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We report on experimental observation of next-nearest-neighbour coupling between ballistically
expanding spinor exciton-polariton condensates in a planar semiconductor microcavity. All-optical
control over the coupling strength between neighbouring condensates is demonstrated through
distance-periodic pseudospin screening of their ballistic particle outflow due to the inherent splitting
of the planar cavity transverse-electric (TE) and transverse-magnetic (TM) modes. By screening
the nearest-neighbour coupling we overcome the conventional spatial coupling hierarchy between
condensates. This offers a promising route towards creating unconventional non-planar many-body
Hamiltonians using networks of ballistically expanding spinor exciton-polariton condensates.

Strongly correlated quantum many-body systems have
attracted a lot of interest as a promising tool to engi-
neer and explore phases of matter in extreme settings
[1–3] and to simulate complex Hamiltonians [4, 5]. Such
systems include ultracold atomic ensembles [4], trapped
ions [6, 7], nuclear and electronic spins [8, 9], supercon-
ducting circuits [10, 11], and nonlinear photonic systems
[12]. Of interest, recent milestone achievements in pro-
grammable connectivity in condensed matter using cold
atomic gases [13] now permit construction of intriguing
networks of coupled elements. However, in general, many
lab systems are by their physical nature unable to form
unconventional graph topologies. In the past decade,
driven-dissipative Bose-Einstein condensates of exciton-
polaritons (from here on, polaritons) in planar microcavi-
ties have substantially advanced in optical reprogramma-
bility [14–21]. There, each condensate is driven by a fo-
cused non-resonant optical excitation beam forming a lo-
calized macroscopically coherent wavefunction [22]. The
coupling strength between neighbouring condensates is
roughly given by their mutual overlap with an expo-
nential fall-off as a function of separation distance [23–
25]. This means that nearest-neighbour (NN) coupling
dominates over next-nearest-neighbour (NNN) coupling
making polariton networks inherently planar in a graph
topology sense. Overcoming this spatial coupling hi-
erarchy can offer opportunities to observe spontaneous
ordering and emergent polariton effects in non-planar
graph topologies [26–31]. However, this is extremely
challenging, requiring very fine control over the two-
dimensional polariton potential landscape with limita-
tions of its own [32].

In this Letter, we demonstrate that spin-orbit coupled
(SOC) exciton-polariton condensates can overcome this
challenge. Polaritons are quasiparticles exhibiting inter-
mixed properties of excitons and photons, which appear
when light and matter are brought to the strong coupling
regime [33]. As a consequence, the photon polarisation is
explicitly connected to the polariton pseudospin (or just

"spin" for short) with σ̂z = ±1 spin-projections along
the cavity growth axis representing σ± circularly polar-
ized light. Their two-component integer spin structure
has led to deep exploration into nonequilibrium spinor
quantum fluids [34]. Polaritons mostly decay through
photons leaking out of the cavity containing all the in-
formation on the condensate such as energy, momentum,
density, and spin. This salient feature allows direct, yet
non-destructive, measurement of the condensate spin dis-
tribution using polarization resolved photoluminescence
(PL) imaging.
Both the polariton condensate and the incoherent pho-

toexcited background of excitons sustaining it adopt the
circular polarisation of the nonresonant excitation [35,
36] due to the optical orientation effect of excitons [37, 38]
and spin-preserving stimulated scattering of excitons into
the condensate [39]. This permits excitation of a con-
densate of a well defined macroscopic Sz ∼ 〈σ̂z〉 spin
projection [40–43]. Subsequently, the inherent TE-TM
splitting of the microcavity [44] will start rotating the
spin of any condensate polaritons which obtain finite
wavevector and flow away from the pump spot [45, 46].
This is also referred to as the optical spin Hall ef-
fect [47, 48]. Namely, the splitting between TE and
TM polarized cavity photon modes acts as a direction-
ally dependent in-plane effective magnetic field [47, 49]
(i.e., effective SOC [50]) causing the spins of outflowing
condensate polaritons to start precessing [see Fig. 1(a)
and Fig. 1(b)]. The strength of this effective SOC scales
quadratically with the polariton momentum, ∝ k2 and
can even be electrically tuned [51, 52]. This makes so-
called ballistic condensates ideal for enhanced SOC ef-
fects [45, 46] due to their extremely high kinetic en-
ergies obtained through repulsive Coulomb interactions
with the locally pump-induced exciton reservoir. More-
over, because of their long-range coherent particle out-
flow, ballistic condensates can couple over macroscopic
distances much greater than their respective full-width-
at-half-maximum [24] while also preserving their spin in-
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formation [43, 45, 46].
Recently, it was theoretically predicted that ballistic

