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We construct a general theory of adiabatic propagation of spinor exciton-polaritons in waveguides
of arbitrary shape, accounting for the effects of TE-TM splitting in linear polarizations and Zeeman
splitting in circular polarizations. The developed theory is applied for the description of waveguides
of periodically curved shape. We show that in this geometry the periodic rotation of the effective
in-plane magnetic field produced by TE-TM interaction results in a nontrivial band-gap structure,
which can be additionally tuned by application of an external magnetic field. It is also demonstrated,
that spin-dependent interactions between polaritons lead to the formation of stable gap solitons.

Introduction. Exciton-polaritons are composite half-
light half-matter quasiparticles emerging in the regime
of the strong coupling between a photonic mode of a
planar semiconductor microcavity and an exciton in a
quantum well (QW) brought in resonance with it. They
possess a set of remarkable properties, which allow po-
laritonic systems to serve as a convenient playground for
study of collective nonlinear phenomena at elevated tem-
peratures [1]. From their photonic component polaritons
get extremely small effective mass (about 10−5 of the
mass of free electrons) and macroscopically large coher-
ence length [2], while the presence of an excitonic com-
ponent enables efficient polariton-polariton interactions
[3–5] and leads to the sensitivity of the polariton systems
to external electric [6–8] and magnetic [9–11] fields.

An important property of cavity polaritons is their spin
(or pseudo-spin) [12], inherited from the spins of QW ex-
citons and cavity photons. Similar to photons, polari-
tons have two possible spin projections on the structure
growth axis corresponding to the two opposite circular
polarizations which can be mixed by effective magnetic
fields of various origin. Real magnetic field applied along
the structure growth axis and acting on the excitonic
component splits in energy the polariton states with op-
posite circular polarizations, while TE-TM splitting of
the photonic modes of a planar resonator couples these
states to each other via a k-dependent term, thus playing
a role of an effective spin-orbit interaction [12]. Impor-
tantly, polariton-polariton interactions are also spin de-
pendent, as they stem from the interactions of excitonic
components which are dominated by the exchange term
[13]. This leads to the fact that polaritons of the same cir-
cular polarization interact orders of magnitude stronger
than polaritons with opposite circular polarizations [3].

Remarkable tunability of cavity polaritons allows to
engineer their spatial confinement in a variety of ex-
perimental geometries, ranging from individual micropil-
lars [14–17] to systems of several coupled pillars form-
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ing so-called polariton molecules [18, 19] or periodically
arranged arrays of the pillars forming polariton super-
lattices [20–24]. Realization of quasi one-dimensional
(1D) geometries, where the motion of the polaritons is
restricted to individual waveguides [7, 25], rings [26–28]
or systems of coupled waveguides [29, 30], represents par-
ticular interest from the point of view of the applications
of polaritonics, as they can form basis for classical [31–33]
and quantum [34, 35] polaritonic circuits.

Current state of technology allows routine production
of quasi 1D polariton waveguides of arbitrary shape, in-
cluding ones with periodically modulated curvature. Cre-
ation of the general theory of the polariton propagation
in these structures, which includes polarization dynam-
ics and polariton-polariton interactions, is the goal of the
present Letter.

The model. The presence of the in-plane spatial con-
finement results in the strong nonequivalency of the
states polarized normally and tangentially to a waveg-
uide, which leads to the appearance of a local effective
magnetic field, acting on a polariton pseudospin and di-
rected tangentially to the waveguide. Although one can
safely assume that in the case of a narrow waveguide of
a constant width the absolute value of this field remains
constant (see Supplementary material [36] for further de-
tails), its direction changes along the curved waveguide,
and, as we demonstrate below, this has crucial effect on
polariton dynamics.

