
Lieb lattices and pseudospin-1 dynamics under barrier- and

well-like electrostatic interactions
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Abstract

This work considers the confining and scattering phenomena of electrons in a Lieb lattice
subjected to the influence of a rectangular electrostatic barrier. In this setup, hopping
amplitudes between nearest neighbors in orthogonal directions are considered different, and
the next-nearest neighbor interaction describes spin-orbit coupling. This makes it possible to
confine electrons and generate bound states, the exact number of which is exactly determined
for null momentum parallel to the barrier. In such a case, it is proved that one even and
one odd bound state is always generated, and the number of bound states increases for non-
null and increasing values of the parallel momentum. That is, current-carrying states are
generated. In the scattering regime, the energies are determined so that resonant tunneling
occurs. The existence of perfect tunneling energy in the form of super-Klein tunneling is
proved to exist regardless of the bang gap opening. Finally, it is shown that perfect reflection
appears when solutions are coupled to the intermediate flat-band solution.

1 Introduction

The theoretical and experimental progress in the physics of graphene and other Dirac materials
has become a trending topic in material science and theoretical physics [1,2]. Many remarkable
properties of these materials follow from the fact that dynamics of low-energy quasi-particles is
described by equations known in relativistic quantum mechanics. It makes it possible to test
relativistic properties such as Klein tunneling [3,4], relativistic Landau levels, and the existence
of pseudoparticles violating the Lorentz invariance [5, 6] (type-II Dirac fermions). Graphene
mono- and multi-layer systems exhibit transport properties such as quantum Hall effect [7] and
anomalous quantum Hall effect [8], and Josephson effect in twisted cuprate bilayers [9].

Graphene has shown to be a helpful benchmark system to test the properties of relativistic
pseudospin-1/2 particles in low-energy systems. Nevertheless, the family of Dirac materials
also contains other, equally interesting, members. Their geometries can extend beyond the
honeycomb lattice. For instance, there are Kagome [10], Dice or α − T3 [11, 12], and Lieb
lattices [13, 14], which lead to effective pseudospin-1 Dirac equations. It was recently showed
that the Kagome lattice can be obtained from a geometrical deformation of the Lieb lattice [15].
For a recent survey of two-dimensional lattices and their physical properties and realization,
see [16].

Particularly, the Lieb lattice is a two-dimensional array with a periodicity of a square lattice.
The sites are located in the corners of each square and at the midpoints on its sides. To our
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best knowledge, the Lieb lattice has not been found in nature. However, it has been prepared
artificially in diverse ways [17, 18], and was realized in experiments with optical fibers [19–23].
Furthermore, it was formed by ultracold atoms trapped in optical lattices [24] or by electrons
of Cu(111) atoms confined by an array of CO molecules [25]. It was also prepared in covalent-
organic frameworks [26].

The tight-binding model accurrately describes the band structure of the Lieb lattice, which
reveals the existence of two bands with positive and negative energies, and an additional so-called
flat band. The latter is associated with the states that have fixed (zero) energy independent of
the value of momentum. It is worth mentioning that the flat band solutions were prepared in
the optical experiments [22, 23]. Similarly to graphene, the dynamics of the low-energy quasi-
particles in the Lieb lattice is dictated by a relativistic Dirac-type equation. Nevertheless, these
quasi-particles have pseudospin-1 due to the existence of three atoms per unit cell.

In the current article, we investigate the scattering and confinement of the relativistic quasi-
particles by a rectangular electric potential in the Lieb lattice with a gapped band structure.
Gap-opening can be induced by on-site energy that differs on three sublattices or by the phase
acquired by the electron when jumping between the neighboring sites [24], see also [27]. In
this article, we adopt the second approach where a purely imaginary next nearest-neighbor
interaction, attributed to spin-orbital coupling [13], is taken into account.

Effects such as electron confinement and transmission are obtained with the aid of the proper
boundary conditions, which enforce the continuity on two out of the three pseudospin-1 compo-
nents. The third component can be discontinuous, which leads to a spatial discontinuity in the
probability density. Nevertheless, it does not compromise the associated continuity equation.
Electron dynamics for electrostatic interactions in graphene have been discussed in the litera-
ture, such as the transmission properties in square barriers [28,29] and electron confinement with
cylindrical quantum dots [30]. We thus focus on the related properties of the quasi-particle dy-
namics in the Lieb lattice. We further analyze the influence of the flat-band solution in electron
dynamics. As shown in the manuscript, solutions in this regime are described by degenerate
Bloch-wave solutions whose linear combinations can compose wavepackets of arbitrary form.
These are shown to be current-free solutions regardless of the nature of the wavepacket. As a
result, one obtains perfectly reflected waves when they couple to flat-band solutions.

The manuscript is structured as follows. In Sec. 2 we briefly introduce and discuss the main
properties of the Lieb lattice with nearest and next-nearest neighbor interactions, from which
the effective low-energy Dirac equation is obtained. In Sec. 3, we present the general solutions
and the transfer matrix associated with the rectangular electrostatic interaction. The latter
is then exploited in Sec. 4 and Sec. 5 to discuss in full detail the localization of electrons and
scattering dynamics, respectively. Finally, discussions and perspectives are provided in Sec. 7,
and complementary details about the proof of the number of bound states are given in App. A.

2 Lieb lattice and pseudospin-1 Dirac equation

Let us consider an electronic Lieb lattice 1 so that the separation between two nearest atoms is
a, the length of each side of the square is ` = 2a. There are three sites in the elementary cell, see
Fig. 1a. The primitive translation vectors are ~r1 = 2ax̂ and ~r2 = 2aŷ. It is customary to denote

1The results here obtained apply to optical Lieb lattices as well.

