
Programmable wave-based analog computing
machine: a metastructure that designs metastructures

Dimitrios C. Tzarouchis,1†‡ Brian Edwards,1† Nader Engheta1∗

1Department of Electrical and Systems Engineering,
School of Engineering and Applied Sciences,

University of Pennsylvania, Philadelphia, 19104, U.S.A.
†These authors contributed equally to this work.
‡Present address: Meta Materials Inc. (Europe),

Ap. Pavlou 10A, Marousi, 15123, Greece.
∗To whom correspondence should be addressed; e-mail: engheta@seas.upenn.edu

January 10, 2023

Abstract: The ability to perform mathematical computations using metastruc-

tures is an emergent paradigm that carries the potential of wave-based analog

computing to the realm of near-speed-of-light, low-loss, compact devices. We

theoretically introduce and experimentally verify the concept of a reconfig-

urable metastructure that performs analog complex mathematical computa-

tions using electromagnetic waves. Reconfigurable, RF-based components en-

dow our device with the ability to perform stationary and non-stationary iter-

ative algorithms. After demonstrating matrix inversion (stationary problem),

we use the machine to tackle two major non-stationary problems: root finding

with Newton’s method and inverse design (constrained optimization) via the

Lagrange multiplier method. The platform enables possible avenues for wave-

1

ar
X

iv
:2

30
1.

02
85

0v
1

 [
ph

ys
ic

s.
ap

p-
ph

]
 2

2
D

ec
 2

02
2

based, analog computations for general linear algebraic problems and beyond

in compact, ultrafast, and parallelized ways.

One-Sentence Summary: A reconfigurable wave-based analog computing metastructure that

can inverse-design a metastructure.

Calculators of various kinds have emerged by forging numerical algorithms with corre-

sponding technological platforms. While the algorithms describe the mathematical paths on

how solutions to problems can be found, the platforms are responsible for the transliteration of

this abstract path into measurable quantities. The algorithms, the platforms, and their fusion

define such systems’ features and limitations. Following the ever-growing demand for ultrafast,

compact, low/near-zero-power, and integrable cyber-physical devices for mathematical compu-

tations, it is organic that significant research efforts focus on making these numerical systems

as optimal and efficient as possible.

This quest led to the exploration and development of unconventional analog computing sys-

tems that exploit electromagnetic waves to deliver parallelized, ultrafast, compact, low-power

computations (1–4). The two main categories in this domain involve systems that utilize free-

space (scattering) elements (e.g. lenses (3)), and waveguides (e.g. photonic systems (5, 6)

and phased arrays (7)). Sufficient free space propagation can act as dense matrix multiplica-

tion (8). Realized with traditional optics, this results in bulky devices (3,9), while metasurfaces

can be more compact (10–12). However, in both there can be major bottlenecks regarding

photonic and electronic integration. Waveguiding systems offer more mature solutions for

integrable and reconfigurable devices, at the expense of much larger footprints compared to

their free-space counterparts. In all cases, their main challenge is reconfigurability since its

implementation requires some form of a-priori mathematical calculations. For instance, meta-

surfaces/complex media (13, 14) requires optimization, and photonic meshes require operator

2

decomposition (15–18).

In terms of their mathematical abilities, the above examples demonstrate wave-based analog

computing with functionalities such as integration/differentiation in space (19–22) and time

(23), matrix-vector multiplication (24), emulating equations through physical phenomena (25,

26), or acting as platforms for neural network functionalities (3,6,27,28). The intersection with

the metamaterial paradigm delivered a series of remarkable analog computing devices with

matrix multiplication (4, 19, 29) and ultimately equation solving (matrix inversion) capabilities

(30). In most of the cases the matrix computations (especially the matrix inversion (30)) were

performed through stationary algorithms (31), such as the Jacobi method, where the matrix

(operator/kernel) does not change with the iteration count.

The fundamental and far-reaching question we address here is whether a wave-based analog

metastructure can be reconfigurable simply and intuitively, without needing a-priori calcula-

tions. Most importantly, the resolution to this question endows one with the ability to implement

stationary and non-stationary algorithms. We propose a device based on an RF waveguide archi-

tecture with reconfigurable components. Regarding stationary problems, we use this device to

perform matrix inversion of a statistically large number of matrices. As for non-stationary prob-

lems, we demonstrate both root finding using Newton’s method and Inverse Design. All three

examples are only possible due to the reconfigurability of the device and hint at the possibility

of deeper explorations into the realm of advanced numerical algebra methods.

A conceptual representation of the main idea is pictorially summarized in Fig. 1 (A). The

main property of our proof-of-concept system distinctively different from all previous metas-

tructure approaches (i.e. (30)) is its reconfigurability; the metastructure has the ability to rapidly

take on different matrices (operators or kernels) K. To facilitate this, we employ a wave-based

direct complex matrix (DCM) architecture, which offers an intuitive and simple implementation

of any desired matrix (32). Using waves instead of currents and voltages, it is analogous to the

3

crossbar architecture used in electronic analog computing systems (33–35), and it can be seen as

a generalized phased array feed (7). In this device, a collection of n× n tunable phase shifting

and amplifying elements (which can also act as attenuating element) connect an input vector

of n complex amplitudes on an array of transmission lines to a similar output vector through

combiners. This architecture can be seen schematically in Fig. 1 (B) and its corresponding

experimental implementation in Fig. 1 (C).

The key component of the metadevice is the multiplier module (Fig. 1 (D)) so named be-

cause given an input signal characterized by its complex amplitude at 45MHz, Vin, it will render

a similar output Vout = zVin, where z is a complex multiplication factor. This module consists of

two basic components: (a) a voltage-controlled phase shifter with over 360 degrees of potential

phase rotation, and (b) a voltage-controlled amplifier with ≈47dB of dynamic range (-30dB to

+17dB). Through the use of an embedded microcontroller unit (MCU) in each multiplier, each

device can be controlled externally through a suitable communication network and a computer

(see supplementary material). While the design frequency is 45MHz, the module could be im-

plemented at RF (GHz) and photonic (THz) platforms platforms, following the same principle

of operation. The experimental DCM implementation consists of 25 multipliers to yield 5 × 5

complex matrices. The ingress and egress stages (32) are implemented with five 1-to-5 power

splitters (ingress stage) and five 5-to-1 signal combiners (egress stage). The multipliers are

clustered into five groups, one for each matrix row. In Fig. 1(B) we depict the planar schematic

of the DCM suitable for photonic implementation. However, for the RF implementation we

stacked and routed the components vertically (Fig. 1 (C)), making the device compact for our

particular wavelength and platform choice. Different stacking or integrated circuitry approaches

can potentially be used to further reduce its overall footprint.

The metadevice can be operated in one of two configurations with dramatically different

results. When the DCM is set in an open-loop configuration (Fig 1 (E) inset), it can be used

4

for rapidly calculating parallelized matrix-vector multiplication. However, a closed-loop con-

figuration can be created by connecting the outputs and the inputs with a feedback loop using

properly designed couplers (Fig 1 (F) inset). When the DCM is in a closed-loop configuration,

the metadevice can rapidly calculate parallelized matrix inversion (equation solving). This is a

unique feature of metadevices/metastructures (30, 32) that incorporate feedback loops.

