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We study the commensuration torques and layer sliding energetics of alternating twist trilayer
graphene (t3G) and twisted bilayer graphene on hexagonal boron nitride (t2G/BN) that have two
superposed moire interfaces. Lattice relaxations for typical graphene twist angles of ∼ 1◦ in t3G
or t2G/BN are found to break the out-of-plane layer mirror symmetry, give rise to layer rotation
energy local minima dips of the order of ∼ 10−1 meV/atom at double moire alignment angles, and
have sliding energy landscape minima between top-bottom layers of comparable magnitude. Moire
superlubricity is restored for twist angles as small as ∼ 0.03◦ away from alignment resulting in
suppression of sliding energies by several orders of magnitude of typically ∼ 10−4 meV/atom, hence
indicating the precedence of rotation over sliding in the double moire commensuration process.

Introduction – Experimental realization of moire ma-
terials by layering two graphene-like 2D material systems
with different lattice constants and/or with a finite twist
angle [1, 2] have been furthered by combining two moire
patterns to form the so-called double or super moire
systems [3–11]. Crystals with long moire pattern peri-
ods allows to access certain physical observables at low
magnetic fields and gate carrier densities that would not
be accessible otherwise [12–14]. This behavior can be
used for example in 30◦ twist-angle quasi-crystals [15–
19] to generate moire quasicrystals at experimentally ac-
cessible charge carrier densities using h-BN encapsulated
graphene [9, 20]. Most theories describing double moire
systems have so far used the simplest commensurate dou-
ble moire geometries to explain the observed physics.
For instance, in alternating twist trilayer graphene (t3G)
with twisted middle layer giving rise to two aligned moire
patterns, important in the context of flat band supercon-
ductivity [21–31], the most stable geometry corresponds
to superposed top and bottom layers. Likewise com-
mensurate double moire geometries have been assumed
when studying twisted bilayer graphene on h-BN where a
spontaneous anomalous Hall effect was measured [32–37].
However, the assumption that equal period and aligned
double moire pattern systems are energetically favored
has not been yet confirmed.

Here we analyze the atomic structure of t3G and
twisted bilayer graphene on hexagonal boron nitride
(t2G/BN) to show that double moire systems generate
torques that tend to lock the systems into commensurate
moire patterns and favor a specific sliding geometry. We
find that mirror symmetry breaking layer corrugations
are required for a correct total energy minimization, in-
cluding the AAA-stacked t3G systems where we use the
overline to indicate relative sliding geometries between
the layers regardless of their twist angles. We observe
that the specific sliding atomic structures between the
top and next nearest layer only matters when the moire
patterns are commensurate, since the energies are al-
most sliding-independent for incommensurate moire pat-
terns leading to superlubricity away from commensura-

tion, similar to the superlubricity behavior in single inter-
face twisted bilayer systems studied in the literature [38–
44].

