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RATIONAL SINGULARITIES AND q-BIRATIONAL MORPHISMS

DONGHYEON KIM

Abstract. In this paper, we generalize the notion of rational singularities for any

reflexive sheaf of rank 1, link our notion of rational singularities with the notion of

rational singularities in [Kov11], and prove generalizations of standard facts about ra-

tional singularities. Moreover, by using a definition of non-rational locus, we introduce

the notion of (Bq+1) as a dual notion of well-known Serre’s notion of (Sq+1), and prove

a theorem about q-birational morphisms.

1. Introduction

In this paper, q ≥ 2 is an integer, and k is any algebraically closed field of arbitrary

characteristic. Any variety is quasi-projective, separated, finite type and integral scheme

over k. Any divisor is assumed to be Cartier unless otherwise stated.

Throughout the paper, we will assume that for any normal variety X , there is a

proper birational morphism f : X ′ → X where X ′ is smooth and f is an isomorphism

outside of the singular locus of X . We call such a map a resolution of X . If k is of

characteristic 0, our assumption follows from Hironaka’s resolution of singularities, and

if k is of positive characteristic, only the threefold case is known to be affirmative (see

[Hir64] and [Cut09]). Moreover, for a pair (X,∆), a log resolution f : X ′ → X of (X,∆)

is a resolution f : X ′ → X of X such that Supp f−1
∗ ∆∪Exc(f) is simple normal crossing.

A variety X is said to have rational singularities if for any resolution f : X ′ → X ,

f∗OX′ = OX , R
if∗OX′ = 0 and Rif∗ωX′ = 0 for i ≥ 1 (see [Kol13], Definition 2.76,

and [Kov17], ). The notion of rational singularities plays an important role in algebraic

geometry. For instance, if X is a variety with rational singularities and f : X ′ → X is a

resolution of X , we have

H i(X ′, f ∗E) ∼= H i(X, E)

for any i ≥ 0 and any vector bundle E on X . In this paper, we generalize the notion to

any reflexive sheaf of rank 1.

The fundamental property of the notion of rational singularities is that ifX has rational

singularities, then X is CM. In this paper, from this perspective, we will define another

analogous notion of rational singularities for a reflexive sheaf F of rank 1 on a normal

variety X .
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2 DONGHYEON KIM

Definition 1.1. Let X be any normal variety and F any coherent sheaf on X . Let us

define dual of F by FD := HomOX
(F , ωX), and double dual by FDD := ((F)D)D.

Definition-Theorem 1.2. Let X be any normal variety and F any reflexive sheaf of

rank 1 on X . Suppose that f : X ′ → X is a generically finite morphism with X ′ smooth.

Then we have a natural map

θF ,f : Rf∗(f
∗F)D → RHomOX

(F , ω•
X)[− dimX ].

Moreover, if f is a resolution, the following are equivalent:

(a) θF ,f is a quasi-isomorphism.

(b) Rif∗(f
∗F)DD = 0 for i ≥ 1.

(c) The natural map

H i
x(Xx,Fx) → H i

f−1(x)(X
′
x, (f

∗F)DD
x )

is an isomorphism for each i ≥ 0 and each point x ∈ X .

We say that f is a weakly rational resolution of F if one of the above is true for f ,

and F has weakly rational singularities if one of the resolutions of X is weakly rational

resolution of F .

Definition 1.3. Let X be any normal variety and F any reflexive shaef of rank 1 on X .

(a) If F has weakly rational singularities and is CM, then we say F has rational

singularities.

(b) We say that a Weil divisorD onX has rational singularities ifOX(D) has rational

singularities.

It is worth noting that F is (KVdimX) if and only if for some resolution f : X ′ → X ,

Rif∗(f
∗F)D = 0 for i > 0.

Note that our definition bears a similarity to Definition 2.5 in [Kov11] and Definition

2.78 in [Kol13]. Let us recall the definition of rational singularities for a reduced pair

(X,D).

Definition 1.4 (See Definition 2.5, and Theorem 2.9 in [Kov11]). Let X be a normal

variety, and D a reduced Weil divisor on X . We say (X,D) has rational singularities if

there is a log resolution f : (X ′, DX′) → (X,D) such that

(a) (X,D) is a normal pair in the sense that the natural mapOX(−D) → f∗OX′(−DX′)

is an isomorphism, and

(b) Rif∗OX′(−DX′) = 0 for i > 0,

where DX′ is the strict transform of D along f .

Here, we highlight the distinctions between our definition and those in [Kov11] and

[Kol13]:

• We used double dual to define the notion of rational singularities instead of strict

transform. The advantage of using double dual is that the notion of normal pair



RATIONAL SINGULARITIES AND q-BIRATIONAL MORPHISMS 3

in [Kov11] is unnecessary, and if we consider Proposition 4.7, our definition of

rational singularities is minimal in sense of the requirement of the vanishing of

higher direct image and CM-ness. See Corollary 4.8.

In particular, if a pair (X,D) has rational singularities in the sense of [Kov11]

and [Kol13], then −D has rational singularities in the our sense.

• It is obvious that some Cartier divisor on X has rational singularities in our

sense if and only if X has rational singularities, and in contrast to our notion,

it is far from obvious that for some reduced, effective and Cartier divisor D on

X , (X,D) has rational singularities in the sense of [Kov11] if and only if X has

rational singularities. For the only if assertion, see Corollary 2.13 in [Kov11].

Note that the proof of Corollary 2.13 in [Kov11] implicitly used our notion of

rational singularities.

• We defined the notion of rational singularities for any reflexive sheaf of rank 1,

not only for a reduced Weil divisor.

One of the fundamental properties of klt and strongly F -regular varieties is that klt

varieties over a characteristic 0 field and strongly F -regular varieties over a positive

characteristic field have rational singularities (see [Elk81], [KMM87] and [HW19]). The

same principle holds in our definition of rational singularities for reflexive sheaves of rank

1.

Theorem 1.5. Let X be any normal variety over a characteristic 0 field, ∆ any effective

Q-Weil divisor such that (X,∆) is dlt and D any Q-Cartier Weil divisor on X. Then

D has rational singularities.

Theorem 1.6. Let X be any strongly F -regular variety over a positive characteristic

field, and D any Weil divisor on X such that there is an integer r which is relatively

prime to p, and rD is Cartier. Then D has rational singularities.

Note that Theorem 4.10 is a generalization of Corollary 5.25 in [KM98] and the proof

does not require the cyclic covering theory.

One of the advantages of our notion is that our notion of rational singularities is well-

behaved under finite morphisms under mild conditions, and it provides a partial answer

to a question posed by Kollár (see Remark 2.81 (3) in [Kol13]).

Theorem 1.7. Let X, Y be normal varieties over a characteristic 0 field, p : Y → X

any finite étale morphism and F any reflexive sheaf of rank 1 on X. If p∗F has (resp.

weakly) rational singularities, then F has (resp. weakly) rational singularities.

Theorem 1.8. Let X, Y be normal varieties over a characteristic 0 field, p : Y → X

any finite morphism and F any reflexive sheaf of rank 1 on X. If F is (KVdimX), and

p∗F has rational singularities, then F has rational singularities.

For a normal variety X , one may want to measure how far a non-rational singularity

is from being rational. For this purpose, the notion of non-rational locus is defined in

[AH12] and [Kov11]. We also consider an analogous notion here.
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Definition 1.9. Let X be any normal variety, F any reflexive sheaf of rank 1 on X , and

f : X ′ → X a resolution.

(a) We say that f is (KVq) about F if the support of Rif∗(f
∗F)D has codimension

≥ i+ q+1 for any i ≥ 1. We call F (KVq) if one of the resolutions of X is (KVq)

about F .

(b) We say that f is (RSq) about F if

(i) f is (KVq) about F , and

(ii) for any point x ∈ X with codimX x ≤ q, θF ,f is a quasi-isomorphism after

localizing θF ,f at x.

We call F (RSq) if there is a resolution of X which is (RSq) about F .

Remark 1.10. In Definition 1.9, F is (RSdimX) if and only if F has rational singular-

ities. Also in Definition 1.9, condition (b) is equivalent to following: For any i ≥ 1,

Rif∗(f
∗F)DD has the support of codimension ≥ q + 1.