condensates could invert their neighbour coupling hier-
archy, making NNN stronger than NN, through a spin-
screening effect made possible by the effective SOC stem-
ming from TE-TM splitting [53]. Here, we provide exper-
imental evidence of these recent predictions. We present
a study of a spinor polariton dyad (two coupled con-
densates) and a triad [three coupled condensates, see
schematic Fig. 1(c)] wherein each condensate ballistically
emits a coherent pseudospin current which rapidly pre-
cesses as it propagates [45, 46]. We demonstrate control
over the coupling strength between neighbouring conden-
sates by changing the spatial distance between them (de-
noted d) relative to the spatial precession period of the
condensate pseudospin (denoted ξ).

We briefly explain the idea of spin-screened polariton
coupling. The three peaks in Fig. 1(c) represent the con-
densate centers excited by three co-localized Gaussian
pump spots of equal intensity. The red-blue colour map
shows the precession of the polariton pseudospin as it
radially propagates in-plane away from each condensate
center, with red representing Sz = +1 (spin-up polari-
tons) and blue representing Sz = −1 (spin-down polari-
tons). The height of the peaks represents the intensity of
the condensate emission. The distance between the con-
densate centers relative to the spatial oscillations of the
pseudospin modifies the coupling between them. In the
non-screened state [Fig. 1(c)] NN condensates are excited
at a distance equal to integer number of periods of pseu-
dospin oscillations, d = nξ where n = 1, 2, 3, . . . . This
means that propagating condensate polaritons arrive at
NNs with unchanged spin projection. On the contrary,
in the screened state [Fig. 1(d)] NNs are separated by
d = (n−1/2)ξ and polaritons arrive at their NNs with op-
posite spin-projection which reduces the condensate cou-
pling, while coupling between NNNs is still maintained.

The microcavity used in this study consists of a 5λ/2
AlGaAs cavity surrounded by two distributed Bragg mir-
rors (DBR) of 35 and 32 pairs of ALGaAs/AlAs for the
bottom and top DBR correspondingly with the 12 GaAs
QWs separated into four sets of three QWs placed at the
antinodes of electric field within the cavity. The cavity
quality factor is around Q ∼ 16000 with the correspond-
ing polariton lifetime τp ≈ 5 ps and Rabi splitting of 9
meV. The measured TE-TM splitting is ≈ 0.2 meV at
k = 3 µm−1 in-plane wavevector. See section S1 in the
Supplemental Material [54] for further experimental de-
tails.

The normalized Stokes parameters of the cavity emis-
sion are written,

Sx,y,z(r) =
IH,D,σ+(r)− IV,A,σ−(r)
IH,D,σ+(r) + IV,A,σ−(r) , (1)

where r = (x, y) is the in-plane coordinate
and IH(V ),D(A),σ+(σ−)(r) corresponds to horizon-

