinh qy] = 0,

(S51b)

Each condition for each component Hamiltonian gives rise to two solutions for e−qx and two for e−qy . The Bloch Hamiltonians
after localization are given as,

H⊥,1(iqx, iqy) =− [(2t1 cosh qx + µ1)(2t2 cosh qy + µ2) + 4∆1∆2 sinh qx sinh qy]σz

+ [2∆1 sinh qx(2t2 cosh qy + µ2) + 2∆2 sinh qy(2t1 cosh qx + µ1)]σy,
(S52a)

H⊥,2(iqx, iqy) =− [(2t1 cosh qx + µ1)(2t2 cosh qy + µ2)− 4∆1∆2 sinh qx sinh qy]σz

+ [2∆1 sinh qx(2t2 cosh qy + µ2)− 2∆2 sinh qy(2t1 cosh qx + µ1)]σy.
(S52b)

Similar to the parallel system, even here we must work with the basis for the full system, (c̃k,↑, cc̃k,↓, c
†
−k,↑, c

†
−k,↓)

T . The
eigenvectors for the MZMs then depend on whether the parents are topological or trivial, and which boundary conditions are
open, so that we have two cases,

• Case 1: If both the x and y boundary conditions are open, and both the parents are topological, let us have the following
condition fulfilled,

[(2t1 cosh qx + µ1)− 2∆1 sinh qx][(2t2 cosh qy + µ2)− 2∆2 sinh qy] = 0. (S53)

Here both the factors are zero since both the parents are topological, so that 2t1 cosh qx + µ1 = 2∆1 sinh qx and
2t2 cosh qy + µ2 = 2∆2 sinh qy . Substituting into Eqns. (S47a) and (S47b), we see that H⊥,2(iqx, iqy) = 0 and then the
MZM eigenvectors must be null vectors of the matrix, d1,z(iqx, iqy) 0 0 d1,z(iqx, iqy)

0 0 0 0
0 0 0 0

−d1,z(iqx, iqy) 0 0 −d1,z(iqx, iqy)

 . (S54)

The MZM eigenvectors are then given as { 1√
2
(|00〉 − |11〉), |01〉 , |10〉}.

• Case 2: Lets suppose that only the x boundary condition is open or only parent 1 is topological. One can show that we
must facilitate the following condition,

2t1 cosh qx + µ1 = 2∆1 sinh qx. (S55)

The MZM eigenvectors are then null vectors for the following matrix, d1,z(iqx, iqy/ky) 0 0 d1,z(iqx, iqy/ky)
0 d2,z(iqx, iqy/ky) d2,z(1qx, iqy/ky) 0
0 −d2,z(iqx, iqy/ky) −d2,z(1qx, iqy/ky) 0

−d1,z(iqx, iqy/ky) 0 0 −d1,z(iqx, iqy/ky)

 , (S56)

which are given as, { 1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)}.
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S2 Wilson loop

The Wilson loop26 is a unitary operator defined over a closed path as:

W = exp
[
i

∫
BZ

dk ·A(k)
]
. (S57)

HereA = Axk̂x +Ayk̂y +Az k̂z is the non-Abelian Berry connection:

Amn(k) = i 〈um(k)| ∇k |un(k)〉 , (S58)

a Hermitian operator as Amn = A∗nm in this convention. In the definition above |un(k)〉 are eigenvectors of a Bloch Hamil-
tonian satisfying H(k) |un(k)〉 = En(k) |un(k)〉 and 1 ≤ m,n ≤M , with M being the number of occupied bands.

The eigenvalues of the Wilson operator defined over a closed path, a Wilson loop, are Gauge independent and unitary. There-
fore they can be expressed as ei2πνi , with νi corresponding to the Wannier centers32,33.

To numerically compute the Wilson loop and avoid complications related to a lack of Gauge fixing, we compute the Wilson
loop over a discrete and closed path in momentum space divided into R+ 1 segments26:

Wmn = 〈um(k0)| lim
R→∞

1∏
i=R

P (ki) |un(k0)〉 , (S59)

where P (k) =
∑M
n′=1 |un′(k)〉 〈un′(k)| is the projector operator in the occupied subspace as 1 ≤ n,m ≤ M , with M the

number of occupied bands.