2



(a) (b)

Figure 1: (a) Lieb lattice, composed by the atoms A (blue circle), B (green diamond), and C
(red-filled square). The dashed arrows denote the direction of positive phase hopping parameter
between next-nearest neighbors B − C. (b) Composition of a unit cell of the Lieb lattice. The
unit displacement vectors ~δ1 = ax̂ and δ̂2 = aŷ connect the atom A with B and A with C,
respectively. The corresponding nearest hopping parameters are t1, t2, whereas the next-nearest
neighbor hopping parameter is +it3 and −it3 depending if it occurs in the direction denotes by
the arrows.

the atoms at the corners of the square as A, whereas the atoms at the sides of the square are B
(horizontal) and C (vertical). The lattice vectors ~δ1 = ax̂ = ~r1/2 and ~δ2 = aŷ = ~r2/2 connect an
atom on the site A to those on the sites B and C, respectively (see Fig. 1b). The atoms A, B and
C form the three sublattices RA = n1~r1 +n2~r2, RB = R̃A+~δ1, and RC = ~RA+~δ2, respectively,
with n1, n2 ∈ Z. The reciprocal space is spanned by the translation vectors of the reciprocal
space r̂k1 and r̂k2 , r̂p · r̂kq = 2πδp,q, p, q = 1, 2. This leads to r̂k1 = π

a x̂ and r̂k2 = π
a ŷ. The

first Brillouin zone, constructed from the Wigner-Seitz rule, restricts to the region composed by
kx ∈ [− π

2a ,
π
2a ] and ky ∈ [− π

2a ,
π
2a ].

The band structure of the electrons on the Lieb lattice can be analyzed with the use of the
tight-binding model. There are considered the nearest neighbor (NN) interactions between the
sites A−B and A−C, represented by the hopping parameters t1 and t2, respectively. We take
into account also the next-nearest neighbor (NNN) transition B − C, which can be complex
valued, with the sign of phase dependent on the orientation of the hopping. This emerges due
to external time-dependent driven fields in photonic Lieb lattices [31], and magnon Lieb and
Kagome lattices [32].

In particular, we consider a purely imaginary NNN hopping parameter e±iπ/2t3, where the
hopping phase is positive (+) is the hopping occurs counter-clock-wise, and negative (−) oth-
erwise. Such a hopping dynamics is depicted in Fig. 1a. This type of hopping was introduced
by Haldane in [8] as a model for quantum anomalous Hall effect in graphene without strong
external magnetic fields, which was latter found experimentally in [33]. This configuration has
been recently implemented in a dice lattice [34] and experimentally in a honeycomb magnon
lattice [35] to explore the topological properties and phase transitions of such systems. See
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(a) t3 = 0 (b) t3 6= 0

Figure 2: Dispersion bands w+(~k) (yellow-upper), w−(~k) (green-lower), and w0(~k) (blue-middle)
for the gapless (a) and gapped (b) configurations.

also [36] for a recent review.

The spectral analysis of the tight-binding Hamiltonian reveals the triple-band spectrum [13],

w0(~k) = 0, w±(~k) = ±2
√
t21 cos2(akx) + t22 cos2(aky) + 4t23 sin2(akx) sin2(aky). (1)

The bands have linear dependence on the momentum around the Dirac point situated in the
first Brillouin zone, the explicit position of which depends on the relative strength of t3. In this
work, we focus on the most relevant situation where t3 <

t1
2 , t3 <

t2
2 . In that case, the Dirac

point is ~K = ( π2a ,
π
2a), see Fig.2b for illustration. A similar analysis holds for higher values of t3,

where the Dirac points are displaced with respect to ~K. For a detailed discussion, see [13].

Let us calculate the approximate form of the tight-binding Hamiltonian in the vicinity of the
Dirac point ~K. We denote the effective operator as H(~k) ≡ H( ~K + ~k), where |~k| is considered
small enough so that we can keep terms up to first-order in ~k. The proper expansion of H(~k)
at the Dirac point ~K can be conveniently written as

H(~k) = 2at1kxS1 + 2at2kyS2 + 4t3S3. (2)

The matrices

S1 =

0 1 0
1 0 0
0 0 0

 , S2 =

0 0 1
0 0 0
1 0 0

 , S3 =

0 0 0
0 0 −i
0 i 0

 , (3)

form the three-dimensional representation of su(2) algebra, [Sp, Sq] = iεpqrSr, with εpqr the
three-dimensional anti-symmetric tensor. Therefore, the quasi-particles described by the effec-
tive Hamiltonian (2) have pseudospin 1.

It is worth noting that, for t3 = 0, the resulting Dirac Hamiltonians in (2) becomes linear
combinations of the spin-1 matrices S1 and S2. In such a case, the matrix S̃,

S̃ =

−1 0 0
0 1 0
0 0 1

 , (4)
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satisfies {S̃, Sj} = 0, with j = 1, 2, and represents the chiral symmetry of H as there holds

{S̃,H|t3=0} = 0. The later relation implies that the eigenvalues E of H|t3=0 are symmetric
with respect to E = 0. When an eigenstate ΨE of H has energy E, then there is an eigenstate
Ψ−E = S̃ΨE with the energy of the opposite sign.

2.1 External electrostatic interaction

Throughout this manuscript, we consider a piece-wise continuous external electric field dis-
tributed in the x̂ direction, while we discard any magnetic interaction. The corresponding effec-
tive Hamiltonian is obtained from (2) through the Peierls transformation [37,38], ~k → −i~~∇ and
i~∂t → i~∂t−U(~x)I, with I the 3× 3 identity matrix. Since the Hamiltonian becomes invariant
on the ŷ direction, the eigenstates can be cast in the form Ψ(x, y) → e±ik2yΨ(x), where Ψ(x)
solve the following stationary equation:

H(x)Ψ(x) = (−i~v1S1∂x + ~v2kyS2 +mS3 + Ua I)Ψ(x) = EΨ(x), (5)

with Ψ(x) = (ψA(x), ψB(x), ψC(x))T .