Note that for a normal variety X and a coherent sheaf F on X , F is reflexive if and

only if the natural map F → FDD is an isomorphism. See Lemma 3.4.

Let us say F is (Rq) if there is an open subscheme U ⊆ X of X such that codimX(X \

U) ≥ q + 1, U is smooth and F|U is a vector bundle on U . The codimension of singular

locus of X determines the property of (RSq) of a reflexive sheaf F on X of rank 1.

Lemma 1.11. Let X be any normal variety and F any reflexive sheaf of rank 1 on X

with (KVq). If X is (Rq), then F is (RSq).

Example 1.12. We can give examples of reflexive sheaves of rank 1 with (RSq). Let

X be any normal variety over C and suppose ∆ is an effective Weil divisor such that

(X,∆) is log canonical. If D is a Q-Cartier Weil divisor on X , then D is (RSq+1), where

q is the codimension of the union of the non-klt centers of (X,∆).

It would be interesting to know whether any closed subvariety defined by the points

x ∈ X in which (θF ,f )x is not a quasi-isomorphism for some resolution f : X ′ → X is a

non-klt center of (X,∆) or not. Note that if D = 0, then there is an affirmative answer.

See Theorem 1.2 in [AH12].

By adopting the idea of proof of Lemma 3.3 in [Kov99], we can define the notion of

(Bq+1) as a dual of the notion of (Sq+1) and prove a duality theorem about a reflexive

sheaf of rank 1 with rationality condition.

We say F is (Sq+1) if H
i
x(X,F) = 0 for i < min{q+1, codimX x} and any point x ∈ X .

In (4.3) in [Kol11], Kollár remarked that OX is (S3) does not imply the condition that

ωX is (S3), and therefore it is hard to say that the depth condition on ωX is a formal

consequence of the depth condition on OX . Our result might answer what the formal

consequence of the depth condition on OX about condition of ωX should be.

Definition 1.13. Let X be any normal variety and F any reflexive sheaf of rank 1 on

X . We say F is (Bq+1) if H
i
x(X,F) = 0 for any dimX − q < i < dimX and any closed

point x ∈ X .
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Theorem 1.14. Let X be any normal projective variety and F any reflexive sheaf of

rank 1 on X, which is (RSq). Then the following are equivalent:

(a) F is (Sq+1).

(b) For any resolution f : X ′ → X with f (RSq) about F , Rif∗(f
∗F)DD = 0 for any

1 ≤ i < q.

(c) FD is (Bq+1).

Using the notions of (Bq+1) and (RSq), we can prove the following theorem about the

CM-ness of normal Q-factorial varieties.

Corollary 1.15. Let X be any normal Q-factorial variety with (Rq). Assume that any

Weil divisor on X is (KVq), and (Sq+1). If q ≥
⌈

dimX+1
2

⌉

, then any Weil divisor on X

is CM. In particular, X is CM itself.

Let us define the notion of q-birational morphism which is firstly defined in [Kim22].

Definition 1.16. Let X,X ′ be any normal varieties and f : X ′ → X any proper

birational morphism.

(a) The center of f is the reduced closed subscheme C of X which is the image of

exceptional locus along f .

(b) We say f is a q-birational morphism if the exceptional locus has codimension 1

and the center of f has codimension ≥ q + 1.

Remark 1.17. For any q-birational morphism f : X ′ → X between normal varieties, if

X ′ is smooth, then X is (Rq).

The argument of the proof of Theorem 1.14 can be used to generalize Theorem 3.4 in

[Kim22] as follows:

Theorem 1.18 (See Theorem 6.3). Let X,X ′ be any varieties over a characteristic 0

field such that X is normal and X ′ is smooth. Let f : X ′ → X be any q-birational

morphism. Suppose that D is any anti f -nef divisor on X ′ such that f∗D is Q-Cartier

and (Sq+1). Then Rif∗OX′(D) = 0 for 1 ≤ i < q.

The rest of the paper is organized as follows. We begin Section 2 by defining some basic

notions and by stating and proving basic theorems. Section 3 is devoted to proving basic

results about reflexive sheaves. In Section 4, we define (weakly) rational singularities and

prove some basic theorems. In Section 5, we define the notion of (Bq+1) and prove the

main theorem about that notion. Section 6 is devoted to defining q-birational morphisms

and proving the main theorems about q-birational morphisms.

Acknowledgments. The author thanks his advisor Sung Rak Choi for his comments,

questions, and discussions. He is grateful for his encouragement and support. The author

is grateful to Fabio Bernasconi and Sándor Kovács for their helpful comments on earlier

versions of this paper. The author thanks the referee for careful reading, comments,

and corrections of the previous version of this paper. We would like to acknowledge the

assistance of ChatGPT in polishing the wording.
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2. Preliminaries

The section is devoted to collecting basic definitions and facts used in the paper.

Notation 2.1. Given two normal varieties X,X ′, and a proper morphism f : X ′ → X ,

and a (not necessarily closed) point x ∈ X , we use the following notation:

• X ′
x := X ′ ×X SpecOX,x,

• dim x denotes the dimension of the closure of x,

• codimX x := dimX − dim x.

For any coherent sheaves F ,F ′ on X,X ′ respectively and the inclusion  : X ′
x → X ′,

we denote

• F ′
x := j∗F ′,

• OX′,x := (OX′)x, ωX′,x := (ωX′)x.

Note that if f : X ′ → X is a resolution of X , then X ′
x is a regular scheme.

For simplicity, if i ≥ 0, a point x ∈ X and a coherent sheaf F on X are given, set

H i
x(X,F) := H i

x(Xx,Fx).

Also, under the same conditions as above, if a resolution f : X ′ → X and a coherent

sheaf F ′ on X ′ are given, let

H i
f−1(x)(X

′,F ′) := H i
f−1(x)(X

′
x,F

′
x).

Definition 2.2. Let X be any normal variety and F any torsion-free sheaf on X .

(a) We say F is (Rq) if there is an open subscheme U ⊆ X such that codimX(X\U) ≥

q + 1, U is smooth and F|U is a vector bundle on U .

(b) We say X is (Rq) if OX is (Rq).

(c) We say F is (Sq+1) if H
i
x(X,F) = 0 for i < min{q + 1, codimX x} and any point

x ∈ X .

(d) We say F is Cohen-Macaulay (CM) if F is (SdimX).

(e) We say X is Cohen-Macaulay (CM) if OX is CM.

(f) We say F is reflexive if F is (S2).

Remark 2.3. If X is any normal variety with (Rq), then any reflexive sheaf of rank 1 on X

is also (Rq). An analogue for (Sq+1) does not hold. Indeed, letX := Spec k[x, y, z, w]/(xy−

zw). Then X is CM but not any reflexive sheaf of rank 1 on X is CM. See 3.15 in [Kol13].

We will use derived category machinery in the paper, especially in Section 4 and

Section 5. Hence, it is worth stating the local duality and the Grothendieck duality. For

a separated scheme X over k, let us define the notion of normalized dualizing complex

ω•
X of X by f !ωSpec k, where f : X → Spec k is the structure morphism.

Theorem 2.4 (See Lemma 0A85 in [Stacks]). Let X be any variety, x ∈ X any closed

point and E the injective hull of the residue field of OX,x. Write mX,x the maximal ideal

of OX,x, and Z = V . Then

RHomOX,x
(K,ω•

X)
∧
x
∼= RHomOX,x

(RΓZ(K), E[0])
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for any i and K ∈ D(X), where (−)∧x denotes the derived completion along mX,x, and

D(X) denotes the derived category of bounded complexes of coherent sheaves on X.

Theorem 2.5 (See 0AU3, (4) in [Stacks]). Let X,X ′ be any noetherian separated schemes

over k, f : X ′ → X any proper morphism of varieties. For any K ∈ D(X ′),

RHomOX
(Rf∗K,ω

•
X)

∼= Rf∗RHomOX′
(K,ω•

X′) in D(X).

Let us prove the following duality result. For a similar lemma, see Proposition 11.6 in

[Kol97].

Lemma 2.6. Let f : X ′ → X be any proper birational morphism between normal vari-

eties and E any vector bundle on X ′. Fix any point x ∈ X. Suppose X ′ is Gorenstein.

Then for i ≥ 0, (Rif∗E)x = 0 if and only if HcodimX x−i

f−1(x) (X ′, ωX′ ⊗ E∨) = 0.