Figure 1. (a) Schematic of the effective SOC magnetic field
distribution (dark olive arrows) from the TE-TM splitting
on a momentum-space circle. (b) Schematic of the Poincaré
sphere showing example pseudospin precession as polaritons
propagate (blue and red arrows). Schematic representing two
pump geometries where the distance between the central and
edge pump spots equals to (c) one full period of pseudospin
oscillation (NN is stronger than NNN) and (d) half oscilla-
tion period (NN is weaker than NNN). The height of the peaks
represents the intensity of the condensate emission, and the
red, white, and blue colour map shows the precession of the
polariton pseudospin propagating in the cavity plane, with
red representing Sz = +1 (spin-up polaritons) and blue repre-
senting Sz = −1 (spin-down polaritons). Red and blue arrows
show the pseudospin precession of the polaritons propagating
from the edge condensates along the triad axis

tally(vertically), diagonally(antidiagonally), and right-
circularly(left-circularly) polarized (RCP and LCP
for short) PL, respectively. Formally, the Stokes pa-
rameters relate to the condensate pseudospin through
S = 〈Ψ†|σ̂|Ψ〉/〈Ψ†|Ψ〉 where Ψ = (ψ+, ψ−)T is the
condensate spinor order parameter and σ̂ is the Pauli
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matrix-vector. The Sx(r) and Sy(r) components repre-
sent the degree of linear and diagonal polarisation but
are not important in this study (also due to the pre-
dominant circular polarisation of the condensates used
here). Experimental measurements were reproduced
using a generalised two-dimensional Gross-Pitaevskii
equation (2DGPE) (see section S2 in the Supplemental
Material [54]).

In Fig. 2 we present results for two polariton con-
densates separated by d ≈ ξ/2. Data for a single iso-
lated condensate gives a Sz period around ξ ≈ 90 µm
(see section S1 in the Supplemental Material [54]). Fig-
ures 2(a) and 2(b) show the measured and simulated spa-
tial distribution of the Sz component with spatial pseu-
dospin oscillations clearly visible due to the SOC rotat-
ing the spin of the outflowing polaritons. Note that un-
avoidable dephasing of polaritons in experiment results
in lowered Sz values compared to simulations as indi-
cated on the colorbars. Smaller ripple-like modulations
are also visible due to the standing wave interference be-
tween the two phase-locked condensates as reported be-
fore [24, 43, 53]. These ripples are characterized by a
small-scale period λ = 2π/〈kc〉 ≈ 3 µm, where 〈kc〉 is the
average outflow momentum of polaritons from their con-
densates. In contrast, the large-scale Sz period is given
by ξ = 2π/∆k � λ where ~∆k/

√
2εc = |√mTE−

√
mTM|

and εc ≈ 3 meV is the condensate energy (measured from
k = 0 at the dispersion) and mTE,TM are the effective
masses of TE and TM polarized polaritons [44].

The spin screening effect can be observed as periodic
extrema in the integrated PL intensity, which represents
the condensate occupation, as a function of separation
distance d in Fig. 2(c). At the maxima the coupling is
unscreened and NN coupling is strong. At the minima
the coupling is screened and NN coupling is weak. Black
dots and black solid curve denote experimental measure-
ments and calculations, respectively. In the absence of
SOC one would observe monotonically decreasing emis-
sion intensity with only short variations (order of λ)
corresponding to in-phase and anti-phase flip-flop tran-
sitions between the synchronized condensates [24]. In-
stead, we observe strong non-monotonic behaviour with
clearly visible maxima around 67 and 154 µm, and min-
ima around 56 and 135 µm. Notice that the distance
between the two maxima and the two minima correlates
with the measured ξ ≈ 90 µm period of Sz oscillations.

The discrepancy between the absolute locations of the
minima and maxima with the predicted critical distances
for screened (ξ/2, 3ξ/2) and unscreened (ξ, 2ξ) coupling,
respectively, can be understood as follows. Firstly, when
two condensates are coupled their energy is redshifted
on average [24] leading to smaller εc and thus larger ξ in
the coupled system. Second, the finite width of the pump
spots modulates the phase of polaritons and causes a shift
in the Sz period. Third, the cavity here has higher levels
of disorder than strain-compensated cavities [55] which

