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The discovery of a chiral anomaly in Weyl semimetals, the non-conservation of chiral charge and
energy across two opposite chirality Weyl nodes, has sparked immense interest in understanding
its impact on various physical phenomena. Here, we demonstrate the existence of electrical, ther-
mal, and gravitational quantum chiral anomalies in 3D spin-orbit coupled systems. Notably, these
anomalies involve chiral charge transfer across two Fermi surfaces linked to a single Weyl-like point,
rather than across opposite chirality Weyl nodes as in Weyl semimetals. Our findings reveal that the
Berry curvature flux piercing the Fermi surface plays a critical role in distinguishing the ‘chirality’ of
the carriers and the corresponding chiral charge and energy transfer. Importantly, we demonstrate
that these quantum chiral anomalies lead to interesting thermal spin transport such as the spin
Nernst effect. Our results suggest that 3D spin-orbit coupled metals offer a promising platform
for investigating the interplay between quantum chiral anomalies and charge and spin transport in
non-relativistic systems.

I. INTRODUCTION

Chiral anomaly refers to the non-conservation of chi-
ral charges in the presence of collinear electric and mag-
netic fields. It was first introduced in the context of the
relativistic field theory of chiral fermions [1–3]. Later
it was shown to be achievable in low gap semiconduc-
tors [4], with signatures in magnetoconductance exper-
iments. Following the discovery of Weyl semimetals
(WSMs) in recent years, the physics of chiral anomaly
has been widely studied in condensed matter systems,
resulting in a variety of non-trivial transport [5–18] and
optical [19–26] effects. Intriguingly, the presence of a
temperature gradient in Weyl systems can also result in
an anomaly similar to the axial-gravitational anomaly in
flat-space time [27–30]. This leads to a range of interest-
ing magneto-thermal transport phenomena [12, 31–37].

Central to the physics of chiral anomaly is the con-
tinuity equation for the chiral charge. The continuity
equation for the chiral charges and energy can be de-
rived using semiclassical dynamics in crystalline materi-
als and shows that the Berry curvature monopoles govern
the chiral anomaly in Weyl metals [38–40]. The concept
of chiral anomaly has also been extended to other free
fermionic excitations with no high-energy analog, such as
multi-Weyl semimetals [41–45], which exhibit two band
crossings similar to WSMs but with nonlinear momentum
dispersion along a particular direction, and semimetals
with a higher number of band crossings near the Weyl
node [46]. These systems, while possessing a higher chi-
ral charge, are otherwise similar to Weyl systems in that
a theory of chiral anomaly requires the presence of two
opposite chirality Weyl nodes.

In this paper, we delve into the connection between
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Here, we have used the fact that the band velocity v�

does not contribute to the equilibrium current (due to
angular integration being zero). Now, we use the identity
rk · (✏�⌦�) = rk✏� ·⌦� + ✏�rk ·⌦� to write the above
equation as follows,

j�
e,eq = �e2B

~2

Z
[dk] [rk · (✏�⌦�) � ✏�rk · ⌦�] f�

� ,(C3)

= �e2B

~2

Z
[dk]rk · (✏�⌦�)f�

� (C4)

=
e2

~2
B

Z
[dk]✏�⌦� · k̂

@f�
�

@k
, (C5)

= �eB

Z
[dk] (µ + ✏� � µ)

e

~
(v� · ⌦�)

✓
�@f�

�

@✏�

◆
,

= �e (µC�
0 + kBTC�

1 ) B. (C6)

To evaluate Eq. (C4), we have used the fact that rk ·
⌦� = ±2⇡�3(k), for a system with band touching point,
which makes the last integral of Eq. (C3) to be zero. Also,
we have used property of partial integrations to obtain
Eq. (C5) from the Eq. (C4). Here, we have defined C�

⌫ as

follows
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which can also be rewritten in terms of C� given in
Eq. (8). The j�

✏,eq can be evaluated following similar
calculations. One remark is in order, although the num-
ber density of carriers n�=�1 contains the Fermi func-
tion for both the bands, the equilibrium (also the non-
equilibrium) currents for � = �1 only come from the
� = +1 (� = �1) for µ > 0 (µ < 0). This is because the
currents we obtain are the Fermi surface property.

(other important aspects to be put in the main text)

Appendix D: Details of spin current calculations

To calculate the spin current proportional to the E ·
B (or rT · B), we consider the band velocity term of
Eq. (4) and calculate the spin current operator. The band
velocity operator along the i-direction is given by v̂i =
~ki

m �0 + ↵
~�i. Without loss of generality, here we show

the calculation of spin current in the x-direction. Using
the expressions of the eigenstates and the spin current
operator given in the main text, we obtain hu�| Ĵsx

x |u�i =
(↵/~ + �~kx sin ✓k cos�k/m). Now, the chiral anomaly
induced spin current is given by
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In the �µ ! 1 limit, writing the expressions of �µ� and �T� explicitly, we have
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The definition of L⌫ is given in the main text. We eval-
uate the L⌫ using the Sommerfeld approximation in the
µ > kBT limit. We obtain the following expressions
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, (D3)
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Using these expression along with C�
⌫ and D�

⌫ in Eq. (D2),
we obtain the spin conductivities of Eqs. (32) and (33).
Following a similar procedure, we can calculate other spin
currents.

Now, we show that due to rotational symmetry j
sj

i = 0
for i 6= j. Without loss of generality, we will explicitly
show the calculation for jsz

x . The expectation value of

the spin current operator Ĵsz
x is given by hu�| Ĵsz

x |u�i =
� p

2m sin 2✓k cos�k. Now, as the distribution function is
independent of ✓k and �k, so the angular integration over
�k of the hu�| Ĵsz

x |u�i yields jsz
x = 0. Similarly, all the

spin currents with spin polarization perpendicular to the
propagation velocity can be easily shown to be zero due
to the vanishing angular integration over �k.

E · B 6= 0 or rT · B 6= 0

[1] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase e↵ects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[2] Y. Gao, Semiclassical dynamics and nonlinear charge cur-
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FIG. 1. Depiction of the quantum chiral anomalies in (a)
Weyl semi-metals and (b) 3D spin-orbit coupled metals or
Kramers-Weyl metals. Both systems experience chiral charge
and energy pumping, manifesting as electrical, thermal, and
gravitational anomalies, when subjected to a magnetic field
and collinear electric field (E ·B 6= 0) or a temperature gra-
dient (∇T · B 6= 0). In contrast to Weyl semimetals, the
chiral charge pumping in 3D spin-orbit coupled metals occurs
between two different Fermi surfaces associated with a single
‘Kramers-Weyl’ node, but with opposite Berry curvature flux
passing through them.

chiral anomalies and the Berry curvature flux passing
through the Fermi surface (FS) [5]. This connection was
recently explored in Ref. [47, 48]. Motivated by this,
we generalize the theory of quantum chiral anomalies
to Hamiltonians with non-relativistic terms, specifically
H = hk · σ + σ0k

2. Here, the σ represents the real spin
of the system, σ0 is the identity matrix, and hk is an odd
function of k. The quadratic kinetic energy-like term in
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the Hamiltonian makes the chiral anomaly in this spin-
orbit coupled (SOC) metals to be distinctly different from
that in WSM [see Fig. 1]. These types of systems can be
found in Kramers-Weyl metals with quadratic corrections
to their k ·p Hamiltonians [49–58] or in systems support-
ing 3D electron gas with SOC. While some aspects of
the charge, heat, and spin transport in SOC metals have
been explored earlier [47, 59, 60], the physics of quantum
chiral anomalies in these systems is largely unexplored
and merits further investigation.