In (5), we have used v1 = 2at1, v2 = 2at2 and m = 4t3 to simplify the notation. This allows
us relating v1 and v2 to the Fermi velocities along the x̂ and ŷ directions, respectively, whereas
m plays the role of the mass term in the Dirac equation. Furthermore, we have considered
a constant electrostatic potential, which is valid for our purposes since we are dealing with
piece-wise continuous interactions.

From the previous considerations, we may decouple the eigensolution components ψA,B,C as
follows:

− ~2v21ψ′′A + ~2v22k2yψA = ((E − Ua)2 −m2)ψA, (6)

ψB = −i
~v1(E − Ua)ψ′A + ~mv2kyψA

(E − Ua)2 −m2
, ψC =

~mv1ψ′A + ~v2ky(E − Ua)ψA
(E − Ua)2 −m2

, (7)

where the hopping parameters tj , for j = 1, 2, 3.

The probability current associated with Ψ can be calculated in standard manner from the
continuity equation ∂tρ+ ~∇ · j = 0. Here, ρ = Ψ†Ψ stands for the probability density, and the
probability current takes the form

j = (2v1 Reψ∗AψB, 2v2 Reψ∗AψC) . (8)

Let us consider briefly the situation when the potential has a finite discontinuity at x = x0.
It is necessary to specify the behavior of the wave functions at this point. It can be done by
integrating (5) around the vicinity of x0. Alternatively, one can require the component of the
density current perpendicular to the barrier to be continuous. The second approach is more
general and covers the boundary conditions provided by the integration as the special case that
read as

ψA(x−0 ) = ψA(x+0 ), ψB(x−0 ) = ψB(x+0 ). (9)

It is worth noting that only two of the three eigensolution components are required to be con-
tinuous in x0, and the third component ψC(x) can have a discontinuity at this point. The
corresponding probability density is not necessarily continuous, an observation already made for
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pseudospin-1 photonic lattices [39]. The boundary conditions obtained in (9) keep the proba-
bility current in the x̂ direction continuous, which in our case corresponds to the component
perpendicular to the discontinuity. Although the component ΨC(x) can be discontinuous at x0,
one finds from the third component of (5) that (E −U(x))ψC(x) shall be continuous at x = x0.
Despite the latter, the current tangent to the discontinuity is not necessarily continuous.

3 Rectangular electrostatic barrier

Let us consider an external electrostatic electric potential homogeneous along the ŷ direction
and piece-wise continuous across the x̂ direction, with

U(x) =

{
0 |x| > L

2

U0 |x| ≤ L
2

. (10)

We consider, without loss of generality, U0 > 2m. Solutions of the stationary equation are split
into three regions, namely, the region I (x < L/2), region II (−L/2 ≤ x ≤ L/2), and region III
(x > L/2). The latter are written as

Ξka = eikyyeikax

 1
−i~mv2ky+~v1ka(E−Ua)

(E−Ua)2−m2

i~mv1ka+~v2ky(E−Ua)
(E−Ua)2−m2

 , a = I, II, III, (11)

where UI = UIII = 0, UII = U0, and consequently kI = kIII. We consider ky is fixed as a
real quantity to obtain plane-wave solutions propagating parallel to the barrier. In turn, ka is
considered a complex parameter so that we can distinguish two different regimes (see discussion
below).

The solution (11) satisfies the eigenvalue equation (5) with the eigenvalue

E = Ua ±
√
m2 + ~2(v21k2a + v22k

2
y) = Ua ±

√
m̃2 + ~2v21k2a, (12)

where we have introduced the effective mass term

m̃ =
√
m2 + ~2v22k2y. (13)

From (11), we distinguish two behaviors, namely, plane-wave solutions for ka ∈ R and
evanescent-wave solutions for ka = −ipa, with pa ∈ R. In both cases, the wave functions
are associated with real eigenvalues. They are classified as

ka ∈ R, E(ka, ky) = Ua ±
√
m̃+ v21~2k2a, E(pa, ky) ∈ (−∞, U0 − m̃) ∪ (Ua + m̃,∞),

(14)

ka = −i pa, E(pa, ky) = Ua ±
√
m̃− v21~2p2a, E(pa, ky) ∈ (Ua − m̃, U0 + m̃). (15)

These dispersion relations span paraboloid and hyperboloid surfaces for plane-wave and evanescent-
wave solutions, respectively. This behavior is depicted in Fig. 3a for UI = 0 (case a = I).
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(a) (b) |E| > m (c) |E| < m

Figure 3: (a) Sketch of the energy surfaces spanned by the dispersion relations (14) (orange)
and (15) (blue), together with two energy planes located at arbitrary energies |E| > m and
|E| < m. Panel (b) and panel (c) depict the contour plot generated by the interception between
the dispersion relations and the energy planes |E| > m and |E| < m, respectively. In panel (b),
ξ = arctan(ky/kI) denotes the incidence angle of the plane wave and ky;c =

√
E2 −m2/~v2 the

critical value of ky separating the evanescent-wave and plane-wave regimes.

For |E| > m, the behavior of the solutions is classified according to the values of ky, with
ky;c =

√
E2 −m2/~v2 being the critical value. That is, for |ky| < ky;c, the solutions are plane-

wave-like and the momenta kI and ky span an elliptic curve for a fixed energy. For |ky| > ky;c,
the solutions become evanescent waves and pI and ky span a hyperbolic curve for the same fixed
energy. This is sketched in Fig. 3b. For |E| < m, no plane-wave solutions exist for ky ∈ R,
and only evanescent-wave solutions are generated. Here, pI, ky span a rotated hyperbola with
respect to the case |E| > m, as depicted in Fig. 3c.