Let us suppose that the shape of a waveguide in (x, y)-
plane is given parametrically as x = x(ξ), y = y(ξ). The
components of the effective magnetic field Ωx,y produced
by TE-TM interaction are proportional to the compo-
nents of the unit vector tangential to a waveguide τx,y
and thus read

Ωx = Ω0τx =
Ω0x

′(ξ)√
x′(ξ)2 + y′(ξ)2

, (1)

Ωy = Ω0τy =
Ω0y

′(ξ)√
x′(ξ)2 + y′(ξ)2

, (2)
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FIG. 1: (a) Schematic representation of the considered geom-
etry of a 1D polariton waveguide etched in planar semicon-
ductor microcavity. The arc length ` measures the distance
along the waveguide. Direction of the in-plane tangential unit
vector ~τ = (τx, τy) changes along the waveguide and leads to
emergence of an effective space-dependent field for the spinor
polariton wavefunction. (b,c) Real and imaginary parts of
the L-periodic effective potentials Ω(`) for a waveguide com-
posed of a chain of touching halfcircles (b) and a sine-shaped
waveguide (c).

where primes correspond to derivatives, and

Ω0 ≈
~2

4d2

(
1

ml
− 1

mt

)
. (3)

In the above equation, ml and mt stand for the effective
longitudinal and transverse masses of 2D polaritons, and
d is an effective width of a polariton channel [37]. As it
was already mentioned, the presence of the field Ω splits
in energy the modes polarized normally and tangentially
to a waveguide. Additional splitting in circular polar-
izations, denoted by ∆z, can be induced by application
of an external magnetic field perpendicular to a cavity
interface.

Let us introduce the coordinate ` along the waveguide,

` =
∫ ξ
0

√
x′(η)2 + y′(η)2dη. In the adiabatic approxi-

mation, the effective 1D Hamiltonian governing the dy-
namics of the spinor wavefunction of polaritons can be
then represented in the following form (see Supplemen-

tary material [36] for corresponding derivation):

Ĥ =

 −
~2

2meff

d2

d`2
+

∆z

2
Ω−

Ω+ − ~2

2meff

d2

d`2
− ∆z

2

 , (4)

where

Ω± = Ω(`) = Ω0(τx ± iτy)2, (5)

and meff is the effective mass.
The physical meaning of the above Hamiltonian is

pretty clear: it describes a motion of a one-dimensional
spinor particle affected by a constant z-directed magnetic
field and in-plane magnetic field whose direction changes
along the way, being always tangential to the waveguide.

In what follows, we will work with the effective Hamil-
tonian rewritten in the dimensionless form. To this end,
we introduce the unit length λ0 and the unit energy
ε0 ≡ ~2/(2meffλ

2
0), and then rescale the variables of

(22) as ` → λ0` and ∆z → ε0∆z. Additionally, we
rescale time as t → (~/ε0)t. Assuming, for instance,
that the unit length λ0 corresponds to 5 µm and meff

is about 10−5 of the free electron mass, we obtain that
the unit energy ε0 is about 0.2 meV, and the time unit
~/ε0 is equivalent to few picoseconds. Supplementing the
obtained dimensionless Hamiltonian with the interaction
terms [38], we obtain the following nonlinear evolution
problem that governs the dynamics of the spinor wave-
function (Ψ1,Ψ2):

i
∂Ψ1

∂t
= −∂

2Ψ1

∂`2
+

∆z

2
Ψ1 + Ω−(`)Ψ2

+(|Ψ1|2 + σ|Ψ2|2)Ψ1, (6)

i
∂Ψ2

∂t
= −∂

2Ψ2

∂`2
− ∆z

2
Ψ2 + Ω+(`)Ψ1

+(|Ψ2|2 + σ|Ψ1|2)Ψ2. (7)

Small negative coefficient σ takes into account weak at-
traction between polaritons of opposite polarizations (in
our numerical calculations the value σ = −0.05 was
used).
Examples: The chain of halfcircles and the sine-shaped

waveguide. In what follows, we focus on the situation
when the shape of the curved waveguide can be de-
scribed by function y(x), see Fig. 1(a) for a schemat-
ics of the assumed geometry. Then the effective field,
as a function of the arc length `, can be computed as
Ω±(`) = Ω0 exp{±2i arctan(dy/dx)}, where the deriva-
tive dy/dx should be expressed as a function of `. In our
further consideration we focus on the case of periodically
curved waveguides.