In this paper, we demonstrate that Kramers-Weyl and
spin-orbit coupled metals can exhibit all three types of
quantum chiral anomalies—electrical, thermal, and grav-
itational. We investigate the impact of electric field and
temperature gradient-induced quantum chiral anomalies
on charge, heat, and spin transport phenomena. Similar
to the behavior observed in Weyl semi-metals [17], we
find that chiral anomalies in 3D SOC systems also result
in negative longitudinal magneto-resistance and positive
thermal magneto-resistance. However, a distinct feature
of 3D SOC systems, as compared to WSMs, is that their
low-energy Hamiltonian involves real spins. We show
that quantum chiral anomalies in these systems also lead
to interesting electrical and thermal spin transport in-
cluding the spin-Nernst effect.

The structure of the rest of this paper is as follows. In
Section II, we discuss the origins of chiral anomalies in
three-dimensional (3D) metals with SOC and Kramers-
Weyl metals. In Section III, we present a mathematical
derivation of the continuity equations to demonstrate the
existence of these anomalies. The effects of these anoma-
lies on charge and spin transport are examined in Sec-
tions IV and V, respectively. Finally, we summarize our
findings in Section VI.

II. ORIGIN OF CHIRAL ANOMALIES IN
SPIN-ORBIT COUPLED METALS

To understand the chiral anomaly in 3D spin-orbit cou-
pled metallic systems (or Kramers-Weyl metals), we first
revisit the WSM. Specifically, we review the physics of
chiral anomaly in WSM from the perspective of semi-
classical dynamics. In WSM, the Hamiltonian for a par-
ticular Weyl node near the band crossing point can be
approximated as HWSM =

∑
a=x,y,z ~(va · k)σa, where

k is measured from the Weyl node. The ‘chirality’ of
Weyl node is defined as C = sign[vx · vy × vz] [61]. In
the semiclassical dynamics picture, the existence of chi-
ral anomaly can be understood by calculating the equi-
librium current in the presence of an external magnetic
field but no electric field.

The equilibrium charge current for each Weyl node (or
the chiral current) arises from the chiral magnetic ve-
locity (see Sec. III A with explicit derivation shown in
Appendix C). The chiral current for WSM can be ex-
pressed in terms of the Berry curvature flux quantum
passing through the FS for the WSM [17]. This is consis-

tent with the intuitive picture of the Weyl nodes acting as
sinks and sources of the Berry curvature. For the pair of
Weyl nodes of opposite chirality, their FSs are separated
in the momentum space (at least for small energies). In
the presence of an external electric field aligned along
the magnetic field, the chiral charge carriers are pumped
across the FSs with distinct Weyl chirality. This flow is
stabilized by inter-node scattering. This results in dif-
ferent chiral charge densities on the two Weyl nodes [as
shown in Fig. 1(a)], and it manifests in several inter-
esting transport phenomena in WSMs [5, 17, 36]. We
emphasize two things here: i) A minimum of a pair of
Weyl nodes of opposite chirality are needed to produce
chiral anomaly in WSM, and ii) the chiral anomaly can
be interpreted as an FS phenomenon, where the chiral
charges are ‘pumped’ across two FSs enclosing opposite
quantum of the Berry curvature flux. These two points
will be crucial in investigating the chiral anomalies in
Kramers-Weyl metals or 3D SOC metals.

3D SOC metals or Kramers-Weyl metals are struc-
turally chiral crystals with broken inversion symme-
try. They host ‘Weyl’-like nodal points at all the time-
reversal-invariant momentum (TRIM) points in their
Brillouin zone. While the form of the SOC can be dif-
ferent, a common feature of all such materials is that
they have two FSs for each band crossing point (or the
Kramers-Weyl node). This is aided by the kinetic en-
ergy term of the form ~2k2/(2m) in their dispersion,
which is missing in conventional WSM. We have tabu-
lated all crystalline point groups that support Kramers-
Weyl points, along with their low energy Hamiltonian in
the vicinity of the Kramers-Weyl point in Appendix A.

While our discussion applies to all classes of single crys-
talline systems of 3D SOC metals or Kramers-Weyl met-
als listed in Table I, for specific calculations, we consider
the Hamiltonian [51, 62, 63],

H =
~2k2

2m
σ0 + αk · σ . (1)

Here, m is the effective electron mass, α is the SOC pa-
rameter, σ = (σx, σy, σz) denotes the vector of the Pauli
matrices in spin space and k is the Bloch wave vector.
We note that in contrast to conventional WSM, the Pauli
matrices here denote the physical spins of the itinerant
electrons. The energy dispersion for the Hamiltonian in
Eq. (1) is,

ελ =
~2k2

2m
+ λαk . (2)

Here, λ = ±1 is the spin-split band index which co-

incides with the eigenvalues of the operator Ô = k̂ ·
σ, and k = |k|. The corresponding eigenstates are

given by |u〉T+ = [cos(θk/2), eiφk sin(θk/2)] and |u〉T− =

[sin(θk/2),−eiφk cos(θk/2)], with cos θk ≡ kz/k and
tanφk ≡ ky/kx. In Fig. 1b, the λ = +1 (λ = −1) band
is represented by the solid (dashed) line. The two bands
of the dispersion relation (2) have a band-touching point
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(BTP) at ε = 0. The λ = +1 band has a minimum at
ε = 0 and increases monotonically as k increases. The
λ = −1 band is non-monotonic, and it has a minimum
energy located at εmin = −εα, with εα = mα2/2~2. The
minimum energy point lies on a circular contour specified
by |k|2 = k2

α, where kα = mα/~2.
Clearly, there are two different types of FSs for any

value of the Fermi energy greater than the energy of the
Kramers-Weyl node. The inner FS resulting from the
λ = +1 band has an electronic character. In contrast, the
outer FS can be interpreted to have the hole character.
The Berry curvature flux quantum through each of the
Fermi surfaces is defined as

Cλ =
1

2π

∫

FS

dS ·Ωλ . (3)

Here, dS is the elemental surface area of the FS, and
Ωλ is the Berry curvature. More interestingly, the flux
quantum associated with the FSs is equal and opposite.
We explicitly calculate Cλ = −λ. See Appendix B for de-
tails. Hence, the Berry curvature flux quantum piercing
the outer (inner) FS is +1 (−1). We emphasize that this
scenario is distinctively different from the usual WSM
with chiral symmetry. In WSM, the pair of FS with the
opposite sign of the Berry curvature flux quantum cor-
responds to two distinct Weyl crossing points separated
by momentum or energy. However, in this case, a single
Weyl crossing is linked to the two FSs with opposite flux
quantum. The opposite sign of the Berry curvature flux
quantum on the two FSs can be used to define charged
fermions of different ‘flavors’ (akin to chirality in the case
of WSM) in the two FSs.

The non-zero flux associated with the two FSs in SOC
metals gives rise to chiral anomalies. This is captured
by the non-conservation of the total flavor charge (N λ)
and energy (Eλ) in presence of a magnetic field (B) and
an electric field (E) or temperature gradient (∇T ). In a
clean system of 3D SOC metal, we can obtain

∂N λ

∂t
∝ −Cλ0 E ·B and

∂N λ

∂t
∝ −Cλ1 ∇T ·B . (4)

A similar calculation for the total energy of each flavour
of fermions yields,

∂Eλ
∂t
∝
{
−(µ Cλ0 + kBT Cλ1 ) E ·B
−(µ Cλ1 + kBT Cλ2 )∇T ·B . (5)

Here, µ is the chemical potential, and kBT is the energy
scale of the temperature. The coefficients Cλν [Eq. (9)]
for ν = {0, 1, 2} are the coefficients of the electrical, ther-
mal, and gravitational chiral anomalies, respectively. See
Sec. III and Eqs. (14)-(15) for more details. More impor-
tantly, these are finite only when the Berry curvature
flux quantum Cλ is finite. Thus, the Berry curvature flux
quantum plays an important role in defining the par-
ticles’ flavor (or chirality) and the associated quantum
flavor anomalies (or chiral anomalies). We highlight the

chiral charge transfer across the two Fermi surfaces in
WSM and in 3D SOC metals, with opposite Berry cur-
vature flux in Fig 1.