The partial solutions Ξka at the regions I, II, III have to be combined in order to comply
with the boundary conditions (9) at x0 = ±L and |x| → ∞. The wave function takes the general
form

Ξa(x, y) = αaΞ
±
ka

(x, y) + βaΞ
±
−ka(x, y), a = I, II, III . (16)

The boundary conditions (9) impose the continuity of the two upper components of the wave
function, from which we find the set of relations between the coefficients αI, βI and αIII, βIII.
That is,

M
(
αI

βI

)
=

(
αIII

βIII

)
, M =

(
m11 m12

m21 m22

)
, (17)

with M being the transfer matrix, whose elements mij are functions of E, ky, m and U0. The
latter are explicitly given by

m11 = eiLkI
(

cos(LkII)− i sin(LkII)
2v21~2k2I k2II + m̃2(k2I + k2II)

2E(E − U0)kIkII

)
, (18)

m22 = e−iLkI
(

cos(LkII) + i sin(LkII)
2v21~2k2I k2II + m̃2(k2I + k2II)

2E(E − U0)kIkII

)
, (19)

m12 = i
sin(LkII)(k

2
yv

2
2(m2 + ~2k2yv22)− v21(m2 − ~2k2yv22)k21 − 2iv1v2kIkyE)(U0

2 − E)

~2v21kIkII(E2 −m2)(E − U0)
, (20)

where kI =
√
E2 − m̃2/~v1 and kII =

√
(E − U0)2 − m̃2/~v1.
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The determinant of the transfer matrix is equal to one, in coherence with conservation of
the probability current at the boundary. When kI and kII are real, there also holds m11 = m∗22
and m12 = m∗21. In the next section, we shall use the transfer matrix for determinantion of the
bound state energies as well as of the scattering characteristics of the plane-wave solutions.

Additionally to (11), the Lieb lattice supports an additional solution in the form of a flat
band, which is depicted in Fig. 2. This appears whenever E = Ua, and the eigensolutions cannot
be determined from Eq. (6)-(7). Instead, one shall solve the Dirac Hamiltonian for E = Ua,
which leads to the eigensolution Ξfb = (mχ, i~v2kyχ,−~v1χ′)T , where χ = χ(x) is an arbitrary
complex-valued function. Such an indeterminacy is better understood if one chooses χ such that

Ξfb(ν, x) = eikyyeiνx

 m
i~v2ky
−i~v1ν

 , (21)

which is a flat band eigensolution for any ν ∈ C. Particularly, for ν ∈ R, Eq. (21) form a set of
degenerate plane-wave solutions, usually known as degenerate Bloch waves [40] (see also Sec. 2.1
in [18]). These degenerate waves form a continuous basis that can be used to construct arbitrary
wavepackets through Fourier transforms. The latter has been exploited to construct the so-called
compact localizes states [41], which are specific linear combinations of degenerate waves localized
in each unitary cell of a finite-dimensional lattice. See [18, 42] for a more extensive discussion
on the matter.

It is clear that degenerate Bloch waves do not carry current on the x-direction, as jx =
2v1 Reψ∗AψB vanishes for any ν ∈ C. This also holds for any linear combination (finite or
infinite) of degenerate Bloch state. Thus, the current states belonging to the flat band energy
are current-free states.

Notice that the dispersion and flat bands have a touching point only for m = 0 (See Fig. 2a),
and thus one can explore the behavior of the solutions on the dispersion band when they approach
the flat band interception. It is straightforward to realize that Ξka,ky ,m→0 leads to the null vector,
which is only one of the infinitely many solutions inside the flat band. For this reason, we shall
discuss the flat band and the dispersion bands separately.

4 Electron confinement

Let us explore the possibility of bound states trapped by the electrostatic potential (10). Here,
we look for eigenvalues E so that the corresponding eigensolutions have finite norm in L2 ⊗C3,
which implies that eigensolutions must decay asymptotically to zero in the regions I and III for
x→ −∞ and x→∞, respectively.

Following (11), we thus use evanescent-wave solutions for the regions I and III. By fixing

kI = kIII = ipI, pI > 0, (22)

one restricts the energies into the interval E ∈ (−m̃, m̃), as depicted in all the cases of Fig. 4.
The wave function composed from (16) has an exponentially vanishing behavior for |x| → ∞.
This implies that we fix αI = 0, βI = 1 and βIII = 0, and the relation (17) turns into

m12 = αIII, m22 = 0. (23)

8



(a) ky = 0 (b) (c)

Figure 4: Sketch for the energy configuration associated with (10) for ky = 0 (a) and increasing
values of ky (b)-(c). The diagonal-pattern and color-shaded regions denote the area covered by
mass term m and effective mass term m̃, respectively. In the panel (b), the energy (red-dashed
line) inside the region II lies out of the effective mass term (plane-wave solution), whereas in
the panel (c) they lie inside the effective mass term (evanescent-wave solution).

The first relation determines the amplitude of the wave function in the region III, whereas
the second relation fixes the energies for the bound states. This can be written, after some
simplifications, in the following form:

tanh

(√
m̃2 − (E − U0)2

~v1
L

)
= −

E(E − U0)
√
m̃2 − (E − U0)2

√
m̃2 − E2

(E − U0)2(m̃2 − E2) + m̃2U0

(
E − U0

2

) . (24)

The wave function ΞII in the intermediate region II can be either oscillatory for (E−U0)
2 >

m̃2 (we can set kII > 0 without loss of generality) or evanescent for (E −U0)
2 < m̃2 (kII = i pII,

pII > 0), see Fig. 4b and Fig. 4c, respectively. The transcendental equation (24) allows us
determining the bound state energies as a function of ky for both cases.

Although the explicit solution E = E(ky) of (24) has to be found numerically, some pre-
liminary information can be extracted by considering large values ~v2ky � U0,m in the tran-
scendental equation (24). Here, m̃ ≈ ~v2ky and the dispersion relation reduces to E2 ≈ E2

∞ =
~2(−v21p2I + v22k

2
y). Since pI should be a real quantity in order to remain in the evanescent-wave

regime in the regions I and III, we find that ~v2|ky| ≥ E(ky) holds for asymptotic values of
~v2ky. The behavior of E(ky) is thus bounded for ~v2ky → ∞ and can be classified into the
following in three asymptotic cases:

• First, a valid asymptotic behavior may be of the form E(ky →∞)→ C <∞. Substituting
the latter into (24) leads to a unique solution of the form E(ky →∞)→ C = U0/2.