First we investigate the stationary analysis capabilities of our metadevice. For the assess-

ment of the open and closed loop operation, we performed a series of randomized trials, one

instance of which is presented in Fig. 1 (E) and (F). For each trial, a random passive matrix

A ∈ C5×5 was chosen and applied to the metadevice in both its configurations. Each mea-

surement was performed by exciting each input port in turn with all other inputs appropriately

terminated and then observing the complex amplitudes on each of the output ports. For the

open-loop configuration, this corresponds to performing five matrix-vector multiplications, or

as A · I where each column of I is progressively applied (one column at a time) as separate

vectors. The closed-loop configuration was measured similarly, but in this case we are prob-

ing the steady-state of the metadevice which corresponds to (I − K)−1 · I = A−1 · I . While

this measurement technique fully characterizes both configurations, in practice dense complex

vectors will be input and read to achieve parallelized results.

The estimated relative error ||Aexact − Ameas||2/||Aexact||2 for both cases (Fig. 1 (E) and (F))

revealed an error about 0.001 and 0.005, respectively. Despite the component imperfections,

misalignments, measurement noise, and other stochastic errors, the measured results are in

excellent agreement with the theoretical values. The calibration procedure of the metadevice

and the statistical analysis of the full trial set (100 values) are presented in the Supplementary

Material.

A single multiplier module has a rise time of approximately 80 ns to achieve its desired com-

plex value. This value is approximately 4T assuming one-period duration of T = 1/45MHz ≈

5

22.2 ns. In the open loop configuration, the total response requires approximately 5T , including

signal delays in connections and splitters. The duration of the closed-loop case is affected by

the platform and the condition number of the inverted matrix (32), but in principle is in the

same order of magnitude. Possible photonic implementations may further reduce this time to

the picosecond range (28) and below (36).

We now apply the implemented metadevice to two characteristic non-stationary problems

that highlight its mathematical abilities: (i) root finding of a system of five equations with five

unknowns using Newton’s iterative technique and (ii) implementing an inverse-design problem

using the Lagrangian multiplier formalism for constrained optimization. Both cases require

that the kernel be reprogrammed in each iteration step. Note that our approach is not restricted

to these two problems; instead, we choose these to highlight the potential of the introduced

metadevice.

For the first case we construct a simple nonlinear toy problem and we apply Newton’s algo-

rithm (37) (Fig. 2 (A)) for finding one possible root. The vector problem statement reads

f(z) = [f1(z), f2(z), f3(z), f4(z), f5(z)]
T = 0 (1)

where f ∈ C5×1, z = [z1, z2, z3, z4, z5]
T ∈ C5×1, and 0 is the zero vector. We construct the

vector function to have the following polynomial form

f1(z) = (z1 − r1)(z2 − 4.2i)(z3 + 2)(z4 − 5i)(z5 − 3.5) (2)

f2(z) = (z1 − 3.9)(z2 − r2)(z3 + 2.5i)(z4 − 3.2i)(z5 − 4.2) (3)

f3(z) = (z1 + 5.2i)(z2 − 4)(z3 − r3)(z4 − 4i)(z5 − 7.1) (4)

f4(z) = (z1 − 3)(z2 − 7i)(z3 + 4)(z4 − r4)(z5 − 5i) (5)

f5(z) = (z1 − 5.2i)(z2 − 4)(z3 + 4.75i)(z4 − 8)(z5 − r5) (6)

where r = [r1, r2, r3, r4, r5]
T are the vertices of a regular pentagon with 1/4 radius (see Fig.

2(B)) and the other factors represent additional extraneous roots far from the starting point.

6

For the evaluation of Newton’s method we need to calculate the Jacobian matrix, i.e., Jij =

∂fi
∂zj

or

Jf (z) =




∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂z5

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂z5...

...
∂f5
∂z1

∂f5
∂z2

· · · ∂f5
∂z5


 (7)

therefore the root can be estimated by the following iterative process

zn+1 = zn − αJ−1f (zn)f(zn) (8)

where α = 0.2 is a relaxation constant (32).

In Fig. 2 (A), we can see the required algorithm steps that implement the iterative scheme

described by Eq. (8). Note that the Jacobian changes value in each iteration and it is required

that its inverse is calculated anew. This is traditionally a computationally expensive operation

which is accelerated through the use of our metadevice. The results are then used to update the

z. The method converges successfully after a few iterations.

A numerical version (using MATLAB) is compared with the experimental results illustrated

in Fig. 2 (B). We observe that for both MATLAB and the experiment, the estimation vector

converges close to the exact roots. Moreover, the estimated vector reaches a stationary point as

the iteration count increases. After 15 iterations the relative error is ||z − r||2/||r||2 ≈ 0.0023.

This is similar to the accuracy achieved for the stationary trials, thus representing the accuracy

floor of our system. A similar picture is also visible by comparing three specific iterations, as

illustrated in Fig. 2 (C), where a comparison of the full Jacobian is presented.

The experimental results do not precisely follow the paths indicated by the numerical im-

plementation realized using MATLAB. This can be explained by adding random noise to the

Jacobian on each iteration step. The added noiseN ∈ C5×5 is a random complex matrix that fol-

lows a normal distribution inside a disk with radius rN = 0.01λmax, where λmax is the maximum

eigenvalue of the Jacobian. The noise creates many possible paths, all of which successfully

7

converge and we observe that our measured results comfortably lie within these families of

curves. Note that some solution branches are more susceptible to this noise than others (e.g. r1

(blue) and r3 (red) curves in Fig. 2(B)) and this is due to the details of the toy problem solved.

Generally, the numerical accuracy of the device has a threshold that depends on both the

implementation and the measuring apparatus (vector network analyzer (VNA)). When higher

precision computations are required, this device can be a part of a mixed-precision computing

system. In these systems, part of the calculations are done in a fast, low-precision estimation

stage and then fed and further refined at a higher precision stage, similar to the in-memory

mixed-precision approaches in electronic platforms (38).

For the second example, we chose the case of an inverse design problem (Fig. 3 (A)). We

assume that our design consists of a collection of m = 5 two-dimensional (2D) scatterers with

circular cross section at fixed known locations r = [r1, ..., r5], each with an unknown bounded

permittivity ε = [ε1, ..., ε5] ∈ C5×1. The goal is to achieve a specific user-defined scattered field

measured at a series of n = 4 detection (objective) points, o = [o1, ..., o4]. Note that in our case

we assume a collection of cylindrical circular scatterers (2D) excited with a monochromatic

incident field of λw wavelength. The x-propagating incident field (kx) is a polarized in the

z-direction (TE wave - Ez) with the ejωt convention.

The scatterers are coupled, making this a nonlinear problem modeled using the Lippmann–

Schwinger (39) scheme, solved with a standard discrete dipole approximation (DDA) method-

ology (40). Each scatterer will respond to the local (self-excluded) electric field, which consists

of the known incident electric field, einc ∈ C5×1, and the scattered field from all other scatterers,

esca ∈ C5×1. The scatterers exhibits a complex polarization vector p = A(einc + esca) ∈ C5×1

where A is the normalized polarizabilitiy diagonal matrix, i.e., A = diag(ε − εbackground).

The field interaction between the scatterers are expressed via the Greens matrix G ∈ C5×5

(hollow symmetric matrix) such that esca = Gp. We may express the polarization vector

8

p = A(einc + Gp), which indicates the mutual dependence of p. Therefore, the polarization

vector can be calculated as p = (A−1 −G)−1einc. Finally, we use the four objective points o to

measure the scattered field vector emeas = Gprp ∈ C4×1 where Gpr ∈ C4×5 is the propagator

Greens function. The measured field is then compared to a (user-defined) objective eobj ∈ C4×1.

A typical constrained minimization problem (primal) can be written as (37)

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0
(9)

where f(x, y) are the objectives and g(x, y) are the constraints. For such problems the La-

grangian (dual) problem is expressed as

max
λ

min
x,y

L(x, y, λ) = f(x, y) + λg(x, y) (10)

Note that x and y may be subject to further requirements such as domains and bounds.