Proof. Let k be the residue field of OX,x and E the injective hull of k as an OX,x-module.

We have

RΓf−1(x)(X
′, ωX′ ⊗ E∨) ∼= RΓx(X,Rf∗(ωX′ ⊗ E∨))

∼= HomOX,x
(RHomOX

(Rf∗(ωX′ ⊗ E∨)x, ω
•
X,x), E)

∼= HomOX,x
(Rf∗RHomOX′

(ωX′ ⊗ E∨, ωX′)x[codimX x], E)

∼= HomOX,x
(Rf∗HomOX′

(ωX′ ⊗ E∨, ωX′)x[codimX x], E)

∼= HomOX,x
((Rf∗E)x[codimX x], E),

where we used the Leray spectral sequence in the first equality, the local duality in the

second equality, the Grothendieck duality in the third equality, the fact that ωX′ is a line

bundle on X ′ in the forth equality. Hence, since E is an injective OX,x-module, we have

the assertion. �

Let us prove the following corollary.

Corollary 2.7 (See Lemma 3.5.10 in [Nak04] and Corollary 11.7 in [Kol97]). Let X be

any normal projective variety over a field of characteristic 0, f : X ′ → X any resolution

of X and D any Q-Cartier Weil divisor on X ′, which is anti f -nef. Then f∗OX′(D) =

OX(f∗D).

Proof. Note that both OX(f∗D) and (f∗OX′(D))∨∨ are reflexive, and they are isomorphic

in codimension 1. Hence, OX(f∗D) ∼= (f∗OX′(D))∨∨ by Theorem 1.12 in [Har94], and

thus it suffices to show that f∗OX′(D) is reflexive. Let x ∈ X be any point of codimension

≥ 2.

Consider the following spectral sequence

Est
2 = Hs

x(X,R
tf∗OX′(D)) =⇒ Hs+t

f−1(x)(X
′,OX′(D)).

Inspecting the spectral sequence, we have E10
2 = E10

∞ . Hence, by considering the edge map

E10
∞ → E1, it suffices to show that H1

f−1(x)(X
′,OX′(D)) = 0. Note that by the relative

Kawamata-Viehweg vanishing theorem (Theorem 1-2-3 in [KMM87]), Rif∗OX(KX′ −

D) = 0 for i ≥ 1. Thus, by Lemma 2.6, we have the assertion. �
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Remark 2.8. Note that it is a special case of [Nak04], Lemma 3.5.10. Nakayama proved

the lemma using the relative Zariski decomposition.

We will use the following lemma without any mention.

Lemma 2.9 (See Lemma 2.2 in [BMP+20]). For any normal variety X and any coherent

sheaf F on X, we have

HomOX
(F , ω•

X)[− dimX ] = HomOX
(F , ωX).

Proof. We may consider the following exact triangle

ωX [− dimX ] → ω•
X → C →

for some complex C in D(X). If we apply RHomOX
(F ,−) to this triangle, then we

obtain the following exact triangle

RHomOX
(F , ωX [− dimX ]) → RHomOX

(F , ω•
X) → RHomOX

(F , C) → .

Note that C has cohomological degree ≥ 1 and hence HomOX
(F , C) = 0. Thus, the long

exact cohomology sequence gives us the assertion. �

3. Reflexive sheaves

In this section, we collect important facts about reflexive sheaves. For a variety X ,

the generic point η ∈ X and a coherent sheaf F on X , rankF denotes the dimension of

Fη over the function field of X .

Definition 3.1 (See [HL10], Definition 1.1.7). Let X be any variety and F any coherent

sheaf on X . We define FD := HomOX
(F , ωX).

Remark 3.2. For any normal Gorenstein variety X and any reflexive sheaf F of rank 1

on X , FD = F∨ ⊗ ωX .Moreover, we can construct a natural map F → FDD. Indeed,

for any local section a ∈ F , consider a map

ϕ : F → FDD, a 7→ (f 7→ f(a)) for f ∈ FD := HomOX
(F , ωX).

Note that if X is normal, the map FD → FDDD is an isomorphism, because FD is a

reflexive sheaf. See Lemma 0AY4 in [Stacks], Lemma 0AWE in [Stacks], and Lemma 3.4

below.

Now, let us prove the following two lemmas.

Lemma 3.3. Let X be any normal variety and F any coherent sheaf on X. Then the

following are equivalent:

(a) F is torsion-free.

(b) The map F → FDD is injective.
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Proof. It is worth noting that for any variety X , ωX is (S2). See Lemma 0AWE in

[Stacks]. Hence, if X is normal, then ωX is reflexive.

If F is torsion-free, then the kernel K of the map is torsion-free because any subsheaf

of a torsion-free sheaf is also torsion-free. Furthermore, since ωX is reflexive, FDD is

torsion-free by Lemma 0AY4 in [Stacks]. Consider the fact that for every point x ∈ X

of codimension 1, Fx → FDD
x is an isomorphism (which follows from Lemma 0CC4 in

[Stacks], and the fact that OX,x is a discrete valuation ring). Then K = 0 because

rankK = 0.

For the converse, FDD is torsion-free. By our assumption, F is torsion-free because

any subsheaf of a torsion-free sheaf is also torsion-free. �

Lemma 3.4. Let X be any normal variety and F any coherent sheaf on X. Then the

following are equivalent:

(a) F is reflexive.

(b) The natural map F → FDD is an isomorphism.

Proof. Let us assume that F is reflexive. By Lemma 0AY4 in [Stacks], we know that

FDD is also reflexive and F → FDD is an isomorphism outside a codimension ≥ 2 closed

subscheme of X . Hence the map is an isomorphism by [Har94], Proposition 1.11.

For the converse, let E1 → E0 → FD → 0 be any resolution of F in which E0, E1 are

vector bundles. By taking HomOX
(−, ωX), we have the following exact sequence

0 → F ∼= FDD → ED
0 → ED

1 ,

and ED
i are reflexive for i = 0, 1. Hence, F is reflexive (see Lemma 0EBG in [Stacks]). �

Remark 3.5. If X is not normal, then such an equivalence is false. See Remark 0AY1 in

[Stacks].

Let us note an important fact about reflexive sheaves. For any normal variety X

and any reflexive sheaf F on X , F is a vector bundle outside codimension ≥ 2 closed

subscheme of X . See Lemma 0AY6 in [Stacks].

We will use the following three lemmas without any mention. We believe that they are

well-known to experts but we cannot find any reference about them. Hence, we include

their proof.

Lemma 3.6. Let X be any variety and ϕ : F → G any map between torsion-free sheaves

on X. Suppose that ϕ is generically injective. Then ϕ is an injection.

Proof. Let K be the kernel of ϕ. Note that K is a subsheaf of a torsion-free sheaf F . By

the condition on ϕ, rankK = 0 and hence K = 0, because any subsheaf of torsion-free

sheaf is also torsion-free. �

Lemma 3.7. Let X,X ′ be any normal varieties and f : X ′ → X any proper birational

morphism. Suppose that F is any reflexive sheaf on X. Then F ∼= f∗(f
∗F)DD.
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Proof. Let us consider the adjunction property

HomOX
(F , f∗(f

∗F)DD) ∼= f∗HomOX′
(f ∗F , (f ∗F)DD)

and the map f ∗F → (f ∗F)DD. Then we can construct the following map F →

f∗(f
∗F)DD. Note that the map is an injection because it is an isomorphism on the

regular locus of X and F , f∗(f
∗F)DD are torsion-free sheaves.

Let Q be the cokernel. Then we have the following exact sequence

0 → F → f∗(f
∗F)DD → Q → 0.

Note that the support of Q has codimension ≥ 2. Let x ∈ X be any point of codimension

≥ 2. Then the local cohomology exact sequence tells us that H0
x(X,Q) = 0. Hence x

is not an associated point of Q (cf. Lemma 0EEZ in [Stacks]). Thus Q = 0 by Lemma

05AG in [Stacks]. �

Lemma 3.8. Let X, Y be any normal varieties and p : X ′ → X any proper flat mor-

phism. Suppose that F is any coherent sheaf on X. Then (p∗F)DD = p∗(FDD).

Proof. Note that the pullback of a reflexive sheaf along a flat morphism is also reflexive.

See Proposition 1.8 in [Har80].