Figure 2. Two polariton condensates. (a) Experimentally
measured and (b) simulated numerically real space Sz compo-
nent of the Stokes vector of the polariton condensates emis-
sion. In panel (a) black circles show the position of pump
spots. (c) Total integrated emission intensity dependence on
the separation distance between two condensates pump spots.
In panel (c) black dots shows the experimentally measured
values with red region representing the error of the total inten-
sity value. Black curve shows the same dependence calculated
numerically

can affect the spatial coupling. That’s why the relative
distances between the extrema are more meaningful than
their absolute locations. This interpretation is verified in
2DGPE modeling which accurately reproduces the loca-
tions of the extrema. Note that the slight discrepancy
between modeling and experiment in Fig. 2(c) between
70 and 120 µm can be attributed to the large parame-
ter space of the 2DGPE making quantitative matching
somewhat challenging.
In order to demonstrate the NNN coupling using the

all-optical spin screening effect we investigated the sys-
tem containing a chain of three condensates similar to the
system depicted schematically in Fig. 1. As in the pre-
vious experiment with two condensates, all condensates
were excited using tightly focused RCP laser pump spots
of equal intensity above threshold. Figures 3(a) and 3(b)
show the measured and simulated spatial distribution of
the three condensate Sz component with NN distance of
d ≈ ξ/2. As in the previous case of two condensates, the
system forms a joint macroscopic coherent state result-
ing in an oscillating Sz pattern elongated along the hor-
izontal axis with three RCP condensate circles of equal
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degree of polarisation in the centre. Amazingly, the in-
tensity of the central condensate was suppressed relative
to the outer ones, evidencing reduced NN coupling due
to the spin screening effect, see in Fig. 3(c) measured
(red diamonds) and simulated (black solid curve) inten-
sity distribution along the triad axis.

To unambiguously demonstrate the spin screening ef-
fect in the triad, we measured (dots) and simulated (solid
curve) the dependence of the central condensate intensity
as a function of NN separation distance with results pre-
sented in Fig. 3(d). Both experiment and calculations
show a clear dip around d = 52 µm ≈ ξ/2, corresponding
to spin-screened NN coupling, followed by a small peak
around d = 80 µm ≈ ξ where the NN coupling is re-
stored. The observed suppression of the central conden-
sate intensity provides strong evidence of spin-screened
NN coupling mediated by the spin coherence of the sys-
tem.

Moreover, the experimentally measured pump power
dependence for each separation distance and the ex-
tracted polariton condensation threshold values are
shown in Fig. 3(e) (red circles). The horizontal dashed
line is the threshold value of the isolated condensate. In
the absence of the TE-TM splitting monotonic increase of
the threshold value converging to the isolated condensate
threshold is expected with the increase of the separation
distance between the condensates. In our system we ob-
serve maximum threshold at the separation distance of
52 µm, which precisely corresponded to the minimum of
the central condensate intensity in Figs. 3(c) and 3(d). It
confirms that the NN condensate interaction is effectively
screened at this separation distance due to the TE-TM
splitting. Around a separation distance close to the full
period of Sz oscillation (d ≈ ξ) a decrease in the thresh-
old power was observed, as expected with NN coupling
restored. A simple linear coupled oscillator model [solid
curve in Fig. 3(e)] is able to explain the behaviour of
the threshold power (see section S3 in the Supplemental
Material [54]).

In summary, we have experimentally demonstrated
that next-nearest-neighbours coupling can be made
stronger than nearest-neighbour coupling in ballistically
expanding spinor exciton-polariton condensates which
was recently proposed in Ref. [53]. This unconventional
near-inversion of the spatial coupling hierarchy between
condensates stems from the combination of TE-TM split-
ting and the ballistic polariton flow from each conden-
sate. Outflowing polaritons experience effective spin-
orbit coupling which rotates their spin state as they prop-
agate from one condensate to the next. Depending on
distance, the overlap (coupling) between the condensates
can become spin-screened depending on the polariton
spin projection upon arrival at its neighbour. We believe
that the demonstrated alteration of the conventional con-
densate coupling hierarchy could pave the way towards
all-optical simulation of many-body ballistic systems be-