Systems and methods – We consider double moire
systems with two moire interfaces consisting of graphene
trilayers and t2G on hexagonal boron nitride. We illus-
trate schematically in Fig. 1 (a) all three different sys-
tems considered, namely t3G, t2G/BN type I and type
II depending on the twist angle sense of the bottom hBN
layer contacting graphene. The layer numerals 1, 2 and
3 correspond to bottom, middle and top layers respec-
tively. The middle layer 2 is taken as the reference frame
with zero twist angle and we use θ12 and θ32 labels to
represent the actual twist angles of the bottom and top
layers. The atomic structure relaxation is carried out us-
ing LAMMPS [45]. We use the REBO2 force-field [46] for
the intralayer interactions of graphene and EXTEP [47]
for those of hexagonal boron nitride, whose equilibrium
geometries are aG =2.4602Å and aBN =2.50576Å re-
spectively. The interlayer force fields are based on EXX-
RPA-informed [48] DRIP [49] parametrizations [50] and
we used both the fire and CG minimization scheme [51]
with a time step of 0.0001 ps for the former and 0.001 ps
for the latter and a stopping tolerance on the forces of
10−5 eV/Å. In order to capture the tiny angle variations
with respect to the doubly commensurate angles we use
the approach outlined in Ref. [52] and Ref. [53] to find
the commensurate cell for a double moire system, see
Appendix A for details and summary of the integers rep-
resenting our commensurate cells. The incommensurate
moire systems are approximated by taking commensurate
simulation cells containing several repetitions the moire
unit cells or moirons. Due to the small angle differences
and the high sensitivity of the results on internal strains,
we are at times bound to choose large simulation sys-
tems containing millions of atoms. The lattice constant
variation tolerance is capped at 0.03% to minimize inter-
nal strains that lead to energy differences of the order of
0.005 meV/atom that are between one to two orders of
magnitude smaller than the energy differences of the or-
der 0.1 meV/atom required to resolve the local minima in
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FIG. 1. (color online) (a) Schematic figure illustrating the different t3G and t2G/BN systems considered here. θij = θi − θj
are the twist angles of the i-th layer with respect to the j-th layer where their particular choices can lead to commensurate
and incommensurate moire patterns. (b) Corrugation effect that breaks the mirror-symmetry of AAA stacked t3G with
θ12 = θ32 = 1.53◦. (c) Interlayer distance differences at different local stacking positions and (c) bending corrugations in the
middle layer 2. The sketches at the bottom of the panels indicate the specific local stackings AAA, AAB and AAC for the
three-layer systems while the two-letter conventions refer to local sliding between two layers. Gray, green and orange colors
refer to the A and B sublattices of graphene. Blue and purple refer to the boron and nitrogen atoms in hBN in t2G/BN or the
A and B sublattices in a t3G system.

our energy curves. The stability of the atomic structure
relies on the total energy given as the sum

Etot = Eel + Epot (1)

where we can distinguish the elastic energy Eel =∑
iE

i
el/2 that resists the deformation due to the strains,

and the potential energy Epot =
∑

iE
i
pot/2 that triggers

the formation of the moire pattern strains taken as sum
of contributions from each atomic site i and where the
division by 2 accounts for double counting. We can define
the local elastic Ei

el, potential Ei
pot and interface Ei

IFmn

energies as

Ei
el =

∑
j∈layer i

φij (2)

Ei
pot =

∑
j /∈layer i

φij =
∑

j∈ any layer

φij − Ei
el (3)

Ei
IFmn

=
∑

j /∈ layer i
j ∈ layer n or m

φijmn (4)

where φij represents the pair-wise potentials between
atoms i and j. Our calculations show that the elastic
energy contributions in Eq. (2) are about one order mag-
nitude smaller than the potential and interface energies
in Eqs. (3-4), and therefore is only a small fraction of the
total energy in Eq. (1) that dictates the stability of our

systems. The interface energies are essentially the poten-
tial energies referred to a particular pair of layers. It will
be interesting to note how this interface energy changes
from one system to another by examining the interface
energy differences for two different relaxed atomic struc-
tures

∆EIFmn
(r) = E3L

IFmn
(r)− E2L

IFmn
(r) (5)

where E3L
IFmn

at a given point is obtained relaxing simul-
taneously all three layers of t3G and then considering
the bilayer atomic positions for the considered mn inter-
face, while the E2L

IFmn
interface energy is obtained using

the t2G relaxed atomic positions of the two mn layers
that form the interface. In Eq. (5) we have removed the
i-index dependence in Ei

IFmn
in Eq. (4) using the posi-

tion vector r instead by interpolating the data from the
closest i-sublattice points.

Another quantity of interest is the torque constant
that we define as the derivative of the total energy as
a function of twist angle similar to the proposals in
Refs. [42, 44, 54] but focusing here on the rotation of
the top layer with respect to the middle layer

k± =
dEtot

dθ32
(6)

where its positive or negative values tend to either reduce
or increase the value of θ32 towards the commensurate
moire geometry.
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FIG. 2. (color online) (a) Energies of t3G double moire systems for three different values of θ12 where θ32 is varied from ∼ 0.1◦

to ∼ 2.2◦. For t3G systems the commensurate moire patterns are obtained when θ12 = θ32 (indicated by vertical lines) and
leads to a local energy dip. The x-symbols represent the total energies when the top interface has AB-stacking. The dashed
lines are obtained by using polynomial interpolation away from the commensuration dips. On the right hand we show total
energies for different sliding of the top layer for select commensurate angles θ12 = θ32. (b) Similar plots for t2G/BN (Type I
and Type II) where the total energy dips are obtained for two different values of θ32, corresponding to angles where L12 = L32