In the next section, we explicitly demonstrate the three
chiral anomalies in 3D SOC (or Kramers-Weyl) metals
using the idea of equilibrium and non-equilibrium chiral
charge and energy currents. We specifically focus on the
case when the chemical potential is higher in energy than
the Kramers-Weyl point (µ > 0). The regime when the
chemical potential is below the energy of the Kramers-
Weyl point is a bit tricky. We find that in this regime
there is only one FS. The Fermi surface is associated
with the λ = −1 band, and the total flux through the
FS is identically zero. Since the chiral anomaly requires
two FSs with opposite Berry curvature flux, there is no
chiral anomaly for µ < 0. However, an interesting Bril-
louin zone partitioning scheme been proposed in Ref. [47]
to divide the single FS into two parts having opposite
Berry curvature flux. We show that such BZ partition-
ing within a single FS is not physical, and it can lead
to chiral anomaly-like physics even in a free electron gas
in absence of a magnetic field and Berry curvature. We
discuss these subtle issues in detail in Appendix B.

III. CHIRAL CURRENTS AND THE CHIRAL
ANOMALIES

In this section, we first show that the existence of equi-
librium currents in the presence of a magnetic field hints
at the possible existence of chiral anomalies in the sys-
tem. Next, we explicitly calculate the continuity equation
for the chiral charges and energy current in the presence
of a magnetic field and either a collinear electric field or
a collinear temperature gradient.

A. Equilibrium chiral current induced by magnetic
field

The equations of motion of charge carriers in the pres-
ence of Berry curvature are described by the following
semiclassical equation of motion [64, 65]

ṙλ = Dλ

[
vλ +

e

~
E ×Ωλ +

e

~
(vλ ·Ωλ)B

]
, (6a)

~k̇λ = Dλ

[
−eE − evλ ×B −

e2

~
(E ·B)Ωλ

]
. (6b)

Here, ‘−e’ is the electronic charge, vλ is the band ve-
locity, and Ωλ is the Berry curvature. In Eq. (6a),
Dλ ≡ 1/(1 + e

~Ωλ ·B) is the phase-space factor, which
modifies the invariant phase-space volume according to
[dk]→ [dk]D−1

λ [66]. The term e
~ (vλ ·Ωλ)B in Eq. (6a)

is known as the chiral magnetic velocity and as will see
it plays an important role in anomaly related transport.

For a given FS, the equilibrium chiral charge and en-
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ergy currents are calculated to be [13]

{jλe,eq, j
λ
ε,eq} =

∫

BZλ

[dk]{−e, ελ}
e

~
(vλ ·Ωλ) fλ . (7)

In Eq. (7), fλ is the equilibrium Fermi distribution func-
tion corresponding to the FS λ. We emphasize that the
chiral magnetic velocity solely determines the chiral cur-
rents, and the band gradient velocity does not contribute
to it. Evaluating Eq. (7) for our model Hamiltonian, we
obtain general relations for the charge and the energy
current [17, 30, 67],

jλe,eq= −e
(
µCλ0 + kBTCλ1

)
B , (8a)

jλε,eq=

(
µ

2
Cλ0 + µkBTCλ1 +

k2
BT

2

2
Cλ2
)
B . (8b)

Here, we note that all the anomaly coefficients appear
in the equilibrium current. In Eqs. (8a)-(8b), the coeffi-
cients are specified by,

Cλν =
e

4π2~2

∫
dε

(
ε− µ
kBT

)ν (
−∂fλ
∂ελ

)
Cλ . (9)

It is evident from Eq. (9) that for any quantum system
with finite Cλ, all the chiral anomaly coefficients are non-
zero. We mention here that in defining the anomaly co-
efficients in Eq. (9), we have converted the Fermi sea
integration of Eq. (7) into Fermi surface integration us-
ing the rule of partial derivative. We provide the details
of the calculations in Appendix C.

The importance of the equilibrium currents given in
Eqs. (8a)-(8b) is multifold. First of all, the presence of
finite chiral charges and energy currents in equilibrium is
an indication of the existence of chiral anomalies. This
is because, for both chiral anomaly and non-zero chiral
equilibrium current, non-zero Berry curvature flux is a
prerequisite. Second, the chiral charge (j+

e,eq− j−e,eq) and

energy (j+
ε,eq − j−ε,eq) currents are non-zero. This high-

lights that in systems hosting a pair of fermions with
opposite Berry curvature flux quantum, the chiral mag-
netic velocity induces a dissipationless chiral charge and
energy current along B [12, 68–71]. Finally, we can ex-
pect a finite anomaly-induced current in non-equilibrium.
In equilibrium, the total charge (j+

e,eq +j−e,eq) and energy

(j+
ε,eq+j−ε,eq) currents from the two opposite chirality FSs

will add up to zero due to same chemical potential and
temperature. However, in the presence of chiral chemical
potential (µ+ 6= µ−) and chiral temperature (T+ 6= T−)
imbalance induced by the quantum anomalies, these ex-
pressions will result in finite charge and energy current.

Note that the general expressions of equilibrium charge
and energy currents, jλe,eq and jλε,eq, are valid for any 3D
systems with band touching point. These currents origi-
nate from the chiral magnetic velocity, e/~(vλ ·Ωλ)B. As
a result, the equilibrium currents are identically zero for
any two-dimensional system, for which vλ ·Ωλ = 0. The
absence of chiral magnetic velocity in 2D systems for-
bids the existence of quantum chiral anomalies in two-
dimensional systems. For three-dimensional systems,

vλ · Ωλ is generally non-zero, which gives rise to finite
equilibrium currents. However, to have quantum chiral
anomalies in the system, there should be a pair of FS with
opposite Berry curvature flux quantum passing through
them so that jλe/ε,eq = −j−λe/ε,eq.

Having discussed the general expressions for the equi-
librium charge and energy currents, we now calculate all
the anomaly coefficients for a 3D spin-orbit coupled sys-
tem. For the Hamiltonian in Eq. (1), the Berry curvature
is given by Ωλ = −λk/2k3. The chiral anomaly coeffi-
cients are obtained to be

{Cλ0 , Cλ1 , Cλ2 } = −λ e

4π2~2
{F0,F1,F2} . (10)

We note that the equilibrium currents of Eqs. (8a) and
(8b), along with the chiral anomaly coefficients of the
above equations, do not get affected by the orbital mag-
netic moment. Here, Fν ’s are the dimensionless functions
of i) x = β(εα + µ) for λ = −1 band, and ii) x = βµ for
λ = +1 band with β = 1/kBT being the inverse temper-
ature. Their functional form is given by

F0(x) ≡ 1/(1 + e−x) ,

F1(x) ≡ x/(1 + ex) + ln[1 + e−x] , (11)

F2(x) ≡ π2

3
− x

(
x

1 + ex
+ 2ln[1 + e−x]

)
+ 2Li2[−e−x].