A Properties of the Wilson loop spectrum of a child Hamiltonian

We analytically derive here the numerical results presented in Fig. 2, where the Wannier centers of a child Hamiltonian corre-
spond to the addition of the parents’ Wannier centers of charge.

The child Hamiltonian for the parallel multiplicative chain is given by Eq. 7, repeated here for convenience,

Hc
MKC,||(k) =[−(2t1 cos k + µ1)τz + 2∆1 sin kτy]

⊗ [(2t2 cos k + µ2)σz + 2∆2 sin kσy].
(S60)

Given the tensor product construction of the Hamiltonian, its eigenvectors can be represented using the parents eigendecom-
position,

|u1(k)〉 = |v1+(k)〉 ⊗ |v2−(k)〉 ; Hc
MKC,||(k) |u1(k)〉 = ε

(1)
+ ε

(2)
− |u1(k)〉

|u2(k)〉 = |v1−(k)〉 ⊗ |v2+(k)〉 ; Hc
MKC,||(k) |u2(k)〉 = ε

(1)
− ε

(2)
+ |u2(k)〉

|u3(k)〉 = |v1−(k)〉 ⊗ |v2−(k)〉 ; Hc
MKC,||(k) |u3(k)〉 = ε

(1)
− ε

(2)
− |u3(k)〉

|u4(k)〉 = |v1+(k)〉 ⊗ |v2+(k)〉 ; Hc
MKC,||(k) |u4(k)〉 = ε

(1)
+ ε

(2)
+ |u4(k)〉

(S61)

where |v1±(k)〉, are the first parent’s eigenvectors with corresponding eigenvalues ε(1)
± , and |v2±(k)〉 are the eigenvectors of

the second parent, with corresponding eigenvalues ε(2)
± , after mapping t2 → −t2 and µ2 → −µ2. As ε(1)

± = ε
(2)
± , we obtain

doubly degenerate bands and identify |u1(k)〉 , |u2(k)〉 as the eigenvectors in the occupied subspace at half-filling. This results
in a 2× 2 matrix representation for the non-Abelian Berry connection,

A(k) = i

(
〈v1−(k)| ∂k |v1−(k)〉+ 〈v2+(k)| ∂k |v2+(k)〉 0

0 〈v1+(k)| ∂k |v1+(k)〉+ 〈v2−(k)| ∂k |v2−(k)〉

)
= i

(
〈v1−(k)| ∂k |v1−(k)〉 0

0 〈v1+(k)| ∂k |v1+(k)〉

)
+ i

(
〈v2+(k)| ∂k |v2+(k)〉 0

0 〈v2−(k)| ∂k |v2−(k)〉

)
=⇒ A = A1 +A2

(S62)



33

where A1 and A2 are not the Berry connections for each parent, as they are constructed from the full space and not just the
occupied subspace. Importantly, A1 and A2 are Hermitian and diagonal.

W = exp
[
i

∫
BZ

dkA(k)
]

= exp
[
i

∫
BZ

dkA1(k) + i

∫
BZ

dkA2(k)
]

= exp
[
i

∫
BZ

dkA1(k)
]

exp
[
i

∫
BZ

dkA2(k)
]

=⇒ W =W1W2

(S63)

In order to separate the exponential, we have used the fact that as A1 and A2 are diagonal matrices, they satisfy [A1, A2] = 0.
It is worth noting that the hermiticity of A1 and A2 makesW1 andW2 unitary operators with unitary eigenvalues. Moreover,
due to A1 and A2 being diagonal we concludeW1,W2, and consequentlyW , are diagonal too.

As stated earlier, the Wilson loopW is a unitary operator, and its ith eigenvalue can therefore be represented by exp(i2πνi).
Using Eq. S63, we establish a direct relation between the eigenvalues ofW and the ones ofW1 andW2. We first denote the ith

eigenvalue ofW1 andW2 as exp(i2πν
(1)
i ) and exp(i2πν

(2)
i ), respectively. Noting that ν(1)

1 = ν
(1)
2 and ν(2)

1 = ν
(2)
2 , exp(i2πνi)

may then be expressed as:

=⇒ exp(i2πνi) = exp(i2πν(1)) exp(i2πν(2))

=⇒ νi = ν(1) + ν(2) mod 1
(S64)

νi = ν(1) + ν(2) mod 1 (S65)

This result demonstrates that a child obtained from two topological parents (ν(1) = ν(2) = 0.5) is not distinguished from a
child of trivial parents (ν(1) = ν(2) = 0) by means of a Wilson loop spectrum, as νi = 0 for i ∈ {1, 2} in each case.