(solid vertical line) and L12 = L32/2 (dashed vertical line). (c) Intepolated interface energy differences ∆EIFmn(r) of Eq. (5)
for the 3 systems considered illustrating the local energy gain/penalty when a single moire comes into contact with a second
moire interface. The energy difference densities are plotted along a straight line that connects the opposite diagonal corners
of the moire cell through different local stacking positions where the most stable stacking arrangement is highlighted with a
thicker line. The lower the energy, the more stable is the double moire geometry locally. The negative energies correspond to a
stabilizing gain in energy while positive energies indicate a destabilizing energy penalty. The interface energy differences, and
therefore the potential energy differences, make up the dominant contributions of the total energy differences since the elastic
energy contributions are one order of magnitude smaller.
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Results – We begin by testing the main assumption
of our study for t3G, namely that angles leading to com-
mensurate moire systems will be energetically more fa-
vorable than angle combinations leading to incommen-
surate moire systems. For this purpose we fix the angle
θ12 between the two bottom layers to three select values
of θ12 = 1.08◦, 1.54◦ and 2.0◦ to sample typical largest
magic angles values in tNG systems for N = 2, 3,∞ [55]
while we vary θ32 between the two top layers from 0.1◦ to
2.3◦. Commensuration for alternating twist is naturally
achieved when θ12 = θ32 since the lattice constants of
all three layers are equal. The find numerically that the
relaxed atomic structures generally favor z-axis corruga-
tions, where Fig. 1(c) shows the typical local stacking-
dependent interlayer distance variation of the order of
∼ 0.1 Å while Fig. 1(d) illustrates for the middle layer
the z-axis corrugations of the order of ∼ 1.75 Å roughly
one half of the average interlayer distance.

The main results of this work are shown in Fig. 2(a)
where we plot the total energy per atom as a function of
θ32 after the atomic relaxation. For all three θ12 values
considered, we find total energy local minima at the com-
mensurate twist angles provided that we allow a bending
corrugation as illustrated in Fig. 1(b). In fact, the to-
tal energies reported in Table I indicate that the mirror-
symmetric t3G with a completely flat middle layer has a
higher total energy compared to the corrugated atomic
structure. There we list the integrated total, elastic, po-
tential, and interface energies taken as the sum over all
atomic sites i, with proper double counting correction,
of the energies given in Eqs. (1-4). In Fig. 2(a) we show
that the commensurate moire systems are most stable
in the AAA-stacking when there is no relative sliding
between the three layers. In fact, the energy difference
between the AAA at the local minima dip and AAB max-
ima represented is equal to 0.18 meV/atom near 1◦ and
drops to 0.06 meV/atom for an angle of 3.47◦ (not shown
here) and are comparable to the magnitude of the energy
dips due to the rotation. Our sliding dependent total
energy plots indicate that there are barrier-free sliding
paths leading to the global minimum at AAA-stacking.

We then show a similar analysis for t2G/BN where we
fix the substrate angle between G and hBN at θ12 = 0.56◦

for type I or −0.58◦ for type II and we allow θ32 between
both graphene layers to change up to a value of 1.5◦ to
achieve moire periods that satisfy pLM

tBG = q LM
tGBN [56]

where p, q are integers. For q = 1 we observe two dips
in the energy curve that correspond to θ32 = 0.56◦ for
p = 2 with a G/G moire pattern period twice as large as
the G/BN and θ32 = 1.12◦ for p = 1 with equal periods.