Taking the natural map F → FDD, we have a map ϕ : (p∗F)DD → p∗(FDD). We

know that both (p∗F)DD, p∗(FDD) on Y are reflexive and ϕ is an isomorphism outside

codimension ≥ 2 closed subscheme of Y (see Lemma 3.4). Hence by [Har94], Proposition

1.11, we have the assertion. �

4. Rational singularities

Throughout the remainder of this paper, for simplicity, assume that any reflexive sheaf

has rank 1, unless explicitly mentioned otherwise. Note that the condition of being rank

1 is only used in the proof of Definition-Theorem 4.1 to ensure that

ExtiOX′
((f ∗F)DD, ωX′) = 0 for i > 0

if we use the notations in Definition-Theorem 4.1 below, and hence we believe such

condition can be loosened easily.

Definition-Theorem 4.1. Let X be any normal variety and F any reflexive sheaf of

rank 1 on X . Suppose that f : X ′ → X is a generically finite morphism with X ′ smooth.

Then we have a natural map

θF ,f : Rf∗(f
∗F)D → RHomOX

(F , ω•
X)[− dimX ].

Moreover, if f is a resolution, the following are equivalent:

(a) θF ,f is a quasi-isomorphism.

(b) Rif∗(f
∗F)DD = 0 for i ≥ 1.
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(c) The natural map

H i
x(Xx,Fx) → H i

f−1(x)(X
′
x, (f

∗F)DD
x )

is an isomorphism for each i ≥ 0 and each point x ∈ X .

We say that f is a weakly rational resolution of F if one of the above is true for f , and

that F has weakly rational singularities if one of the resolutions of X is weakly rational

resolution of F .

Proof. The following proof is inspired by the argument in the proof of Lemma 3.7 in

[ST08].

Let us construct θF ,f . Consider a composition F → f∗(f
∗F)DD → Rf∗(f

∗F)DD. We

may take RHomOX
(−, ω•

X) on the map and it gives

RHomOX
(Rf∗(f

∗F)DD, ω•
X) → RHomOX

(F , ω•
X).

Now, we may compute the left-hand side by the Grothendieck duality as follows:

RHomOX
(Rf∗(f

∗F)DD, ω•
X) = Rf∗RHomOX′

((f ∗F)DD, ωX′)[dimX ]

= Rf∗HomOX′
((f ∗F)DD, ωX′)[dimX ]

= Rf∗(f
∗F)D[dimX ],

where we used the fact that (f ∗F)DD is a line bundle on X ′ on the second equality.

Therefore, we have a map

θF ,f : Rf∗(f
∗F)D → RHomOX

(F , ω•
X)[− dimX ].

For (a) ⇐⇒ (b), if (b) is true, then F ∼= Rf∗(f
∗F)DD. Thus, θF ,f is a quasi-

isomorphism and (a) is true. For the converse, we may take RHomOX
(−, ω•

X) on θF ,f .

See 0AU3 (3) in [Stacks].

For (a) ⇐⇒ (c), we may take the local duality to θF ,f . Note that the dual of θF ,f is

RΓx(Xx,Fx) → RΓx(Xx, Rf∗(f
∗F)DD)

and the right hand side is RΓf−1({x})(X
′
x, (f

∗F)DD) by the Leray spectral sequence. �

Remark 4.2. If we use the notions of Definition-Theorem 4.1, then H0(θF ,f ) is

H0(θF ,f ) : f∗(f
∗F)D → FD = HomOX

(F , ωX).

If we let F = OX , then H0(θF ,f) is the trace map introduced in [KM98], Proposition

5.77.

Let f : X ′ → X, g : X ′′ → X ′ be generically finite morphisms between normal varieties,

and F any coherent sheaf on X . If X ′, X ′′ are smooth, then the map

H0(θF ,f◦g) : (f ◦ g)∗((f ◦ g)∗F)D → FD

can be factored as follows:

(f ◦ g)∗((f ◦ g)∗F)D f∗(f
∗F)D FD.

H0(θ
(f∗F)DD,g

) H0(θF,f )
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Indeed, let u : (f ∗F)DD → Rg∗((f ◦ g)∗F)DD be the natural map. Then by definition,

θg,(f∗F)DD = RHomOX′
(u, ω•

X′)[− dimX ].

If we consider

F → Rf∗(f
∗F)DD Rf∗(u)

→ R(f ◦ g)∗((f ◦ g)∗F)DD,

by taking RHomOX
(−, ω•

X) on that, then we have the maps

(4.1) R(f ◦ g)∗((f ◦ g)∗F)D
α
→ Rf∗(f

∗F)D → HomOX
(F , ω•

X)[− dimX ].

If we use the Grothendieck duality, then we obtain

α = Rf∗ ◦RHomOX′
(u, ω•

X′)[− dimX ] = Rf∗ ◦ θg,(f∗F)DD .

If we apply H0 on (4.1), then we have the assertion.

Proposition 4.3. Let X be any normal variety and F any reflexive sheaf of rank 1 on

X which has weakly rational singularities. Then the following are equivalent:

(a) F is (Sq+1).

(b) For some weakly rational resolution f : X ′ → X, the support of Rif∗(f
∗F)D has

codimension ≥ i+ q + 1 for any i ≥ 1.

(c) The support of Rif∗(f
∗F)D has codimension ≥ i + q + 1 for any i ≥ 1 and any

weakly rational resolution f : X ′ → X of X.

Proof. For (a) =⇒ (c), given any weakly rational resolution f : X ′ → X , by our

assumption, there is an isomorphism

θF ,f : Rf∗(f
∗F)D ∼= RHomOX

(F , ω•
X)[− dimX ].

Moreover, for any point x ∈ X with codimX x ≤ i + q, HcodimX x−i
x (X,F) = 0 holds,

because F is (Sq+1). Hence, by the local duality, Ext− codimX x+i
OX,x

(Fx, ω
•
X,x) = 0 for such

i. Thus, Rif∗(f
∗F)Dx = 0 and the support of Rif∗(f

∗F)D does not contain x.

(c) =⇒ (b) is trivial.

For (b) =⇒ (a), consider a point x ∈ X . If codimX x ≤ q, then Rif∗(f
∗F)Dx = 0 and

Ext− codimX x+i
OX,x

(Fx, ω
•
X,x) = 0 hold for any i ≥ 1. Therefore, the local duality gives

HcodimX x−i
x (X,F) = 0 for any i ≥ 1.

If codimX x ≥ q+ 1 and Rif∗(f
∗F)Dx = 0, by the local duality, HcodimX x−i

x (X,F) = 0.

Furthermore, if codimX x − i < q, then Rif∗(f
∗F)Dx = 0. Hence, for 0 ≤ j < q,

Hj
x(X,F) = 0. �

Now, we can define the notion of rational singularities for any reflexive sheaf of rank

1.

Definition 4.4. Let X be any normal variety, F any reflexive sheaf of rank 1 on X .

(a) We say that F has rational singularities if F has weakly rational singularities

and F is CM.
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(b) We say that a Weil divisorD onX has rational singularities ifOX(D) has rational

singularities.

(c) Let f : X ′ → X be a resolution. We say f is (KVq) about F if the support of

Rif∗(f
∗F)D has codimension ≥ i+ q+ 1 for any i ≥ 1. We call F (KVq) if there

is a resolution of X which is (KVq) about F .

Example 4.5. Having weakly rational singularities does not ensure having rational

singularities.

For example, take X := Spec k[x, y, z, w]/(xy − zw), A := {x = z = 0}, the blowup

f : X ′ → X along A and the exceptional divisor E onX ′. We know that f is a small reso-

lution and (f ∗OX(−mA))
DD = OX′(−mE). Then for m ≫ 0, Rif∗(f

∗OX(−mA))
DD =

0 for i ≥ 1. Thus, −mA has weakly rational singularities for such m. However, for

m ≥ 2, −mA is not CM as in (3.15) in [Kol13] and hence −mA does not have rational

singularities.

Let us prove the following lemma. Similar statements are proved in Lemma 3.2 in

[Ale08] and Theorem 7.1.1 in [Fuj17].

Lemma 4.6. Let f : X ′ → X be any proper birational morphism of varieties and F ,F ′

any coherent sheaves on X ′. For any given positive integer n ≥ 1, suppose the three

conditions hold:

(1) There is an injection ı : F → F ′,

(2) ı induces an isomorphism f∗F ∼= f∗F
′, and

(3) Rif∗F
′ = 0 for 1 ≤ i < n.