As a first analytically tractable example we consider
the situation when the waveguide is composed of a peri-
odic chain of touching halfcircles of a radius R. In terms
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FIG. 2: Transformation of the band-gap structure for the sine-shaped waveguide under the fixed TE-TM splitting coefficient
Ω0 = 0.45 and increasing strength of the external magnetic field ∆z. Here the Bloch quasimomentum k varies within the reduced
Brillouin zone [−π/L, π/L), where L is the spatial period of the structure. The periodic curvature results in a nontrivial band-
gap structure. Finite bandgaps are present even in the absence of the external magnetic field (∆z = 0). The increase of ∆z

leads to the anticrossings of the bands touching at k = 0 and related shift of the band minima and maxima to k 6= 0.

of coordinates x and y, the unit cell of the resulting
periodic structure is given as y(x) =

√
R2 − (x−R)2

for x ∈ [0, 2R] (the upper halfcircle) and y(x) =
−
√
R2 − (x− 3R)2 for x ∈ [2R, 4R] (the lower halfcir-

cle). In terms of the arc length `, the unit cell cor-
responds to the interval ` ∈ [0, L] where L = 2πR
is the period of the structure. The first halfperiod
` ∈ [0, πR] corresponds to the first halfcircle, where
x(`) = R[1 − cos(`/R)] and y(`) = R sin(`/R), and the
second halfperiod ` ∈ [πR, 2πR] corresponds to the sec-
ond halfcircle, where we have parametrization x(`) =
R[3 + cos(`/R)] and y(`) = R sin(`/R), and the rest of
waveguide is obtained by the periodic repetition of the
unit cell. Performing straightforward calculations, we ob-
tain that within the unit cell the resulting potential reads
Ω±(`) = −Ω0 exp{∓2i` sign (πR − `)/R}. The shape
of the resulting dependency is illustrated in Fig. 1(b).
While the obtained dependence is rather simple, its imag-
inary part is not a smooth function: it has a cusp exactly
at the center of the unit cell ` = πR, where the two half-
circles touch.

As a second example, which results in a smooth peri-
odic potential (which is therefore better suited for the
numerical analysis), we consider a sine-shaped waveg-
uide y(x) = V0 sinx. Then the arc length along the
waveguide is given by the incomplete elliptic integral of
the second kind [39]: `(x) =

√
1 + V 2

0 E(sinx,m), where
m = V 2

0 /(1 + V 2
0 ). To the best of our knowledge, there

is neither a commonly used special function nor a closed-
form expression that allows to invert the incomplete el-
liptic integral of the second kind, i.e., to express x and
y through ` in our case. In the meantime, there exists a
simple iterative numerical procedure for inversion of the
incomplete elliptic integral of the second kind [40]. Us-
ing this procedure, one can easily obtain the dependence
Ω(`), see Fig. 1(c) for a representative example. The
resulting 1D Hamiltonian Ĥ defined by (22) becomes ef-
fectively periodic with the spatial period in ` given as

L = 4E(m), where E(m) is the complete elliptic integral
of the second kind.

Band structure. Periodic nature of the resulting sys-
tem suggests to look at the band structure which can
be presented in the form of the dependencies of the en-
ergy E versus Bloch quasimomentum k, which, without
loss of generality, can be assumed to belong to the Bril-
louin zone [−π/L, π/L), where L is the period. For sinu-
soidal waveguide the result computed for system (6)–(7)
with omitted nonlinear terms (|Ψ1,2|2 + σ|Ψ2,1|2)Ψ1,2 is
shown in Fig. 2. We have focused on the transforma-
tion of the spectral structure subject the the increase
of the external magnetic field, which is characterized by
the Zeeman splitting coefficient ∆z. As one can see, the
periodic curvature of a waveguide results in a nontriv-
ial band-gap structure as the effective periodic potential
Ω(`) opens finite gaps even in the absence of the external
magnetic field (∆z = 0). The increase of ∆z leads to
a transformation of the band-gap structure. In particu-
lar, it leads to the anticrossing of the bands touching at
k = 0 and related shift of the band minima and max-
ima to k 6= 0. Dispersion curves having two degenerate
extrema at k = ±k0 6= 0 can be, in particular, relevant
for the observation of the so-called stripe phase charac-
terized by spinor wavefunctions carrying a more complex
internal structure, see e.g. [41–45] and [46] for discussion
of stripe phase and stripe solitons in spin-orbit coupled
atomic and polariton condensates, respectively.