The details of the atomic relaxation giving rise to total
energy dips in Fig. 2(a) and (b) for t3G and t2G/BN can
be further understood through the line plots in Fig. 2(c)
calculated using Eq. (5) where we focus on the inter-
face energy difference between 3-layer and 2-layer relaxed
systems. We can thus quantify the energy gain/penalty

Etot Eel EIF12 EIF23

t3G (AAA) −7.42537 −7.39458 −0.01542 −0.01541

t3G (AAA, ms) −7.42534 −7.39459 −0.01538 −0.01538

t3G (AAB) −7.42510 −7.39471 −0.01521 −0.01516

t2G/BN-I (AAA) −7.19472 −7.16454 −0.01458 −0.01559

t2G/BN-I (AAB) −7.19451 −7.16466 −0.01442 −0.01542

t2G/BN-I (AAC) −7.19467 −7.16455 −0.01456 −0.01556

t2G/BN-II (AAA) −7.19561 −7.16554 −0.01452 −0.01556

t2G/BN-II (AAB) −7.19562 −7.16553 −0.01453 −0.01556

t2G/BN-II (AAC) −7.19581 −7.16556 −0.01463 −0.01563

TABLE I. Sliding dependent total, elastic, and interface en-
ergies in for θ12 = θ32 = 1.5385◦ for t3G, θ12 = 0.56◦, θ32 =
1.12◦ for t2G/BN-I, and θ12 = −0.58◦, θ32 = 1.12◦ for
t2G/BN-II for systems containing 8322, 15490 and 15492
atoms respectively. These numbers are used to renormal-
ize and report the energies in eV/atom. We note that the
mirror-symmetric (ms) geometry has a higher total energy by
0.03 meV/atom.

(negative and positive values, respectively) one achieves
when putting two moire patterns in contact with each
other. For t3G the most stable 3-layer configuration is
the AAA-stacking that we achieve when the unstable
AA-stacking of each bilayer are stacked on top of each
other and the stable AB/BA stackings are simultane-
ously stacked on top of each other. The interface energy
plots in Fig. 2(c) illustrate the energy differences between
single and double moire pattern atomic structures. For
AAA-stacking the interface energy difference plot shows
that its energy gain is most pronounced at local stacking
regions in between the AAA and ACA/ABA regions. In
contrast the AAB-stacking has a generally unfavorable
interface energy for most local stackings.

The double moire energetics becomes more com-
plicated when we have an heterogeneous interface in
t2G/BN where the most stable (unstable) AB/BA (AA)
local stacking geometries in t2G combines with the AC
(AA/AB) stackings of GBN. For type I trilayers the ener-
getically stable geometry is AAA while for type II trilay-
ers it is AAC. We notice that the strongest local energy
penalties due to interfering moire patterns do not neces-
sarily happen at the high symmetry local stacking geome-
tries and the global energy minimization does not follow
simple rules of thumb consisting in combining together
the local stackings that are energetically most favorable
or unfavorable as in the t3G case.

The conclusions on stability energetics that we can
draw based on the energy density difference line cuts in
Fig. 2 are consistent with the interface and total ener-
gies that predict the AAA, AAA and AAC stacking as
the most stable geometries for t3G, t2G/BN type I and
t2G/BN type II, systems respectively. To further ex-
plore the stabilization of the commensurate moire sys-
tems versus the incommensurate ones we show in Fig. 3
the local stacking distribution maps for AAA and AAB
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stackings of t3G following the conventions outlined in
Ref. [52] for each one of the interfaces. Here we can

FIG. 3. Illustration of the stacking redistribution in t3G
for two double moire configurations obtained using the con-
ventions outlined in Ref. [27] using the displacement vectors
between layersm and n. (a) Local stacking maps for AAA and
AAB stacking geometries for θ12 = θ32 = 1.53◦, and the ratios
of the local stacking areas of the left panels. The AAA stack-
ing shows a smaller AA local stacking area due to greater local
rotations that reduces this energetically unfavorable stacking
when compared with the AAB stacking going from 7.7% to
12.2% respectively. (b) Local stacking maps for θ12 = 1.53
and θ32 = 1.1◦ for sliding geometries and corresponding local
stacking area ratios. Although the relaxation profiles are dif-
ferent, the ratios for local AA, AB and BA stackings remain
nearly the same for different sliding geometries.