Figure 3. Three polariton condensates. (a) Experimentally
measured and (b) simulated real space Sz component of the
Stokes vector of the polariton condensates emission. In panel
(a) black circles show the position of pump spots. (c) Mea-
sured experimentally (red diamonds) and calculated numeri-
cally (solid black curve) real space intensity distribution along
the triad axis. (d) Dependence of the central condensate PL
intensity on the separation distance between the condensates
pump spots measured experimentally (black dots) and calcu-
lated numerically (solid black curve); red region represents the
error of the total intensity value. The dashed curves are guides
to the eye. (e) The system threshold power dependence on
the separation distance between the condensates pump spots
measured experimentally (red circles) and calculated numer-
ically (solid black curve); red bars represent the error. Grey
dashed line in panel (e) shows the threshold power for single
isolated condensate.

longing to non-planar graph topologies using networks of
spinor polariton condensates.
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S1. EXPERIMENTAL DETAILS, TE-TM SPLITTING AND SINGLE ISOLATED CONDENSATE REAL
SPACE Sz COMPONENT OF THE STOKES VECTOR

In this supplemental section we present experimental details, experimentally measured TE-TM splitting and real
space distribution of Sz component of Stokes vector of the emission from a single isolated polariton condensate.
All measurements were performed at 6 K using a continuous flow cold finger cryostat. We used a right circularly
(σ+) polarized non-resonant continuous wave laser excitation tuned to the first Bragg minimum of the microcavity
reflection spectra at 754 nm. To reduce sample heating we used an acousto-optic modulator driven by rectangular
voltage pulse train at 10 kHz repetition rate with 5% duty cycle. A spatial light modulator was used to structure the
pump spatial profile into one, two, or three Gaussian spots focused on the sample using a microscope objective lens
with 0.4 numerical aperture. In order to obtain simultaneously real space, k-space, and spectrally resolved k-space
images of the time-averaged PL two separate CCD cameras and a 0.75 m monochromator with 1200g/mm diffraction
grating equipped with the CCD camera were used. A quarter wave plate and a Wollaston prism were introduced
in the optical path for real space imaging to simultaneously measure the right-circularly polarized and left-circularly
polarized components of the PL with the same CCD camera.

In Fig. S1(a) we show the Sz spatial oscillations due to the spin-orbit coupling (SOC) rotating the pseudospin of
the polaritons propagating away from the condensate excited using single Gaussian spot. The oscillation period ξ was
measured to be around 90 µm with the oscillations amplitude of ±0.6.

In order to experimentally estimate the value of TE-TM splitting we measured dispersion of the lower polariton
branch in a linear regime (i.e., below condensation threshold) along the in-plane k‖ momentum axis [see Fig. S1(b)].
Splitting of the dispersion is clearly observed at the higher values of in-plane k vector with the higher energy branch
corresponding to the emission from the vertically polarized polaritons. The energy splitting between horizontally
and vertically polarized polaritons possesses parabolic dependence on the in-plane momentum and ≈ 0.2 meV at
k = 3 µm−1 in-plane wavevector.

S2. TWO DIMENSIONAL SPINOR POLARITON MODEL

The experimental observations are reproduced by numerically solving a generalized Gross-Pitaevskii equation (S1)
for macroscopic spinor polariton wavefunction Ψ(r, t) = (ψ+, ψ−)T coupled to an active exciton reservoir with density
nA(r, t) = (nA+

, nA−)T rate equation [1],

i
∂ψ±
∂t

=

[
− ~∇2

2m
+
i

2

(
RnA± − γ

)
+ α1|ψ±|2 + α2|ψ∓|2 + U±(r) + V (r)

]
ψ± + ∆LT

(
∂

∂x
∓ i ∂

∂y

)2

ψ∓, (S1)

U± = G1

(
nA± + nI±

)
+G2

(
nA∓ + nI∓

)
, (S2)

∂nA±

∂t
= −

(
ΓA + Γs +R|ψ±|2

)
nA± +WnI± + ΓsnA∓ . (S3)

Here, ± represents the spin of polaritons and excitons along the cavity growth axis, m is the polariton effective
mass in parabolic dispersion approximation, γ is the polariton decay rate, G1 = 2g|χ|2 and α1 = g|χ|4 are the same
spin polariton-reservoir and polariton-polariton interaction strengths, respectively, g is the exciton-exciton Coulomb

∗ DovzhenkoDS@gmail.com

ar
X

iv
:2

30
1.