Gap solitons. The presence of finite gaps in the band-
gap structure suggests that when the repulsive interac-
tions between the polaritons of the same circular po-
larization are taken into account, the waveguide can
support formation of polariton gap solitons [22, 46–51].
These localized states can be found using the substitu-
tion Ψ1,2(t, `) = e−iµtψ1,2(`), where stationary wavefunc-
tions ψ1,2(`) satisfy zero boundary conditions at ` → ∞
and ` → −∞, and µ characterizes the chemical poten-
tial of the polariton condensate. The numerical study
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indicates that the system supports a variety of solitons
which form continuous families, i.e., can be parameter-
ized by the continuous change of the chemical potential
µ within the energy spectrum bandgap. To describe the
found solitons, we introduce the polariton density inte-
gral N =

∫∞
−∞(|ψ1|2 + |ψ2|2)d` which characterizes the

squared norm of the solution. In Fig. 3(a) we illustrate
the family of fundamental (simplest) gap solitons as a de-
pendence N on µ. The soliton family detaches from the
left edge of the bandgap, where the soliton norm van-
ishes: N → 0. In this limit, small-amplitude solitons
transform to a linear Bloch wave. As the chemical po-
tential increases towards the right gap edge, the total
norm N grows monotonously. To quantify the degree of
the soliton localization, we introduce an additional char-
acteristics n99 which amounts to the number of spatial
periods where 99% of quasiparticles are confined. The de-
pendence n99 on µ is also plotted in Fig. 3(a). It demon-
strates nonmonotonic behavior approaching its minimal
values in the center of the gap. In this regime the soli-
tons are most localized, and almost all energy can be
trapped in the segment of waveguide composed of ap-
proximately from five to ten unit cells. At the same time,
the quantity n99 becomes extremely large near the edges
of the gap, which means that the corresponding solitons
are very broad and relatively poorly localized. Examples
of spatial profiles of solitons having different amplitudes
and degrees of localization are shown in Fig. 3(b).

It is known that gap solitons and, in particular, those
in systems dominated by repulsive nonlinearities, can be
be prone to dynamical instabilities [52–55]. In the mean-
time, using the dynamical simulations, we found that the
family of fundamental gap solitons presented in Fig. 3(a)
contains stable solutions which can robustly preserve the
steady shape for the indefinite simulation time (much
larger than typical polariton lifetimes), even if the ini-
tial profiles are perturbed by a small-amplitude random
noise. Example of such stable dynamics is presented in
Fig. 3(c,d). At the same time, more complex solitons can
develop dynamical instabilities which eventually lead to
their delocalization. The corresponding example is shown
in Fig. 3(e,f).

Conclusion. In conclusion, we constructed a theory of
the propagation of cavity polaritons in narrow quasi-1D
waveguides of arbitrary shape and applied it to the case of
periodically curved waveguides. We demonstrated that
the periodic rotation of an effective in-plane magnetic
field produced by TE-TM splitting in linear polarizations
leads to the formation of nontrivial band structure. The
shape of the bands, the bandgaps and the positions of
the band extrema can be tuned by application of an ex-
ternal magnetic field. In the nonlinear regime the system
supports formation of dynamically stable gap solitons.
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FIG. 3: (a) Gap solitons norm N and the localization measure
n99 as functions of chemical potential µ for a family of funda-
mental gap solitons in the first finite gap. Here the coefficient
of TE-TM splitting Ω0 = 0.4 and amplitude of the Zeeman
splitting ∆z = 0.3. Shaded regions correspond to the values of
µ that belong to spectral bands. (b) Example of a broad soli-
ton near the left edge of the gap (specifically, at µ = 0.24) and
a strongly localized soliton in the center of the gap at µ = 0.5.
(c,d) Stable dynamics of the gap soliton with chemical poten-
tial µ = 0.29. Initial conditions correspond to the stationary
wavefunctions perturbed with a random noise whose ampli-
tude is about 2% of the soliton’s amplitude. (e,f) Example
of unstable evolution of a gap soliton of more complex shape
corresponding to Ω0 = 0.4, µ = 0.4, and ∆z = 0.009.
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[7] D. G. Suárez-Forero, F. Riminucci, V. Ardizzone, M. D.