compare how the local stacking distributions change for
the commensurate and incommensurate moire interfaces,
and how the favorable and unfavorable sliding geom-
etry influences the strain profiles. For commensurate
moire patterns and stable AAA-stacking the energeti-
cally unfavorable AA local stacking that makes about
7.7% of the total area increases to 12.2% for the less sta-
ble AAB-stacking. As soon as we move away from the
same period commensurate moire geometries and have
different moire pattern periods, for instance the combi-
nation of 1.54◦ − 1.1◦ with 1/7 moire length ratios or
1.54◦ − 1.5◦ with 1/39 ratios that can be considered
approximations of the incommensurate moire patterns.
For these geometries the relative distribution of the AA,
AB or BA local stacking areas become practically insen-
sitive to the relative sliding of the top layer resulting
in almost the same local stacking area ratios for both

t3G (θ12 = θ32)

θ32 (◦) 1.08 1.53 2.00

k−(θ32)

(meV/(atom·rad))
−42.12 −18.34 −8.513

k+(θ32)

(meV/(atom·rad))
75.06 53.04 36.85

Eb(θ32)

(meV/atom)
0.156322 0.135053 0.103796

t2G/BN
Type I

(θ12 = +0.56◦)

Type II

(θ12 = −0.58◦)

θ32 (◦) 0.56 1.12 0.56 1.12

k−(θ32)

(meV/(atom·rad))
−40.01 −9.69 −7.124 −14.33

k+(θ32)

(meV/(atom·rad))
48.01 35.52 54.54 40.46

Eb(θ32)

(meV/atom)
0.024273 0.058352 0.039000 0.094661

TABLE II. Torque constants k± = dEtot/dθ32 in units of
meV/(atom · rad) as defined in Eq. (6) evaluated to the left
(k−) and right (k+) of the respective local minima at the
commensurate angles θ32, and the binding energy Eb(θ32) es-
timated as the difference between the smoothly interpolated
polynomial curve and the respective minima in Fig. 2(a)-(b).

AAA and AAB stackings. We can thus conclude that
the sliding-dependent energy landscape of the outer lay-
ers will have non-negligible gradients only when we have
equal period commensurate moire patterns. Sliding en-
ergy landscapes of 10−1 meV/atom for commensurate
double moire systems where ∆θ = θ32− θ12 = 0◦ quickly
drops to 10−4 meV/atom even for marginally small twist
angles away from commensuration of ∆θ ' 0.03◦ to down
to 10−5 meV/atom for ∆θ ' 0.5◦, indicating high moire
superlubricity away from exact commensuration. This is
consistent with the fact that both structures shown in
Fig. 3 for the 1.54◦ − 1.1◦ combination have nearly the
same local stacking area ratios, indicating in turn that
they will have weak interlayer sliding force gradients.

The torque constants obtained using Eq. 6 from the
total energy curves are summarized in Table II together
with the binding energies Eb defined as the energy gain
achieved due to commensuration that we define as the
difference between dashed interpolated line and the ac-
tual total energy at commensuration in Fig. 2(a) and (b).
The calculated torque magnitudes are generally larger
for smaller angles and the signs of k+ and k− torques
tend to bring the incommensurate moire systems back to
commensuration as a positive/negative torque value will
decrease/increase the θ32.

The analysis we have presented so far relied on free-
standing trilayer systems. In order to assess the impact a
substrate would have on our results, we have performed
the following checks. For t3G, we have checked that
adding a rigid hBN substrate layer with a twist angle
of 3.41◦ dampens but does not completely remove the
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bending corrugation observed for the mirror symmetry
broken commensurate case. Indeed, the maximum bend-
ing corrugation goes down for the suspended t3G system
from 1.70 Å as seen in Fig. 1(d) to 0.25, 0.35, and 0.45 Å
for L1, L2 and L3, respectively, when we add a rigid
substrate layer in contact with L1. If we don’t fix the
additional substrate layer, the bending corrugation actu-
ally increases by up to 3.79 Å, hence a realistic substrate
simulation, outside of the scope of this study, involving
many more layers [55, 57] would probably give a max-
imum bending corrugation somewhere in the middle of
those two values. For t2G on hBN, we have checked that
adding a fixed aligned hNB substrate below the existing
hBN layer does not modify the qualitative behaviors and
the system still shows local energy dips at the commen-
surate angles. We thus expect our conclusions based on
free-standing systems to hold under more realistic exper-
imental conditions when substrates are present.