Then we have Rif∗F = 0 for 1 ≤ i < n.

Proof. Consider any point x ∈ X . We have the following two spectral sequences
1Est

2 = Hs
x(X,R

tf∗F) =⇒ H i+j

f−1(x)(X
′,F),

2Est
2 = Hs

x(X,R
tf∗F

′) =⇒ H i+j

f−1(x)(X
′,F ′).

From (3), we deduce 2Ei0
2 = 2Ei0

∞, making the edge map 2Ei0
2 → 2Ei injective for all

0 ≤ i ≤ n. Using (1), we have the following diagram:

1Ei = H i
f−1(x)(X

′,F) 2Ei = H i
f−1(x)(X

′,F ′)

1Ei0
2 = H i

x(X, f∗F) 2Ei0
2 = H i

x(X, f∗F
′).

γi

αi βi

Given (2), for any i, γi is an isomorphism. Since βi is an injection for 1 ≤ i ≤ n, αi is

also an injection for such i.

Now, we may use induction. Indeed, suppose for a positive integer 1 < n′ ≤ n,

Rif∗F = 0 for 1 ≤ i < n′. Our goal is to show Rn′

f∗F = 0. By the induction hypothesis,

we have 1E0n′

2 = 1E0n′

n and 1E
(n′+1)0
2 = 1E

(n′+1)0
n . Hence, there is an exact sequence

0 → 1E0n′

2 → 1E
(n′+1)0
2

βn′+1
→ 1En′+1.
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Since βn′+1 is an isomorphism, we obtain H0
x(X,R

n′+1f∗F) = 1E
(n′+1)0
2 = 0 and hence

Rn′+1f∗F does not have (the arbitrary point) x ∈ X as an associated point. Thus

Rn′+1f∗F = 0 and we have the assertion. �

Now, we have an alternative description of the notion of rational singularities.

Proposition 4.7. Let X be any normal variety and F any reflexive sheaf of rank 1 on

X. Then F has rational singularities if and only if for a resolution f : X ′ → X, there

is a line bundle LF ,f on X ′ such that the three following conditions hold:

(i) f∗LF ,f = F ,

(ii) Rif∗LF ,f = 0 for i ≥ 1, and

(iii) Rif∗L
D
F ,f = 0 for i ≥ 1.

Proof. For the only if direction, set LF ,f := (f ∗F)DD. Now, apply Lemma 3.7 and

Definition-Theorem 4.1.

For the if direction, let us consider the counit map f ∗f∗LF ,f → LF ,f . By taking double

dual, we obtain an injection (f ∗f∗LF ,f)
DD → LF ,f . Since (i) holds, (f ∗f∗LF ,f)

DD =

(f ∗F)DD. Thus, there is an injection (f ∗F)DD → LF ,f .

Considering Lemma 3.7, Lemma 4.6, (i) and (ii), we have Rif∗(f
∗F)DD = 0 for i ≥ 1.

Let us use the notations in Lemma 4.6. By (iii) and Lemma 2.6, we obtain

H i
f−1(x)(X

′,LF ,f) = 0 for i < codimX x.

Since βi is an isomorphism for i ≥ 1, we deduce

H i
x(X,F) = H i

f−1(x)(X
′,LF ,f) = 0 for i < codimX x

and hence F is CM. Thus F has rational singularities. �

Now, we can see that our notion of rational singularities is weaker than the notion of

rational singularities in [Kov11] and [Kol13].

Corollary 4.8. Let X be a normal variety over a characteristic 0 field, and D a reduced

Weil divisor on X. If (X,D) has rational singularities in the sense of [Kov11], then −D

has rational singularities.

Proof. Let f : (X ′, DX′) → (X,D) be a log resolution of (X,D). Then we may put

LOX(−D),f := OX′(−DX′) and use Proposition 4.7. Now, use Theorem 2.9 in [Kov11]. �

Before proving any Q-Cartier Weil divisor on a dlt pair (X,∆) over a characteristic 0

field has rational singularities, let us prove the following lemma.

Lemma 4.9. Let X be a normal variety, f : X ′ → X a resolution and D a Q-Cartier

Weil divisor on X. For a Cartier divisor L on X ′ such that OX′(L) = (f ∗OX(D))DD

holds, there is an effective f -exceptional divisor E such that L+ E ∼Q f
∗D holds.
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Proof. Let d be a positive integer such that dD is Cartier. Let us consider the following

map

OX(D)⊗ · · ·OX(D) → OX(dD).

Then by applying f ∗ to both sides, and reflexing, we have an injection

OX′(dL) = (f ∗OX(D)⊗ · · · ⊗ f ∗OX(D))DD → OX′(f ∗(dD)).

Thus f ∗(dD) − dL is effective. We may choose L so that f∗L = D holds. Moreover,

since f∗(f
∗(dD) − dL) = dD − dD = 0 holds, f ∗(dD)− dL is f -exceptional. Now, put

E := 1
d
(f ∗(dD)− dL). �

Now, we prove the following two properties.

Theorem 4.10. Let X any normal variety over a characteristic 0 field, ∆ any effective

Q-Weil divisor such that (X,∆) is dlt and D any Q-Cartier Weil divisor on X. Then

D has rational singularities.

Proof. It suffices to prove the case of (X,∆) klt. In fact, by Proposition 2.43 in [KM98],

for any ample Cartier divisor H on X , there is 0 < ε ≪ 1, a rational number c > 0, and

an effective Q-divisor D ≡ ∆+ cH such that (X, (1 − ε)∆ +D) is klt. Now, replace ∆

with (1− ε)∆ +D.

Suppose f : X ′ → X is any log resolution of (X,∆), and write

KX′ = f ∗(KX +∆) + F − F ′,

where F is an effective, f -exceptional Cartier divisor and F ′ is a simple normal crossing

divisor with ⌊F ′⌋ = 0. Then F ∼Q KX′ − f ∗(KX + ∆) + F ′. If we pick a divisor L

on X ′ such that OX′(L) ∼= (f ∗OX′(D))DD, then by Lemma 4.9, there is an effective

f -exceptional divisor E such that L+ E ∼Q f
∗D holds, and we have

F + L+ ⌊E⌋ ∼Q KX′ + F ′ − {E}+ (f ∗D − f ∗(KX +∆)).

Now, let us use Proposition 4.7 to prove this assertion with LF ,f = OX′(L+ ⌊E⌋).

For (i), if we consider an injection ϕ : f∗OX′(L) → f∗OX′(L + ⌊E⌋) which is induced

by OX′(L) → OX′(L + ⌊E⌋), ϕ is an isomorphism outside of codimension ≥ 2 closed

subset of X . If we let Q to be the cokernerl of ϕ, then we have an exact sequence

0 → f∗OX′(L) ∼= OX(D) → f∗OX′(L+ ⌊E⌋) → Q → 0.

The first isomorphism is by Lemma 3.7. As the proof of Lemma 3.7, by taking the

local cohomology spectral sequence, we obtain H0
x(X,Q) = 0 for a point x ∈ X with

codimension ≥ 2, and we can prove Q = 0.

For (ii), let Ei be the prime f -exceptional divisors, and let us define

ai :=

{

1 if multEi
(F ′ − {E}) < 0, and

0 elsewhere,
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and

E ′ :=
∑

i

aiEi.

Then

F + L+ ⌊E⌋+ E ′ ∼Q,f KX′ + F ′ − {E}+ E ′,

and ⌊F ′ − {E}+ E ′⌋ = 0. Therefore, by the relative Kawamata-Viehweg vanishing

theorem (Theorem 1-2-3 in [KMM87]), Rif∗OX(F + L+ ⌊E⌋ + E ′) = 0. If we consider

the injection OX(L+⌊E⌋) → OX(F +L+⌊E⌋+E ′), then we have Rif∗OX(L+⌊E⌋) = 0

by Lemma 4.6.

For (iii), by the relative Kawamata-Viehweg vanishing theorem,

Rif∗OX′(KX′ − (L+ ⌊E⌋)) = Rif∗OX′(KX′ + {E}) = 0 for i > 0.