Here, Li2 is the polylogarithmic function of order two.
With the replacement of (εα + µ) → µ, Eqs. (10) and
(11) become identical to that in the WSMs [17]. The
temperature dependence of all three chiral anomaly co-
efficients is similar to Fig. (6) in Ref. [17]. In the zero
temperature limit, F0 → 1, and F2 → π2/3. It is worth
noting that for T = 0, the thermal chiral anomaly coeffi-
cient Cλ1 ∝ F1 → 0 becomes finite only for finite T .

B. Steady state in the presence of chiral anomaly

The presence of external perturbations, such as an elec-
tric field E, or a temperature gradient ∇T , drives the
system out of equilibrium. In the non-equilibrium steady-
state, the distribution function (gλ) corresponding to the
FS λ satisfies the following Boltzmann transport equa-
tion

∂gλ
∂t

+ ṙλ ·∇r gλ + k̇λ ·∇k gλ = Icoll{gλ} . (12)

Here, Icoll{gλ} is the collision integral and gλ is the non-
equilibrium distribution function for each Fermi function.
Similar to that in WSM, the charge and energy pump-
ing between the two FSs dictates that the collision inte-
gral should incorporate both the intra- and inter-Fermi
surface scattering processes [17, 36, 72]. Within the re-
laxation time approximation, both the scattering process
can be captured by the following form of the collision in-
tegral [13, 73],

Iλcoll = −gλ − ḡλ
τ

− ḡλ − fλ
τv

. (13)
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Here, ḡλ represents the ‘local’ steady-state distribution
function for each FS with a local chemical potential
µλ ≡ µ+ δµλ, and local temperature Tλ ≡ T + δTλ [72],
and fλ specifies the global equilibrium function. The
first term in the right-hand side of Eq. (13) represents
the intra-Fermi surface scattering (with scattering rate
1/τ), which establishes the local equilibrium. The inter-
Fermi surface scattering has been represented by the sec-
ond term in Eq. (13) with scattering rate 1/τv. The ra-
tio of inter- and intra- Fermi surface scattering time for
Hamiltonian (1) considering screened Coulomb impurity
potential has been calculated in Ref. [47]. In the small µ
limit, it is given by τv/τ ∼ (2mα2/~2)2/µ2 [47]. Hence,
for small µ, similar to the WSM [74, 75], we have τv > τ .

Now, we construct the continuity equation for the
particle number and the energy density. Substituting
Eq. (13) in Eq. (12), and then integrating over all the
momentum states for the FS λ, we obtain

∂N λ

∂t
+ eE ·BCλ0 + ∇r · Jλ = −N

λ −N λ
0

τv
. (14)

Here, ∇r ·Jλ = kBCλ1 ∇T ·B is the divergence of particle
current. The quantities {N λ

0 ,N λ} =
∫

[dk]D−1
λ {fλ, gλ}

represents the total particle number density in each
FS before and after applying the perturbing fields. In
Eq. (14), the terms E ·BCλ0 , and kBCλ1 ∇T ·B represents
the chiral anomaly induced flow of the charge carriers.
Similarly, the continuity equation for the energy density,
which we construct by multiplying the energy dispersion
ελ in Eq. (12) and integrating over all the momentum
states, is obtained to be

∂Eλ
∂t

+(µCλ0 +kBTCλ1 ) eE·B+∇r ·JλE = −E
λ − Eλ0
τv

. (15)

The second term on the left hand side is −E · jλe,eq that
represents the work performed by the electric field and
∇r · JλE = (µkBCλ1 + k2

BTCλ2 ) ∇T · B represents the
divergence of energy current in presence of ∇T . The
quantities {Eλ0 , Eλ} =

∫
[dk]D−1

λ ελ{fλ, gλ} is the total
energy density in each FS before and after applying
external fields, respectively. Here, µCλ0 and µCλ1 spec-
ify the energy carried out by the chiral charge transfer,
whereas TCλ2 represents the energy pumped out by the
term ∇T ·B [17]. In constructing Eq. (14) and (15), we
have used the fact that the intra-Fermi surface scatter-
ing does not change the number of particles and energy
in each FS.

IV. CHIRAL ANOMALY AND CARRIER
TRANSPORT

To calculate the chiral anomaly-induced charge, heat,
and spin currents, we first calculate the non-equilibrium
distribution function to linear order in an applied electric
field. In the linear response regime, we can safely assume

that the change in chiral chemical potential and temper-
ature is small, i.e., δµλ < µ, and δTλ < T [13, 17, 72].
Then, to the lowest order in δµλ and δTλ, the non-
equilibrium distribution function can be calculated to be

gλ = fλ +

(
−∂fλ
∂ελ

)[(
1− τ

τv

)(
δµλ +

ελ − µ
T

δTλ

)

−τDλ

(
vλ +

e

~
(vλ ·Ωλ)B

)
·
(
eE + (ελ − µ)

∇T

T

)]
.

(16)

Here, the chiral chemical potential δµλ and δTλ are given
by [13]

δµλ = − τv

(Dλ2Dλ0 −Dλ1
2
)

[(
Dλ2Cλ0 −Dλ1Cλ1

)
eE ·B

+
(
Dλ2Cλ1 −Dλ1Cλ2

)
kB∇T ·B

]
, (17)

kBδTλ = − τv

(Dλ2Dλ0 −Dλ1
2
)

[(
Dλ0Cλ1 −Dλ1Cλ0

)
eE ·B

+
(
Dλ0Cλ2 −Dλ1Cλ1

)
kB∇T ·B

]
. (18)

In the above equation, we have defined the magnetic field-
dependent generalized density of states at finite temper-
ature as

Dλν =

∫
dε

(
ελ − µ
kBT

)ν (
−∂fλ
∂ελ

)
Dλ . (19)

Here, ν = {0, 1, 2}, and Dλ =
∫

[dk](1 + e/~Ωλ ·B)δ(µ−
ελ) being the density of states corresponding to the FS
of the band λ. It is evident that both the electric field
and the temperature gradient components parallel to B
contribute to generating the system’s chiral chemical po-
tential and chiral temperature imbalance.

Having obtained the non-equilibrium distribution func-
tion, we now calculate the charge and heat current in
each FS, which are defined as {jλe , jλQ} =

∫
[dk]{−e, (ελ−

µ)}ṙλgλ. Focusing only on the anomaly induced contri-
bution ∝ τv, we obtain [13]

(
jλe
jλQ

)
= τvB




1
Dλ0

(eCλ0 )2 ekB
Dλ1
Dλ0Dλ2

Cλ0 Cλ2
ekBT

Dλ1
Dλ0Dλ2

Cλ0 Cλ2 T 1
Dλ2

(kBCλ2 )2




×
(

E ·B
−∇T ·B

)
. (20)

In deriving the above equation, we used the fact that in
the µ � kBT limit (or βµ � 1) limit, Cλ1 → 0, and
Dλ0 ,Dλ2 > Dλ1 . Now, the transport coefficients can be ob-
tained by comparing the total currents

(
je,Q =

∑
λ j

λ
e,Q

)

from Eq. (20) and the phenomenological linear response
relations [76]: je,a =

∑
b[σab Eb − αab ∇bT ] and jQ,a =∑

b[ᾱab Eb − κ̄ab ∇bT ]. Here, σ, α, ᾱ, and κ̄ de-
note the electrical, thermo-electric, electro-thermal, and
constant voltage thermal conductivity matrix, respec-
tively. Note that the thermo-power matrix is defined as
Sab = [σ−1α]ab, and the open circuit thermal conductiv-
ity matrix is expressed as κab = [κ̄ − ᾱσ−1α]ab. From
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Eq. (20), we see that both the charge and energy cur-
rents flow along the direction of the magnetic field. This
is consistent with the fact that these originate from the
chiral magnetic velocity.