04
21

0v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
0 

Ja
n 

20
23



2

Figure S1. (a) Experimentally measured real space Sz component of the Stokes vector of the single isolated polariton
condensate emission. (b) Energy and in-plane wavevector resolved normalized PL intensity from the lower polariton branch
below the threshold

interaction strength, |χ|2 is the excitonic Hopfield fraction of the polariton, and ∆LT represents the strength of the
TE-TM splitting. Opposite spin interactions, usually much weaker, were chosen to be G2 = −0.2G1 and α2 = −0.2α1

for completeness but we note that our results to not qualitatively depend on these terms. R is the scattering rate of
reservoir excitons into the condensate, ΓA is the active reservoir decay rate, and Γs represents exciton spin relaxation
rate [2].

A so-called inactive reservoir of excitons nI,± also contributes to the blueshift of polaritons as depicted in Eq. (S2).
This reservoir corresponds to high-momentum excitons which do not scatter into the condensate but instead drive the
active low-momentum excitons (S3). In continuous wave experiments the inactive reservoir density can be written

WnI,+ =
P0(r)

W + 2Γs
(W cos2 (θ) + Γs),

WnI,− =
P0(r)

W + 2Γs
(W sin2 (θ) + Γs),

(S4)

where P0 is the total power density of the incident coherent light with degree of circular polarization expressed as S3 =
P0[cos2 (θ)− sin2 (θ)] = P0 cos (2θ). Since our experiment is performed with fully right hand circularly polarized light,
we set θ = 0 from here on. The phenomenological parameter W quantifies conversion rate between same-spin inactive

and active exciton reservoirs. The pump profile is written as a superposition of Gaussians P0(r) = p0
∑

n e
−|r−rn|2/2w2

.
To represent tight focusing of excitation beams we used Gaussians with 2 µm full-width-at-half-maximum.

Lastly, given the disorder present at the large spatial scales of the experiment we include a random potential
landscape in our simulation given by V (r) generated as a random Gaussian-correlated potential [3]. The simulation
parameters are based on previous GaAs microcavity experiments [4, 5]: m = 5×10−5 of free electron mass; γ−1 = 5.5
ps; |χ|2 = 0.4; ~g = 0.5µeVµm2; R = 3.2g; W = ΓA = γ; Γs = γ/4; ∆LT = 0.036 ps−1 µm2. The disorder potential
was generated with 1.5 µm correlation length and 0.06 meV root mean squared amplitude.

We note that in order to compensate for additional background noise in experiment (i.e., additional light coming
from spontaneous emission of bottleneck excitons) we applied a global shift to the integrated densities of the condensate
|ψ±|2 by approximately 10 percent in order to match the experimental values in Figure 3(d) in the main text. This
difference between modeling and experiment is more evident in Figure 3(c) where the experimentally measured
photoluminescence (PL) intensity is more spread out than simulated condensate densities. This can also come from
the finite diffusion of excitons which we have neglected here for simplicity. Nevertheless, the calculated relative
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amplitude of the PL at the pump positions follows the experimental results quite precisely, which, therefore, justifies
the use of current model and provides a clear quantitative evidence of the spin-screening happening in the system.

S3. THEORY OF THE THRESHOLD BEHAVIOUR IN A SPIN SCREENED CONDENSATE TRIAD

The behaviour of the pump threshold from experiment in the triad configuration can be reproduced by scrutinizing
the eigenenergies of an appropriate linear operator which couples the three condensates together. In other words, we
neglect polariton nonlinearities so close to the threshold. The threshold is reached when a single eigenvalue belonging
to the three coupled condensates crosses from the lower- to the upper-half of the complex plane.