• Another possible asymptotic behavior is |E(ky)| = ~v2|ky|, which vanishes both sides
of (24). That is, |E(ky)| = ~v2|ky| is a valid asymptotic behavior.

• The last possible asymptotic behavior is |E(ky)| < ~v2|ky|, which leads to a contradiction
once substituted into (24). That is, such an asymptotic behavior is do not generate bound
state solutions.

9



(a) (b)

Figure 5: (In units of ~=1) (a) Bound state energies E(ky), computed from (24), as a function
of the transverse momentum ky for v1 = v2 = L = 1, m = 0.5, and U0 = 1.5. The blue-solid and
red-dashed curves indicate bound state energies for arbitrary ky, whereas green-dot-dashed and
black-dotted curves are energies emerging from a specific ky 6= 0. The shaded area marks the
scattering-state energy region. (b) Current parallel to the barrier Jy = ∂E(ky)/∂ky associated
with the dispersion relations in (a).

We thus conclude that the eigenvalues associated with bound states, if they exist, either
converge asymptotically to U0/2 or ~v2|ky|. Since the current density on the direction parallel
to the barrier is Jy = ∂E(ky)/∂ky ≡

∫
R j(x, y)dx (see [43] or Appendix E in [44]), it converges

either to zero or ±~v2 for ky →∞.

As an illustrative example, let us consider numerical values such that we have homogeneous
Fermi velocities v1 = v2 = 1, a mass term m = 0.5, together with a rectangular potential well
with L/~ = 1 and U0 = 1.5. Numerical solutions of (24) reveal the existence of two bound
states for ky = 02, and new bound states appear for increasing values of ky. This is depicted in
Fig. 5a, where one may see that energies indeed converge to either U0

2 = 0.75 or become linear
in ~v2ky for large enough ky. Likewise, we depict in Fig. 5b the corresponding current density
parallel to the barrier (Jy), which becomes finite or null for asymptotic ky, as predicted from
our former analysis.

• Further information is available for direct incidence, that is, ky = 0, m̃ = m. Here, the

effective Hamiltonian possesses the additional symmetry represented [H, PxS̃] = 0, with Px is
the parity operator and S̃ defined in (4). This allows establishing a parity-symmetric criteria for
the wave function Ξ̃ with respect to PxS̃, namely, we classify the solutions fulfilling the condition
PxS̃Ξ = ±Ξ as even (Ξ(e) for +) and odd (Ξ(e) for −). In this form, the coefficients of ΞII

in (16) are αII = ±βII for even (+) and odd (−) functions, so that after evaluating the boundary
condition at x = L one obtains relations to determine the energies of even and odd states as

tan

(
kIIL

2

)
= F (E), − cot

(
kIIL

2

)
= F (E), F (E) =

E

U0 − E

√
(E − U0)2 −m2

m2 − E2
, (25)

respectively, with kII =
√

(E − U0)2 −m2/~v1.
Although the exact values of E cannot be analytically determined for arbitrary L, one can

still determine the exact number of even (N (e)) and odd (N (o)) bound states. The thorough

2This result agrees with the analytic formula presented in (26).
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(a) U0 = 1.5 (b) (c)

Figure 6: (In units of ~=1) (a) Number of even (dotted) and odd (blue-thick) bound states
as a function of L for v1 = 1, m = 0.5 and U0 = 1.5. (b) Eigensolution component ψC and
(E − U(x))ψC for L = v1 = 1 and U0 = 1.5 and the even bound state energy E ≈ 0.281398.
(c) Probability distribution associated with the eigenvalues E ≈ 0.281398 (blue-solid) and E ≈
−0.32653 (red-dashing) and the same parameters as in (b).

analysis (see App. A for a detailed proof) leads to

N (e) =

⌊
L

π~v1

√
U0

2

(
m+

U0

2

)
+

1

2

⌋
−

⌊
L

π~v1

√
U0

2

(
−m+

U0

2

)
+

1

2

⌋
+ 1,

N (o) =

⌊
L

π~v1

√
U0

2

(
m+

U0

2

)⌋
−

⌊
L

π~v1

√
U0

2

(
−m+

U0

2

)⌋
+ 1,

(26)

with b·c the floor function.

From the latter, it is clear that at least one even and one odd bound state always exist,
regardless of the potential width and strength. Particularly, for small enough L → 0, one
obtains the E → 0 and odd E → −m as the even and odd bound state energies, respectively.

Since the floor function is discontinuous, the number of bound states does not necessarily
grow continuously for increasing values of L. That is, for L = L0 with N (e,o) bound states, there
might be a L = L1 > L0 such that (N (e,o)− 1) are generated. This is indeed depicted in Fig. 6a
for fixed potential depth and different potential length L.

As discussed in Sec. 2.1, the component ψC might not be continuous, which can lead to
discontinuous probability densities. Still, one may verify the validity of the bound state eigen-
values E obtained from (25) by substituting it into (E−U(x))ψC , which should be a continuous
function3. Particularly, from Fig. 6a, one notices that L = 1 and U0 = 1.5 lead to one even

(E
(e)
0 ≈ 0.281398) and one odd (E

(o)
0 ≈ −0.32653) bound state energy eigenvalue. The compo-

nent ψC and (E−U(x))ψC are depicted in Fig. 6b for E ≈ 0.281398, which verifies the required
continuity condition for the latter function. The same conclusion is drawn for E ≈ −0.32653.

Furthermore, the corresponding probability distributions associated with Ψ̃
(e)

and Ψ̃
(o)

are de-
picted in Fig. 6c in blue-solid and red-dashed, respectively, which are discontinuous.