Conclusions – We have shown the tendency of dou-
ble moire systems to spontaneously form commensurate
moire patterns with rational p/q moire length ratios and
align their angles, as illustrated in the alternating twist
trilayer graphene for p = q = 1 and twisted bilayer
graphene on hexagonal boron nitride for p = 1, q = 1, 2
systems, and found that the effect quickly diminishes for
q > 1. The binding energy gained during the alignment
of the twist angle near θ32 ' 1◦, 1.5◦ and 2◦ is of the order
of ∼ 0.2, 0.17, 0.13 meV/atom respectively which is com-
parable in magnitude with the energy differences result-
ing from the relative sliding of the top and bottom layers
for commensurate moire geometries. These are several
orders of magnitude larger than the sliding-dependent
energy changes for incommensurate moire geometries in-
dicating the existence of superlubricity as soon as the
system is marginally twisted away from commensuration
already for angles as small as ∼ 0.03◦. The rotation
torque constants presented have been evaluated for differ-
ent fixed bottom layers twist angles θ12. In experiments,
once θ12 is fixed we propose that targeting θ32 angles that
are equal or slightly larger than the value that yields com-
mensurate double moire patterns will more easily tend to
lock the system into moire commensuration, while target-
ing a smaller angle may result in the system rotating back
to the trivial zero-alignment commensurate phase upon
thermal annealing. The qualitative conclusions based on
the t3G and t2G/BN systems explored in this work are
expected to apply for a variety of other twisted layered
materials that will be investigated in future work.
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correspond to L1, L2 and L3 respectively:

M1 =

(
i j

−j i+ j

)
,

M2 =

(
i′ j′

−j′ i′ + j′

)
,

M3 =

(
i′′ j′′

−j′′ i′′ + j′′

)
.

(7)

These matrices relate the lattice vectors r1 and r2 to the
lattice vectors a1 and a2 of the respective layers through(

r1
r2

)
= M1 ·

(
a1
a2

)
= M2 ·

(
a′1
a′2

)
= M3 ·

(
a′′1
a′′2

)
(8)

The lattice mismatch αmn and twist angle θmn between
the layers m and n can be related to these integers as
follows

α12 =
|a1|
|a′1|

=

√
i′2 + j′2 + i′j′

i2 + j2 + ij
,

α32 =
|a′′1 |
|a′1|

=

√
i′2 + j′2 + i′j′

i′′2 + j′′2 + i′′j′′
,

θ12 = θ1 − θ2 = cos−1
[

2ii′ + 2jj′ + ij′ + ji′

2α12(i2 + j2 + ij)

]
,

θ32 = θ3 − θ2 = cos−1
[

2i′′i′ + 2j′′j′ + i′′j′ + j′′i′

2α32(i′′2 + j′′2 + i′′j′′)

]
,

(9)
where we assume the middle L2 layer as the untwisted
reference layer. In Table. III, we summarize the six inte-
gers used to generate the systems represented in Fig. 2(a)
and (b) for the t3G and the two t2G/BN systems.

APPENDIX B

We illutrate here the difference between the local
torque maps for a commensurate and an incommensu-
rate moire system calculated through

τs = (rs − rcm)× Fs (10)

where s is the sublattice index and cm refers to the center
of mass of the dimer formed by the neighboring A and
B sublattices, and where Fs is the interface component
of the force acting on an atom extracted at the end of
the LAMMPS minimization by subtracting the intralayer
forces. The left panels show the local torque maps for
commensurate moire pattern cases where the moire cell
has been repeated 15 times for a more direct compari-
son with the right hand panels that have the same size.
On the right panel, we illustrate the same torques for an
incommensurate moire configuration modeled through a

FIG. 4. Local torque τs defined in Eq. 10 for each layer in
t3G at the site i ∈ sublattice s are illustrated when the two
moire interfaces are commensurate (θ12 = θ32 = 1.53◦) (left)
and incommensurate (θ12 = 1.53◦, θ32 = 1.64◦) (right). We
observe the presence of a super-moire pattern with a longer
period for the incommensurate moire case that gives rise to
the total energy differences with respect to the doubly com-
mensurate moire case.