Giorgi, L. Dominici, F. Todisco, G. Lerario, L. N. Pfeif-
fer, G. Gigli, D. Ballarini, et al., Optica 7, 1579 (2020),
URL https://opg.optica.org/optica/abstract.cfm?

URI=optica-7-11-1579.
[8] J. F. Gonzalez Marin, D. Unuchek, Z. Sun, C. Y. Cheon,

F. Tagarelli, K. Watanabe, T. Taniguchi, and A. Kis,
Nature Comm. 13, 4884 (2022), URL https://www.

nature.com/articles/s41467-022-32292-2.
[9] D. D. Solnyshkov, M. M. Glazov, I. A. Shelykh, A. V.

Kavokin, E. L. Ivchenko, and G. Malpuech, Phys. Rev.
B 78, 165323 (2008), URL https://link.aps.org/doi/

10.1103/PhysRevB.78.165323.
[10] P. Walker, T. C. H. Liew, D. Sarkar, M. Durska, A. P. D.

Love, M. S. Skolnick, J. S. Roberts, I. A. Shelykh, A. V.
Kavokin, and D. N. Krizhanovskii, Phys. Rev. Lett.
106, 257401 (2011), URL https://link.aps.org/doi/

10.1103/PhysRevLett.106.257401.
[11] M. Król, R. Mirek, D. Stephan, K. Lekenta, J.-

G. Rousset, W. Pacuski, A. V. Kavokin, M. Ma-
tuszewski, J. Szczytko, and B. Pietka, Phys. Rev. B
99, 115318 (2019), URL https://link.aps.org/doi/

10.1103/PhysRevB.99.115318.
[12] I. Shelykh, A. Kavokin, Y. Rubo, T. Liew, and

G. Malpuech, Semicond. Sci. Technol. 25, 013001 (2010).
[13] C. Ciuti, V. Savona, C. Piermarocchi, A. Quat-

tropani, and P. Schwendimann, Phys. Rev. B 58,
7926 (1998), URL https://link.aps.org/doi/10.

1103/PhysRevB.58.7926.
[14] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Mi-
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A. Lemâıtre, E. Galopin, P. Braive, R. Senellart,
I. Sagnes, G. Malpuech, and J. Bloch, Nat. Com-
mun. 4, 1749 (2013), URL https://doi.org/10.1038/

ncomms2760.
[49] E. A. Cerda-Méndez, D. Sarkar, D. N. Krizhanovskii,

S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V.
Santos, Phys. Rev. Lett. 111, 146401 (2013), URL
https://link.aps.org/doi/10.1103/PhysRevLett.

111.146401.
[50] E. A. Ostrovskaya, J. Abdullaev, M. D. Fraser, A. S.

Desyatnikov, and Y. S. Kivshar, Phys. Rev. Lett. 110,
170407 (2013), URL https://link.aps.org/doi/10.

1103/PhysRevLett.110.170407.
[51] D. A. Zezyulin, Y. V. Kartashov, D. V. Skryabin, and

I. A. Shelykh, ACS Photonics 5, 3634 (2018), URL
https://doi.org/10.1021/acsphotonics.8b00536.

[52] P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S.
Kivshar, Phys. Rev. A 67, 013602 (2003), URL https:

//link.aps.org/doi/10.1103/PhysRevA.67.013602.
[53] N. K. Efremidis and D. N. Christodoulides, Phys. Rev.