3It follows from kyΨB + (U(x)− E)ΨC = 0, which the third of the coupled equations represented by (5).
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5 Scattering states and transmission amplitudes

Let us now focus on the scattering of the plane waves on the barrier and the related phenomena.
This is obtained when plane-wave-like solutions are present in the regions I and III, which
corresponds to the eigenvalues E ∈ (−∞,−m̃)∪ (m̃,∞). Without loss of generality, we consider
only outgoing waves in region III and outgoing together with incoming waves in region I. The
coefficients of the wave function (16) are then fixed in the following manner,

αI = 1, βI = r, αIII = t, βIII = 0. (27)

The complex constants t and r can be calculated from (17) as

t =
1

m22
, r = −m21

m22
. (28)

The coefficients r and t define the reflection and transmission coefficients R = |r|2 and T = |t|2
that satisfy R + T = 1. The later expression can be directly verified by substituting from (28)
when taking into account that there holds m11 = m∗22 and m12 = m∗21. After some calculations,
one obtains,

r = sin(kIIL)
−2A(B −B′) + i

(
A′2 −A2 + (B −B′)2

)
2AA′ cos(kIIL)− i sin(kIIL) ((B −B′)2 +A2 +A′2)

, (29)

where

A

v1
=

EkI
E2 −m2

,
A′

v1
=

(E − U0)kII
(E − U0)2 −m2

,
B

v2
=

mky
E2 −m2

,
B′

v2
=

mky
(E − U0)2 −m2

, (30)

and kI =
√
E2−m̃2

~v1 , kII =

√
(E−U0)2−m̃2

~v1 . This expression also holds in cases where solutions in
the region II are evanescent waves.

Eq. (29) is a handy expression to understand the transmission of incoming waves from the
region I and traveling to the region III. As an immediate case, one may consider incident waves
with energy E = U0. This leads to A′ = 0 and the reflection coefficient becomes an unimodular
number. That is, r = eiφ, with φ ≡ φ(U0,m, ky) some phase, the exact form of which is irrelevant
as the transmission coefficient becomes T = 1 − |r|2 = 0. In other word, incoming waves with
energy equal to the potential barrier height are reflected, up to a phase shift.

In this work, particular interest is paid to cases in which perfect tunneling exists, T = 1.
Such a tunneling is obtained whenever r = 0, which ensures that t is a unimodular complex
number, and incident and transmitted waves share their amplitude, but the latter carries a
relative phase shift t as a leftover of its interaction with the barrier. For the sake of clarity, we
split our discussion in two cases.

Normal incidence (ky = 0)

In this case, the reflection coefficient becomes simpler since B = B′ = 0, kI =
√
E2 −m2/~v1,

and kII =
√

(E − U0)2 −m2/~v1. The numerator in r becomes proportional to m sin(kIIL).
Therefore, for the gapless lattice setup (m = 0), perfect tunneling occurs for any arbitrary ener-
gies in E ∈ (−∞,−m)∪ (m,∞). This effect was reported in graphene [3,4,45] and pseudospin-1
lattices [11,46].
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For m 6= 0, perfect tunneling does exist for specific energies so that kIIL = nπ, with n = 1, . . ..
The exact resonant energies are straightforward to compute and are presented in a more general
case below. However, it is worth to analyze the behavior of T = 1−|r|2 when the barrier height
is large enough, U0 � m,E, for fixed and finite E. The straightforward calculations show that

T ≈ 1

1 + m4

4E2(E2−m2)
sin2

(
U0L
~v1

) . (31)

It reveals that, despite the lack of the perfect tunneling, the transmission converges to a non-null
value as the electrostatic barrier increases indefinitely. This is known as Klein paradox [47], and
it is in sharp contrast with the non-relativistic case, where transmission becomes smaller for
larger barrier heights.

Oblique incidence (ky 6= 0)

• Super-Klein tunneling When B = B′ and A = ±A′ in from (29), the reflection coefficient
vanishes and the transmission becomes perfect (T = 1). This is achieved when E = U0/2. One
thus has perfect tunneling regardless of the incidence angle for E = U0/2. This phenomenon is
called the super-Klein tunneling, already reported for pseudospin-1 lattice models with gapless
dispersion and flat bands [39, 46, 48], as well as in pseudospin-1/2 graphene lattices [49]. Here,
we note that the presence of the mass term (m 6= 0) does not break the super-Klein tunneling as
long as U0 > 2m. However, super-Klein tunneling is altogether lost by tuning the electrostatic
barrier such that 0 < U0 < 2m, as no plane-wave solutions exist for E = U0/2. This highlights
the effects of the mass term (band-gap) on the transmission properties.

•Generalized Snell-Descartes law It is convenient to define the two-dimensional momentum
vectors ~k = (kI, ky) and ~k′ = (kII, ky) that characterize the incident wave and the wave traveling
through the electric barrier, respectively. The incident and transmitted angles are defined as
ξ = arctan(ky/kI) and ξ′ = arctan(ky/kII), respectively, see Fig. 7a. Contrary to the bound
state case of Sec. 4, plane-wave solutions only exist in the region I for bounded values of ky, i.e.,
|ky| < ky;c =

√
E2 −m2/~v2. This alternatively implies that scattering phenomenon is available

for restricted values of the effective-mass term m̃. This is depicted in Fig. 7b, from which it
is also clear that, for |ky| > ky;c, the shaded area covered by the effective-mass region overlaps
with the energy E, leading to evanescent-wave solutions in the region I.

From the dispersion relations in the regions I and II, together with the fact that ky is constant
across all regions, one can establish a relation between the incident and transmitted angles ξ
and ξ′ of Fig. 7a,

tan ξ′

tan ξ

√
v21 + v22 tan2 ξ

v21 + v22 tan2 ξ′
=

√
E2 −m2

(E − U0)2 −m2
. (32)

For v1 = v2, one recovers the same Snell-Descartes law previously reported for graphene [4], and
to the Snell’s law obtained for pseudospin-1 lattices with m = 0 reported in [48].