Thus, we achieved all the conditions listed in Proposition 4.7, and thus we deduce the

assertion. �

Theorem 4.11. Let X any strongly F -regular variety over a field of characteristic p > 0

and D any Weil divisor such that there is an integer r such that rD is linearly equivalent

to a Cartier divisor and r is relatively prime to p. Then D has rational singularities.

Proof. Since having rational singularities is a local property, we may assume X := SpecR

is an affine scheme and rD ∼ 0. Moreover, by multiplying some integer on r, we may

take r = pe − 1 for sufficiently large e. Let x ∈ X be a point of X and f : X ′ → X any

resolution. We follow the proof of Theorem 3.1 in [PS14].

We may equip an endomorphism F e
∗ : HcodimX x

x (X,OX(D)) → HcodimX x
x (X,OX(D))

on HcodimX x
x (X,OX(D)) as an endomorphism of an abelian group. Indeed, if we con-

sider the inclusion OX ⊆ F e
∗OX , then by tensoring OX(D) and reflexing, we have a

map OX(D) → F e
∗OX(p

eD). Since (pe − 1)D ∼ 0 holds, we obtain a map OX(D) →

F e
∗OX(D). Taking local cohomology gives the desired map. Let us call a submodule

K ⊆ HcodimX x
x (X,OX(D)) F -stable if F e

∗ (K) ⊆ K.

Let R∧ be the completion of R along x, K ( HcodimX x
x (X,OX(D)) any F -stable

submodule of HcodimX x
x (X,OX(D)). It is worth noting that HcodimX x

x (X,OX(D)), and

its submodules are also R∧-modules.

Suppose c ∈ AnnR∧K is any nontrivial element of AnnR∧K. Note that such an

element exists because of the Matlis duality. Indeed, if we let N∧ := R∧N for any

R-module N , and N ′ is the R-module corresponding to OX(D), then the inclusion

K ( HcodimX x
x (X,OX(D)) gives us a surjection

HomR∧((N ′)∧, ωR∧) → HomR∧(K,E),

where E is the injective hull of the residue field of R (see Theorem 3.5.8 in [BH98]).

Since ωR∧ , (N ′)∧ are torsion-free,

0 6= AnnR∧(HomR∧(K,E)) = AnnR∧K.
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Note that R∧ is also strongly F -regular. There is a positive integer e′ and a map

ϕ : F e′

∗ R
∧ → R∧ such that the composition

(4.2) R∧ → F e′

∗ R
∧ F e′

∗ (·c)
→ F e′

∗ R
∧ ϕ
→ R∧

is the identity. We may assume e|e′ and hence (pe − 1)|(pe
′

− 1). Twisting by OX(D)

and reflexing on (4.2), we have the following composition which is the identity

(N ′)∧ → F e′

∗ (N ′)∧ → F e′

∗ (N ′)∧ → (N ′)∧.

Now, taking local cohomology gives us

HcodimX x
x (X,OX(D))

→HcodimX x
x (X,F e′

∗ OX(D))

F e′

∗ (·c)
→ HcodimX x

x (X,F e′

∗ OX(D))

→HcodimX x
x (X,OX(D)).

Since K is F -stable and cK = 0 holds, K = 0.

We may mimic the argument of Smith (see [Smi97], Theorem 3.1). Let f : X ′ → X

be a resolution. Now, consider the Leray spectral sequence

(4.3) Est
2 = Hs

x(X,R
tf∗(f

∗OX(D))DD) =⇒ Hs+t
f−1(x)(X

′, (f ∗OX(D))DD)

and its edge map δD : HcodimX x
x (X,OX(D)) → HcodimX x

f−1(x) (X, (f ∗OX(D))DD). Let KD be

the kernel of δD. If we consider Proposition 1.12 in [Smi97] and set ψ by

ψ : (f ∗OX(D))DD → F e
∗ (f

∗OX(p
eD))DD,

then we have a diagram

HcodimX x

f−1(x) (X ′, (f ∗OX(D))DD) HcodimX x

f−1(x) (X ′, (f ∗OX(D))DD)

HcodimX x
x (X,OX(D)) HcodimX x

x (X,OX(D))

F e
∗

F e
∗

δD δD

by considering the argument in the proof of Theorem 3.1 in [Smi97] almost unchangingly.

For any c ∈ KD, δD(F
e
∗ (c)) = F e

∗ (δD(c)) = 0 and hence KD is F -stable. Therefore

KD = 0. It means δD is an injection.

We may use induction. Suppose n ≥ 2 is an integer and assume Rif∗(f
∗OX(D))DD = 0

for 1 ≤ i < n− 1. Then by inspecting (4.3), we obtain an exact sequence

0 → H0
x(X,R

n−1f∗(f
∗OX(D))DD) → Hn

x (X,OX(D))
δn,D

→ Hn
f−1(x)(X

′, (f ∗OX(D))DD).

For n < codimX x, we know OX(D) is CM by Theorem 3.2 in [PS14] and hence

δn,D is an injection. Moreover, we have proven that δcodimX x,D is an injection. Thus,

H0
x(X,R

nf∗(f
∗OX(D))DD) = 0 and Rnf∗(f

∗OX(D))DD does not have an associated
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point as x. This argument works for any point x ∈ X and thereforeRn−1f∗(f
∗OX(D))DD =

0. By considering Definition-Theorem 4.1, D has weakly rational singularities.

The remaining is to show Rif∗(f
∗OX(D))D = 0 for i ≥ 1. By Lemma 2.6, it suffices

to show HcodimX x−i

f−1(x) (X ′, (f ∗OX(D))DD) = 0 for i ≥ 1. If we consider (4.3), then Est
2 = 0

for s+ t < codimX x and hence EcodimX x−i = 0 and that is the assertion. �

Example 4.12. Consider klt varieties over fields with positive characteristic.

On the positive side, let X be a normal threefold over a field with characteristic p > 5.

Suppose there exists an effective Q-divisor ∆ on X such that (X,∆) is klt. Referring

to Theorem 3 in [BK21] and following a similar approach as in Theorem 4.10, it can be

shown that any Q-Cartier Weil divisor D on X possesses rational singularities.

On the negative side, when the characteristic of k is 3, there exists a klt Q-factorial

threefold X where X lacks rational singularities, as seen in Theorem 1.2 of [Ber21]. Ad-

ditionally, for any prime p > 2 and any field k of characteristic p, an example of a variety

exhibiting terminal singularities without rational singularities is given in Corollary 2.2

of [Tot19].

Let us the following lemma before proving Theorem 1.7, and Theorem 1.8.

Lemma 4.13. Let X, Y be normal varieties, p : Y → X any finite flat morphism, and

F any coherent sheaf on X. If p∗F is CM, then F is CM.

Proof. Since p is finite flat, p is a surjection, and thus p is faithfully flat. By Lemma

00LM in [Stacks], for any point x ∈ X , any regular sequence of Fx comes from a regular

sequence of Fy, where p(y) = x. Thus, we have the assertion. �

We aim to establish that the property of having rational singularities remains stable

under finite étale morphisms. This may provide a partial resolution to Remark 2.81 (3)

in [Kol13].

Theorem 4.14. Let X, Y be normal varieties over characteristic 0 field, p : Y → X

any finite étale morphism and F any reflexive sheaf of rank 1 on X. If p∗F has (resp.

weakly) rational singularities, then F has (resp. weakly) rational singularities.

Proof. By the functoriality of resolution of singularities (see Theorem 3.36 in [Kol07]),

for some resolution f : X ′ → X , there is a resolution f ′ : Y ′ → Y such that f, f ′ fit in

the following Cartesian diagram:

Y ′ ∼= X ′ ×X Y Y

X ′ X.

p′

f ′

p

f

Note that p′ is finite étale because being finite étale is stable under base change (see

Lemma 01TS and Lemma 02GO in [Stacks]). Moreover, we have a split injection

(f ∗F)DD → (p′)∗(p
′)∗(f ∗F)DD by Lemma 3.17 in [KTT+22].
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Note that for any coherent sheaf G on Y , Rip∗G = 0 for i ≥ 1 by Lemma 02OE in

[Stacks]. Now, we consider the following two Grothendieck spectral sequences

1Est
2 = Rsp∗(R

t(f ′)∗((f
′)∗(p∗F))DD) =⇒ Rs+t(p ◦ f ′)∗((f

′)∗(p∗F))DD

2Est
2 = Rsf∗(R

t(p′)∗((p
′)∗(f ∗F)DD)) =⇒ Rs+t(f ◦ p′)∗((p

′)∗(f ∗F)DD).