A 67, 063608 (2003), URL https://link.aps.org/doi/

10.1103/PhysRevA.67.063608.
[54] D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar,

Phys. Rev. E 70, 036618 (2004), URL https://link.

aps.org/doi/10.1103/PhysRevE.70.036618.
[55] P. P. Kizin, D. A. Zezyulin, and G. L. Alfimov, Phys-

ica D: Nonlinear Phenomena 337, 58 (2016), ISSN 0167-
2789, URL https://www.sciencedirect.com/science/

article/pii/S0167278916301440.

https://link.aps.org/doi/10.1103/PhysRevLett.126.075302
https://link.aps.org/doi/10.1103/PhysRevLett.126.075302
https://link.aps.org/doi/10.1103/PhysRevB.82.033302
https://link.aps.org/doi/10.1103/PhysRevB.82.033302
https://link.aps.org/doi/10.1103/PhysRevLett.129.057402
https://link.aps.org/doi/10.1103/PhysRevLett.129.057402
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013099
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013099
https://www.nature.com/articles/s42005-022-00810-9
https://www.nature.com/articles/s42005-022-00810-9
https://link.aps.org/doi/10.1103/PhysRevB.98.155428
https://link.aps.org/doi/10.1103/PhysRevB.98.155428
https://link.aps.org/doi/10.1103/PhysRevB.81.045318
https://link.aps.org/doi/10.1103/PhysRevB.81.045318
https://link.aps.org/doi/10.1103/PhysRevLett.105.160403
https://link.aps.org/doi/10.1103/PhysRevLett.105.160403
https://link.aps.org/doi/10.1103/PhysRevLett.107.150403
https://link.aps.org/doi/10.1103/PhysRevLett.107.150403
https://link.aps.org/doi/10.1103/PhysRevLett.108.225301
https://link.aps.org/doi/10.1103/PhysRevLett.108.225301
https://link.aps.org/doi/10.1103/PhysRevLett.110.264101
https://link.aps.org/doi/10.1103/PhysRevLett.110.264101
https://link.aps.org/doi/10.1103/PhysRevLett.111.060402
https://link.aps.org/doi/10.1103/PhysRevLett.111.060402
https://link.aps.org/doi/10.1103/PhysRevB.101.245305
https://link.aps.org/doi/10.1103/PhysRevB.101.245305
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1038/ncomms2760
https://link.aps.org/doi/10.1103/PhysRevLett.111.146401
https://link.aps.org/doi/10.1103/PhysRevLett.111.146401
https://link.aps.org/doi/10.1103/PhysRevLett.110.170407
https://link.aps.org/doi/10.1103/PhysRevLett.110.170407
https://doi.org/10.1021/acsphotonics.8b00536
https://link.aps.org/doi/10.1103/PhysRevA.67.013602
https://link.aps.org/doi/10.1103/PhysRevA.67.013602
https://link.aps.org/doi/10.1103/PhysRevA.67.063608
https://link.aps.org/doi/10.1103/PhysRevA.67.063608
https://link.aps.org/doi/10.1103/PhysRevE.70.036618
https://link.aps.org/doi/10.1103/PhysRevE.70.036618
https://www.sciencedirect.com/science/article/pii/S0167278916301440
https://www.sciencedirect.com/science/article/pii/S0167278916301440


7

SUPPLEMENTAL MATERIAL: DERIVATION OF
THE 1D ADIABATIC HAMILTONIAN

The two-dimensional Hamiltonian of a polariton mov-
ing inside a waveguide defined by a confining potential

U(x, y) is [38]:

Ĥ2D =

 −
~2

2meff

(
∂2

∂x2
+
∂2

∂y2

)
+

∆z

2
+ U(x, y) β

(
∂
∂y + i ∂∂x

)2
β
(
∂
∂y − i

∂
∂x

)2
− ~2

2meff

(
∂2

∂x2
+
∂2

∂y2

)
− ∆z

2
+ U(x, y)

 , (8)

where

β =
~2

4

(
1

ml
− 1

mt

)
. (9)

Let us introduce in each point of a waveguide local
coordinate system with axis ` directed tangential to it
and n normal to it. The elementary lengths d` and dn
read:

d` = τx(`)dx+ τy(`)dy, (10)

dn = −τy(`)dx+ τx(`)dy (11)

where τx,y are components of the unit vector tangential
to the waveguide at a given point characterized by coor-
dinate ` along the waveguide.