We can also examine another formulation for the Wilson loop, in terms of projectors onto occupied states, which is widely-
used for numerical calculations34–36, and arrive at the same conclusion.

Wmn = 〈um(k0)| lim
R→∞

1∏
i=R

P (ki) |un(k0)〉 , (S66)

At half-filling the projector operator corresponds to

P (ki) = |u1(k)〉 〈u1(k)|+ |u2(k)〉 〈u2(k)|
= |v1−(k)〉 〈v1−(k)| ⊗ |v2+(k)〉 〈v2+(k)|+ |v1+(k)〉 〈v1+(k)| ⊗ |v2−(k)〉 〈v2−(k)|

(S67)

Consequently, after a discretization of the BZ into R+ 1 segments such that the wavefunctions vary smoothly enough,

lim
R→∞

1∏
i=R

P (ki) = lim
R→∞

1∏
i=R

[
|v1−(k)〉 〈v1−(k)| ⊗ |v2+(k)〉 〈v2+(k)|+ |v1+(k)〉 〈v1+(k)| ⊗ |v2−(k)〉 〈v2−(k)|

]
= lim
R→∞

1∏
i=R

[
|v1−(k)〉 〈v1−(k)| ⊗ |v2+(k)〉 〈v2+(k)|

]
+

1∏
i=R

[
|v1+(k)〉 〈v1+(k)| ⊗ |v2−(k)〉 〈v2−(k)|

]
= lim
R→∞

1∏
i=R

|v1−(k)〉 〈v1−(k)| ⊗
1∏

i=R

|v2+(k)〉 〈v2+(k)|+
1∏

i=R

|v1+(k)〉 〈v1+(k)| ⊗
1∏

i=R

|v2−(k)〉 〈v2−(k)|

= lim
R→∞

1∏
i=R

P1−(ki)⊗
1∏

i=R

P2+(ki) +

1∏
i=R

P1+(ki)⊗
1∏

i=R

P2−(ki)

(S68)
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=⇒ Wmn = 〈um(k0)| lim
R→∞

1∏
i=R

P1−(ki)⊗
1∏

i=R

P2+(ki) |un(k0)〉+ 〈um(k0)| lim
R→∞

1∏
i=R

P1+(ki)⊗
1∏

i=R

P2−(ki) |un(k0)〉

(S69)
where

W11 = 〈v1+(k0)| lim
R→∞

1∏
i=R

P1+(ki) |v1+(k0)〉 〈v2−(k0)|
1∏

i=R

P2−(ki) |v2−(k0)〉

W11 = 〈v1−(k0)| lim
R→∞

1∏
i=R

P1−(ki) |v1−(k0)〉 〈v2+(k0)|
1∏

i=R

P2+(ki) |v2+(k0)〉

W21 =W12 = 0

(S70)

indicating thatWmn is represented by a diagonal matrix that can be written asW =W1W2, leading to the same conclusion.

One can similarly work out the Wannier spectra for the perpendicular MKC, given by the child Hamiltonian in Eqn. (32c),

Hc
MKC,⊥ = [−(2t1 cos kx + µ1)τz + 2∆1 sin kxτ

y]⊗ [(2t2 cos ky + µ2)σz + 2∆2 sin kyσ
y]. (S71)

Assuming a similar convention to the MKC parallel case described previously while replacing k by the vector k = (kx, ky), the
definition of A(k) indicates that one should have the following non-Abelian Berry connection vector,

A(k) =i

(
〈v1−(kx)| ∂kx |v1−(kx)〉 êx + 〈v2+(ky)| ∂ky |v2+(ky)〉 êy 0

0 〈v1+(kx)| ∂kx |v1+(kx)〉 êx + 〈v2−(ky)| ∂ky |v2−(ky)〉 êy

)
,

=i

(
〈v1−(kx)| ∂kx |v1−〉 êx 0

0 〈v1+(kx)| ∂kx |v1+〉 êx

)
+ i

(
〈v2+(ky)| ∂ky |v2+(ky)〉 êy 0

0 〈v2−(ky)| ∂ky |v2−(ky)〉 êy

)
,

=A1êx +A2êy.