multiple moirons system with longer super-moire period.
In the middle layer L2 we see that a large region of the
atoms feel the same torque as is seen for the commen-
surate phase, suggesting that within the region confined
by long period triangular patches we largely recover the
commensurate moire phase behavior seen for θ23 = 1.53◦.
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t3G

θ12 (◦) θ32 (◦) (i j i′ j′ i′′ j′′) aL3(Å) # atoms λ

1.084549 0.098591 341 330 330 341 331 340 2.460226 2026246 11λ1

0.299180 899 870 870 899 878 891 2.460278 14083050 29λ1

0.500560 403 390 390 403 396 397 2.460300 2829990 13λ1

0.699713 961 930 930 961 950 941 2.460291 16092466 31λ1

0.898632 1085 1050 1050 1085 1079 1056 2.460253 20513502 35λ1

1.049565 961 930 930 961 960 931 2.460204 16092846 31λ1

1.084549 31 30 30 31 31 30 2.460190 16746 λ1

1.150275 1023 990 990 1023 1025 988 2.460162 18236534 33λ1

1.200741 868 840 840 868 871 837 2.460138 13129050 28λ1

1.491197 248 240 240 248 251 237 2.459963 1071810 8λ1

1.951946 155 150 150 155 159 146 2.459556 418722 5λ1

1.538500 0.099248 682 651 651 682 653 680 2.460244 7997326 31λ2

0.299135 792 756 756 792 763 785 2.460329 10784906 36λ2

0.498959 814 777 777 814 789 802 2.460384 11392218 37λ2

0.699314 242 231 231 242 236 237 2.460410 1006902 11λ2

0.901887 638 609 609 638 626 621 2.460405 6998394 29λ2

1.098945 154 147 147 154 152 149 2.460371 407758 7λ2

1.201971 704 672 672 704 697 679 2.460342 8521378 32λ2

1.301824 286 273 273 286 284 275 2.460305 1406374 13λ2

1.398649 242 231 231 242 241 232 2.460263 1006942 11λ2

1.499055 858 819 819 858 857 820 2.460212 12657686 39λ2

1.538500 22 21 21 22 22 21 2.460190 8322 λ2

1.577943 858 819 819 858 859 818 2.460167 12657842 39λ2

1.600032 550 525 525 550 551 524 2.460153 5201302 25λ2

1.700421 418 399 399 418 420 397 2.460087 3004326 19λ2

1.794869 132 126 126 132 133 125 2.460018 299606 6λ2

1.900421 374 357 357 374 378 353 2.459932 2405226 17λ2

1.999934 220 210 210 220 223 207 2.459844 832278 10λ2

2.004628 0.200433 170 160 160 170 161 169 2.460326 490182 10λ3

0.801831 255 240 240 255 246 249 2.460551 1102842 15λ3

1.202796 255 240 240 255 249 246 2.460551 1102842 15λ3

1.397199 561 528 528 561 551 538 2.460508 5337818 33λ3

1.603742 85 80 80 85 84 81 2.460431 122542 5λ3

1.700933 561 528 528 561 556 533 2.460384 5337998 33λ3

1.799055 663 624 624 663 659 628 2.460329 7455662 39λ3

1.899139 323 304 304 323 322 305 2.460265 1769586 19λ3

1.950459 629 592 592 629 628 593 2.460230 6710766 37λ3

2.004628 17 16 16 17 17 16 2.460190 4902 λ3

2.056017 663 624 624 663 664 623 2.460150 7456022 39λ3

2.100064 357 336 336 357 358 335 2.460115 2161826 21λ3

2.198572 527 496 496 527 530 493 2.460030 4711026 31λ3

2.301520 459 432 432 459 463 428 2.459934 3573806 27λ3

t2G/BN Type I

θ12 (◦) θ32 (◦) (i j i′ j′ i′′ j′′) aL3(Å) # atoms λ

0.560656 0.200227 812 812 812 840 817 835 2.460259 12143930 28λ4

0.400464 406 406 406 420 411 415 2.460298 3035950 14λ4

0.501637 1102 1102 1102 1140 1119 1123 2.460306 22366846 38λ4

0.546279 1131 1131 1131 1170 1150 1151 2.460308 23559530 39λ4

0.560656 58 58 58 60 59 59 2.460308 61958 2λ4

0.583082 725 725 725 750 738 737 2.460308 9680938 25λ4