For our particular example we have that x = p, y = ε, and f(p, ε) = 1/2||Gprp− eobj||2 and

g(p, ε) = 1/2||(A(ε)−1−G)p− einc||2. In our formulation, the objective is the scattered field at

the observation points. The constraints comprise the self-consistency of the polarization vector

(physics). Also, the permittivity vector is subject to specific bounds, i.e., ε ∈ R and ε ∈ [1, 5].

Note that g(p, ε) is nonlinear with respect to p and ε and therefore requires a non-stationary

approach.

Following an initialization, our numerical evaluation of the above is implemented by a non-

stationary algorithm that requires repeated application of the following three steps. First, we

minimize with respect to ε by examining∇εL(p, ε, λ) = 0. At this step we project the resulting

permittivity vector to the desired domain and bounds. Second, we minimize with respect to p by

examining∇pL(p, ε, λ) = 0. At this stage the required stationary matrix inversion is performed

with our metadevice. Finally we maximize for λ by using ∇λL(p, ε, λ) = 0. These steps are

repeated until convergence is achieved, i.e.,

E = ||eobj − emeas||2/||eobj||2 < δ (11)

9

(for more information see SM).

As a numerical test case, the scatterers are assumed to be lossless with permittivity of ε =

[ε1, ε2, ε3, ε4, ε5] = [3.5, 1.5, 1.5, 3.5, 1.5]. The objective scattered field at the detection points

o, as depicted in (Fig. 3(A)), is eobj = [−0.0086 − 0.0078j, 0.0089 − 0.0132j,−0.0066 −

0.0120j, 0.0043− 0.0004j]. The values were extracted from the DDA method and verified with

a full-wave COMSOL simulation. Note that the Fig 3(A) depicts the complex (hue/saturation)

of the electric scattered field (Ez), i.e. the difference between the total field and the incident

excitation.

Figure 3 (B) depicts a set of four cases for the same algorithm. In the first case (black

line), the idealized (noiseless, no filtering) computer evaluation of the algorithm is given - we

observe that after only 20 iterations the error drops below 10−3. The experimental results are

presented in Fig. 3(B) as red dots. The measured results exhibit an optimal point (minimum

error) after 87 iterations, with an error of 0.00172. As an analog device, there is an additional

systematic/stochastic/experimental noise to the system which affects the fidelity of the matrix

inversion. We apply a simple averaging filtering scheme on the polarization estimation, i.e.,

pnew = (1 − αF)p + αFpprevious, with αF = 0.25, as a way to partially mitigate this noise.

The filter affects the convergence speed by increasing the iteration count but also significantly

improves the accuracy/fidelity of the matrix inversion, hence the metadevice’s performance.

This feature is illustrated in Fig. 3 (B), where the retrieved experimental results are compared

to the idealized computer evaluation with the applied filter (blue line). We also performed a

series of 100 randomized cases of the idealized filtered computer evaluation with added noise

to the estimated/measured polarization vector (faint blue lines in Fig. 3(B)). The noise profile

is similar to the one used in the first example (Newton’s method). The measured results are

well contained within these error bounds. Note that iteration count is not equivalent of time.

For a traditional computer evaluation, each iteration (with its required matrix-inversion) could

10

ultimately be slower than the convergence time of an optimized hardware implementation of

the metadevice.

Due to systematic/measurement noise, the error begins to grow after the experimental accu-

racy floor is obtained - an indication that a termination criterion could be applied at this point.

This result also agrees with the maximum accuracy we obtained in the previous non-stationary

example. More sophisticated error-correcting and filtering schemes can possibly push the accu-

racy below this threshold. For instance, αF could be adaptively tuned during the non-stationary

evaluation to realize a mixed-precision computing system.

At the minimum error point (iteration 87), the extracted permittivity estimation is illustrated

in (Fig. 3(C)). Notice that the values are very close to the numerical test case objectives and

permittivities. Finally, Fig. 3 (D) illustrates the path of the scattering vector, emeas, for these 87

iterations. Similar to the above example, the faint paths represent the added noise effects to the

numerical evaluation.

For both presented non-stationary examples, it is evident that our metadevice can act ei-

ther as an ultrafast analog computing machine and mathematics calculator with waves, or in

a broader sense as an electromagnetic emulator for inverse design (41). It can be used for a

plethora of realistic problems where the linear response of a system (i.e. matrix-vector mul-

tiplication) or the solution of a system of equations (stationary problems, matrix inversion)

is required. Moreover, the intuitive reconfigurability of this metadevice also enables the per-

formance of constrained optimization tasks, like the ones required in non-stationary problems

such as inverse design, where the desired response of complex media requires intensive opti-

mization (42). In short, this metastructure can design metastructures. Finally, an adaptation

of the above proof-of-concept metadevice in RF-IC, photonic, or hybrid platforms can make it

an excellent candidate for on-the-fly or computation-through-propagation ultrafast, parallelized

calculations.

11

References

1. H. J. Caulfield, S. Dolev, Nat. Photonics 4, 261 (2010).

2. D. R. Solli, B. Jalali, Nat. Photonics 9, 704 (2015).

3. G. Wetzstein, et al., Nature 588, 39 (2020).

4. F. Zangeneh-Nejad, D. L. Sounas, A. Alù, R. Fleury, Nat. Rev. Mater. 6, 207 (2021).

5. J. Feldmann, et al., Nature 589, 52 (2021).

6. U. Teğin, M. Yıldırım, I. Oğuz, C. Moser, D. Psaltis, Nat. Comput. Sci. 1, 542 (2021).

7. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, Nature 493, 195 (2013).

8. J. W. Goodman, Introduction to Fourier optics (Roberts & Co.,, Englewood, Colorado,

2005), third edition edn.

9. I. M. Vellekoop, A. P. Mosk, Opt. Lett. 32, 2309 (2007).

10. A. M. Shaltout, V. M. Shalaev, M. L. Brongersma, Science 364 (2019).

11. M. F. Imani, et al., IEEE Trans. Antennas Propag. 68, 1860 (2020).

12. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith, Nature 560, 565 (2018).

13. M. W. Matthès, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff, Optica 6, 465 (2019).

14. S. Venkatesh, X. Lu, H. Saeidi, K. Sengupta, IEEE Antennas Propag. Mag. pp. 2–15 (2022).

15. M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994).

16. D. A. B. Miller, Photonics Res. 1, 1 (2013).

12

17. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walmsley, Optica

3, 1460 (2016).

18. D. Marpaung, J. Yao, J. Capmany, Nat. Photonics 13, 80 (2019).

19. A. Pors, M. G. Nielsen, S. I. Bozhevolnyi, Nano Lett. 15, 791 (2015).

20. T. Zhu, et al., Nat. Commun. 8, 1 (2017).

21. A. Cordaro, et al., Nano Lett. 19, 8418 (2019).

22. Y. Zhou, H. Zheng, I. I. Kravchenko, J. Valentine, Nat. Photonics 14, 316 (2020).

23. F. Zangeneh-Nejad, R. Fleury, Nat. Commun. 10, 2058 (2019).

24. A. Macho-Ortiz, D. Pérez-López, J. Capmany, Laser Photon. Rev. n/a, 2000473 (2021).

25. T. W. Hughes, I. A. D. Williamson, M. Minkov, S. Fan, Sci. Adv. 5, eaay6946 (2019).

26. S. K. Vadlamani, T. P. Xiao, E. Yablonovitch, Proc. Natl. Acad. Sci. U. S. A. 117, 26639

(2020).