We will start by defining the state vector of the system,

|Ψ〉 = (ψ1,+, ψ1,−, ψ2,+, ψ2,−, ψ3,+, ψ3,−)T. (S5)

Here, the index n ∈ {1, 2, 3} denotes the left, middle, and right condensate, respectively. The spectrum of the coupled
system in the linear regime (i.e., close to threshold |ψn,±|2 ' 0) can be described with the following non-Hermitian
operator separated into three parts for clarity,

Ĥ =




ω+ 0 0 0 0 0
0 ω− 0 0 0 0
0 0 ω+ 0 0 0
0 0 0 ω− 0 0
0 0 0 0 ω+ 0
0 0 0 0 0 ω−




+




0 0 J+ δJ 0 0
0 0 δJ J− 0 0
J+ δJ 0 0 J+ δJ
δJ J− 0 0 δJ J−
0 0 J+ δJ 0 0
0 0 δJ J− 0 0




+




0 0 0 0 K+ δK
0 0 0 0 δK K−
0 0 0 0 0 0
0 0 0 0 0 0
K+ δK 0 0 0 0
δK K− 0 0 0 0




(S6)

The first matrix describes the complex self-energy of each oscillator (condensate) composed of the local pump blueshift
(G) and gain (R), and cavity losses (γ). This contribution from the pump can be parametrized in terms of the reservoir
spin populations,

ω± =

(
G1 +

iR

2

)
(NA,± +NI,±)− iγ

2
. (S7)

where
∫
nA(I),± dr = NA(I),± [i.e., spatially integrating (S3) and (S4)]. Here, we will neglect opposite spin interaction

G2 for simplicity.
Each condensate is coupled ballistically with its nearest neighbours with coupling strength J± and next-nearest

neighbours with strength K± determined by the overlap between different condensates over their respective pump
spots. Approximating the tightly focused pump spots as delta functions, we can write the coupling between the
ballistic condensates as [4],

J± = cos2 (ξd+ Φ)

(
G1 +

iR

2

)
(NA,± +NI,±)H

(1)
0 (kd+ φ), (S8)

K± = sin2 (2ξd+ Φ)

(
G1 +

iR

2

)
(NA,± +NI,±)H

(1)
0 (2kd+ φ) (S9)

The square cosine (sine) modulations in the coupling stem from a pseudospin screening effect coming from the strong
influence of TE-TM splitting on the ballistic condensates [6] as explained in the main manuscript. Here, ξ denotes

the period of the pseudospin precession for a single condensate in experiment. H
(1)
0 (kd) is the zeroth order Hankel

function of the first kind. The coupling depends on the product kd where d is the separation distance between two
pump spots and k is the complex wavevector of the polaritons with mass m propagating outside the pump spot,

k ≈ kc + i
Γm

2~kc
. (S10)

Here, kc is the average real wavevector of the outflowing polaritons. The finite size of the Gaussian pump spots intro-
duces some lag into the pseudospin precession because outflowing polaritons need to gradually build up momentum
as they leave the pump spot. This is captured in the fitting parameter Φ. For the same reason, an overall phase-lag
fitting parameter φ is also needed in the coupling term between the condensates.
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The presence of TE-TM splitting also introduces coupling between opposite spin components denoted δJ and δK
written in a similar fashion,

δJ = δ cos2 (ξd+ Φ)

(
G1 +

iR

2

)
(NA,+ +NI,+ +NA,− +NI,−)H

(1)
0 (kd+ φ), (S11)

δK = δ sin2 (2ξd+ Φ)

(
G1 +

iR

2

)
(NA,+ +NI,+ +NA,− +NI,−)H

(1)
0 (2kd+ φ) (S12)

Here, δ < 1 is a fitting parameter describing the amount of opposite spin coupling. Diagonalizing Ĥ for increasing
pump power P0 we identify the threshold as the point in which a single eigenenergy crosses from the lower-half to
the upper-half of the complex plane. The results are plotted in Fig. 3(e) in the main text (solid curve) alongside the
experimental data, normalized in units of threshold power for the single isolated condensates Pthr,iso.
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