0.600704 812 812 812 840 827 825 2.460307 12143770 28λ4

0.700824 232 232 232 240 237 235 2.460300 991330 8λ4

0.800943 203 203 203 210 208 205 2.460286 758990 7λ4

0.897056 145 145 145 150 149 146 2.460265 387242 5λ4

1.000094 1073 1073 1073 1110 1106 1077 2.460235 21205546 37λ4

1.079783 783 783 783 810 809 784 2.460207 11292158 27λ4

1.121311 29 29 29 30 30 29 2.460190 15490 λ4

1.159974 841 841 841 870 871 840 2.460173 13027150 29λ4

1.229816 899 899 899 930 933 896 2.460140 14886094 31λ4

1.300703 725 725 725 750 754 721 2.460103 9681482 25λ4

1.495028 261 261 261 270 273 258 2.459981 1254762 9λ4

1.761923 203 203 203 210 214 199 2.459767 759098 7λ4

2.018092 145 145 145 150 154 141 2.459512 387322 5λ4

t2G/BN Type II

θ12 (◦) θ32 (◦) (i j i′ j′ i′′ j′′) aL3(Å) # atoms λ

−0.579874 0.200227 840 784 840 812 835 817 2.460259 12145498 28λ5

0.537294 1440 1344 1440 1392 1417 1415 2.460308 35692418 48λ5

0.560656 60 56 60 58 59 59 2.460308 61966 2λ5

0.584017 1440 1344 1440 1392 1415 1417 2.460308 35692418 48λ5

0.600704 840 784 840 812 825 827 2.460307 12145338 28λ5

0.700824 240 224 240 232 235 237 2.460300 991458 8λ5

0.800943 210 196 210 203 205 208 2.460286 759088 7λ5

0.897056 150 140 150 145 146 149 2.460265 387292 5λ5

1.000094 1110 1036 1110 1073 1077 1106 2.460235 21208284 37λ5

1.079783 810 756 810 783 784 809 2.460207 11293616 27λ5

1.121311 30 28 30 29 29 30 2.460190 15492 λ5

1.159974 870 812 870 841 840 871 2.460173 13028832 29λ5

1.229816 930 868 930 899 896 933 2.460140 14888016 31λ5

1.300703 750 700 750 725 721 754 2.460103 9682732 25λ5

1.495028 270 252 270 261 258 273 2.459981 1254924 9λ5

1.761923 210 196 210 203 199 214 2.459767 759196 7λ5

2.018092 150 140 150 145 141 154 2.459512 387372 5λ5

2.099900 1530 1428 1530 1479 1434 1574 2.460238 40294166 51λ5

2.299955 1470 1372 1470 1421 1369 1521 2.460025 37197972 49λ5

TABLE III. Details about the commensurate cells that are used for our simulations on the t3G (left) and t2G/BN (right)
systems where the first column contains θ12, the second column summarizes the θ32 for each of the corresponding θ12 values,
the third column contains the six integers as defined in Ref. [52, 53] where the first two integers control the lattice vectors of
the first layer, the next two integers define the lattice of the second layer and the final two integers orient the lattice vectors of
the top layer following Eq. (8). The fourth column contains the slightly strained lattice constant aL3 for the third layer which
is different from the unstrained lattice constants of 2.4602 Å for L1 and L2. The fifth column contains the number of atoms
and the final column represents the super-moire length or commensuration cell length λ as a multiple of the commensurate cell
moire length λi when θ12 = θ32, where λ1 = 129.97 Å, λ2 = 91.62 Å and λ3 = 70.32 Å for θ12 = 1.0845◦, 1.5385◦ and 2.0046◦

respectively for t3G and λ4 = λ5 = 125.71 Å for t2G/BN Type I and t2G/BN Type II. We highlight the commensurate angle
configurations from the main text in bold while the other entries are commensurate approximations of the incommensurate
angle combinations.
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