27. X. Lin, et al., Science 361, 1004 (2018).

28. F. Ashtiani, A. J. Geers, F. Aflatouni, Nature 606 (2022).

29. A. Silva, et al., Science 343, 160 LP (2014).

30. N. Mohammadi Estakhri, B. Edwards, N. Engheta, Science 363, 1333 LP (2019).

31. R. Barrett, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative

Methods (Society for Industrial and Applied Mathematics, 1994).

32. D. C. Tzarouchis, M. J. Mencagli, B. Edwards, N. Engheta, Light Sci. Appl. 11, 263 (2022).

13

33. D. Ielmini, H.-S. P. Wong, Nat. Electron. 1, 333 (2018).

34. M. A. Zidan, et al., Nat. Electron. 1, 411 (2018).

35. Z. Sun, et al., Proc. Natl. Acad. Sci. 116, 4123 LP (2019).

36. Q. Guo, et al., Nat. Photonics 16, 625 (2022).

37. D. P. Bertsekas, Nonlinear programming (Athena Scientific,, Belmont, Mass. :, 1995).

38. M. Le Gallo, et al., Nat. Electron. 1, 246 (2018).

39. T.-A. Pham, et al., IEEE Trans. Comput. Imaging 6, 727 (2020).

40. M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007).

41. S. Molesky, et al., Nat. Photonics 12, 659 (2018).

42. M. Horodynski, M. Kühmayer, C. Ferise, S. Rotter, M. Davy, Nature 607, 281 (2022).

Acknowledgments

The authors would like to thank Mario Junior Mencagli for useful discussions and preliminary

experimental survey on the subject. D.C.T acknowledges Luiz F. O. Chamon and Juan Cerviño

for the useful inputs and discussions regarding the constrained optimization algorithm.

Funding : This work is supported in part by the Air Force Office of Scientific Research

(AFOSR) Multidisciplinary University Research Initiative (MURI) grant numbers FA9550-17-

1-0002 and FA9550-21-1-0312.

Competing Interests : N.E. is a strategic scientific advisor/consultant to Meta Materials Inc.

The authors have no competing interest.

14

Authors Contributions: N.E. conceived the idea for the reconfigurable device that solve

equations, acquired the funds, and supervised the project. D.C.T developed further the rele-

vant theories and analyses of the project. B.E. designed and programmed the device and the

device’s calibration routine. D.C.T. and B.E. assembled, built, tested the components, and per-

formed simulations and experimental measurements. D.C.T and B.E. developed the numerical

examples. All the authors discussed the results. D.C.T wrote the first draft of the manuscript

and D.C.T, B.E. and N.E. discussed, developed, and edited the final version of the manuscript.

Data and materials availability: All data needed to evaluate the conclusions in the paper are

present in the main text and the supplementary materials.

Supplementary Materials

Materials and Methods

Supplementary Text

Figs. S1 to S9

References (1-15)

15

Figure 1: A reconfigurable wave-based analog computing metastructure: (A) A conceptual
representation that describes the main objective, i.e., a reconfigurable device that can provide
us with repeated matrix inversions of arbitrary matrices in order to achieve stationary and non-
stationary algorithms. The device can implement any given kernel K = I − A and give the
(I −K)−1 = A−1. (B) The central component of the design consists of a direct complex
matrix (DCM) (32) architecture of 5x5 elements. (C) The experimental realization of this design
for the 45 MHz operating frequency. (D) The essential element of the DCM is the multiplier
module, consisting of both a phase-shifting and an amplification part (which can also function
as attenuation part); controlled with an onboard microntroller unit. Finally, (E) and (F) depict
the performance of the DCM machine in the open-loop (matrix-vector multiplication) and the
closed-loop (matrix inversion) setups. In both we compare the experimentally obtained matrix
to one computed conventionally to see good agreement.

16

Figure 2: Experimental verification of Newton’s root finding method with the proposed
metadevice: (A) The algorithmic steps implemented in Newton’s root finding method. A fixed
kernel is programmed into the DCM machine in each iteration. The measured results are used
for calculating the next steps of the algorithm. (B) A comparison between the experimental
results and a numerical implementation of the algorithm. The faint solid lines are cases where
additional stochastic noise has been added to the system. We observe that the experimental
trajectory is well contained within these simulated noisy paths. (C) A comparison between
the numerical (left column) and measured (right column) evaluation of the inverse Jacobian at
different iterations.

17

Figure 3: A metastructure that designs a metastructure: Numerical and experimental
results: (A) Schematic of the numerical test case. A set of five two-dimensional (2D) scatterers
with unknown permittivities, to be determined via our analog metadevice, ε = [ε1, ..., ε5] subject
to a plane wave excitation. Pictured is the complex-valued scattered field. The scattered fields
at the observations points [o1, ..., o4] are used as the benchmark values of this problem in which
the objective fields are shown as the color in each torus. The algorithm tunes each permittivity
in order to match the scattered field (center of each torus) to the objective fields. (B) The relative
error E for the algorithm computed both numerically, and experimentally using the metadevice,
under various noise and filtering scenarios. The experimental device gives a minimum relative
error of 0.00172 at 87 iterations. (C) Objective permittivities (black rings) compared to those
computed numerically (blue cross) and experimentally via the metadevice (yellow rhombus)
using the described algorithm at iteration 87. (D) Evolution of scattered field vector up to
iteration 87 in comparison to objective fields for experiment and simulation under various noise
and filtering scenarios.

18

Supporting Material

Dimitrios C. Tzarouchis,1†‡ Brian Edwards,1† Nader Engheta1∗

1Department of Electrical and Systems Engineering,
School of Engineering and Applied Sciences,

University of Pennsylvania, Philadelphia, 19104, U.S.A.
†These authors contributed equally to this work.
‡Present address: Meta Materials Inc. (Europe),

Ap. Pavlou 10A, Marousi, 15123, Greece.
∗To whom correspondence should be addressed; e-mail: engheta@seas.upenn.edu

January 10, 2023

1 Details for the root finding algorithm
In the following the lowercase quantities are vectors, the capitalized ones are matrices while Greek
letters denote scalars - the subscripts follow a logical notation. The problem statement for the root
finding procedure is

f(z) = 0 (1)

find z ∈ Cm×1 that satisfies the above equation (roots) of f ∈ Cm×1. The above problem is solved
using Newton’s method for finding the root of a vector polynomial function [1]. For example we have

f(z) =




f1(z1, z2, z3, z4, z5)
f2(z1, z2, z3, z4, z5)
f3(z1, z2, z3, z4, z5)
f4(z1, z2, z3, z4, z5)
f5(z1, z2, z3, z4, z5)




(2)

with z1·5 ∈ C or (equivalently)

f1(z) = (z1 − r1)(z2 − 4.2i)(z3 + 2)(z4 − 5i)(z5 − 3.5) (3)
f2(z) = (z1 − 3.9)(z2 − r2)(z3 + 2.5i)(z4 − 3.2i)(z5 − 4.2) (4)
f3(z) = (z1 + 5.2i)(z2 − 4)(z3 − r3)(z4 − 4i)(z5 − 7.1) (5)
f4(z) = (z1 − 3)(z2 − 7i)(z3 + 4)(z4 − r4)(z5 − 5i) (6)
f5(z) = (z1 − 5.2i)(z2 − 4)(z3 + 4.75i)(z4 − 8)(z5 − r4) (7)

where
r =

1

4
(s1 + c1i,−s1 + c1i,−s2 − c2i, s2 − c2i, 1i)T (8)

with c1 = cos(2π/5), c2 = cos(π/5), s1 = sin(2π/5), and s2 = sin(4π/5). The point corresponds to
the vertices of a regular pentagon. For the evaluation of Newton’s method we need to calculate the
Jacobian matrix, i.e., Jij = ∂fi

∂xj
(here i and j are indexes) or

Jf (z) =




∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂z5

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂z5

...
...