We calculate the generalized energy density using the
Sommerfeld approximation in the limit µ � kBT . Re-
taining only the leading order term in the Sommerfeld
expansion, we obtain

Dλν≈
m3/2√εα√

2π2~3





(1+λ
√

1+µ̃)
2

√
1+µ̃

F0 ν = 0,
µ̃

2βεα(1+µ̃)3/2
F2 ν = 1,

(1+λ
√

1+µ̃)
2

√
1+µ̃

F2 ν = 2 .

(21)

Here, we have defined the scaled chemical potential,
µ̃ = µ/εα. In calculating the above-generalized energy
densities, we have neglected the magnetic field correc-
tions, which are very small. Note that i) Dλ0 becomes the
exact density of states in the zero temperature limit for
the corresponding bands [77], and ii) Dλ1 is independent
of λ i.e., it is identical for both the FSs.

The chiral anomaly induced transport coefficients (σ,
α, ᾱ, and κ̄) is obtained from Eq. (20) using the expres-
sions of Cλν , and Dλν . In the µ� kBT limit, for arbitrary
orientation of the magnetic field, the anomalies induced
transport coefficients are

(
σab αab
ᾱab κ̄ab

)
=

τve
3B2

4π2m2αµ̃2
Aab(θ, φ) (22)

×


 e
√

1 + µ̃(2 + µ̃) π2kB
6βεα

(µ̃2+8(1+µ̃))
µ̃
√

1+µ̃

π2

6β2εα

(µ̃2+8(1+µ̃))
µ̃
√

1+µ̃
π2kB
3eβ

√
1 + µ̃(2 + µ̃)


 .

Here, A(θ, φ) is a 3×3 matrix, which captures the angular
dependence of all the transport coefficients, with (θ, φ)
denoting the polar, and azimuthal angle of the spheri-
cal polar coordinate for the magnetic field. The A(θ, φ)
matrix is obtained to be

A(θ, φ) =




sin2 θ cos2 φ 1
2 sin2 θ sin 2φ 1

2 sin 2θ cosφ
1
2 sin2 θ sin 2φ sin2 θ sin2 φ 1

2 sin 2θ sinφ
1
2 sin 2θ cosφ 1

2 sin 2θ sinφ cos2 θ


 .

(23)
As a consistency check, we note that the longitudinal
electrical conductivity (σaa) derived above matches with
that obtained recently in Ref. [47]. The conductivity ma-
trix of Eq. (22) is valid for the arbitrary direction of the
applied magnetic field. So, in the planar configuration of
the magnetic field (θ = π/2), the xy-component of the
transport coefficients represents various planar Hall ef-
fects. For instance, the σxy, αxy, ᾱxy, and κ̄xy represents
the usual planar Hall response, planar Nernst effect, pla-
nar Ettinghausen effect, and planar Righi-Leduc effects,
respectively [76]. Hence, our work generalizes the chi-
ral anomalies induced transport to the thermo-electric,
and thermal conductivity matrices for spin-orbit coupled
systems. We emphasize that the chiral anomaly induced
responses of Eq. (22) become zero for εα = 0. This is

FIG. 2. Variation of the chiral anomaly induced electrical
conductivity with the chemical potential and the spin-orbit
coupling energy strength. The electrical conductivity is ex-

pressed in units of σ0 = τve
4B2

4
√
2π2m3/2~ . The anomaly-induced

response is larger for larger SOC strength and smaller chem-
ical potential.

expected because the system’s inversion symmetry is re-
stored as α→ 0, causing the ‘Weyl’ point, related Berry
curvature, and chiral magnetic velocity to vanish.

We present the variation of chiral anomaly-induced
electrical conductivity with µ and εα in Fig. 2. We
find that the other conductivity components of Eq. (22)
also follow a similar qualitative trend in µ and α. The
anomaly-induced response decreases as µ increases. This
is consistent with the fact that the chiral anomalies orig-
inate from the Berry curvature, which peaks in the vicin-
ity of the band touching points.

To investigate the impact of the chiral anomaly on
various longitudinal transport phenomena, we define
the following generalized magneto-resistance, MRR ≡
R(B)/R(B = 0)−1. Here, R denotes the different trans-
port contributions in Eq. (22). In the µ� kBT limit, we
calculate the Drude conductivities to be

σD =
eτmα

3~4
× 2eεα

π2
(2 + µ̃)

√
1 + µ̃ ,

αD = −eτmα
3~4

× kB
3β

(3µ̃+ 4)√
1 + µ̃

,

κ̄D =
eτmα

3~4
× 2εα
eπ2

π2kB
3β

(2 + µ̃)
√

1 + µ̃ .

(24)

In this limit, the longitudinal MR in resistivity is ob-
tained to be

MRρ = − 3τvγ
2

3τvγ2 + 4τ
. (25)

Here we have defined, γ = e~3B
m2α2µ̃ . The ‘magneto-

resistance’ in the Seebeck coefficient can be calculated
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to be

MRS = MRρ
4(µ̃2 + 3µ̃+ 2)

µ̃(3µ̃+ 4)
. (26)

We note that both of these, MRρ and MRS , show nega-
tive ‘magneto-resistance’, similar to the band-inversion
WSM [17]. However, unlike the case of conventional
WSM, the relation MRρ/MRS = 1/2 is not satisfied in
spin-orbit coupled systems.

In the case of thermo-electric and constant voltage
thermal conductivity, we find

MRκ̄ =
3τv
4τ

γ2 , (27)

MRα = −MRκ̄
µ̃2 + 8(1 + µ̃)

µ̃
√

1 + µ̃(3µ̃+ 4)
. (28)

Clearly, MRα is negative while MRκ̄ is positive. This is
similar to the results obtained for WSM in Refs. [17, 78].

V. CHIRAL ANOMALY AND SPIN
TRANSPORT

Unlike WSM, where the Pauli matrices in the Hamilto-
nian represent pseudo-spins, the Pauli matrices in SOC
systems described by Eq. (1) represent physical spins.
Consequently, the two bands in SOC systems are spin
momentum locked with opposite spin orientations on the
inner and outer FSs [79]. Thus, it is natural to expect
that chiral anomalies can also influence spin transport
along with charge transport. Motivated by this, we ex-
plore the chiral anomalies induced linear spin transport
(∝ E ·B or ∇T ·B) in this section. Spin transport in a
3D SOC system was recently explored in Ref. [79] with-
out considering the effect of chiral anomaly. In Ref. [47],
the authors studied electrical chiral anomaly induced lin-
ear electrical spin current in 3D SOC systems. Here, we
include the temperature gradient induced spin currents
and study the chiral anomaly induced spin-Nernst effect,
in addition to other effects.

The spin current operator is defined via the anticom-
mutator relation, Ĵsba = 1

2{v̂a, ŝb}, where v̂a is the ve-
locity operator, ŝb is the spin operator and a, b denote
the Cartesian coordinates [80]. Now, the spin current
can be calculated as the expectation value of the spin
current operator weighted by the non-equilibrium distri-
bution function,

jsba =
∑

λ

∫
[dk]D−1

λ 〈uλ(k)| Ĵsba |uλ(k)〉 gλ . (29)

The matrix of spin transport coefficients is related to the
spin current via the relation jsba = σsbacEc−αsbac∇cT . Here,
σsbac is the electrical spin conductivity matrix, and αsbac
is the thermo-electric spin conductivity matrix. These
tensors represent response coefficients for the spin current
flowing along the a-direction for spin polarization along

FIG. 3. The variation of the longitudinal thermoelectric spin
conductivity with the chemical potential µ and the spin-orbit
coupling energy strength εα. The conductivity αsxxk is scaled

by τvekBB

9
√
2~2β√m . Similar to the chiral anomaly induced elec-

trical response, the chiral anomaly induced spin response is
also larger for larger spin-orbit coupling and smaller chemical
potential.

the b-direction, while the electric field or the temperature
gradient is applied along the c-direction.