Note that

((f ′)∗(p∗F))DD = ((p ◦ f ′)∗F)DD = ((f ◦ p′)∗F)DD = ((p′)∗(f ∗F))DD = (p′)∗(f ∗F)DD.

Hence, by inspecting the spectral sequences, we obtain

p∗(R
i(f ′)∗((f

′)∗(p∗F))DD) = Rif∗((p
′)∗((p

′)∗(f ∗F)DD))

for any i ≥ 0.

Suppose p∗F has weakly rational singularities so that Ri(f ′)∗((f
′)∗(p∗F))DD = 0 for

i ≥ 1. Then Rif∗((p
′)∗((p

′)∗(f ∗F)DD)) = 0 for i ≥ 1. By the splitting

(4.4) (f ∗F)DD → (p′)∗(p
′)∗(f ∗F)DD → (f ∗F)DD

and taking Rif∗ on (4.4), we also have Rif∗(f
∗F)DD = 0 for i ≥ 1. Therefore F has

weakly rational singularities. If p∗F is CM, then F is CM because of Lemma 4.13, and

thus if p∗F has rational singularities, then F has rational singularities. �

Remark 4.15. We hope that Theorem 4.14 is true for any field k of positive character-

istic. The difficulty is that there may be no splitting (f ∗F)DD → (p′)∗(p
′)∗(f ∗F)DD →

(f ∗F)DD if the degree of p is coprime to the characteristic of k. Also we hope that

Theorem 4.14 is true only when p is finite but not necessarily étale.

In Theorem 4.14, if p is a quotient by a finite group which may not be étale, then the

major problem for proving Theorem 4.14 is we cannot ensure the splitting of (f ∗F)DD →

(p′)∗(p
′)∗(f ∗F)DD if p′ is generically finite.

Using the notation introduced in Theorem 4.14, suppose that F is (KVdimX). In this

case, the requirement that p be étale can be relaxed to be flat.

Theorem 4.16. Let X, Y be normal varieties over characteristic 0 field, p : Y → X any

finite flat morphism and F any reflexive sheaf of rank 1 on X. If F is (KVdimX), and

p∗F has rational singularities, then F has rational singularities.

Proof. We borrow the proof of Theorem 1 in [Kov00]. We have proven if p∗F is CM,

then F is CM in Lemma 4.13.

Let

Y ′ Y

X ′ X

f ′

p′ p

f

be a diagram, where f, f ′ are proper birational morphisms, p′ is a proper morphism and

X ′, Y ′ are smooth.
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Consider the diagram

F Rp∗(p
∗F)

Rf∗(f
∗F)DD R(p ◦ f ′)∗((p ◦ f

′)∗F)DD.

α

β γ

δ

By Lemma 3.17 in [KTT+22], there is a left inverse α′ of α. Moreover, γ is a quasi-

isomorphism because p∗F has rational singularities. Thus, β has a left inverse β ′ :=

α′ ◦ γ−1 ◦ δ.

Now, we may consider a resolution f : X ′ → X which is (KVdimX) about F . If we

take RHomOX
(−, ω•

X) on

F
β
→ Rf∗(f

∗F)DD β′

→ F ,

then we have

FD → f∗(f
∗F)D → FD

because F is CM and f is (KVdimX) about F . Thus f∗(f
∗F)D ∼= FD. If we con-

sider Definition-Theorem 4.1, θF ,f is a quasi-isomorphism and, therefore, F has rational

singularities. �

Now, we define the following notion.

Definition 4.17. Let X be any normal variety, F any reflexive sheaf of rank 1 on X ,

and f : X ′ → X a resolution. We say that f is (RSq) about F if

(a) f is (KVq) about F , and

(b) for any point x ∈ X with codimX x ≤ q, θF ,f is a quasi-isomoprhism after

localizing θF ,f at x.

We call F (RSq) if there is a resolution of X which is (RSq) about F .

Lemma 4.18. Let X be any normal variety and F any reflexive sheaf of rank 1 on X

with (KVq). If X is (Rq), then F is (RSq).

Proof. Let f : X ′ → X be any resolution. By dualizing θF ,f , it suffices to show that

Rif∗(f
∗F)DD has support of codimension ≥ q + 1 for i ≥ 1. For any point x ∈ X with

codimX x ≤ q, Fx = OX,x. Hence (Rif∗(f
∗F))DD

x = (Rif∗OX)x for i ≥ 0 by Corollary

3.8.2 in [Har77]. Thus, by Theorem 1.1 in [CR15], we have the assertion. �

5. Notion of (Bq+1)

The goal of this section is to introduce the notion of (Bq+1).

Definition 5.1. Let X be a normal variety and let F be a reflexive sheaf of rank 1 on

X . We define F to be (Bq+1) if, for every closed point x ∈ X , we have H i
x(X,F) = 0

whenever dimX − q < i < dimX .
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For any normal variety X , X is CM if and only if ωX is CM. This equivalence is

established in Lemma 0AWS of [Stacks]. Nonetheless, when q < dimX−1, the statement

that X is (Sq+1) if and only if ωX is (Sq+1) does not hold. It appears to us that the more

appropriate property for ωX might be (Bq+1) rather than (Sq+1). For further discussion

on this topic, one can refer to Section 4.3 in [Kol11].

Theorem 5.2. Let X be any normal projective variety and F any reflexive sheaf of rank

1 on X, which is (RSq). Then the following are equivalent:

(a) F is (Sq+1).

(b) For any resolution f : X ′ → X with f (RSq) about F , Rif∗(f
∗F)DD = 0 for any

1 ≤ i < q.

(c) FD is (Bq+1).

Proof. Let f : X ′ → X be any resolution of X which is (RSq) about F . For (a) =⇒ (b),

we consider the following spectral sequence

(5.1) Est
2 = Hs

x(X,R
tf∗(f

∗F)DD) =⇒ Hs+t
f−1(x)(X

′, (f ∗F)DD).

We may use induction. Indeed, let us fix any positive integer 2 ≤ n ≤ q and assume

that Rif∗(f
∗F)DD = 0 for 1 ≤ i < n− 1.

Given any point x ∈ X with codimX x ≥ q + 1, since f is (KVq) about F , and

Lemma 2.6 holds, we have H i
f−1(x)(X

′, (f ∗F)DD) = 0 for i ≤ q. By the spectral sequence

(5.1), we obtain the following exact sequence

0 → H0
x(X,R

n−1f∗(f
∗F)DD) → Hn

x (X,F)
αn→ Hn

f−1(x)(X
′, (f ∗F)DD).

From the above exact sequence, H0
x(X,R

n−1f∗(f
∗F)DD) ∼= Hn

x (X,F) and if we use (a),

then H0
x(X,R

n−1f∗(f
∗F)DD) = 0 holds. Thus, Rn−1f∗(f

∗F)DD does not have x as an

associated point, and thus any generic point of SuppRn−1f∗(f
∗F)DD has codimension

≥ q if there exists. Let us assume codimX x ≤ q. Then since f is (RSq) about F ,

(Rif∗(f
∗F))x = 0 for i ≥ 1. Hence, we have Rn−1f∗(f

∗F)DD = 0.

For (b) =⇒ (a), since θF ,f is a quasi-isomorphism at x ∈ X with codimX x ≤ q, we

deduce (Rif∗(f
∗F)D)x ∼= Ext− codimX x+i

OX,x
((f ∗F)DD

x , ω•
X,x). Hence the fact that f is (KVq)

about F and the local duality gives us H i
x(X,F) = 0 for i < codimX x.

If codimX x ≥ q + 1, by inspecting the spectral sequence (5.1), Es0
2 = Es0

∞ for s ≤ q.

Considering the edge map Es0
∞ → Es = Hs

f−1(x)(X
′, (f ∗F)DD) for such s, if we use

Lemma 2.6, then we obtain the assertion.

For (a) ⇐⇒ (c), let us consider the following exact sequence

0 f∗(f
∗F)D FD Q 0

H0(θF,f )

for a coherent sheaf Q on X . Since f is (RSq) about F , the support ofQ has codimension

≥ q + 1 and hence H i
x(X,Q) = 0 for i > dimX − q.