. . .
...

∂f5
∂z1

∂f5
∂z2

· · · ∂f5
∂z5




(9)

1

ar
X

iv
:2

30
1.

02
85

0v
1

 [
ph

ys
ic

s.
ap

p-
ph

]
 2

2
D

ec
 2

02
2

therefore the root can be found as

zn+1 = zn − αJ−1f (zn)f(zn) (10)

where α is a relaxation constant. Here we used α = 0.2. In terms of an algorithm, we have the
following routine

Algorithm 1 Root finding with Newton’s method
1: Initial guess for z1
2: for n = 1, . . . ,m do
3: Jf (zn)
4: αλ = 2

λmin+λmax
. Scaling factor: λmim/max are the min/max eigenvalues of Jf (zn)

5: Kn = I − αλJf (zn) . Kernel that is fed to DCM machine
6: dn = J−1f (zn)f(zn) . Compute matrix inverse with the DCM machine
7: zn+1 = zn − αdn
8: end for

2 Details on the inverse design algorithm
In this section we present the details for the inverse design algorithm implemented in text. The al-
gorithm consist of a part of the DDA methodology for the quantification of the problem and an its
adaptation to a Lagrange formalism for solving the require inverse scattering problem, the determina-
tion of the permittivity of the scatterers. Note that both methods are arguably the simplest methods to
follow, since they offer an intuitive understanding on the formulated problem and the coorresponding
inverse-design (constraints optimization) problem.

2.1 Notes on the DDA method
In this section we present a few details regarding the DDA method used in the main text. The details
can be found also in [2, 3, 4, 5]. A similar methodological approach was also used in [6].

We start by assuming that each 2D scatterer (assuming a point in the x-y plane) acquires its
z-oriented dipole moment due to the local electric field, i.e.,

p = αeloc (11)

where the eloc is the vector of local z-polarized electric fields at the center of each point and α is the
polarizability that depends on the shape and the material composition of each 2D scatterer. The local
field is the sum of the incident field and the secondary fields generated from all the other dipoles such
that:

eloc = einc +Gp (12)

where einc is the incident field vector, p is the induced polarization vector and G is the 2D Green’s
function. In our case we consider a two-dimensional (2D) problem with a transverse electric (TE)
excitation (the field is normal (z-direction) to the x-y plane). Therefore the corresponding Green’s
function reads

G = G(ri − rk) = −j
k20

4πε0
H

(2)
0 (k0|ri − rk|) (13)

where H(2)
0 (k0|ri − rk|) is the Hankel function of the second type (with the time harmonic convention

e+jωt) and 0-th order and k0 = ω0
√
µ0ε0 is the free-space wavenumber [7]. The G is a CN×N Toeplitz

matrix with zero diagonal entries since the |ri − rk| is treated as in (assuming a uniformly spaced
discrete grid) [2, 3, 4, 5].

By combining Eqs. (11) and (12) we obtain the following expression, arranged using the matrix
formulation as follows

p =
(
A−1 −G

)−1
einc (14)

2

where the lowercase quantities p = [p1, p2, ..., pN]T , A = diag(α), α = Acellε0[ε1 − 1, ε2 − 1, ..., εN − 1]
(Acell is the cross-sectional area of a cylinders) and einc = [einc

1 , einc
2 , ..., einc

N]T are CN×1 vectors, diag(·)
is the diagonal matrix operator.

Finally, the scattered field observed at M specified discrete detection points (in general M 6= N)
is given by:

esca = Gpr p = Gpr
(
diag(α−1)−G

)−1
einc (15)

where Gpr ∈ CM×N is the “propagator" Green’s function matrix. This propagator function connects
the induced dipole polarization vectors of the scatterers with the desired detection (or objective) points.
The above matrix representation of the scattering problem allow us to have a clear inspection of the
unknown quantities. These quantities are the ones that will be formulated as a Lagrange multiplier
algorithm for the solution of the desired constrained optimization problem. We note here that, as seen
in Eq. (15), the forward scattering problem requires a matrix inversion to evaluate the polarization
density vectors induced in each scattering cell, as we have discussed in our previous work [6] in which
we utilized the same DDA approach for the evaluation Eq. (14) and the matrix-vector operation of
Eq. (15) for different excitation and for different scattering scenarios.

2.2 Notes on the Lagrange multiplier algorithm
For this, we utilize the DDA algorithm (where we closely follow the contrast source inversion method![8])
and the Lagrange multiplier method for applying the constraints and finding the optimal solution.
First, in terms of the defined problem, we have that the polarization is connected with the following
expressions

p = A(einc +Gp) (16)

and
esca = Gprp (17)

A typical constrained minimization problem (primal) can be written as [9, 1, 10]

min
x,y
y∈R

0≤y≤1

f(x, y)

s.t. g(x, y) ≤ 0

(18)

where f(x, y) is the objective and g(x, y) are the constraints also subject to further requirements of
the problem such as y ∈ R and 0 ≥ y ≥ 1 For such problems the dual Lagrangian problem is expressed
as

max
λ

min
x,y
y∈R

0≤y≤1

L(x, y, λ) = f(x, y) + λg(x, y)
(19)

which is essentially a dual unconstrained problem (since all the constraints are encapsulated to the λ
term). It is worth noting that the Lagrange multiplier should be positive real, λ ∈ R+. Finding an
approximate solution to the primal inverse scattering problem is therefore reduced to finding a solution
to the above dual problem. Notice that the Lagrange multiplier can be applied to either f(x, y) or
g(x, y) without affecting the outcome of the overall process.

The algorithm for solving the above dual problem is the following:

• Step 0: initial x0 and λ0

• Step 1: minimize yn, i.e., via ∇yL(xn−1, yn, λn−1) = 0

• Step 2: project yn into y ∈ R and 0 ≤ y ≤ 1

• Step 3: minimize xn, i.e., ∇xL(x, yn, λn−1) = 0

• Step 4: maximize λn, i.e., ∇λL(xn, yn, λ) = 0

• Step 5: Repeat steps 1-4 until the error is minimized

3

For our particular example we have that x = p, y = A = diag(ε − 1), and f(p,A) = 1/2||(A−1 −
G)p− einc||2 and g(p) = 1/2||Gprp− eobj||2, and Lagrange function reads

L(p,A, λ) = ||(A−1 −G)p−Aeinc||2 + λ||Gpp− eobj ||2 (20)

The corresponding algorithmic steps are:

• Step 0: initial p0 and λ0

• Step 1: minimize An via ∇AL(pn−1, A, λn−1) = 0

– We have that∇AL(pn−1, A, λn−1) = ∇f(p,A)∗||(A−1−G)p−einc|| (∗ is complex conjugate).
This expression lead to An = p/(Gp− einc). In practice this is a simple calculation since A
is a diagonal matrix, i.e., A = diag(ε− 1).

• Step 2: project An into An ∈ R and 0 ≤ A ≤ 4 (for the range ε ∈ [1, 5])

– this is the point where essentially the required properties and bound of the permittivity can
be implemented. These bounds or constrains can be general

– the above projection is rather a simple projection that does not guarantee always the min-
imum within the projection domain. A more accurate projection would be of the form
An = proj[An−1 − η∇A||(A−1n−1 −G)pn−1 − einc||2].