(S72)

We first consider the formulation of the Wilson loop in terms of projectors onto occupied states as written in Eqn. (S66). At
half-filling, the projector onto occupied states for the perpendicular MKC is given as,

P (kx, ky) = |u1(kx, ky)〉 〈u1(kx, ky)|+ |u2(kx, ky)〉 〈u2(kx, ky)| ,
= |v1+(kx)〉 〈v1+(kx)| ⊗ |v2−(ky)〉 〈v2−(ky)|+ |v1−(kx)〉 〈v1−(kx)| ⊗ |v2+(ky)〉 〈v2+(ky)|

(S73)

One can compute the Wilson loop by integrating over either kx or ky . Let us assume that the BZ along kx direction is discretized
into R+ 1 segments for a given ky (assuming sufficient smoothness for the wavefunctions), the other case follows similarly,

lim
R→∞

1∏
i=R

P (kxi, ky) = lim
R→∞

1∏
i=R

[
|v1+(kxi)〉 〈v1+(kx1)| ⊗ |v2−(ky)〉 〈v2−(ky)|+ |v1−(kxi)〉 〈v1−(kxi)| ⊗ |v2+(ky)〉 〈v2+(ky)|

]
,

= lim
R→∞

[ 1∏
i=R

|v1+(kxi)〉 〈v1+(kxi)|
]
⊗ |v2−(ky)〉 〈v2−(ky)|

+

[ 1∏
i=R

|v1−(kxi)〉 〈v1−(kxi)|
]
⊗ |v2+(ky)〉 〈v2+(ky)| ,

= lim
R→∞

[ 1∏
i=R

P1+(kxi)

]
⊗ P2−(ky) + lim

R→∞

[ 1∏
i=R

P1−(kx)

]
⊗ P2+(ky).

(S74)

We get the Wilson loop matrix from the definition as follows,

Wmn(ky) = 〈um(kx0, ky)| lim
R→∞

[ 1∏
i=R

P1+(kxi)

]
⊗ P2−(ky) + lim

R→∞

[ 1∏
i=R

P1−(kx)

]
⊗ P2+(ky) |un(kx0, ky)〉 , (S75)
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so thatW11(ky) =W11 andW22(ky) =W22 are expressed as,

W11 = 〈v1+(kx0)| lim
R→∞

[ 1∏
i=R

P1+(kxi)

]
|v1+(kx0)〉 ,

W22 = 〈v1−(kx0)| lim
R→∞

[ 1∏
i=R

P1−(kxi)

]
|v1−(kx0)〉 ,

W12 =W21 = 0.

(S76)

The projector due to the eigenvectors of the second parent contract with the respective eigenvectors of the second parent in the
tensor product eigenvectors for the occupied basis to produce all four matrix elements Wmn(ky) = Wmn as ky independent
terms. This implies that the Wilson loop computed as an integral over a given momentum component is independent of the other
momentum component. Previously we mentioned that the Wilson loop eigenvalues are of the form ei2πνi due to the unitary
nature ofW . Here νi is the ith Wannier charge center. Let us refer to the Wannier charge spectra due to the Wilson loop along
kx as {νi(ky)}x. The ith Wannier charge center for the child Hamiltonian computed as an integral over kx for each value of
ky , νi(ky), is then equal to the Wannier charge center of the parent Hamiltonian that is calculated along a loop across kx (here
parent 1). We similarly find the ith Wannier charge center for the child Hamiltonian computed by integrating over ky for a given
kx, νi(kx), is equal to the Wannier charge center of the parent Hamiltonian that is calculated across a loop along ky (here parent
2), such that

νi(ky) =ν(1)mod 1,

νi(kx) =ν(2)mod 1,
(S77)

where ν(j) is the Wannier charge center due to the jth parent. Here the spectrum for both {νi(ky)} and {νi(kx)} are doubly
degenerate (up to mod 1) and equal to the respective parent Wannier charge center values.