The spin current operator for Hamiltonian (1) is given
by

Ĵsba =
~ka
m

σ0 + δab
α

~
σb , (30)

where δab = 0 or 1 depending on a 6= b or a = b, re-
spectively. Using the eigenstates of Hamiltonian (1), we
evaluate the expectation value of the above equation to
be

〈uλ| Ĵsba |uλ〉 =
α

~
Iab + λ

~k
m
Aab(θk, φk) . (31)

Here, I denotes the 3× 3 identity matrix, and A(θk, φk)
is a 3× 3 matrix defined in Eq. (23). Following the sym-
metric energy dispersion, the distribution function gλ [see
Eq. (16)] is independent of θk and φk. As a consequence,
the angular integration over φk makes all the off-diagonal
elements of 〈uλ| Ĵsba |uλ〉 to be zero, and jsba = 0 for a 6= b.
Thus, the spin current is finite only when the spins are
aligned along the direction of the velocity of the carriers.

Hence, the chiral anomaly induced spin currents are
finite only when the spins are polarized along the respec-
tive directions of current, and we have jsxx = j

sy
y = jszz =

jsCA. We calculate the spin current induced by the chiral
anomalies to be [see Appendix D for details]

jsCA =τv
∑

λ

Cλ0
Dλ0

[Dλ1
Dλ2
L1 − L0

]
eE ·B

− C
λ
2

Dλ2

[Dλ1
Dλ0
L0 − L1

]
kB∇T ·B . (32)
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Here, we have defined

Lν =

∫
[dk]

(
α

~
+ λ

~
m
ka · k̂

)(
ελ − µ
kBT

)ν (
−∂fλ
∂ελ

)
,

(33)
with ka = kaâ being a vector along a-direction with mag-
nitude equal to the component of k along the a-direction,

and k̂ = sin θk cosφkx̂+ sin θk sinφkŷ+ cos θkẑ. We now
have jsaa ∝ E ·B for any arbitrary direction of the ap-
plied electric field along the k-direction. We calculate
the corresponding chiral anomaly induced electrical spin
conductivity to be,

σsxxc = σs0

[√
1 + µ̃− π2

6β2ε2α

(µ̃2 + 9µ̃− 20)

µ̃2(1 + µ̃)2

]
ĉ · B̂ , (34)

where we have defined σs0 = τve
2Bα

6π2~3 . The second term
on the right-hand side of Eq. (34) is the finite tempera-
ture correction to the electrical spin conductivity, which
vanishes in the T → 0 limit.

For the thermoelectric part of the spin conductivity,
we find that it behaves like the electric spin conductiv-
ity. All the thermoelectric spin currents, where the spin
is not aligned along the current direction, vanish. We
obtain, jsba = 0 for b 6= a, and jsaa ∝∇T ·B. Our calcu-
lations show that only the conductivity components, αsaac
are finite, and αsxxc = α

sy
yc = αszzc. We calculate the ther-

moelectric spin conductivity for the temperature gradient
applied along the c-direction to be,

αsxxc = αs0

[
2

µ̃2
+
µ̃2 + 3µ̃− 2

µ̃2
√

1 + µ̃
− µ̃2 + 7µ̃+ 6

2µ̃(1 + µ̃)3/2

]
ĉ · B̂ ,

(35)
where αs0 = τvekBαB

18~3βεα
. The above expression represents

the chiral anomaly induced spin-Seebeck (for c = x) or
the spin-Nernst coefficient (for c 6= x), with the spins po-
larized along the x-direction. The variation of αsxxk with
µ and εα is presented in Fig. 3. The electrical spin con-
ductivity also follows similar trends in µ and εα. The
anomaly induced effects in general decrease with increas-
ing µ and increase with increasing α which is a proxy for
the degree of inversion symmetry breaking.

VI. CONCLUSION

In summary, we have provided evidence that quantum
chiral anomalies can be understood as a feature of FSs.
Specifically, the chirality of charge carriers can be deter-
mined by the sign of the Berry curvature quantum pass-
ing through the associated Fermi surface. This has signif-
icant implications for 3D SOC metals or Kramers-Weyl
metals, where chiral charge pumping can occur across
the two Fermi surfaces associated with a single Kramers-
Weyl node. To the best of our knowledge, this kind of
chiral anomaly has no analog in relativistic field theories
of chiral fermions. We have also demonstrated the exis-
tence of three distinct types of quantum chiral anomalies

– electrical, thermal, and gravitational – in 3D SOC met-
als and Kramers-Weyl metals.

The effect of these quantum chiral anomalies can be ob-
served in electrical and thermo-electric charge and spin
transport in 3D SOC metals and Kramers-Weyl metals.
While the electrical transport signatures of chiral anoma-
lies in 3D spin-orbit coupled metals are similar to those in
Weyl semimetals, the signatures in electrical and thermo-
electric spin transport are unique to 3D SOC metals. We
have shown that spin conductivities are finite only when
spins are polarized along the direction of carrier flow. we
found that the chiral anomaly-induced spin conductivi-
ties are proportional to the strength of the magnetic field,
unlike charge conductivities which scale with the square
of the magnetic field. Our findings contribute to the un-
derstanding of chiral anomaly induced charge, heat, and
spin transport in 3D SOC metals and Kramers-Weyl sys-
tems.
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Appendix A: 3D non-centrosymmetric SOC metals
and Kramers-Weyl metals

In this appendix, we discuss the SOC-induced chiral
anomaly in other 3D systems with different forms of the
SOC, compared to Eq. (1). Comparing the list of single
crystalline point groups which support 3D spin-orbit cou-
pled metals [81] with the list of Kramers Weyl metals [50],
we find that these are identical. However, 3D electron
gas with SOC can also arise in some heterostructures of
two different single crystals. Both of these systems have
doubly degenerate band touching points, which we refer
to as ‘Kramers-Weyl’ points. Kramers-Weyl metals are
realized in structurally chiral crystals that lack mirror,
inversion, or roto-inversion symmetry [50]. There are 65
Sohncke chiral space groups corresponding to 11 chiral
point groups which characterize the structurally chiral
crystals [53].

The bands of non-magnetic chiral crystals are at least
doubly degenerate at the time-reversal-invariant mo-
menta (TRIM) points due to Kramers theorem [50].
However, the SOC lifts the Kramer’s degeneracy at all
other points in the momentum space, leaving behind
‘Weyl’-like Kramers-Weyl nodes at the TRIM points.
All these band degenerate points are topologically non-
trivial, carrying finite Chern numbers [50]. In general,
the chiral crystals can host multiple band crossings at
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the TRIM points in the Brillouin zone along with multi-
fold band degeneracy [49–51, 53, 57].

In this paper, we focus on Kramers-Weyl metals
that have a two-fold degenerate Kramers-Weyl point at
TRIM. In Table I, we summarize the chiral space groups
and point groups which support Kramers-Weyl fermions,
along with some material examples [47, 50, 81, 82]. The
generic Kramers-Weyl system will have a low energy
Hamiltonian of the form: H =

∑
ab ~2kakb/(2mab) +

hk · σ, in the vicinity of the Kramers-Weyl point for
which |hk| = 0. Here, a, b = x, y, z, mab is the effec-
tive mass tensor, and k is the momentum with respect
to the Kramers-Weyl point. The specific form of sym-
metry allowed hk, for each of the chiral point groups is
also summarized in Table I. Each of these Kramers-Weyl
points has a chiral charge with value ±1. For example,
the Hamiltonian (1) with isotropic SOC term αk ·σ can
be realized in point groups T and O in K2Sn2O3, β-RhSi,
CoSi crystals [50, 51, 55–58].