• Step 3: minimize pn, i.e., ∇pL(p,An, λn−1) = 0 (DCM metadevice).

– pn = K−1n enL

– Kn = (A−1n −G)∗(A−1n −G) + λn−1G∗prGpr

– eLn = λn−1G∗preobj + (A−1n −G)∗einc

– The matrix inversion pn is performed with our DCM metadevice

– Due to noise error a simple weighted average filtering is applied, i.e., pn = (1− αF)pn−1 +
αF pn with αF = 0.25

• Step 4: maximize λn, i.e., ∇λL(An, pn, λ) = 0

– This maximization can be calculated by a simple gradient descent, i.e., λn = λn−1 +
η (∇λL(pn, An, λ)− δ) or λn = λn−1 + η

(
||Gppn − eobj ||2 − δ

)

– Notice that this is an gradient ascent since we assume η > 0, therefore we maximize the
problem.

• Step 5: Repeat steps 1-4 until the error is minimized. In our case we used the following error

– ||esca − eobj||2/||eobj||2

Note that the quantities η and δ are the step and minimal error quantities that are user determined.
The whole process stop either when λ reaches a plateau, or when the required error criterion is met.
The optimization goal was set as ||esca−eobj||2

||eobj||2 < δ, where esca = Gppm with pm = (A−1m − G)−1einc

being the final m-th evaluation of the iteration.
Notice that our approach has several similarities with the contrast source inversion method and

other similar inverse scattering methods [11, 8, 12, 13].
Undoubtedly this approach is only one of the available methods for approximating the inverse design

problem. This is rather an attempt to showcase the ability of our device for performing inverse design
with desired objectives and constraints by exposing the crucial parts of the algorithm, such as the
matrix inversions. This part is usually implicit within commercially available FDTD or FEM software.
Hence here we developed our own methodology so we can have deeper inspection to quantities. As
a remark, the field of inverse design and inverse scattering is a very rich field with a plethora of
methodologies that try to address similar problems [14].

4

Figure S1: Photograph of the experimental setup with the corresponding components.

3 RF Design, PCB, Device Implementation
A photograph of the experimental setup is shown in Fig S1, where all parts are designated accordingly.

3.1 Measurement
Measurements were performed using an ENA-5071C two port VNA. In order to avoid the saturation
of the amplifiers (multiplier module) the VNA power level was set to be −20dBm for the open loop
configuration and −10dBm for the closed loop configuration. The VNA was set to have an IF band-
width of 10 kHz. The single frequency measurements (1601 point) at 45MHz with averaging applied
after obtaining the measured signal from VNA.

3.2 Multiplier
The schematic of the multiplier is depicted in Fig. S2. The multiplier was designed to perform multi-
plication on the incoming complex amplitude such that a new complex amplitude is rendered at the
output. In other words, the output is Vout = zVin. This involves changing both the amplitude and
phase of the incoming signal. Phase change was performed using a pair of serially connected Minicir-
cuit JSPHS-51+ Phase Shifters (PS). Each phase shifter provides slightly over 180 degrees of rotation.
The amplitude change was performed using the Analog Devices AD603ARZ Variable Gain Amplifier
(VGA). The Multiplier design contain the appropriate loads such that both the input and output of
the device externally appears as 50 Ohm.

Both of these devices are controlled using analog voltages with ranges of [−0.5V,+0.5V] and
[0V, 12V] for the VGA and PS, respectively. In order to create a common control mechanism, op-
amp level shifting circuits were used to put these on a common [0V, 5V] interface. The Multiplier

5

Figure S2: Schematics for the multiplier: The PCB layout design (top figure), and the corresponding
subcircuit (pictures from Altium®). Bottom figure represent the AWR Microwave Office® schematic
with the realistic data

board has a connection that allows for a daughter board. The daughter board is supplied with 0V and
+5V and is responsible for returning two control voltages in the range of [0V, 5V].

This simple interface allows for a number of possible control schematics. At its most simple scenario,
the control board can consist of a pair of potentiometers. However, we will present another control
board which utilizes a microcontroller to receive UART input and render the two analog voltages.

The VGA’s dynamic range could be shifted using an external resistor. This was set so that the
Multipliers’s range (including load elements, PS losses, etc) was [-30dB – +17dB]. The multiplier
effectively saturates if the input is greater than -10dBm. Therefore for all measurements the reference
input signal that was used was -30dBm for avoiding any saturation effects.

It should be stated that the VGA imparts a varying phase change and the PS pair imparts an
amplitude change. This will be addressed later.

3.3 1-5 splitter (5-1 combiner)
The schematic of the 1-5 splitter is depicted in Fig. S3. An ideal passive n-way splitter is comprised of
a summation port and n feed ports. The scattering parameters are expected to be reciprocal such that
for the ith feed port |SSi|2 = |SiS|2 = 1/n and all other elements within the matrix are zero. Due to
losses, a real splitter will fall short of this precise definition. Our splitter was based on the Minicircuits
AD5PS-1+, which yielded good performance at 45MHz with approximately -7.2dB split ratio for all
outputs.Note that 1/5 ≈ −7.0dB.

6

Figure S3: Schematic and layout for 1-5 splitter based on the Minicircuits AD5PS-1+ (pictures from
Altium®)

3.4 Feedback coupler

Figure S4: Schematic and layout for the feedback coupler (pictures from Altium®)).

The schematic of the feedback coupler is depicted in Fig. S4 The Feedback coupler must perform
several tasks.

• Provide near unity feedback

• Introduce the input signal

• Sample the output signal

Therefore, the feedback coupler is a four-port device wherein the primary path has near unity trans-
mission such that the feedback is strong.

3.5 Switches
In order to replicate having a 10 port VNA, we utilized two demo boards (EV1HMC253AQS24), which
acted as RF SP8T RF switches, i.e., an analog multiplexer. For one SP8T, we utilized five of these
ports for illuminating the bank of five couplers. The other SP8T was used to receive signals from the
couplers. The remaining three ports on each were used for system sanity checks. Note that the stock
high-pass 100pF capacitors on these boards were switched to 470pF for better transmission at 45MHz.

7

While the off ports were nominally matched to 50 Ohm from DC-2.5GHz, there was significant
reflections. Deeper inspection of the datasheet indicated that the "off" ports were only matched
above 500MHz. Measurements indicated that the off ports were approximately "open" at the design
frequency and therefore reflections from the off ports could be significantly reduced with parallel 50Ohm
terminations. However, this was not done as this it would have reduced power within the system on
the "on" port. Rather, we note that any polluting signal from these "open" off ports will have crossed
through the coupler twice. Due to the small coupling coefficient of the feedback coupler, these values
will have become very small.

The VNA was calibrated to the end of the switch ports. Measurements indicated that transmission
through each of the switch ports was similar enough as to not warrant individual calibrations on each.

Each of the switches was actuated by three digital inputs to address the 23 = 8 ports on each
switch. These digital signals were created by a micro-controller which was programmed to respond to
UART commands from an attached computer. Code is available at github.com/brianedw/RFMath/
Arduino/mcu_control_V2/mcu_control_V2.ino.

3.6 Micro Controller Unit (MCU)
The two analog input control voltages for each Multiplier was created by an MCU Control Board,
which attached directly to the Multiplier. The heart of this board is a Metro-Mini MCU.