We can now right down:

∂

∂x
=
∂`

∂x

∂

∂`
+
∂n

∂x

∂

∂n
= τx

∂

∂`
− τy

∂

∂n
, (12)

∂

∂y
=
∂`

∂y

∂

∂`
+
∂n

∂y

∂

∂n
= τy

∂

∂`
+ τx

∂

∂n
, (13)

∂

∂y
± i ∂

∂x
= ±iτ∓

∂

∂`
+ τ∓

∂

∂n
, (14)

where

τ± = τx ± iτy. (15)

We thus have:

∂2

∂x2
+
∂2

∂y2
=
∂2

∂`2
+
∂2

∂n2
+

(
τy
∂τx
∂`
− τx

∂τy
∂`

)
∂

∂n
,(16)

where we used that

τ2x + τ2y = 1. (17)

Similarly

(
∂

∂y
± i ∂

∂x

)2

= (18)

= τ2∓
∂2

∂n2
− τ∓

∂

∂`
τ∓

∂

∂`
± iτ∓

(
τ∓

∂

∂`
+

∂

∂`
τ∓

)
∂

∂n
.

Let us now suggest that the confining potential locally
depends on the transverse coordinate n only, and use adi-
abatic approximation for the spinor wavefunction Ψ(x, y)
representing it as:

Ψ(x, y) = ψ(`)φ(n), (19)

where the part ψ(`) describes the propagation of the po-
laritons along the waveguide, and φ(n) corresponds to
their 1D lateral confinement and can be taken real. This
approximation holds if an effective thickness of a waveg-
uide d is much less then its local curvature R, which for
a parametrically given curve is given by

R =

[
x′(ξ)2 + y′(ξ)2

]3/2
|x′(ξ)y′′(ξ)− y′(ξ)x′′(ξ)|

. (20)

Multiplying the Schrödinger equation Ĥ2DΨ = EΨ by
φ(n) and integrating by n from −∞ to +∞, one gets for
the dynamics of the propagation along the channel the
following 1D Schrödinger equation:

Ĥψ(`) = Eψ(`), (21)

where
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Ĥ =


E0 −

~2

2meff

d2

d`2
+

∆z

2
Ω− − βτ−

d

d`
τ−

d

d`

Ω+ − βτ+
d

d`
τ+

d

d`
E0 −

~2

2meff

d2

d`2
− ∆z

2

 , (22)

and we have used that∫ +∞

−∞
φ(n)

dφ

dn
dn = 0, (23)

and

E0 =

∫ +∞

−∞
φ(n)

(
− ~2

2meff

d2

dn2
+ U(n)

)
φ(n)dn (24)

is the energy of the confinement, and

Ω± = βτ2±

∫ +∞

−∞
φ(n)

d2φ

∂n2
dn ≈ β

d2
τ2± = Ω0τ

2
±, (25)

where d is an effective width of the confining channel, and
we used Gaussion approximation, φ(n) = d

√
πe−n

2/(2d2)

Note, that E0 is just a constant, which can be safely
dropped. As for the off-diagonal terms βτ±

d
d`τ±

d
d` , one

can note, that by the order of magnitude d/d` ∼ k, where
k is a wavenumber, describing the propagation of the
polaritons along the waveguide. Therefore, for narrow
waveguides and small k, when k � d−1, these terms
can be neglected as compared to Ω±, and one gets the
Hamiltonian (4) of the main text.


	 Acknowledgments
	 References
	 Supplemental Material: Derivation of the 1D adiabatic Hamiltonian