TABLE I. The space groups and the point groups for topologically non-trivial chiral crystals hosting Kramers-Weyl Fermions
with chiral charge ±1. Some material examples, along with the form of the symmetry-allowed SOC terms in the vicinity of the
Kramers-Weyl points for each space group are also presented.

Space group Point group (Laue class) Material SOC term

1 C1(1) Li6CuB4O10
(α1kx + α2ky + α3kz)σx + (α4kx + α5ky + α6kz)σy

+(α7kx + α8ky + α9kz)σz

3-5 C2(2) Pb3GeO5 (α1kx + α2ky)σx + (α3kx + α4ky)σy + α5kzσz
16-24 D2(222) AlPS4 α1kxσx + α2kyσy + α3kzσz

143-146 C3(3) β-Ag3IS
75-80 C4(4) BaCu2Te2O6Cl2 (α1kx + α2ky)σx + (α1ky − α2kx)σy + α3kzσz

168-173 C6(6) α-In2Se3
149-155 D3(32) Ag3BO3

89-98 D4(422) CdAs2 α1(kxσx + kyσy) + α2kzσz
177-182 D6(622) NbGe2
195-199 T(23) K2Sn2O3, β-RhSi α1(kxσx + kyσy + kzσz)
207-214 O(432) BaSi2, SrSi2

Appendix B: Berry curvature flux quantum and
chiral anomaly for negative chemical potential

In this Appendix, we calculate the Berry curvature
flux quantum for each Fermi surface and discuss the chi-
ral anomaly for Fermi energies below the Kramers-Weyl
node, i.e., µ < 0. We start by calculating the Berry cur-
vature flux quantum for the FSs. The Berry curvature
flux through any FS is defined as Cλ = 1

2π

∫
FS
dS · Ωλ,

where dS is the elemental surface area of the FS. Using
the divergence theorem, and capturing the Fermi surface
via the Heaviside step function [Θ(µ− ελ)], we have

Cλ=
1

2π

∫
dk∇k ·ΩλΘ(µ− ελ)

= − 1

2π

∫
dk Ωλ ·∇kΘ(µ− ελ)

=
~

2π

∫
dk Ωλ · vλδ(µ− ελ) . (B1)

Note that in the zero-temperature limit, the above ex-
pression reduces to the electrical chiral anomaly coeffi-
cient defined in Eq. (10). Below, we explicitly calculate
the Cλ.

Case I (µ > 0):— For µ > 0, there are two Fermi

wave vectors kFλ = −λkα +
√
k2
α + 2mµ/~2 with λ = ±,

corresponding to two FSs of the two bands. The kF+
(kF−) corresponds to the inner (outer) FS. Now, using
the expressions of vλ, Ωλ, and the δ-function property,
Cλ for each band λ becomes

Cλ=
~

2π

∫
dk
−λ
2k2

(
~k
m

+ λ
α

~

)
δ(µ− ελ) ,

= −λ
∫
dk

(
~2k

m
+ λα

)
δ(kFλ − k)

|ε′λ|
. (B2)

Here, ε′λ is the first derivative of ελ with respect to k.
Evaluating this integral yields Cλ = −λ.

Case II (µ < 0):— For µ < 0, there is only one car-
rier pocket, which looks like an annular sphere. It has
two surfaces, the inner and the outer surfaces. Also, the
energy dispersion is non-monotonic (see Fig. 4). Conse-
quently, in the region near the Kramers-Weyl node, the
band velocity is negative, while in other regions, the band
velocity is positive. As a result, we have regions within
the same pocket that have opposite signs of the chiral
magnetic velocity (∝ vλ · Ωλ). This ensures that the
Berry curvature flux through the entire FS calculated us-
ing Eq. (B1) is zero. Hence, we expect that there should
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not be any chiral anomaly for µ < 0.
However, in Ref. [47], the authors discussed the chiral

anomaly for µ < 0 with the idea of partitioning the FS
into two regions based on the sign of the chiral mag-
netic velocity. Below, we discuss this in detail. We
show the partitioning of the FS in Fig 4, with the blue
and red regions representing the two different partitions.
Here, the χ is used as the index for denoting the inner
(outer) region of the FS, with χ = −1 for the blue region
(χ = +1 for the red region). To calculate the Berry cur-
vature flux using Eq. (B1), we first compute the Fermi
wave vectors corresponding to the two different regions
of the Fermi pocket of the λ = −1 band. The Fermi
wave vectors corresponding to the inner (χ = −1) and
outer (χ = −1) boundary of the Fermi pocket is given by

kFχ = kα + χ
√
k2
α + 2mµ/~2. Recall that kα = mα/~2,

which corresponds to the minima in the energy of the
λ = −1 band. The χ = − (+) region of the Fermi pocket
correspond the kF− < k < kα (kα < k < kF+). These re-
gions are represented by blue and red colors, respectively,
in Fig. 4. For λ = −1 band, the Cλ is given by

Cλ =
~

2π

∫
dk

1

2k2

(
~k
m
− α

~

)
δ(µ− ε−) . (B3)

Now, for either of the two regions, the above equation
reduces to

Cχλ =

∫
dk

(
~2k

m
− α

)
δ(kFχ − k)

|ε′−|
. (B4)

As the band velocity, ε′− = ~2k/m − α is negative (pos-

itive) for the region with kF− < k < kα (kα < k < kF+),
Eq. (B4) yields Cχλ = χ. We note again that the sign of
Cχλ is essentially tied to the sign of the chiral magnetic ve-
locity proportional to the (Ωλ · vλ) term. We emphasize
that without partition of the FS, Eq. (B3) itself yields
zero due to the two different roots of the δ-function (kF+
and kF−). This partitioning of the Brillouin zone, as per
the sign of the chiral magnetic velocity, allows one to de-
fine two regions of FS with opposite Berry curvature flux
quantum. This had been used in Ref. [47] to discuss the
continuity equation and the associated electrical chiral
anomaly for µ < 0, on the same footing as we have dis-
cussed for µ > 0 [47] in the main text. While partitioning
a single electron pocket to define carriers of different ‘fla-
vors’ is mathematically appealing, we believe that this
way of defining the chiral anomaly is superfluous and
not physical.

Here, we present a counter-example to establish the
above claim. Consider a 3D electron gas (without any
SOC, without any magnetic field), with an electric field
applied along the x-direction. We can divide the Fermi
sphere of the system into two halves with positive and
negative velocities along the x-axis and treat the parti-
cles with opposite velocities as having different flavors
(s = ±). In the bottom panels (c) and (d) of Fig. 4,
we have schematically shown this partitioning of the
FS. The particles in the blue (red) region with s = +1

a) b)

d)c)

FIG. 4. a) The band dispersion and the Brillouin zone par-
titioning for the λ = −1 band of a 3D SOC system. For the
blue-shaded region with negative band velocity, the Berry cur-
vature flux is −1, while the Berry curvature flux is +1 for the
red-shaded region with positive band velocity. b) The corre-
sponding cross-section of the Fermi surface for µ < 0 for the
λ = −1 band, highlighting the two partitions of the Fermi
pocket. c) The band dispersion of 3D electron gas without
SOC. This trivial system can also be partitioned into red and
blue regions depending on the sign of the x component of the
band velocity. d) The cross-section of the spherical FS for a
3D electron gas in the kx − ky plane.