Since we are considering U0 > 2m, we get the following information about the transmitted
angle:

• For E ∈
(
m, U0

2

)
, there exists a transmitted angle ξ′ for every incident angle ξ ∈ (−π/2, π/2).

• For E = U0
2 , the transmitted and incident angles are equal, ξ′ = ξ.
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(a) (b) (c)

Figure 7: (b) Scattering configuration (upper-view) for an incident wave ~k (region I), with inci-
dent angle ξ, traveling through an electrostatic barrier (green-shaded area). The wave refracts
into region II as a wave with vector ~k′ and transmitted angle ξ′. (b) Energy configuration of
the panel (a) with an incident wave with energy E > m̃ (red-dashed line). (c) Energy curves
spanned by κ, ky (region I and III) and κ′, ky (region II) for E > m̃ fixed as in panel (b).

• For E ∈
(
U0
2 , U0 −m

)
∪ (U0 + m,∞), there are transmitted angles ξ′ ∈ (−π/2, π/2) only

for ξ ∈ (−ξc, ξc), with the critical angle tan2 ξc =
v21
v22

(E−U0)2−m2

2U0

(
E−U0

2

) . For other values of ξ, the

solutions in the region II are evanescent waves.

• For E ∈ (U0 −m,U0 +m), there are only evanescent waves in the region II.

• Fabry-Pérot resonances Perfect transmission occurs for other energies as well, nevertheless,
it gets angle dependent. The reflection coefficient (29) vanishes for kIIL = nπ, with n ∈ Z+.
Since kII is in turn a function of the incidence angle ξ and the energy E, one may conclude that,
for a fixed energy E, perfect reflection appears only for some specific incidence angles. These
are usually known as tunneling resonances or Fabry-Pérot resonances [4], and are given as a
function of the incident angles ξ as

E
(res)
±;n =

(
1 +

v22
v21

tan2 ξ

)U0 ±

√√√√√U2
0 −

1

1 +
v22
v21

tan2 ξ

U2
0 −

~2π2v21(n+ 1)2

L2
− m2

1 +
v22
v21

tan2 ξ


 ,

(33)

with n = 0, 1, . . .. It is then said that E
(red)
±;n is a resonant energy provided that E

(red)
±;n ∈

(−∞,−m̃) ∪ (m̃,∞).

These resonant energies behave asymptotically as limξ→±π/2E
(res)
+;n →∞ and limξ→±π/2E

(res)
−;n →

(2U0)
−1
(
U2
0 − π2

v21(n+1)2

L2

)
. Thus, for almost perpendicular incident waves (ξ ∼ ±π/2), one re-

quires larger and larger energies in order to recover the resonances at E
(res)
+;n , whereas finite and

well-defined energy values are required for the resonances E
(res)
−;n . This behavior is depicted in

Fig. 8a, whereas the transmission amplitude is depicted in Fig. 8b as a function of the incident
angle ξ.
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(a) (b)

Figure 8: (Units of ~ = 1) (a) Tunneling resonance energies E+;n+ (blue-solid) and E−;n−

(orange-dashed) for n+ = 0, 1, 2, 3, 4 and n− = 2, 3, 4, 5 as a function of ξ(−π/2, π/2). The
shaded area denotes the band-gap, where evanescent waves exist in the region I. The filled-
squares and open-circles markers denote the angles at which resonance exists for E = 6 and
E = −6, respectively. The parameters have been fixed as v1 = v2 = 1, L = 2, m = 0.5
and U0 = 1.5. (b) Transmission amplitude T as a function of the incident angle ξ for E = 6
(blue-solid) and E = −6 (orange-dashed) with the same parameters as in panel (a).

6 Remarks on the flat-band solutions

The piece-wise continuous nature of the electrostatic interaction (10) allows the generation of
two flat band energies, one located at E = U0 for the region II, and another one at E = 0 for
the regions I and III. Although the boundary conditions are the same in both cases, the allowed
matching solutions have a different behavior.

Let us first consider E = U0 and ky so that plane-wave solutions exist for the regions I and
III. For generality, we consider incoming and outgoing plane waves in regions I and III, and a
general flat-band solution in II. Here, the waves entering the interaction zone from the left and
right have an amplitude I1 and I2, respectively, with I1,2 ∈ R. Additionally, we fix I21 + I22 = 1.
Under these considerations, we have the general solutions

Ξ =


I1ΞkI +A1Ξ−kI x < −L/2
Ξfb |x| < L/2

I2ΞkI +A2Ξ−kI x > L/2

(34)

where A1,2 ∈ C, Ξfb = (mχ, i~v2kyχ,−~v1χ′)T , with χ a complex-valued function, and Ξ±kI
the solutions (11) evaluated at E = U0. By imposing the boundary conditions (9), one obtains
the relations A1 = I1e

−2iφeikIL and A2 = I2e
2iφe−ikIL, with φ = arctan(v2kyU0/mv1kI), whereas

the arbitrary function χ is restricted to fulfill the following relations at the boundaries,

χ
(
−L

2

)
=

2v1kII1e
−i(φ−kIL)√

m2v1k2I + v2k2yU
2
0

, χ
(
L
2

)
= − 2v1kII2e

i(φ−kIL)√
m2v1k2I + v2k2yU

2
0

. (35)
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Given the arbitrary nature of χ, one may alternatively rewrite it as χ = 2v1kIe
i(φ−kIL)2x/L√

m2v1k2I+v2k
2
yU

2
0

χ̃, where

χ̃(−L/2) = I1 and χ̃(L/2) = −I2.
Thus, the coupling of incident waves to the flat-band solution leads to a scattering problem

in which the waves entering the interaction region are completely reflected inside their respective
regions. Still, the flat band solutions allowed during such a process must fulfill the boundary
conditions (35). Note that one also has the conservation property |A1|2 + |A2|2 = I21 + I22 = 1.
The latter results hold whenever waves enter from only one region, say I1 = 1 and I2 = 0. In
such a case, we have a perfect reflection in region I, up to a phase in the reflected wave.