Each control line was connected to both an 8-bit PWM DAC pin (labeled “fast”) and a 10-bit
PWM DAC pin (labeled “slow”). While both pins connected to the control line through a high-pass
filter, the fast DAC utilized a lower capacitance and resistance than that of the slow DAC. During a
set operation, both pins would drive to their appropriate values, during this time, the behavior of the
collective output would be dominated by the fast DAC and rapidly converge, but exhibit large ripples.
After 20ms, the fast PWM DAC pin would switch to a high-impedance state, leaving the voltage to
settle in the remaining difference utilizing the slow DAC alone. The high-pass filter was designed to
maintain accuracy of 10bit. Since the Metro-Mini is a 5V compliant device, the generated voltages
nicely matched to the expected inputs of the Multiplier.

Each MCU board had two 3-pin UART input connectors. These were shorted such that one could
be used to receive a command from "upstream" while the other would effectively passively repeat the
signal. Additionally, each MCU board had two 3-pin UART output connector which were similarly
shorted together, allowing it to transmit the same message to two devices. Each MCU was programmed
with a unique identification number. Upon receiving a UART command, it would either act on that
command or repeat the command on its output UART pins for downstream devices. This input/output
configuration created a lot of possibilities for control topologies. However, in practice we found that
we could use a single MCU board (no multiplier attached), as a bridge between the computer and the
array of MCU Boards and that this array could all be connected in parallel such that the output of
the bridge was effectively driving 25 inputs. Note that the required time complexity is of the order
of O(n2). Possibly this complexity can be further reduced by implementing different connectivity
schemes than the simple serial one that we used. Code is available at github.com/brianedw/RFMath/
Arduino/mcu_control_V2/mcu_control_V2.ino.

4 Tuning/Calibration
As stated in 3.2, the VGA has a minor effect on the phase and the PS has a minor effect on the
amplitude. In other words, the phase and amplitude responses are coupled. Additionally, other
systematic errors are present such as nonidealities in the level shifting circuits due to resistor tolerances.
When connected in a network that includes RF jumper cables of varying length, there will also be phase
shifts that naturally arise. In short, the relationship between the control voltages and the response
of the Multiplier in situ, are repeatable, but difficult to predict without developing a more complex
model.

We found that an effective strategy to capture, model, and invert the relationship between control
voltages and system response goes as follows.

1. A collection of Multipliers are swept across their input values to map the relationship between
control voltage and complex multiplier response.

8

2. These responses were analyzed using Principle Component Analysis (PCA) [15].

3. The multipliers were assembled into the open-loop configuration and the response of the entire
open-loop network was measured under many sets of input control voltages.

4. These results were compared to a theoretical model of the network wherein the weights of the
components could be adjusted until the theoretical results matched the experimental results.

5. With accurate PCA weights in hand, the Multipliers can be immediately adjusted to achieve a
desired multiplication factor by inverting the model to achieve any open-loop kernel.

6. Additional refinement can be obtained by changing the device configuration into the closed loop,
which now includes the feedback couplers. Again, we measure the response of the closed-loop
network under many input conditions.

7. We further refine the PCA weights of each multiplier to match this more demanding data set.
This becomes our final device model for both the open- and closed-loop configurations.

We will go into detail on each one of these items in the following sections.

4.1 Multiplier PCA
A collection of 35 multipliers were each mapped using the MCU control boards, capable of 10-bit
resolution on both control voltages. The mapping occurred with a grid of values based on [0, 11, ...,
1012, 1023] on both controls. Ideally, the mapping of two Multipliers would yield identical responses.
However, for all the reasons stated above, they do not. All of the mappings were compared using a
complex domain PCA analysis. Typically, in PCA, one would examine deviations from the mean, but
here we take another approach. Rather, the collection of mappings were analyzed directly to yield a
set of 4 PCA components. The response of any individual Multiplier could then be found as the linear
superposition of these components given by:

m(dvga, dPS) =

3∑

i=0

wici(dvga, dPS)

The term c0(dvga, dPS) is effectively the “average” response scaled by a complex factor, while the next
several components represent likely deviations due to the systematic errors described above. Within a
PCA analysis the final PCA components (i.e. c34(dvga, dPS), not shown) should be nearly pure noise.
We found that only the first four terms were needed to effectively model any given Multiplier.

Given any randomly chosen multiplier, we can find the complex valued PCA weights wi through a
least-squares analysis. As opposed to the "deviation from the mean" approach, the above formulation
is particularly useful for RF engineering. While the Multipliers were measured directly at their input
and output ports and analyzed as such, the model can easily account for the addition of RF cables
which would provide attenuation and phase rotation. These will appear as a complex scaling of all
of the components weights and the Multiplier’s behavior (RF jumpers cables included) can still be
captured as the simple linear superposition of the PCA components. In fact, any losses or phase
rotations along the Multipliers flow path can be incorporated into these weights. Therefore, we do
not characterize the individual multipliers, but delay this until the architecture is fully assembled, as
described in the next section.

Regardless, we will use least-squares to find the set of wi which characterizes the average multiplier
response. We call these the “base weights”.

4.2 Open-Loop Device Fitting
The goal of the this section is to determine the PCA weights that characterize each Multiplier in
situ, so that the system errors can be captured and modeled. The open-loop DCM system was fully
assembled including jumper cables, splitters, and couplers. All multipliers within the array were set
to the same input value (dvga, dPS) pair. The transmission matrix of the system was then measured.
This was repeated for all possible combinations of 10 evenly spaced values in the range [0, 1023] to

9

Figure S5: PCA Components and Average Multiplier Response. The first four panels represent
c0(dvga, dPS), c1(dvga, dPS), c2(dvga, dPS), and c3(dvga, dPS) and have a maximum saturation of 0.05.
The final image shows the response of the “average” Multiplier with a maximum saturation at 7.5

yield 100 measured transmission matrices, Tmeas. Note that not all of these 100 transmission matrices
represent "passive" operators.

The same system was modeled using Scikit-RF, wherein the following assumptions were made:

• The 5-1 splitters were ideal such that power was evenly split with no phase

• All jumpers were zero-length

• The coupler feedback path was ideal with no power removed

• The multipliers were all assumed to be “average” and the their responses were assumed to be
given by the “base weights”.

The system was simulated using SciKit-RF for each input pair (dvga, dPS) to yield 100 measured
transmission matrices Tsim(w), which are naturally a function of each Multipliers PCA weight. We
can then define an error error(w) = |Tsim(w)− Tmeas|2 and optimize w until that error is minimized.
It should be noted, that with only four PCA weights per Multiplier, in theory, only 4 transmission
matrices are required to fully define the system. Using 100 helps guarantee that normal measurement
noise does not unduly influence the fitting. Additionally, if a low error can be achieved across 100
measurements using only 4 weights, then we can be confident that the model was sufficient to capture
the entire open loop system response, K.

4.3 Setting the Open Loop System Response
Given a desired open-loop system response, K, we need to calculate the necessary multiplier values for
the DCM architecture, mi,j , gathered to form M. In this case, the simplicity of the DCM architecture
makes this trivial. If we assume an idealized passive five port splitters such that given an input of 1W
at the summation port, s, we will observe 1/5W on each branch port, i. Put in terms of Scattering
Parameters, Ss,i = 1/

√
5 and via reciprocity Si,s = 1/

√
5. Since we have such splitters at the input

and output of the Multiplier array, K = (1/
√
5)M(1/

√
5) and therefore M = 5K. Note that since we

fitted the PCA weights of the Multipliers under the assumption of ideal components, it is appropriate
to assume ideal components here.

With each of the desired mi,j in hand to achieve a given K, the next step is to determine the
required (dvga, dPS). This can be done using a number of function inversion schemes such a gradient
descent. In practice, this could be very fast as it is likely that in many applications, each new M will
be a small step from the previous M and therefore each multiplier will change only slightly.