(s = −1), have positive (negative) velocity. In the pres-
ence of only an electric field along the x-direction, the
collisionless Boltzmann equation [Eq. (12) with λ → s
and Icoll{gλ} = 0], upto first order in the electric field
strength, becomes

∂gs
∂t
− eEvsx

∂fs
∂ε

= 0 . (B5)

Here, gs (fs) is the non-equilibrium (equilibrium Fermi
Dirac) distribution function for the s region of the Bril-
louin zone. Integrating the above equation over all the
momentum states within the respective partition of the
FS, we obtain

∂Ns
∂t

+ s
eE

2π3

(
2mµ

~2

)3/2

= 0 . (B6)

The above equation resembles Eq. (4), indicating the pos-
sibility of a “chiral anomaly” in a normal 3D electron gas.
However, this cannot be physical and is very unlikely to
be correct. Due to this, we believe that the partitioning
of the BZ to divide one electron/hole pocket into mul-
tiple partitions is not physically acceptable. However,
the partitioning of the BZ to include full electron/hole
pockets is acceptable, and this forms the basis of valley
physics in 2D and chiral anomaly related physics in 3D
systems.

Having discussed the chiral anomaly for µ < 0, we
conclude this Appendix with a small discussion on the
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chirality of ‘Weyl’-type nodes and the Berry curvature
flux quantum. For the WSM, the Berry curvature flux
through the FS of a node represents the ‘chirality’ of that
node, irrespective of the conduction or the valence band.
This is easily seen because, in the m → ∞ limit, the
Hamiltonian in Eq. (1) reduces to the Hamiltonian for
a single Weyl node HWSM. In contrast to the bands
of Hamiltonian in Eq. (1), both bands of HWSM are
monotonous (around the nodal point) and only one FS
exists at any particular energy. Then a straightforward
calculation following Eq. (B2) yields, Cλ = −sign(α) for
both the conduction and valence band ofHWSM. Because
the Cλ depends on the sign of α, the Berry curvature flux
quantum becomes opposite for opposite chirality nodes
where α has the opposite sign. This establishes that
for WSM, the chirality of each Weyl node can be rep-
resented as the Berry curvature flux quantum through
the node [5, 17, 61, 83]. However, for the Kramers-Weyl
nodes, the Berry curvature flux quantum and the chiral-
ity of the node are not identical. The chirality of the
Kramers-Weyl nodes depends on the sign of α for Hamil-
tonian (1), which is specific to a given TRIM point of the
material [50].

Appendix C: Calculation of equilibrium currents

In this Appendix, we derive the expressions of the equi-
librium currents obtained in Eqs. (8a) and (8b). In the
presence of only a magnetic field, the velocity of the cen-
ter of mass of the wave packets for the carriers in each
band is given by ṙλ = Dλ

[
vλ + e

~ (vλ ·Ωλ)B
]
. The equi-

librium charge current for the FS λ (corresponding to
each band) is given by

jλe,eq = −e
∫

[dk]ṙfλ = −eB
∫

[dk]
e

~
(vλ ·Ωλ)fλ . (C1)

Here, we have used the fact that the band velocity vλ
does not contribute to the equilibrium current (due to
angular integration being zero). Now, we use the identity
∇k ·(ελΩλ) = ∇kελ ·Ωλ+ελ∇k ·Ωλ to express the above

equation as,

jλe,eq= −e
2B

~2

∫
[dk] [∇k · (ελΩλ)− ελ∇k ·Ωλ] fλ (C2)

= −e
2B

~2

∫
[dk]∇k · (ελΩλ)fλ (C3)

=
e2

~2
B

∫
[dk]ελΩλ · k̂

∂fλ
∂k

, (C4)

= −eB
∫

[dk] (µ+ ελ − µ)
e

~
(vλ ·Ωλ)

(
−∂fλ
∂ελ

)
,

= −e
(
µCλ0 + kBTCλ1

)
B. (C5)

To evaluate Eq. (C3), we have used the fact that ∇k ·
Ωλ = ±2πδ3(k), for a system with doubly degenerate
band touching point with linear dispersion. This makes
the last integral of Eq. (C2) to be zero. To obtain
Eq. (C4) from Eq. (C3), we have used integrations by
parts. Here, we have defined Cλν as,

Cλν =

∫
[dk]

e

~
vλ ·Ωλ

(
ε− µ
kBT

)ν (
−∂fλ
∂ελ

)
. (C6)

These can also be rewritten in terms of Cλ given in
Eq. (10). The energy current, jλε,eq, can be evaluated
in a similar manner.

Appendix D: Details of spin current calculations

To calculate the spin current proportional to the E ·B
(or ∇T · B), we consider the band velocity term of
Eq. (6a) and calculate the spin current operator. The
band velocity operator along the i-direction is given by
v̂i = ~ki

m σ0 + α
~σi. Without loss of generality, here we

show the calculation of spin current in the x-direction.
Using the expressions of the eigenstates and the spin
current operator given in the main text, we obtain
〈uλ| Ĵsxx |uλ〉 = (α/~ + λ~kx sin θk cosφk/m). Now, the
chiral anomaly induced spin current is given by

jsxx = τv
∑

λ

∫
[dk]

(
α

~
+ λ

~kx
m

sin θk cosφk

)(
δµλ +

ελ − µ
T

δTλ

)(
−∂fλ
∂ελ

)
. (D1)

In the βµ→∞ limit, writing the expressions of δµλ and δTλ explicitly, we have

jsxx =τv
∑

λ

[Dλ1Cλ0
Dλ2Dλ0

L1 −
Cλ0
Dλ0
L0

]
eE ·B −

[Dλ1Cλ2
Dλ2Dλ0

L0 −
Cλ2
Dλ2
L1

]
kB∇T ·B. (D2)

The definition of Lν is given in the main text. We eval-
uate the Lν using the Sommerfeld approximation in the

µ� kBT limit. We obtain the following expressions

L0= −λm
2α2

6π2~5

[µ̃− µ̃2 + 2(1 + µ̃)]

1 + µ̃
, (D3)

L1=
kBT

9~3

(−λ+
√

1 + µ̃)[λ(2 + µ̃) +
√

1 + µ̃]

(1 + µ̃)3/2
. (D4)
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Using these expression along with Cλν and Dλν in Eq. (D2),
we obtain the spin conductivities of Eqs. (34) and (35).
Following a similar procedure, we can calculate other spin
currents.

We show that due to rotational symmetry j
sj
i = 0

for i 6= j. Without loss of generality, we will explicitly
show the calculation for jszx . The expectation value of

the spin current operator Ĵszx is given by 〈uλ| Ĵszx |uλ〉 =
λ p

2m sin 2θk cosφk. Now, as the distribution function is
independent of θk and φk, so the angular integration over
φk of the 〈uλ| Ĵszx |uλ〉 yields jszx = 0. Similarly, all the
spin currents with spin polarization perpendicular to the
propagation velocity can be easily shown to be zero due
to the vanishing angular integration over φk.
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[27] K. Landsteiner, E. Meǵıas, and F. Pena-Benitez, Gravi-
tational anomaly and transport phenomena, Phys. Rev.
Lett. 107, 021601 (2011).

[28] A. Lucas, R. A. Davison, and S. Sachdev, Hydrodynamic
theory of thermoelectric transport and negative magne-
toresistance in weyl semimetals, Proceedings of the Na-
tional Academy of Sciences 113, 9463 (2016).

[29] J. Gooth, A. C. Niemann, T. Meng, A. G. Grushin,
K. Landsteiner, B. Gotsmann, F. Menges, M. Schmidt,
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