Flat-band solutions also occur for E = 0 in regions I and III. The arbitrary nature of the
solutions in those flat bands can be tuned so that finite-norm solutions appear. The correspond-
ing wave function in region II can be found using the boundary conditions, and the calculations
are as straightforward as the scattering case presented above.

7 Concluding remarks

In this manuscript, it was shown that the existence of a rectangular electrostatic barrier always
produces at least two bound states for ky = 0, and generates more bound states at different
energies for increasing values of ky. Interestingly, it was found that even for the asymptotic
values ~v2ky → ∞, the associated current density parallel to the barrier is bounded by ±~v2,
where v2 = 2at2. Thus, the current is linear on the hopping amplitude across the ŷ-direction,
as expected.

It is worth remarking that dispersion relations obtained from (24) identify the energies for
which electrons localize in the x-direction, and propagation is allowed in the ŷ-direction is still
possible. However, by exploiting the separability of free-particle solutions, one can always con-
struct linear combinations so that electrons localize in the ŷ-direction as well. Such a procedure
has been discussed in [50] for graphene. For instance, in the example provided in Fig. 5a, one
can take the energies associated with blue-solid and red-dashed curves as they exist for any
ky ∈ R. From the relations (26), one can ensure that at least two of such dispersion relations
always exist. Additional caution must be taken for the other dispersion relations, as they only
exist for intervals ky ∈ S ⊆ R, and the linear combination must be constructed accordingly to
that interval. Devising such packages is a task beyond the scope of the current work and will
be discussed elsewhere, as it deserves attention by itself.

On the one hand, for the scattering-wave regime, we have proved that even in the gapped
case (m 6= 0), the Lieb lattice supports super-Klein tunneling for an energy equal to half of
the electric barrier, E = U0/2, provided that U0 > 2m. For the gapless case, we recover the
same results previously reported for gapless T3 lattices [46] and ultra-cold atoms trapped in
optical lattices [24]. On the other hand, we identified a new modified Snell-like law valid for
anisotropic Fermi velocities v1 6= v2. The latter allows us to identify the Fabry-Pérot resonant
transmission, which defines a relation between the incident energy and the incident-wave angle
required to produce perfect tunneling up to a phase factor. Interestingly, for negative energies,
perfect transmission is achievable for finite energies at incident waves almost perpendicular to
the barrier. This is not the case for positive energies, as it is shown that the required energies
diverge.

The existence of flat-band solutions poses an additional case not available in graphene lattices.
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The latter allows the coupling of the solutions and determining the transmission properties,
which in this case, leads to perfectly reflected waves. Since the flat-band solutions are defined
in terms of degenerate Bloch waves, there is an infinite family of solutions that allows such a
reflection, as long as they fulfill the boundary condition (35).
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A Determining the number of even and odd bound states

In this appendix, we present the derivation of the number of bound states for even bound
states presented in (26). The procedure applies straightforwardly to the odd case as well. It is
convenient to define the intervals

I0 =
(

0,
π

2

)
, In =

(π
2

+ (n− 1)π,
π

2
+ nπ

)
, n = 1, 2, . . . , (A-1)

so that tan(x) is nonsingular for x ∈ In. Furthermore, if x ∈ ∪k=p2k=p1
Ik, then tan(x) has (p2 − p1)

singularities.

To determine the number of even bound states, one must find the number of interceptions
of F (E) in (25) and the periodic function tan(kIIL2 ) in the interval E ∈ (−m,m). To this end,
one may notice that F (E) is a monotonously increasing function of E ∈ (−m,m) that tends to
∓∞ for E → ∓m, and vanishes for E = 0. The latter means that F (E) defines the bijection
F (E) : (−m,m) 7→ R. On the other hand, ∂kII/∂E < 0 for E ∈ (−m,m), and one thus
concludes that tan(kIIL/2) (and also − cot(kIIL/2)) is a monotonously decreasing function of E
in each of the intervals kIIL

2 ∈ In, with n = 0, 1, . . .. This property, combined with the fact that
F (E) : (−m,m) 7→ R is a monotonously increasing function, one concludes that interception of
both functions always exist. One must determine the exact number of interceptions.

By exploiting the fact that tan(kIIL/2) is a periodic function, one just needs to count the
number of periods inside the interval E ∈ (−m,m) for arbitrary U0 and L, which is equal to the
number of singularities plus one. m is a lattice parameter, so it is assumed to be a fixed value.

Be σ± := kIIL
2 |E=∓m = L

~v1

√
U0
2

(
±m+ U0

2

)
so that the domain of tan

(
kIIL
2

)
lies in the interval

(σ−, σ+) for E ∈ (−m,m).

Now, if σ− ∈ Ir1 and σ+ ∈ Ir2 , with r2 > r1 and r1,2 = 0, 1, . . ., then, tan(kIIL/2) has
r2 − r1 singularities for E ∈ (−m,m) and intercepts F (E) exactly (r2 − r1 + 1)-times. That is,
N (e) = r2 − r1 + 1. The values of r1,2 are found by exploiting the fact that bxπ + 1

2c = r for
x ∈ Ir. One thus has bσ−π + 1

2c = r1 and bσ+π + 1
2c = r2, which leads to the expression presented

in (26).

The same procedure applies to the odd solutions, where we define the intervals Ĩn = (nπ, (n+
1)π), with n = 0, 1, . . ., so that cot(x) is nonsingular for x ∈ Ĩn. Since − cot(kIIL/2) is
monotonously decreasing for kIIL/2 ∈ Ĩn, the same same reasoning used in the even case applies
to the odd case, and one obtains N (o) in (26).
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