S3 Calculation for Winding number in the MKC perpendicular case:
Consider the Bloch Hamiltonians for the component Hamiltonians in the MKC perpendicular case,

H⊥,1(k) =− ((µ1 + 2t1 cos kx)(µ2 + 2t2 cos ky)− 4∆1∆2 sin kx sin ky)σz

+ (2∆1 sin kx(µ2 + 2t2 cos ky) + 2∆2 sin ky(µ1 + 2t1 cos kx))σy = (0, d1,y, d1,z) · σ,
(S78a)

H⊥,2(k) =− ((µ1 + 2t1 cos kx)(µ2 + 2t2 cos ky) + 4∆1∆2 sin kx sin ky)σz

+ (2∆1 sin kx(µ2 + 2t2 cos ky)− 2∆2 sin ky(µ1 + 2t1 cos kx))σy = (0, d2,y, d2,z) · σ.
(S78b)

Since we want to plot the Bloch vectors (d1,y, d1,z) and (d2,y, d2,z) for varying kx at given ky and vice-versa in PBC on both
directions, let us find the locus of the curve for parameter kx at given ky . Denote, M2 = µ2 + 2t2 cos ky and R2 = 2∆2 sin ky .
Further denote, cos θ = M2√

M2
2 +R2

2

and sin θ = R2√
M2

2 +R2
2

. Then the locus of the parametric curve (d1,y, d1,z) is shown below,

(cos θd1,y + sin θd1,z)
2

4∆2
1(M2

2 +R2
2)

+
(cos θd1,z − sin θd1,y + µ1

√
M2

2 +R2
2)2

4t21(M2
2 +R2

2)
= 1. (S79)

Since we plot for t1 = ∆1 in the main text, implementing this condition we further get,

(cos θd1,y + sin θd1,z)
2 + (cos θd1,z − sin θd1,y + µ1

√
M2

2 +R2
2) = (2t1

√
M2

2 +R2
2)2. (S80)

It is easy to notice that this is a circle whose coordinates have been rotated by and angle θ and the center, and radii have been
modulated by the other parent by

√
M2

2 +R2
2, which however does not change the range of parameters where the system is

topological. For PBC with Ly sites in the y-direction, we obtain Ly number of such circles rotated at Ly angles, which is
essentially obtain in the main text.

S4 Dependence of energy with parameter µ near critical points:
We will consider two cases for the dispersion of the MKC parallel Hamiltonian, (i)µ1 = µ2 = µ, t1 = t2 = t and ∆1 = ∆2 = ∆
and (ii)µ1

t1
= −µ2

t2
= µ

t and ∆1 = ∆2 = ∆. For (i), the child dispersion is of the form,

E(k) = (2t cos k + µ)2 + 4∆2 sin2 k. (S81)
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Let µ = −2t+ δµ near the critical point at k = 0, so that we must have,

E(k = 0) ≈ (2t− 2t+ δµ)2, =⇒ E(k = 0) ∼ δµ2. (S82)

For (ii), the child dispersion is given as,

E(k) =

√
((2t cos k + µ)2 + 4∆2 sin2 k)((2t cos k − µ)2 + 4∆2 sin2 k),

=

√
(4t2 cos2 k + 4∆2 sin2 k + µ2)2 − 16t2µ2 cos2 k.

(S83)

Again, we let µ = −2t+ δµ near the critical point, k = 0, and we then get,

E(k = 0) ≈
√

(4t2 + (−2t+ δµ)2)2 − 16t2(−2t+ δµ)2,

≈ 4t2 − (−2t+ δµ)2 ≈ 4tδµ+ δµ2 =⇒ E(k = 0) ∼ δµ.
(S84)



37

S5 Robustness of MMZMs in the MKC parallel system:
Here, we show additional slab spectra for the MKC as a function of chemical potential µ1 for a variety of disorder terms, for
µ1 = −µ2 in Fig. S24, µ2 = 0 in Fig. S25, and µ2 = 3 in Fig. S26. Stability of MMZMs against on-site disorder terms
proportional to τ iσj correspond to presence of zero-energy modes over a finite interval in µ1.
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FIG. S24: For the case µ1 = −µ2 again the MMZMs for
the MKC parallel system are robust for all τ iσj disorders
except τxσx.
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FIG. S25: Checking for robustness for given µ2 = 0 and
varying across µ1 for all disorder τ iσj combinations.
The MMZM in the range (−2t1, 2t1) is always robust
except τxσx, while MZMs beyond that range succumb to
disorder for τ iσx.
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FIG. S26: Checking for robustness for given µ2 = 3 and
varying across µ1 for all disorder τ iσj combinations.
The MMZM in the range (−2t1, 2t1) is always robust
except τxσx, while MZMs beyond that range succumb to
disorder for τxσj .
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