By taking local cohomology on the above exact sequence, we obtain

H i
x(X, f∗(f

∗F)D) ∼= H i
x(X,F

D) for any dimX − q < i < q and any closed point x ∈ X.
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Hence, FD is (Bq+1) if and only if H i
x(X, f∗(f

∗F)D) = 0 for any dimX − q < i < dimX

and any closed point x ∈ X .

Let x ∈ X be any closed point and consider the Leray spectral sequence

Est
2 = Hs

x(X,R
tf∗(f

∗F)D) =⇒ Hs+t
f−1(x)(X

′, (f ∗F)D).

Then, by the fact that f is (KVq) about F and the dimension counting, Est
2 = 0 for

s + t ≥ dimX − q. Hence, by inspecting the spectral sequence, Es0
2 = Es0

∞ for s >

dimX − q. Moreover, Es0
∞ = Es for s > dimX − q. Thus, FD is (Bq+1) if and only if

H i
f−1(x)(X

′, (f ∗F)D) = 0 for any dimX − q < i < dimX and any closed point x ∈ X . If

we use Lemma 2.6, then we have the assertion. �

Remark 5.3. In Theorem 5.2, the argument of the proof of (a) ⇐⇒ (b) is similar to

the argument of the proof of Lemma 3.1 in [Ale08] and Proposition 7.1.7 in [Fuj17].

Moreover, the idea of the proof of (a) ⇐⇒ (c) is inspired by the proof of Lemma 3.3 in

[Kov99].

There is an interesting corollary of Theorem 5.2.

Corollary 5.4. Assume that q ≥
⌈

dimX+1
2

⌉

. Let X be any normal Q-factorial variety

over a characteristic 0 field and any Weil divisor on X is (RSq) and (Sq+1). Then any

Weil divisor on X is CM. In particular, X is CM itself.

Proof. Note that any reflexive sheaf F on X of rank 1 is (RSq) because F is (KVq) by

assumption, X is (Rq), and thus F is (RSq) by Lemma 4.18. Since (OX(D))D is (Sq)

and OX(D) ∼= (OX(D))DD is (Bq) by Theorem 5.2, OX(D) is CM. �

Remark 5.5. Corollary 5.4 proves that in the setting of char k = 0, for any factorial

variety X , if X is (RS⌈dimX+1
2 ⌉) and (S⌈dimX+3

2 ⌉), then X is CM. Indeed, any reflexive

sheaf on X of rank 1 is a line bundle, and thus the Grauert-Riemenschneider vanishing

theorem ensures Rif∗(f
∗F)D = 0 for any reflexive sheaf F on X of rank 1, any resolution

f : X ′ → X , and any i ≥ 1. Thus, Corollary 5.4 gives us the claim.

One may think that Theorem 1.6 in [HO74] is similar to Corollary 5.4. Hence, if we

assume X is (Rq), then one can believe that there is a simple proof of Corollary 5.4 using

the local duality only.

6. q-birational morphisms

In this section, we always assume that the ground field k is of characteristic 0.

Definition 6.1 (See Definition 3.1, [Kim22]). Let X,X ′ be any normal varieties over a

characteristic 0 field and f : X ′ → X any proper birational morphism.

(a) The center of f is the reduced closed subscheme C of X which is the image of

the exceptional locus of f .

(b) We say f is a q-birational morphism if the exceptional locus has codimension 1

and the center of f has codimension ≥ q + 1.
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Let us prove the following lemma which can be regarded as a partial converse of

Lemma 4.6.

Lemma 6.2. Let X be any normal variety, F any reflexive sheaf of rank 1 on X which

is (Sq+1), f : X ′ → X any resolution, and ϕ : L → L′ are line bundles on X ′ such that

(a) there is an isomorphism F ∼= f∗L, and f∗ϕ is an isomorphism, and

(b) Rif∗L
D = 0 for i ≥ 1.

If f is q-birational, then Rif∗L
′ = 0 for 1 ≤ i < q.

Proof. We may use a similar argument as in the proof of (a) ⇐⇒ (c) in Theorem 5.2.

By taking dual on ϕ, we obtain an injection ϕD : (L′)D → L. Let Q be the cokernel

of f∗ϕ
D. Then we have the following exact sequence

(6.1) 0 → f∗(L
′)D → f∗L

D → Q → 0.

Since f is q-birational, the support of Q has codimension ≥ q+1, and H i
x(X,Q) = 0 for

i > dimX − q.

By taking local cohomology on (6.1), we have isomorphisms

H i
x(X, f∗(L

′)D) ∼= H i
x(X, f∗L

D) for any closed point x ∈ X and any dimX−q < i < dimX.

Let us prove H i
x(X, f∗L

D) = 0 using the argument of the proof of (a) ⇐⇒ (c) in

Theorem 5.2. Consider

Est
2 = Hs

x(X,R
tf∗L

D) =⇒ Hs+t
f−1(x)(X

′,LD).

By (b) in the statement, we deduce that Est
2 = 0 for s+t ≥ dimX−q. Hence, inspecting

the spectral sequence, Es0
2 = Es0

∞ = Es for s > dimX − q. Thus, it suffices to show

H i
f−1(x)(X

′,LD) = 0

for any dimX − q < i < dimX , and we can apply Lemma 2.6 to prove the claim.

Consider the Leray spectral sequence

Est
2 = Hs

x(X,R
tf∗(L

′)D) =⇒ Hs+t
f−1(x)(X

′, (L′)D).

By inspecting the spectral sequence, we obtainH i
f−1(x)(X

′, (L′)D) = 0 for any dimX−q <

i < dimX and any closed point x ∈ X . Now, we may apply Lemma 2.6 and obtain the

assertion. �

Using Lemma 6.2, we have the following theorem.

Theorem 6.3. Let X,X ′ be any normal varieties, X ′ smooth and f : X ′ → X any

q-birational morphism. Suppose that D is any anti f -nef Cartier divisor on X ′ such that

f∗D is Q-Cartier and (Sq+1). Then Rif∗OX′(D) = 0 for 1 ≤ i < q.

Proof. Since f∗D is Q-Cartier, we may consider the Q-divisor f ∗f∗D. If we define a

divisor L on X ′ such that OX′(L) = (f ∗OX(f∗D))DD, there is an effective f -exceptional

divisor E such that f ∗f∗D ∼Q L+E by Lemma 4.9 and hence D−(L+E) ∼Q D−f ∗f∗D
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is anti f -nef. Thus D− (L+E), and D− (L+ ⌊E⌋) = D− (L+E) + {E} are effective

f -exceptional divisors on X ′ by the Negativity lemma.

For applying Lemma 6.2, put L := OX′(L + ⌊E⌋) and L′ = OX′(D). Then there is

an injection L → L′, and (a) in Lemma 6.2 is satisfied. For (b) in Lemma 6.2, as in the

proof of Theorem 4.10, we can prove Rif∗OX′(L + ⌊E⌋) = 0 for i ≥ 1. Thus, we can

apply Lemma 6.2 to prove the assertion. �

We can write Theorem 6.3 as an absolute cohomology vanishing. For a similar result,

see Corollary 3.8 in [Kim22].

Corollary 6.4. Let X,X ′ be any normal projective varieties, X ′ smooth and f : X ′ → X

any q-birational morphism. Suppose that D is any anti f -nef Cartier divisor on X ′ such

that f∗D is a Q-divisor and (Sq+1) on X and E is any effective f -exceptional Cartier

divisor on X ′. Then

H i(X ′,OX′(D + E)) = H i(X,OX(f∗D)) = H i(X ′,OX′(D))

for 0 ≤ i < q.

Proof. We may use the Leray spectral sequence

Est
2 = Hs(X,Rtf∗OX′(D + E)) =⇒ Hs+t(X ′,OX′(D + E))

and hence H i(X,OX(f∗D)) = H i(X ′,OX′(D + E)) for 0 ≤ i < q by Theorem 6.3.

Let OX′(D) → OX′(D + E) be an injection. Then by taking f∗, and applying Corol-

lary 2.7, we obtain an injection

OX′(f∗D) → f∗OX′(D + E).

By the same argument to Lemma 3.7, we have that the above map is an isomorphism,

and thus we obtain the assertion. �
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