4.4 Closed-Loop Device Fitting
Due to the recursive nature of the closed-loop configuration (Matrix Inversion), the accuracy require-
ments are more stringent than for the open-loop configuration. Moreover, additional degrees of freedom
are introduced in the form of coupler coefficients. These can be considered part of w. In short, the
devices must be fitted again.

We will employ a similar strategy as was used in the Open-Loop Device Fitting. Using the open-
loop calibrated device models, a sequence of randomly generated passive transmission matrices, K,

10

are shown to the system. Note, unlike the open-loop matrices, in order to guarantee convergence,
these matrices must be passive. We model the closed-loop system using Scikit-RF. Using the open-
loop weights as a starting point, we optimize the multiplier weights and coupling coefficients until the
simulated Tsim(w) matches the measured Tmeas. This represents a small, but necessary, refinement
from the open-loop device model and can be used for both open- and closed-loop applications.

4.5 Setting the Closed Loop System Response
Setting the closed-loop system response, K is identical to setting the open-loop response. In both
cases, each desired mi,j is used to find the required (dvga, dPS) using a function inversion scheme.

5 System Accuracy
We performed an open loop measurement on 100 complex-valued random matrices with (eigenvalues)
values within the unit circle. For these, we configured the open-loop with the target (or ideal kernel)
Ae and retrieved the measured results Am. We define as error the quantity

||Am −Ae||2
||Ae||2

100% (21)

In Fig. S6, we can see the difference between the two matrices for 100 random cases. We observe
that all the results are within a 0.05 − 0.3% percent error. Similarly, we performed the same error
analysis for the same 100 random matrices, only this time on a closed-loop setup (matrix-inversion).
The results (Fig. S7) reveal that the error can climb up to 20%, but for most of the results, we get a
matrix inversion with less than 2% error. Finally, we assess the matrix inversion fidelity by evaluating
the trace of the A−1m Ae product. Ideally the trace of the product tr(A−1m Ae)/5 = 1. In Fig. S8, we
observe that this product spans between 0.5 − 1.5. However, for the particular examples we used in
the manuscript, this accuracy can be maintained at reasonably high levels once error-correcting and
filtering techniques are applied. Note that for the closed-loop case, the level of the measured voltage
is in the order of µV, very close to the noise floor of the VNA device we used. For the open loop
operation, the measured voltage was hundreds of mV.

0 50 100
0

0.1

0.2

0.3

Figure S6: The error between the exact and the measured matrices, open loop configuration, for 100
random complex matrices.

11

0 50 100
0

5

10

15

20

Figure S7: The error between the exact and the measured matrices, closed loop configuration (matrix
inversion), for 100 random complex matrices.

6 System Transient Analysis

6.1 Single Multiplier
In terms of the time response of the multiplier module the transient analysis reveal (Fig. S9) that
the module obtained the desired value approximately within 3-4 signal periods, i.e., T = 22.2ns. The
measurements were performed using the RIGOL DG4062 pulse generator (15 sinusoidal pulses at
45MHz), and the measured response extracted with the RIGOL DS1104 oscilloscope.

The open loop response is therefore assumed to be very close to the single multipliers response
since both splitters and connecting cables introduce a small phase shift to the signal. The closed loop
transient response is affected by both the multiplier timing and the condition number of the input
matrix (kernel) as shown in [16].

12

0 50 100
0

0.5

1

1.5

2

Figure S8: The fidelity of the matrix inversion expressed in terms of the normalized trace of the A−1m Ae
product for 100 random complex matrices.

measurements

in
out

0 50 100 150 200

ns

simulations

in
out

Figure S9: The transient response of a single multiplier module. The blue curves correspond to
the input signal, while the red curves are the measured (top) and simulated (bottom) using AWR
Microwave Office® results. The agreement is excellent. It is evident that it takes approximately 3 to
4 signal periods for the multiplier to obtain the desired output signal. Here we assumed small signal
amplification (VGA voltage is +.05) and the phase shift voltage is 0V.

13

7 De-embedding the solution

7.1 Open Loop
Let us define the open-loop response as

Vout = KVin
Note that this includes not only the DCM architecture (multipliers, splitters, jumpers), but also the
through channel of the input/output coupler. In other words, the open-loop is defined using all of
the components of the closed-loop. However, the loop has been broken "open" just after the coupler
array and measured at this point. Since in the closed configuration, these measurement planes were
coincident, upon "closing" the loop, these measurement will then represent the complete response of
the loop. While a minor perturbation to the results, this definition assumes that the weakly coupled
additional ports on the coupler are properly terminated.

Let us further define response of only the DCM architecture as K′. When the system is in a closed
loop configuration, this relates the vector exiting the coupler array (V4) to the vector incident on the
coupler array (V2).

V2 = K′V4
The coupler array introduces a small loss as the input is introduced and the output is measured. The
near unity transmission is named α1. It is clear then that K = α1K′.

7.2 Closed Loop
The closed loop response is fully defined by the open-loop response and the definition of the scattering
parameters of the coupler.

V2 = K′V4 (22)
V3 = α2V1 + βV2 (23)
V4 = βV1 + α1V2 (24)

Our goal is to solve the equations for V4, which represents the vectorial solution of the problem in
question. For the expected solution, this should be done such that the solution depends only on the
kernel K and the input vector (V1). For the measured solution, this should be only in terms of the
measured results (V3) and the known input (V1).

7.3 Expected Solution
We begin by applying the definitions above

V4 = βV1 + α1V2

V4 = βV1 + α1K′V4
V4 = βV1 +KV4

and then solve the final equation for the V4.

V4 = (I −K)−1βV1

7.4 Measured Solution
We begin with Eq 23:

V3 = α2V1 + βV2

and then solve it for V2
V2 =

1

β
V3 −

α2

β
V1

14

and then substitute the above into 24

V4 = βV1 + α1(
1

β
V3 −

α2

β
V1)

and then simplify
V4 = (β − α1α2

β
)V1 +

α1

β
V3

Note that in many real world cases, the coupler will be defined such that we can assume α2 → 0

V4 = βV1 +
α1

β
V3

References
[1] D. P. Bertsekas, Nonlinear programming (Athena Scientific„ Belmont, Mass. :, 1995).

[2] E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 705 (1973).

[3] B. T. Draine, P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

[4] M. A. Yurkin, A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007).

[5] S. P. Groth, A. G. Polimeridis, J. K. White, J. Quant. Spectrosc. Radiat. Transf. 240, 106689
(2020).

[6] V. Nikkhah, D. C. Tzarouchis, A. Hoorfar, N. Engheta, ACS Photonics (2022).

[7] C. A. Balanis, Advanced engineering electromagnetics (John Wiley & Sons, 1999).

[8] P. M. van den Berg, R. E. Kleinman, Inverse Probl. 13, 1607 (1997).

[9] D. Bertsekas, Convex optimization theory , vol. 1 (Athena Scientific, 2009).

[10] S. Boyd, S. P. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, 2004).

[11] R. E. Kleinman, P. den Berg, J. Comput. Appl. Math. 42, 17 (1992).

[12] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory , vol. 93 of Applied
Mathematical Sciences (Springer New York, New York, NY, 2013).

[13] S. Boutami, S. Fan, Journal of the Optical Society of America B 36, 2378 (2019).

[14] Z. Li, R. Pestourie, Z. Lin, S. G. Johnson, F. Capasso, ACS Photonics 9, 2178 (2022).

[15] I. T. Jolliffe, Principal component analysis for special types of data (Springer, 2002).

[16] D. C. Tzarouchis, M. J. Mencagli, B. Edwards, N. Engheta, Light Sci. Appl. 11, 263 (2022).

15

